DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6036

Titre: New improved hybrid MPPT based on neural network-model predictive control-kalman filter for photovoltaic system
Auteur(s): Kacimi, Nora
Grouni, Said
Idir, Abdelhakim
Boucherit, Mohamed Seghir
Mots-clés: Artificial neural network
Comparative study
Kalman filter
Model predictive control
Photovoltaic system
Proposed hybrid MPPT
Date de publication: 2020
Collection/Numéro: Indonesian Journal of Electrical Engineering and Computer Science, 20(3);pp.1230-1241
Résumé: In this paper, new hybrid maximum power point tracking strategy for photovoltaic systems has been proposed. The proposed technique for control based on a novel combination of an artificial neural network with an improved model predictive control using Kalman Filter. In this paper the Kalman Filter is used to estimate the converter state vector for minimized the cost function then predict the future value to track the maximum power point with fast changing weather parameters. The proposed control technique can track the in fast changing irradiance conditions and a small overshoot. Finally, the system is simulated in the MATLAB/Simulink environment. Several tests under stable and variable environmental conditions are made for the four algorithms, and results show a better performance of the proposed compared to conventional perturb and observation neural network based proprtional integral control and neural network based model predictive control in terms of response time, efficiency and steady-state oscillations
URI/URL: http://ijeecs.iaescore.com/index.php/IJEECS/article/view/21686
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6036
ISSN: 25024752
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
New improved hybrid MPPT based on neural network-model predictive control-Kalman filter for photovoltaic system.pdf1,34 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires