Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6192
|
Titre: | An overview on recent machine learning techniques for Port Hamiltonian systems |
Auteur(s): | Cherifi, K. |
Mots-clés: | Control theory Dynamical systems Machine learning Physical modelling |
Date de publication: | 2020 |
Editeur: | Elsevier |
Collection/Numéro: | Physica D: Nonlinear Phenomena Volume 411, October 2020, Article number 132620; |
Résumé: | Port Hamiltonian systems have grown in interest in recent years due to their modular property, close relation with physical modelling and the interesting properties arising from that. In this paper, we aim at providing an overview of the application of machine learning for port Hamiltonian systems in terms of modelling and control. After an introduction to Port Hamiltonian systems framework, recent results on Hamiltonian systems modelling are presented. Some results on minimal realization and model reduction are then overviewed. Finally, the most important results on the control of Port Hamiltonian systems based machine learning are discussed including adaptive control, iterative control and reinforcement learning. The results presented in this paper are a motivation for the potential of applying machine learning methods to dynamical systems in general and port Hamiltonian systems in particular |
URI/URL: | https://www.scopus.com/record/display.uri?eid=2-s2.0-85086825747&origin=SingleRecordEmailAlert&dgcid=raven_sc_affil_en_us_email&txGid=670585fe91db5aa9ce471565ee0bcd0a http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6192 |
ISSN: | 01672789 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|