| 
                
                
  
 
Depot Institutionnel de l'UMBB >
 
Publications Scientifiques >
 
Communications Internationales >
 
    
        
            
                
                Veuillez utiliser cette adresse pour citer ce document :
                http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6557
             | 
         
     
     
    
    
| Titre:  | An improved system for emphysema recognition using CNN features extraction and AdaBoost-Decision treeclassifier |  
| Auteur(s):  | Ammar, Mohammed Mahmoudi, Said |  
| Mots-clés:  | CNN Features extraction AdaBoost-Decision Tree |  
| Date de publication:  | 2021 |  
| Collection/Numéro:  | Proceedings of Machine Learning Research/ (2021);pp. 1-8 |  
| Résumé:  | In this work, a hybrid model composed of a CNN and a classical machine learning methodwas proposed to improve the classification of emphysema diseases. Firstly, we have proposeda pre-treatment step based on contrast adjustment in order to improve the performancesof the proposed model.  Second, we extract the features from the deeper layers of the CNNclassifier, then we classify these features with decision tree and AdaBoost algorithm.  Theproposed model is validated by usinga set of 168 manually annotated ROIs for each CTimage,  comprising  the  three  classes:  normal  tissue,  centrilobular  emphysema,  and  para-septal  emphysema.   The  obtained  results  show  that  the  hybrid  model  proposed  in  thiswork  provides  the  best  accuracy  in  the  case  of  the  AdaBoost-Decision  Tree  classifier.Acomparison with CNN, CNN-SVM and CNN-AdaBoost-Decision Tree classifier has beenperformed.   As  conclusion,  the  CNN-AdaBoost-Decision  Tree  classifier  provide  the  bestresults with an accuracy of 100% |  
| URI/URL:  | https://openreview.net/forum?id=YDv-ytWKni http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6557 |  
| Collection(s) : | Communications Internationales
  |  
  
Fichier(s) constituant ce document : 
 |   
    
    
     
    
    
    Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés. 
                    
                      
                 |