DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6194

Titre: Health Monitoring Approach of Bearing : Application of Adaptive Neuro Fuzzy Inference System (ANFIS) for RUL-Estimation and Autogram Analysis for Fault-Localization
Auteur(s): Gougam, Fawzi
Rahmoune, C.
Benazzouz, D.
Varnier, C.
Nicod, J.-M.
Mots-clés: Adaptive neuro fuzzy inference system (ANFIS)
Autogram analysis
Features extrac tion
Prognostic and health management (PHM)
Date de publication: 2020
Editeur: Institute of Electrical and Electronics Engineers
Collection/Numéro: Proceedings - 2020 Prognostics and Health Management Conference, PHM-Besancon 2020 May 2020, Article number 9115493;pp. 200-206
Résumé: Bearings usually operate under harsh conditions which result in a dynamic behavior generating non-stationary vibration signals and overwhelmed by noise. Therefore, bearing fault diagnosis and prognosis become difficult since the purpose is to extract robust features able to detect the appearance of faults, monitoring the degradation of health state and to predict the remaining useful life (RUL) of bearing. The aim of this paper, is to propose a method for bearing faults feature-extraction using adaptive neuro fuzzy inference system (ANFIS) and autogram analysis. First, times domain features are applied for the raw vibration signal. Then, the selected features are computed to will be analyzed as one of the characteristics that describes the degradation of state system. After that, the curve fitting (smoothing) is applied to normalize the amplitude of the irregular values relatively to others feature values. The calculated value of acquired signal cannot be smoothed or calculated three or more times, hence ANFIS intervenes for modeling the transfer from an indeterminate input to a more relevant value for monitoring the fault evolution. Then, the output of ANFIS estimates the days of acquisition and predict the RUL of bearing. Finally, the autogram analysis is used to identify the degraded element in the bearing
URI/URL: https://ieeexplore.ieee.org/document/9115493
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6194
ISBN: 978-172815675-0
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Health Monitoring Approach of Bearing.pdf557,79 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires