DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6135

Titre: New intelligent gear fault diagnosis method based on Autogram and radial basis function neural network
Auteur(s): Afia, Adel
Rahmoune, C.
Benazzouz, D.
Merainani, B.
Fedala, S.
Mots-clés: Artificial intelligence
Artificial neural network
Complex systems
Condition monitoring
Diagnostics
Date de publication: 2020
Editeur: SAGE Publications Inc.
Collection/Numéro: Advances in Mechanical Engine Volume 12, Issue 5, 2020;
Résumé: Nowadays, fault detection, identification, and classification seem to be the most difficult challenge for gear systems. It is a complex procedure because the defects affecting gears have the same frequency signature. Thus, the variation in load and speed of the rotating machine will, inevitably, lead to erroneous detection results. Moreover, it is important to discern the nature of the anomaly because each gear defect has several consequences on the mechanism’s performance. In this article, a new intelligent fault diagnosis approach consisting of Autogram combined with radial basis function neural network is proposed. Autogram is a new sophisticated enhancement of the conventional Kurtogram, while radial basis function is used for classification purposes of the gear state. According to this approach, the data signal is decomposed by maximal overlap discrete wavelet packet transform into frequency bands and central frequencies called nodes. Thereafter, the unbiased autocorrelation of the squared envelope for each node is computed in order to calculate the kurtosis for each one at every decomposition level. Finally, the feature matrix obtained from the previous step will be the input of the radial basis function neural network to provide a new automatic gear fault diagnosis technique. Experimental results from the gearbox with healthy state and five different types of gear defects under variable speeds and loads indicate that the proposed method can successfully detect, identify, and classify the gear faults in all cases
URI/URL: https://www.scopus.com/record/display.uri?eid=2-s2.0-85084632114&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=ef00a1c0dda722e7da9561e395a7a752
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6135
ISSN: 16878132
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
New intelligent gear fault diagnosis method.pdf127,27 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires