DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7595

Titre: Arabic handwriting recognition using curvelet transform and SVM
Auteur(s): Mohammed tsabet, Younes
Boumaad, Bila
Daamouche, A.
Mots-clés: Curvelet transform
classification support vector
Date de publication: 2018
Résumé: Arabic cursive language recognition is an ever challenging problem in OCR applications. Traditional approaches to tackle this problem fail to adapt to the vast variability imposed by handwritten Arabic language, this necessitate the devising of more holistic techniques. Recent approaches to solve this challenge are making use of multidimensional analysis like wavelet and curvelet for feature extraction and then apply machine learning techniques for recognition. In this project we investigate the use of one of this approaches for feature extraction by applying Curvelet Transform to profile curvatures present in words without character segmentation mimicking the human way of recognition. The
Description: 54 p.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7595
Collection(s) :Computer

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Arabic handwriting recognition using Curvelet transform and SVM.pdf9,01 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires