DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/644

Titre: A wavelet optimization approach for ECG signal classification
Auteur(s): Daamouche, Abdelhamid
Hamami, L.
Alajlan, N.
Melgani, F.
Mots-clés: Classification
Discrete wavelet transform (DWT)
Electrocardiogram (ECG) signals
Particle swarm optimization (PSO)
Support vector machines (SVM)
Date de publication: 2012
Collection/Numéro: Biomedical Signal Processing and Control/ Vol.7 ( 2012);pp. 342-349
Résumé: Wavelets have proved particularly effective for extracting discriminative features in ECG signal classification. In this paper, we show that wavelet performances in terms of classification accuracy can be pushed further by customizing them for the considered classification task. A novel approach for generating the wavelet that best represents the ECG beats in terms of discrimination capability is proposed. It makes use of the polyphase representation of the wavelet filter bank and formulates the design problem within a particle swarm optimization (PSO) framework. Experimental results conducted on the benchmark MIT/BIH arrhythmia database with the state-of-the-art support vector machine (SVM) classifier confirm the superiority in terms of classification accuracy and stability of the proposed method over standard wavelets (i.e., Daubechies and Symlet wavelets)
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/644
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
A wavelet optimization approach for ECG signal classification.pdf90,5 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires