DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6962

Titre: A hybrid model for modelling the salinity of the tafna river in Algeria
Auteur(s): Houari, Khemissi
Hartani, Tarik
Remini, Boualem
Lefkir, Abdelouhab
Abda, Leila
Heddam, Salim
Mots-clés: Adaptive-Network-Based Fuzzy Inference System (ANFIS)
Hybrid model
Neuro-fuzzy
Salinity
Salt flow
Tafna River
Date de publication: 2019
Collection/Numéro: Journal of Water and Land Development/ Vol.40, N°1 (2019);pp. 127-135
Résumé: In this paper, the capacity of an Adaptive-Network-Based Fuzzy Inference System (ANFIS) for predicting salinity of the Tafna River is investigated. Time series data of daily liquid flow and saline concentrations from the gauging station of Pierre du Chat (160801) were used for training, validation and testing the hybrid model. Different methods were used to test the accuracy of our results, i.e. coefficient of determination (R 2 ), Nash-Sutcliffe efficiency coefficient (E), root of the mean squared error (RSR) and graphic techniques. The model produced satisfactory results and showed a very good agreement between the predicted and observed data, with R 2 equal (88% for training, 78.01% validation and 80.00% for testing), E equal (85.84% for training, 82.51% validation and 78.17% for testing), and RSR equal (2% for training, 10% validation and 49% for testing). © 2019 Khemissi Houari et al
URI/URL: DOI:10.2478/jwld-2019-0014
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6962
ISSN: 14297426
2083-4535 Electronic
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Khemissi HOUARI.pdf650,3 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires