DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6754

Titre: Traffic signal control using hybrid action space deep reinforcement learning
Auteur(s): Bouktif, Salah
Cheniki, Abderraouf
Ouni, Ali
Mots-clés: Hybrid action space
P-DQN
Parameterized deep reinforcement learning
Traffic optimization
Traffic signal control
Date de publication: 2021
Editeur: MDPI AG
Collection/Numéro: Sensors Volume 21, Issue 7, 1 April 2021, Article number 2302;
Résumé: Recent research works on intelligent traffic signal control (TSC) have been mainly focused on leveraging deep reinforcement learning (DRL) due to its proven capability and performance. DRL-based traffic signal control frameworks belong to either discrete or continuous controls. In discrete control, the DRL agent selects the appropriate traffic light phase from a finite set of phases. Whereas in continuous control approach, the agent decides the appropriate duration for each signal phase within a predetermined sequence of phases. Among the existing works, there are no prior approaches that propose a flexible framework combining both discrete and continuous DRL approaches in controlling traffic signal. Thus, our ultimate objective in this paper is to propose an approach capable of deciding simultaneously the proper phase and its associated duration. Our contribution resides in adapting a hybrid Deep Reinforcement Learning that considers at the same time discrete and continuous decisions. Precisely, we customize a Parameterized Deep Q-Networks (P-DQN) architecture that permits a hierarchical decision-making process that primarily decides the traffic light next phases and secondly specifies its the associated timing. The evaluation results of our approach using Simulation of Urban MObility (SUMO) shows its out-performance over the benchmarks. The proposed framework is able to reduce the average queue length of vehicles and the average travel time by 22.20% and 5.78%, respectively, over the alternative DRL-based TSC systems
URI/URL: https://pubmed.ncbi.nlm.nih.gov/33806123/
DOI: 10.3390/s21072302
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6754
ISSN: 14248220
Collection(s) :Publications Internationales
Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Traffic signal control using hybrid action space deep reinforcement learning.pdf1,34 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires