DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7182

Titre: Criticality analysis and maintenance of solar tower power plants by integrating the artificial intelligence approach
Auteur(s): Benammar, Samir
Tee, Kong Fah
Mots-clés: Criticality analysis
Solar tower power plants
Maintenance
Artificial intelligence
bayesian network
Date de publication: 2021
Editeur: MDPI
Collection/Numéro: Energies/ Vol.14, N°18 (2021);pp. 1-26
Résumé: Maintenance of solar tower power plants (STPP) is very important to ensure production continuity. However, random and non-optimal maintenance can increase the intervention cost. In this paper, a new procedure, based on the criticality analysis, was proposed to improve the maintenance of the STPP. This procedure is the combination of three methods, which are failure mode effects and criticality analysis (FMECA), Bayesian network and artificial intelligence. The FMECA is used to estimate the criticality index of the different elements of STPP. Moreover, corrections and improvements were introduced on the criticality index values based on the expert advice method. The modeling and the simulation of the FMECA estimations incorporating the expert advice method corrections were performed using the Bayesian network. The artificial neural network is used to predicate the criticality index of the STPP exploiting the database obtained from the Bayesian network simulations. The results showed a good agreement comparing predicted and actual criticality index values. In order to reduce the criticality index value of the critical elements of STPP, some maintenance recommendations were suggested
URI/URL: https://doi.org/10.3390/en14185861
https://www.mdpi.com/1996-1073/14/18/5861
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7182
ISSN: 19961073
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Samir Benammar.pdf2,41 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires