Depot Institutionnel de l'UMBB >
Publications Scientifiques >
Publications Internationales >
Veuillez utiliser cette adresse pour citer ce document :
http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/9894
|
Titre: | Prediction of Wax Appearance Temperature Using Artificial Intelligent Techniques |
Auteur(s): | Benamara, Chahrazed Gharb, Kheira Nait Amar, Menad Hamada, Boudjema |
Mots-clés: | WAT Crude oil Pour point tester MLP GEP |
Date de publication: | 2020 |
Editeur: | Springer |
Collection/Numéro: | Arabian Journal for Science and Engineering (2020);pp. 1319–1330 |
Résumé: | The paraffin particles can promote and be involved in the formation of deposits which can lead to plugging of oil production facilities. In this work, an experimental prediction of wax appearance temperature (WAT) has been performed on 59 Algerian crude oil samples using a pour point tester. In addition, a modeling investigation was done to create reliable WAT paradigms. To do so, gene expression programming and multilayers perceptron optimized with Levenberg–Marquardt algorithm (MLP-LMA) and Bayesian regularization algorithm were implemented. To generate these models, some parameters, namely density, viscosity, pour point, freezing point and wax content in crude oils, have been used as input parameters. The results reveal that the developed models provide satisfactory results. Furthermore, the comparison between these models in terms of accuracy indicates that MLP-LMA has the best performances with an overall average absolute relative error of 0.23% and a correlation coefficient of 0.9475. |
URI/URL: | https://doi.org/10.1007/s13369-019-04290-y http://dlibrary.univ-boumerdes.dz:8080/handle/123456789/9894 |
Collection(s) : | Publications Internationales
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|