DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6138

Titre: A review of recent progress in deep learning-based methods for MRI brain tumor segmentation
Auteur(s): Chihati, S.
Gaceb, Djamel
Mots-clés: Brain tumor segmentation
Deep learning
Image processing
Medical image segmentation
Date de publication: 2020
Editeur: Institute of Electrical and Electronics Engineers Inc
Collection/Numéro: 2020 11th International Conference on Information and Communication Systems, ICICS 2020 April 2020, Article number 9078956,;PP. 149-154
Résumé: Brain tumor segmentation is a challenging task that involves delimiting cancerous tissues with heterogeneous and diffuse forms in brain medical images. This process is undoubtedly an important step in computer-aided diagnosis systems, in which tumor regions must be isolated for visualization and subsequent analysis. Recently, great progress has been made in brain tumor segmentation with the emergence of deep learning-based methods, which automatically learn hierarchical, and discriminative features from raw data. These methods outperformed the classical machine learning approaches where handcrafted features are used to describe the differences between pathological and healthy tissues. In this paper, we present a comprehensive overview of recent progress in deep learning-based methods for brain tumor segmentation from magnetic resonance images. Moreover, we discuss the most common challenges and suggest possible solutions
URI/URL: https://www.scopus.com/record/display.uri?eid=2-s2.0-85085044696&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=43a6e4d7f8053ef5d63903d5a3a11146
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6138
ISBN: 978-172816227-0
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires