Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/9885
|
Titre: | Energy-based USV maritime monitoring using multi-objective evolutionary algorithms |
Auteur(s): | Ouelmokhtar, Hand Benmoussa, Yahia Benazzouz, Djamel Ait Chikh, Mohamed Abdessamad Lemarchand, Laurent |
Mots-clés: | Covering Path Planning Chromosome size USV MOEA Way-points |
Date de publication: | 2022 |
Editeur: | Elsevier |
Collection/Numéro: | Ocean Engineering/Vol. 253 (2022); |
Résumé: | This study addresses the monitoring mission problem using an USV equipped with an on-board LiDAR allowing to monitor regions inside its coverage radius. The problem is formulated as a bi-objective coverage path planning with two conflicting objectives : minimization of the consumed energy and maximization of the coverage rate. To solve the problem, we use two popular multi-objective evolutionary algorithms : Non-Dominated Sorting Genetic Algorithm II (NSGA-II) and Pareto Archived Evolution Strategy (PAES). First, we compare the efficiency of these two algorithms and show that PAES allows to find solutions allowing to save more energy as compared to those provided by NSGA-II. Then, we propose a new method which improves the performance of evolutionary algorithms when solving covering path planning problems by reducing the chromosome size. We have applied this method on the used algorithms and simulation results shows a significant performance enhancement both PAES and NSGA-II. |
URI/URL: | https://doi.org/10.1016/j.oceaneng.2022.111182 http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/9885 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|