Depot Institutionnel de l'UMBB >
Mémoires de Master 2 >
Institut de Génie Electrique et d'Electronique >
Computer >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/8553
|
Titre: | Arabic handwriting recognition using Curvelet transform and SVM |
Auteur(s): | MOHAMMED TSABET, Younes BOUMAAD, Bilal DAAMOUCHE, A. (Supervisor) |
Mots-clés: | Preprocessing Image enhancement techniques Feature Extraction: Curvelet |
Date de publication: | 2018 |
Résumé: | Arabic cursive language recognition is an ever challenging problem in OCR
applications. Traditional approaches to tackle this problem fail to adapt to the vast
variability imposed by handwritten Arabic language, this necessitate the devising of
more holistic techniques. Recent approaches to solve this challenge are making use of
multidimensional analysis like wavelet and curvelet for feature extraction and then
apply machine learning techniques for recognition. In this project we investigate the
use of one of this approaches for feature extraction by applying Curvelet Transform to
profile curvatures present in words without character segmentation mimicking the
human way of recognition. The IFN/ENIT database of Tunisian towns is used and we
apply SVM multi-classification for training a modal to intelligently classify those
words. Results showed an accuracy of 66% though this accuracy can be elevated by
following a certain train/test separation scheme. |
Description: | 54p. |
URI/URL: | http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/8553 |
Collection(s) : | Computer
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|