DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7198

Titre: Shading fault detection in a grid-connected PV system using vertices principal component analysis
Auteur(s): Rouani, Lahcene
Harkat, Mohamed Faouzi
Kouadri, Abdelmalek
Mekhilef, Saad
Mots-clés: Photovoltaic system (PV)
Partial shading
Fault detection
Fault diagnosis
Principal component analysis (PCA)
Interval-valued PCA
Date de publication: 2021
Editeur: Elsevier
Collection/Numéro: Renewable Energy/ Vol. 164;1527-1539
Résumé: Partial shading severely impacts the performance of the photovoltaic (PV) system by causing power losses and creating hotspots across the shaded cells or modules. Proper detection of shading faults serves not only in harvesting the desired power from the PV system, which helps to make solar power a reliable renewable source, but also helps promote solar versus other fossil fuel electricity-generation options that prevent making climate change targets (e.g. 2015’s Paris Agreement) achievable. This work focuses primarily on detecting partial shading faults using the vertices principal component analysis (VPCA), a data-driven method that combines the simplicity of its linear model and the ability to consider the uncertainties of the different measurements of a PV system in an interval format. Data from a gridconnected monocrystalline PV array, installed on the rooftop of the Power Electronics and Renewable Energy Research Laboratory (PEARL), University of Malaya, Malaysia, have been used to train the VPCA model. To prove the effectiveness of this VPCA method, four partial shading patterns have been created. The obtained performance has, then, been tested against a regular PCA. In addition to its ability to acknowledge the uncertainty of a PV system, the VPCA method has shown an enhanced performance of detecting partial shading fault in comparison with the standard PCA. Also, included in the article is an extension of the contribution plot diagnosis-based method, of the Q-statistic, to the interval-valued case aiming to pinpoint the out-of-control variables.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7198
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Rouani et al. - 2021 - Shading fault detection in a grid-connected PV system using vertices principal component analysis.pdf2,94 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires