Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7050
|
Titre: | Faults classification in Grid-Connected photovoltaic systems |
Auteur(s): | Attouri, Khadija Hajji, Mansour Mansouri, Majdi Nounou, Hazem Kouadri, Abdelmalek Bouzrara, Kais |
Mots-clés: | Fault detection and diagnosis (FDD) Grid-Connected photovoltaic systems (GCPV) Kullback-Leibler Divergence (KLD) Principal Component Analysis (PCA) |
Date de publication: | 2021 |
Editeur: | IEEE |
Collection/Numéro: | 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)/ (2021);pp. 1431-1437 |
Résumé: | Fault detection and diagnosis (FDD) for Grid-Connected Photovoltaic (GCPV) systems have been received an important measure for improving the operation of these systems. Therefore, in this paper, an enhanced FDD approach, so-called principal component analysis (PCA)-based on a Kullback-Leibler Divergence (KLD), aims to provide the reliability and safety of the overall GCPV system is proposed. The developed approach merges the benefits of PCA model and KLD metric. Firstly, the GCPV features are extracted using PCA model. Secondly, the extracted features are fed to KLD metric for classification purposes. The obtained results confirm the high accuracy of the developed technique. The proposed approach showed superior effectiveness and robustness in process fault diagnosis |
URI/URL: | https://ieeexplore.ieee.org/document/9429312 DOI: 10.1109/SSD52085.2021.9429312 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7050 |
ISBN: | 978-166541493-7 |
Collection(s) : | Communications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|