DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Nationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6542

Titre: Bond Graph Model-Based Methods for Fault Diagnosis: A Comparative Study
Auteur(s): Lounici, Yacine
Touati, Youcef
Adjerid, Smail
Mots-clés: Diagnosis
Bond graph
Causality inversion
Augmented Analytical redundancy relation
Augmented Analytical redundancy relation
Date de publication: 2019
Collection/Numéro: Conference: International Symposium on Technology & Sustainable Industry Development, ISTSID'2019At: El oued, Algeria, Algeria;
Résumé: Advanced methods of fault diagnosis become increasinglysignificant for improving the safety, reliability and efficiently of dynamic systems in various domains of industrial engineering. This paper reviews and comparesthree bond graph model-based methods for fault diagnosis. These methods are causality inversion method, augmented Analytical redundancy relation method, and fault estimationmethod. Thesemethods are applied toa simulation model of an electricalsystem. This latteris used to simulate the system variables in both normal and faulty situationsand to generate residuals for fault detection and isolation. The results of the case study are compared for highlighting the fault diagnosisperformanceand capability of a method over another.The result showsthat the faultestimationmethodhas a better diagnosis performance when compared to the other methods
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6542
Collection(s) :Communications Nationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
YacineLounici(1).pdf1,08 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires