Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7709
|
Titre: | Deep Learning Models for Intracranial Hemorrhage Recognition: A comparative study |
Auteur(s): | Ammar, Mohammed Lamri, Mohamed Amine Mahmoud, Saïd Laid, Amel |
Mots-clés: | Intracranial Hemorrhage CT Detection Classification Deep Learning VGG-16 |
Date de publication: | 2022 |
Editeur: | Elsevier |
Collection/Numéro: | Procedia Computer Science/ Vol. 196 (2022);pp. 418–425 |
Résumé: | Every day, a large number of people with brain injury are received in the emergency rooms. Due to the large number of slices analyzed by the doctors for each patient and to accelerate the diagnosis, the development of a precise computer-aided diagnosis system becomes very recommended.
The aim of our work is developing a tool to help radiologists in the detection of intracranial hemorrhage (ICH) and its five (05) subtypes in computed tomography (CT) images. Five deep learning models are tested: ResNet50, VGG16, Xception, InceptionV3 and InceptionResNetV2. Before training these models, preprocessing operations are performed like normalization and windowing.
The experiments show that VGG-16 architecture provides the best performances. The model achieves an accuracy of 96%. |
URI/URL: | https://doi.org/10.1016/j.procs.2021.12.031 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7709 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|