DSpace
 

Depot Institutionnel de l'UMBB >
Thèses de Doctorat et Mémoires de Magister >
Génie Eléctriques >
Doctorat >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6969

Titre: Automatic methods for the analysis and recognition of the Electrocardiogram of the electrocardiogram
Auteur(s): Belkadi, Mohamed Amine
Daamouche, Abdelhamid(Directeur de thèse)
Mots-clés: Electrocardiogram (ECG)
Pan-tompkins algorithm
QRS
Autoencoders
Date de publication: 2021
Editeur: Université M'Hamed Bougara : Institut de génie électrique et électronique
Résumé: Cardiac diseases rank first in the cases of death all over the world; Electrocardiogram (ECG) bears valuable information about the person health state. Therefore, ECG became a standard tool for heart disease exploration. Beats segmentation is a necessary step before disease type identification. The segmentation is based on the QRS detection. In this thesis, we proposed three different methods for ECG segmentation. First, an optimized Pan-Tompkins algorithm is developed, in which the parameters of the benchmark algorithm are optimized using the particle swarm optimization (PSO). Second, the QRS is detected in the time-scale domain; the stationary wavelet transform is applied to the filtered ECG signal to enhance the QRS wave, and then thresholding is carried out to extract the wanted signal. Finally, a machine learning technique is used to identify the QRS. In particular, a deep learning autoencoder is trained by standard datasets for the purpose of QRS detection
Description: 86 p. : ill. ; 30 cm
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6969
Collection(s) :Doctorat

Fichier(s) constituant ce document :

Fichier Description TailleFormat
BELKADI's Thesis Final.pdf4,16 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires