DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6755

Titre: A comparison of bond graph Model-Based methods for fault diagnosis in the presence of uncertainties : application to mechatronic system
Auteur(s): Lounici, Yacine
Touati, Youcef
Adjerid, Smail
Mots-clés: Methods
Mechatronic System
Fault Diagnosis
Comparison
Date de publication: 2019
Editeur: IEEE
Collection/Numéro: 2019 International Conference on Advanced Electrical Engineering (ICAEE);pp. 1-8
Résumé: This paper deals with comparing three methods for robust fault diagnosis that generate their residuals using bond graph model. These methods are the causality inversion method, a sensor data combinations method, and a faults/residuals sensitivity relations method. In addition, both parameter and measurement uncertainties are considered to generate the adaptive residual thresholds. Through simulation on a mechatronic system, the presented methods are studied under sensor and parameter faults. The results of the case study are compared for gaining practical insights about the applicability and performance of these methods. The results show that the faults/residuals sensitivity relations method has a better diagnosis performance as compared to the other methods
URI/URL: DOI: 10.1109/ICAEE47123.2019.9015199
https://ieeexplore.ieee.org/document/9015199
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6755
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires