DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7108

Titre: Traffic signal control based on deep reinforcement learning with simplified state and reward definitions
Auteur(s): Bouktif, Salah
Cheniki, Abderraouf
Ouni, Ali
El-Sayed, Hesham
Mots-clés: Traffic Signal Control
Reinforcement Learning
Double DQN
Traffic Optimization
Date de publication: 2021
Editeur: IEEE
Collection/Numéro: 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD);pp. 253-260
Résumé: Traffic congestion has recently become a real issue especially within crowded cities and urban areas. Intelligent transportation systems (ITS) leveraged various advanced tech- niques aiming to optimize the traffic flow and subsequently alleviate the traffic congestion. In particular, traffic signal control TSC is one of the essential ITS techniques for controlling the traffic flow at intersections. Many research works have been proposed to develop algorithms and techniques which optimize TSC behavior. Recent works leverage Deep Learning (DL) and Reinforcement Learning (RL) techniques to optimize TSCs. However, most of Deep RL proposals are based on complex definitions of state and reward in the RL framework. In this work, we propose to use an alternative way of formulating the state and reward definitions. Basically, The basic idea is to define both state and reward in a simplified and straightforward manner rather than the complex design. We hypothesize that such a design approach simplifies the learning of the RL agent and hence provides a rapid convergence to optimal policies. For the agent architecture, we employ the double deep Q-Network (DDQN) along with prioritized experience replay (PER). We conduct the experiments using the Simulation of Urban MObility (SUMO) simulator interfaced with Python framework and we compare the performance of our proposal to traditional and learning-based techniques
URI/URL: DOI: 10.1109/ICAIBD51990.2021.9459029
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7108
https://ieeexplore.ieee.org/document/9459029
ISBN: 978-073813170-2
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires