Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6108
|
Titre: | A new technique based on 3D convolutional neural networks and filtering optical flow maps for action classification in infrared video |
Auteur(s): | Khebli, A. Meglouli, H. Bentabet, L. Airouche, M. |
Mots-clés: | Artificial neural networks Image classification Infrared imaging Machine learning |
Date de publication: | 2019 |
Editeur: | Control Engineering and Applied Informatics Journal |
Collection/Numéro: | Control Engineering and Applied InformaticsVolume 21, Issue 4, 2019;pp. 43-50 |
Résumé: | Human action in video sequences provides three-dimensional spatio-temporal signals that characterize both visual appearance and motion dynamics. The aim of this work is to recognize human action in infrared video by focusing mainly on dynamic information. We developed a new technique based on deep 3D convolutional neural networks (3D CNNs) that take optical flow maps as input. Our approach consists mainly of three parts: 1) computation of optical flow maps; 2) filtering of these maps, using an entropy measurement in order to increase the classification rate and reduce the run time by eliminating sequences that do not contain human action; and 3) classification using 3D CNN. The experimental results obtained by our approach on the InfAR dataset show considerable improvement in comparison with results obtained by existing models. |
URI/URL: | https://www.scopus.com/record/display.uri?eid=2-s2.0-85081741782&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=48ab6c0c24a36042f762c1e57eefb7b6 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6108 |
ISSN: | Control Engineering and Applied Informatics Journal |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|