DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7050

Titre: Faults classification in Grid-Connected photovoltaic systems
Auteur(s): Attouri, Khadija
Hajji, Mansour
Mansouri, Majdi
Nounou, Hazem
Kouadri, Abdelmalek
Bouzrara, Kais
Mots-clés: Fault detection and diagnosis (FDD)
Grid-Connected photovoltaic systems (GCPV)
Kullback-Leibler Divergence (KLD)
Principal Component Analysis (PCA)
Date de publication: 2021
Editeur: IEEE
Collection/Numéro: 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)/ (2021);pp. 1431-1437
Résumé: Fault detection and diagnosis (FDD) for Grid-Connected Photovoltaic (GCPV) systems have been received an important measure for improving the operation of these systems. Therefore, in this paper, an enhanced FDD approach, so-called principal component analysis (PCA)-based on a Kullback-Leibler Divergence (KLD), aims to provide the reliability and safety of the overall GCPV system is proposed. The developed approach merges the benefits of PCA model and KLD metric. Firstly, the GCPV features are extracted using PCA model. Secondly, the extracted features are fed to KLD metric for classification purposes. The obtained results confirm the high accuracy of the developed technique. The proposed approach showed superior effectiveness and robustness in process fault diagnosis
URI/URL: https://ieeexplore.ieee.org/document/9429312
DOI: 10.1109/SSD52085.2021.9429312
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7050
ISBN: 978-166541493-7
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Abdelmalek Kouadri.pdf484,2 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires