DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6967

Titre: Deep learning through LSTM classification and regression for transmission line fault detection, diagnosis and location in large-scale multi-machine power systems
Auteur(s): Belagoune, Soufiane
Bali, Noureddine
Bakdi, Azzeddine
Baadji, Bousaadia
Atif, Karim
Mots-clés: Multi-machine power system
Power transmission lines
Short-circuit fault
Long short-term memory
Fault detection and isolation
Sequential deep learning
Date de publication: 2021
Editeur: Elsevier
Collection/Numéro: Measurement/ Vol.177 (2021);
Résumé: Fault detection, diagnosis, identification and location are crucial to improve the sensitivity and reliability of system protection. This maintains power systems continuous proper operation; however, it is challenging in large-scale multi-machine power systems. This paper introduces three novel Deep Learning (DL) classification and regression models based on Deep Recurrent Neural Networks (DRNN) for Fault Region Identification (FRI), Fault Type Classification (FTC), and Fault Location Prediction (FLP). These novel models explore full transient data from pre- and post-fault cycles to make reliable decisions; whereas current and voltage signals are measured through Phasor Measurement Units (PMUs) at different terminals and used as input features to the DRNN models. Sequential Deep Learning (SDL) is employed herein through Long Short-Term Memory (LSTM) to model spatiotemporal sequences of high-dimensional multivariate features to achieve accurate classification and prediction results. The proposed algorithms were tested in a Two-Area Four-Machine Power System. Training and testing data are collected during transmission lines faults of different types introduced at various locations in different regions. The presented algorithms achieved superior detection, classification and location performance with high accuracy and robustness compared to contemporary techniques
URI/URL: https://www.sciencedirect.com/science/article/abs/pii/S0263224121003286
DOI:10.1016/j.measurement.2021.109330
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6967
ISSN: 02632241
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires