DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6171

Titre: U-Net Based Classification for Urban Areas in Algeria
Auteur(s): S.B., Asma
D., Abdelhamid
L., Youyou
Mots-clés: Object-Based
Remote Sensing
SVM
U-Net
Date de publication: 2020
Editeur: Institute of Electrical and Electronics Engineers
Collection/Numéro: 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, M2GARSS 2020 - Proceedings;
Résumé: Nowadays, researchers in the field of remote sensing and image classification have to face the challenge of the massive amount of information contained in satellite images, especially in urban areas. These types of areas contain numerous classes, where each class is made of several groups of pixels that are not adjacent, and that are rich in texture. Convolutional Neural Networks possess the ability to handle these problems. However, CNNs require quite a very large number of annotated training samples. U-Net came as a revolutionary solution for this major drawback. This paper aims to study the ability of a pre-trained U-Net to classify a satellite image and is then compared to the performance of a Support Vector Machine classifier
URI/URL: https://www.scopus.com/record/display.uri?eid=2-s2.0-85086727301&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=6085cde0c6801a38237a69d820cf5b59
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6171
ISBN: 978-172812190-1
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
U-Net Based Classification for Urban Areas in Algeria.pdf408,23 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires