DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Communications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7671

Titre: Robust Fault Diagnosis of SCARA Industrial Robot Manipulator
Auteur(s): Lounici, Yacine
Touati, Youcef
Adjerid, Smail
Mots-clés: SCARA robot
Fault diagnosis
Control
Uncertainties
Modelling
Date de publication: 2018
Collection/Numéro: International Conference on Advanced Mechanics and Renewable Energies ICAMRE2018 November 28 & 29, 2018 Boumerdes - Algeria;
Résumé: Nowadays, robotic systems are being in increasingly demanding in many industrial activities. In order to achieve the maximal performance, complex nonlinear dynamic robotic systems were developed. However, as a consequence, the rate of component malfunctions augments with the complexity of systems. These malfunctions are called faults, which may appear in different parts of the system and can induce changes in the dynamic behaviour. This paper deals with fault diagnosis of a particular kind of industrial robots called selective compliance assembly robot arm (SCARA), where both parameter and measurement uncertainties are taken into account. Residuals and thresholds are generated using the quantitative model-based method. The inverse geometric model is used to find analytical solutions for joints angles and distances given the trajectory of the end effector. The presented geometric model is then used to derive the kinematic model. Using this kinematic model, the robot controller computes the necessary torque applied to each DC servomotor in order to move the robot from the current position to the next desired position. The proposed robust fault diagnosis scheme is then implemented for a SCARA manipulator and simulation results are presented in both normal and faulty situations.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7671
Collection(s) :Communications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
ICAMRE'2018.pdf765,16 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires