Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6753
|
Titre: | Inverse bond graph Model-Based active fault tolerant control for health monitoring of electric vehicle path tracking |
Auteur(s): | Lounici, Yacine Touati, Youcef Adjerid, Smail Touzout, Walid |
Mots-clés: | Active fault-tolerant control Inverse bond graph Path tracking Fault estimation Electric vehicle |
Date de publication: | 2020 |
Editeur: | IEEE |
Collection/Numéro: | 2020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP);pp. 334-339 |
Résumé: | This article deals with the integration of fault estimation with inverse Bond Graph model for health monitoring of an electric vehicle. This autonomous vehicle is a multiple-input multiple-output system with four electromechanical traction subsystems. The innovative interest of this work is to exploit one graphical approach not only for vehicle dynamics modeling and diagnosis but also for fault estimation and fault-tolerant control. For robust fault diagnosis, residuals are generated in the presence of uncertainties. The purpose of using fault estimation is to generate an accurate fault magnitude to the inverse bond graph system. The latter aims to compensate for the power generated by the fault. This structure is then applied to an electric vehicle in order to monitor the system in real-time and to correct the tracking in faulty situations |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6753 DOI: 10.1109/CCSSP49278.2020.9151676 https://ieeexplore.ieee.org/abstract/document/9151676 |
Collection(s) : | Communications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|