Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7595
|
Titre: | Arabic handwriting recognition using curvelet transform and SVM |
Auteur(s): | Mohammed tsabet, Younes Boumaad, Bila Daamouche, A. |
Mots-clés: | Curvelet transform classification support vector |
Date de publication: | 2018 |
Résumé: | Arabic cursive language recognition is an ever challenging problem in OCR applications. Traditional approaches to tackle this problem fail to adapt to the vast variability imposed by handwritten Arabic language, this necessitate the devising of more holistic techniques. Recent approaches to solve this challenge are making use of multidimensional analysis like wavelet and curvelet for feature extraction and then apply machine learning techniques for recognition. In this project we investigate the use of one of this approaches for feature extraction by applying Curvelet Transform to profile curvatures present in words without character segmentation mimicking the human way of recognition. The |
Description: | 54 p. |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7595 |
Collection(s) : | Computer
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|