DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7586

Titre: Melanoma identification using convolutional neural networks
Auteur(s): Louifi, Akram
Soulami, Ameur
Cherifi, Dalila ( supervisor)
Mots-clés: Artificial neural networks
Melanoma skin cancer
Date de publication: 2018
Résumé: Melanoma is an extremely dangerous type of skin cancer causing fatal incidences, it’s also an increasing form of cancer around the world. Since the odds of recovering for the early-diagnosed cases is very high, early detection of melanoma is vital. Computer assisted diagnosis have been used alongside traditional techniques so as to improve the reliability of detecting melanoma. In this project, a convolutional Neural network model designed from scratch as well as Transfer Learning using the pretrained model Inception v3 are used in order to develop a reliable tool able to detect melanoma that can used by
Description: 36 p.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7586
Collection(s) :Computer

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Melanoma identification using CNN.pdf3,88 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires