DSpace
 

Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >

Veuillez utiliser cette adresse pour citer ce document : http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/8553

Titre: Arabic handwriting recognition using Curvelet transform and SVM
Auteur(s): MOHAMMED TSABET, Younes
BOUMAAD, Bilal
DAAMOUCHE, A. (Supervisor)
Mots-clés: Preprocessing
Image enhancement techniques
Feature Extraction: Curvelet
Date de publication: 2018
Résumé: Arabic cursive language recognition is an ever challenging problem in OCR applications. Traditional approaches to tackle this problem fail to adapt to the vast variability imposed by handwritten Arabic language, this necessitate the devising of more holistic techniques. Recent approaches to solve this challenge are making use of multidimensional analysis like wavelet and curvelet for feature extraction and then apply machine learning techniques for recognition. In this project we investigate the use of one of this approaches for feature extraction by applying Curvelet Transform to profile curvatures present in words without character segmentation mimicking the human way of recognition. The IFN/ENIT database of Tunisian towns is used and we apply SVM multi-classification for training a modal to intelligently classify those words. Results showed an accuracy of 66% though this accuracy can be elevated by following a certain train/test separation scheme.
Description: 54p.
URI/URL: http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/8553
Collection(s) :Computer

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Arabic handwriting recognition using Curvelet transform and SVM.pdf9,01 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires