Depot Institutionnel de l'UMBB >
Thèses de Doctorat et Mémoires de Magister >
Génie Eléctriques >
Doctorat >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6969
|
Titre: | Automatic methods for the analysis and recognition of the Electrocardiogram of the electrocardiogram |
Auteur(s): | Belkadi, Mohamed Amine Daamouche, Abdelhamid(Directeur de thèse) |
Mots-clés: | Electrocardiogram (ECG) Pan-tompkins algorithm QRS Autoencoders |
Date de publication: | 2021 |
Editeur: | Université M'Hamed Bougara : Institut de génie électrique et électronique |
Résumé: | Cardiac diseases rank first in the cases of death all over the world; Electrocardiogram (ECG) bears valuable information about the person health state. Therefore, ECG became a standard tool for heart disease exploration. Beats segmentation is a necessary step before disease type identification. The segmentation is based on the QRS detection. In this thesis, we proposed three different methods for ECG segmentation. First, an optimized Pan-Tompkins algorithm is developed, in which the parameters of the benchmark algorithm are optimized using the particle swarm optimization (PSO). Second, the QRS is detected in the time-scale domain; the stationary wavelet transform is applied to the filtered ECG signal to enhance the QRS wave, and then thresholding is carried out to extract the wanted signal. Finally, a machine learning technique is used to identify the QRS. In particular, a deep learning autoencoder is trained by standard datasets for the purpose of QRS detection |
Description: | 86 p. : ill. ; 30 cm |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/6969 |
Collection(s) : | Doctorat
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|