DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7148

Titre: Numerical solutions to the time-fractional swift–hohenberg equation using reproducing kernel hilbert space method
Auteur(s): Attia, Nourhane
Akgül, Ali
Seba, Djamila
Nour, Abdelkader
Mots-clés: Caputo fractional derivative
Fractional Swift–Hohenberg equation
Gram–Schmidt process
Reproducing kernel Hilbert space method
Date de publication: 2021
Editeur: Springer
Collection/Numéro: International Journal of Applied and Computational Mathematics/ Vol.7, N°5 (2021);pp. 1-25
Résumé: In this work, a numerical approach based on the reproducing kernel theory is presented for solving the fractional Swift–Hohenberg equation (FS-HE) under the Caputo time-fractional derivative. Such equation is an effective model to describe a variety of phenomena in physics. The analytic and approximate solutions of FS-HE in the absence and presence of dispersive terms have been described by applying the reproducing kernel Hilbert space method (RKHSM). The benefit of the proposed method is its ability to get the approximate solution of the FS-HE easily and quickly. The current approach utilizes reproducing kernel theory, some valuable Hilbert spaces, and a normal basis. The theoretical applicability of the RKHSM is demonstrated by providing the convergence analysis. By testing some examples, we demonstrated the potentiality, validity, and effectiveness of the RKHSM. The computational results are compared with other available ones. These results indicate the superiority and accuracy of the proposed method in solving complex problems arising in widespread fields of technology and science
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7148
ISSN: 23495103
2199-5796 Electronic
https://link.springer.com/article/10.1007/s40819-021-01132-0
DOI 10.1007/s40819-021-01132-0
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Nourhane Attia.pdf1,5 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires