DSpace
 

Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7709

Titre: Deep Learning Models for Intracranial Hemorrhage Recognition: A comparative study
Auteur(s): Ammar, Mohammed
Lamri, Mohamed Amine
Mahmoud, Saïd
Laid, Amel
Mots-clés: Intracranial Hemorrhage
CT
Detection
Classification
Deep Learning
VGG-16
Date de publication: 2022
Editeur: Elsevier
Collection/Numéro: Procedia Computer Science/ Vol. 196 (2022);pp. 418–425
Résumé: Every day, a large number of people with brain injury are received in the emergency rooms. Due to the large number of slices analyzed by the doctors for each patient and to accelerate the diagnosis, the development of a precise computer-aided diagnosis system becomes very recommended. The aim of our work is developing a tool to help radiologists in the detection of intracranial hemorrhage (ICH) and its five (05) subtypes in computed tomography (CT) images. Five deep learning models are tested: ResNet50, VGG16, Xception, InceptionV3 and InceptionResNetV2. Before training these models, preprocessing operations are performed like normalization and windowing. The experiments show that VGG-16 architecture provides the best performances. The model achieves an accuracy of 96%.
URI/URL: https://doi.org/10.1016/j.procs.2021.12.031
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/7709
Collection(s) :Publications Internationales

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Deep Learning Models for Intracranial Hemorrhage.pdf960,79 kBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires