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This paper concerns the existence of global solutions for the following class of heat 
equations involving the 1-Laplacian operator for the Dirichlet problem

⎧⎨⎩
ut − Δ1u = f(u) in Ω × (0,+∞),
u = 0 in ∂Ω × (0,+∞),
u(x, 0) = u0(x) in Ω,

(P)

where Ω ⊂ RN is a smooth bounded domain, N ≥ 1, f : R → R is a 
continuous function satisfying some technical conditions and Δ1u = div

(
Du
|Du|

)
denotes the 1-Laplacian operator. The existence of global solutions is done by using 
an approximation technique that consists in working with a class of p-Laplacian 
problems associated with (P ) and then taking the limit when p → 1+ to get our 
results.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction and the main results

In this paper, we are concerned with the existence of global solutions for the following class of heat 
equations involving the 1-Laplacian operator for the Dirichlet problem⎧⎪⎨⎪⎩

ut − Δ1u = f(u) in Ω × (0,+∞),
u = 0 in ∂Ω × (0,+∞),
u(x, 0) = u0(x) in Ω,

(1.1)
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where Ω ⊂ RN is a smooth bounded domain, N ≥ 1, f : R → R is a continuous function and Δ1u =
div
(

Du
|Du|

)
denotes the 1-Laplacian operator.

In recent decades, some problems involving the operator Δ1 has received special attention after the 
pioneering works involving this operator that were written by Andreu, Ballester, Caselles, and Mazón 
(among them [4–6]). For example, in [4], Andreu, Ballester, Caselles, and Mazón considered the following 
class of evolution equations

⎧⎪⎨⎪⎩
ut − div

(
Du
|Du|

)
= 0 in Ω × (0,+∞),

u = ϕ in ∂Ω × (0,+∞),
u(x, 0) = u0(x) in Ω,

(1.2)

where u0 ∈ L1(Ω) and ϕ ∈ L∞(Ω). By using the techniques of completely accretive operators and the 
Crandall-Liggett semigroup generation theorem [12], they were able to prove the existence and uniqueness 
of entropy solution. The same problem, but involving the Neumann boundary condition, that is ∂u∂ν = 0 in 
∂Ω × (0, +∞), was considered by Andreu, Ballester, Caselles, and Mazón in [5]. Still related to the existence 
of solutions to problem (1.2), we would like to cite a paper by Hardt and Zhou [21], where the authors used 
an approximation technique that consists in working with a class of nondegenerate parabolic approximation 
problems, and after some estimates, they were able to prove the existence of a solution for the original 
problem. In [7], Andreu, Caselles, Díaz, and Mazón studied the asymptotic profile of solutions to (1.2) near 
the extinction time for Dirichlet and Neumann boundary conditions.

Related to the stationary case, that is, for the following class of problems

{
−div

(
Du
|Du|

)
= f(u) in Ω,

u = 0 in ∂Ω,
(1.3)

Degiovanni and Magrone [13] studied a version of the Brézis-Nirenberg problem for (1.3) by applying the 
Linking theorem. The functional energy has been extended to Lebesgue space LN/N−1(Ω), in order to 
recover the compact embedding. Concerning the spectrum of the 1-Laplacian operator, by using the same 
approach, Chang [11] proved the existence of a sequence of eigenvalues. Different approaches have been taken 
to attack (1.3) under various hypotheses on the nonlinearity f . In [19], Figueiredo and Pimenta studied a 
problem related to (1.3), where the nonlinearity has a subcritical growth and their main results establish 
the existence of a nontrivial ground-state solution.

As regards quasilinear problems, depending on some features of the differential operator to be considered, 
it is worthwhile to work with it in a suitable space, like the space of functions of bounded variation, hereafter 
denoted by BV (Ω). We may address the question of finding critical points for a functional in BV (Ω), where 
the coerciveness and smoothness are lost. In other words, the main difficulties arise mainly due to the 
lack of smoothness on the energy functional associated with (1.3) and the lack of reflexiveness of BV (Ω). 
Indeed, the energy functional is not C1 and we find some hindrances to show that functionals defined in 
this space satisfy compactness conditions like the Palais-Smale. Meanwhile, a lot of attention has been 
paid recently to that space, for example, see [3,9–11,13,14,17,23,30,31] and references therein, since it is the 
natural environment in which minimizers of many problems can be found, especially in problems involving 
interesting physical situations, in capillarity theory and existence of minimal surfaces, and as an application 
of the variational approach to image restoration.

In conclusion, it is important to point out that the literature concerning the inhomogeneous case of 
problem (1.2) is poor and, to the best of our knowledge, there are a few papers in which the authors studied 
the existence and uniqueness of solutions. In that direction, we mention a result by Segura de León and 
Webler [25] involving the following problem
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⎧⎪⎨⎪⎩
ut − div

(
Du
|Du|

)
= f(x, t) in Ω × (0,+∞),

u = 0 in ∂Ω × (0,+∞),
u(x, 0) = u0(x) in Ω,

(1.4)

where u0 ∈ L2(Ω) and f ∈ L1
loc(0, +∞; L2(Ω)). In that work the authors proved global existence and 

uniqueness of solutions for (1.4) via a parabolic p-Laplacian problem and then taking the limit as p → 1+. 
In [22], by means of nonlinear semigroup, Hauer and Mazón studied the existence of strong solutions for 
problem (1.4) with a global Lipschitz continuous function f(x, u) in the second variable instead of f(x, t). 
Finally, we refer the reader to [22] and [27] for some recent results on parabolic equations involving the 
fractional 1-Laplacian operator.

Motivated by the studies made in [4,5,7,21,22,25], we intend to prove two existence results of solutions 
for (1.1) by supposing different conditions on f and Ω. Our first result is devoted to the radial case, where 
we assume that Ω is an annulus region of the form

Ω = {x ∈ RN : a < |x| < b}, (1.5)

where 0 < a < b < +∞, while f : R → R is a continuous function satisfying the following conditions:
There is p0 ∈ (1, 2) such that

(f1) lim
s→0

f(s)
|s|p0−1 = 0.

There is θ > 1 such that

(f2) 0 < θF (s) ≤ f(s)s, s ∈ R \ {0},

where F (s) =
∫ s

0 f(r) dr.
In order to state our condition on the initial datum u0, we need to fix some notations. Hereafter, we 

denote by W 1,p
0,rad(Ω) the subspace of W 1,p

0 (Ω) that is formed by radial functions. It is well known that the 
embedding below

W 1,p
0,rad(Ω) ↪→ C(Ω) (1.6)

is compact, whose proof is an immediate consequence of [24, Chapitre 6, Lemme 1.1]. In particular, we have 
the compact embedding

W 1,p
0,rad(Ω) ↪→ Lq(Ω), ∀q ∈ [1,∞].

The embedding (1.6) permits to consider the functional E : W 1,1
0,rad(Ω) → R given by

E(u) =
∫
Ω

|∇u| dx−
∫
Ω

F (u) dx.

Associated with E we have the Nehari set defined by

Nrad =

⎧⎨⎩u ∈ W 1,1
0,rad(Ω) \ {0} :

∫
Ω

|∇u| dx =
∫
Ω

f(u)u dx

⎫⎬⎭ ,

and the real number
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d = inf
u∈Nrad

E(u).

The potential well associated with problem (1.1) is the set

Wrad =
{
u ∈ W 1,1

0,rad(Ω) : E(u) < d and I(u) > 0
}
∪ {0}, (1.7)

where I(u) =
∫
Ω

|∇u| dx −
∫
Ω

f(u)u dx for all u ∈ W 1,1
0,rad(Ω).

For each r ∈ [1, ∞], we define the function space Xr(Ω) by

Xr(Ω) :=
{
z ∈ L∞(Ω;RN ) : divz ∈ Lr(Ω)

}
. (1.8)

In the sequel, we give the following two definitions.

Definition 1.1. (radial solution) A function u ∈ L∞(0, +∞; BVrad(Ω)) with ut ∈ L2(0, +∞; L2(Ω)) will 
be called a radial weak solution of (1.1), if u(0) = u0 and there exists a vector field z(t) ∈ X2(Ω) with 
‖z(t)‖∞ ≤ 1 a.e. t ∈ (0, +∞) such that

(1) ut(t) − div(z(t)) = f(u(t)), in D′(Ω) a.e. t ∈ (0, +∞),
(2)

∫
Ω(z(t), Du(t)) =

∫
Ω |Du(t)|,

(3) [z(t), ν] ∈ sign(−u(t)) HN−1 − a.e. on ∂Ω.

Definition 1.2. (Maximal existence time) Let u(t) be a solution of problem (1.1). We define the maximal 
existence time Tmax of u as follows:

Tmax = sup{t > 0 : u = u(t) exists on [0, T ]}.

(1) If Tmax < ∞ we say that the solution of (1.1) blows up and Tmax is the blow up time.
(2) If Tmax = ∞, we say that the solution is global.

Now we are in a position to state the first result.

Theorem 1.1. Assume (1.5), (f1) − (f2) and u0 ∈ W 1,p0
0,rad(Ω), where p0 was given in (f1). Moreover, suppose 

that

E(u0) < d and I(u0) > 0. (1.9)

Then there exists a global weak radial solution to problem (1.1). Furthermore, there holds

t∫
0

‖us(s)‖2
2 ds +

∫
Ω

|Du(t)| +
∫
∂Ω

|u(t)| dHN−1 −
∫
Ω

F (u(t)) dx ≤ E(u0) a.e. t ∈ [0,+∞). (1.10)

Remark 1. From here on out, BVrad(Ω) denotes the subspace of BV (Ω) that is formed by radial functions. 
It was shown in Lemma 2.1, see Section 3, that the following continuous embedding holds

BVrad(Ω) ↪→ Lp(Ω) for p ∈ [1,∞),

where Ω is of the form (1.5). Hence, by [34, Corollary 4, p. 85], u ∈ C([0, T ]; Lp(Ω)) for all p ∈ [1, ∞) and 
for any T > 0. Then, the initial condition u(0) = u0 in (1.1) exists and makes sense.
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Concerning the non-radial case, that is, the case where Ω ⊂ RN (N ≥ 1) is a bounded set with Lipschitz 
boundary, beside the conditions (f1) − (f2), we assume the following condition on the function f :
(f3) There exist q ∈ (1, 1∗) and C > 0

|f(s)| ≤ C(1 + |s|q−1), ∀s ∈ R,

where 1∗ = N
N−1 if N ≥ 2 and 1∗ = +∞ when N = 1.

Here, the Nehari set associated with E is given by

N =

⎧⎨⎩u ∈ W 1,1
0 (Ω) \ {0} :

∫
Ω

|∇u| dx =
∫
Ω

f(u)u dx

⎫⎬⎭ ,

and the potential well associated with problem (1.1) is the set

W =
{
u ∈ W 1,1

0 (Ω) : E(u) < d and I(u) > 0
}
∪ {0}, (1.11)

where I(u) =
∫
Ω

|∇u| dx −
∫
Ω

f(u)u dx.

The second result reads as follows:

Theorem 1.2. Let Ω ⊂ RN (N ≥ 1) be a bounded set with Lipschitz boundary. Assume that the assumptions 
(f1) − (f3) hold and u0 ∈ W 1,p0

0 (Ω) where p0 was given in (f1). In addition suppose the following condition 
holds

E(u0) < d and I(u0) > 0. (1.12)

Then, there exists a global weak solution to problem (1.1). Moreover, there holds

t∫
0

‖us(s)‖2
2 ds +

∫
Ω

|Du(t)| +
∫
∂Ω

|u(t)| dHN−1 −
∫
Ω

F (u(t)) dx ≤ E(u0) a.e. t ∈ [0,+∞). (1.13)

Related to Theorem 1.2, we are using the following definition of solution:

Definition 1.3. A function u ∈ L∞(0, +∞; BV (Ω) ∩ L2(Ω)) with ut ∈ L2(0, +∞; L2(Ω)) will be called 
a weak solution of (1.1) if u(0) = u0, and there exists a vector field z(t) ∈ X2(Ω) with ‖z(t)‖∞ ≤ 1, 
div(z(t)) ∈ L2(Ω) a.e. t ∈ (0, +∞) such that

(1) ut(t) − div(z(t)) = f(u(t)), in D′(Ω) a.e. t ∈ (0, +∞),
(2)

∫
Ω(z(t), Du(t)) =

∫
Ω |Du(t)|,

(3) [z(t), ν] ∈ sign(−u(t)) HN−1 − a.e. on ∂Ω.

Remark 2. In view of [26, Lemma 1.2] and the regularity of the solution u stated in Definition 1.2, we have 
that u ∈ C([0, T ]; Lq(Ω)) for each q ∈ [1, 2] and for any T > 0. Thereby, the initial condition u(0) = u0

exists and makes sense.
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1.1. Our approach

In the proof of Theorems 1.1 and 1.2 was used an approximation technique that consists in working with 
a class of p-Laplacian problems associated with (1.1) and then taking the limit as p → 1+ to get our results. 
More precisely, employing the potential well theory combined with Galerkin methods we prove the existence 
of a global solution for the following class of quasilinear heat equations⎧⎪⎨⎪⎩

ut − div
(
|∇u|p−2∇u

)
= f(u) in Ω × (0,+∞),

u = 0 in ∂Ω × (0,+∞),
u(x, 0) = u0(x) in Ω,

for all p > 1, which is denoted by up. After that, we consider a sequence pm → 1+ and show that the sequence 
(um) converges to a solution of (1.1) in the sense of Definitions 1.2 and 1.3 respectively. In Theorem 1.1, 
the reader is invited to see that we do not assume on the function f any growth condition from above at 
infinite, because in this case the domain Ω is an annulus and the properties of the spaces W 1,p

0,rad(Ω) and 
BVrad(Ω) play an important role in our approach. However, in the proof of Theorem 1.2 we assumed that 
f has a subcritical growth because Ω is a general bounded domain. Finally, we would like to point out that 
we will work only with the case N ≥ 2, because the case N = 1 follows with few modifications.

The approximation technique by using p-Laplacian problems is well known to get a solution for prob-
lems involving the 1-Laplacian operator for stationary case, see for example Alves [2], Demengen [14,15], 
Figueiredo and Pimenta [18], Mercaldo, Rossi, Segura de León and Trombetti [28], Mercaldo, Segura de 
León and Trombetti [29], Salas and Segura de León [30]. Related to the evolution case we only know a 
paper by Segura de León and Webler [25]. However, up to our knowledge, this is the first time that this 
approach is used to prove the existence of a global solution for a heat equation involving the 1-Laplacian 
operator when the nonlinearity f is of the form f(u), that is when f can be a nonlinear function in the 
variable u. For example, Theorem 1.1 can be used for the nonlinearity f(u) = |u|q−2ueα|u|

2 for q > 1 and 
α > 0, whereas in Theorem 1.2 we can work with f(u) = |u|q−2u + |u|s−2u with q, s ∈ (1, 1∗).

1.2. Organization of the article

This article is organized as follows: In Section 2, we recall some notations and results involving the BV (Ω)
space. In Sections 3 and 4, we prove Theorems 1.1 and 1.2 respectively.

1.3. Notations

Throughout this paper, the letters c, ci, C, Ci, i = 1, 2, . . ., denote positive constants which vary from 
line to line, but are independent of terms that take part in any limit process. Furthermore, we denote the 
norm of Lp(Ω) for any p ≥ 1 by ‖ . ‖p. In some places we will use “→”, “⇀” and “ ∗

⇀” to denote the strong 
convergence, weak convergence, and weak star convergence respectively.

2. Notation and preliminaries involving the space BV (Ω)

In this section, we recall several facts on functions of bounded variation that we shall use.
Throughout the paper, without further mentioning, given an open bounded set Ω in RN with Lips-

chitz boundary, we denote by HN−1 the (N − 1)-dimensional Hausdorff measure and |Ω| stands for the 
N -dimensional Lebesgue measure. Moreover, we shall denote by D(Ω) or C∞

0 (Ω), the space of infinitely 
differentiable functions with compact support in Ω and ν(x) is the outer vector normal defined for HN−1-
almost everywhere x ∈ ∂Ω.
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We will denote by BV (Ω) the space of functions of bounded variation, that is,

BV (Ω) =
{
u ∈ L1(Ω) : Du is a bounded Radon measure

}
,

where Du : Ω → RN denotes the distributional gradient of u. It can be proved that u ∈ BV (Ω) is equivalent 
to u ∈ L1(Ω) and

∫
Ω

|Du| := sup

⎧⎨⎩
∫
Ω

u divϕdx : ϕ ∈ C∞
0 (Ω,RN ), |ϕ(x)| ≤ 1 ∀x ∈ Ω

⎫⎬⎭ < +∞,

where |Du| is the total variation of the vectorial Radon measure. It is well known that the space BV (Ω)
endowed with the norm

‖u‖BV (Ω) :=
∫
Ω

|Du| + ‖u‖L1(Ω)

is a Banach space that is non reflexive and non separable. For more information on functions of bounded 
variation we refer the reader to [9,16,36].

From [9, Theorem 3.87], the notion of a trace on the boundary can be extended to functions u ∈ BV (Ω), 
through a bounded operator BV (Ω) ↪→ L1(∂Ω), which is also onto. As a consequence, an equivalent norm 
on BV (Ω) can be defined by

‖u‖ :=
∫
Ω

|Du| +
∫
∂Ω

|u| dHN−1. (2.1)

In addition, by [9, Corollary 3.49] the following continuous embeddings hold

BV (Ω) ↪→ Lm(Ω) for every 1 ≤ m ≤ 1∗ = N

N − 1 , (2.2)

which are compact for 1 ≤ m < 1∗.
In what follows, let us recall several important results from [8] that will be used throughout the paper. 

Following [8], for each z ∈ Xr(Ω) and w ∈ BV (Ω) ∩ Lr′(Ω) where r′ is the conjugate of r, we define the 
functional (z, Dw) : C∞

0 (Ω) → R by formula

〈(z,Dw), ϕ〉 = −
∫
Ω

wϕdiv(z) dx−
∫
Ω

wz.∇ϕdx, ∀ϕ ∈ C∞
0 (Ω). (2.3)

Then by [8, Theorem 1.5], (z, Dw) is a Radon measure in Ω,∫
Ω

(z,Dw) =
∫
Ω

z.∇w dx, ∀w ∈ W 1,1(Ω)

and ∣∣∣∣∣∣
∫
Ω

(z,Dw)

∣∣∣∣∣∣ ≤
∫
B

|(z,Dw)| ≤ ‖z‖∞
∫
B

|Dw|, (2.4)

for every Borel set B with B ⊆ Ω. Moreover, besides the BV -norm, for any nonnegative smooth function ϕ
the functional given by
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w �→
∫
Ω

ϕ|Dw|

is lower semicontinuous with respect to the L1-convergence, for details see [1].
In [8], a weak trace on ∂Ω of normal component of z ∈ Xr(Ω) is defined as the application [z, ν] : ∂Ω → R, 

such that [z, ν] ∈ L∞(∂Ω) and ‖[z, ν]‖∞ ≤ ‖z‖∞. In addition, this definition coincides with the classical 
one, that is

[z, ν] = z.ν, for z ∈ C1(Ωδ,R
N ), (2.5)

where Ωδ = {x ∈ Ω : d(x, Ω) < δ}, for some δ > 0 sufficiently small. We recall the Green formula involving 
the measure (z, Dw) and the weak trace [z, ν] that was given in [8, Theorem 1.9], namely:

∫
Ω

(z,Dw) +
∫
Ω

wdivz dx =
∫
∂Ω

w[z, ν] dHN−1, (2.6)

for z ∈ Xr(Ω) and w ∈ BV (Ω) ∩ Lr′(Ω).
Next, we prove the following lemma that will be crucial in the proof of Theorem 1.1.

Lemma 2.1. Assume (1.5) and let BVrad(Ω) = {u ∈ BV (Ω) : u(x) = u(|x|)}. Then, there exists C > 0 such 
that

sup
x∈Ω

|u(x)| ≤ Ca1−N‖u‖, ∀u ∈ BVrad(Ω). (2.7)

Hence, the embedding BVrad(Ω) ↪→ L∞(Ω) is continuous and BVrad(Ω) ↪→ Lp(Ω) is compact for all p ∈
[1, ∞).

Proof. From [20, Lemma 4.1 ], if u ∈ BVrad(RN ) we have that

|u(x)| ≤ 1
|x|N−1 ‖u‖, a.e. in RN . (2.8)

Setting

ũ =
{

u if x ∈ Ω,

0 if x ∈ RN\Ω,
(2.9)

in view of [16, Theorem 5.8 ], we have ũ ∈ BV (RN ) and

∫
RN

|Dũ| =
∫
Ω

|Du| +
∫
∂Ω

|u| dHN−1.

This combined with (2.8) shows (2.7) and the continuous embedding BVrad(Ω) ↪→ L∞(Ω). The compact 
embedding BVrad(Ω) ↪→ Lp(Ω) for p ∈ [1, ∞) follows combining the interpolation in the Lebesgue’s space 
together with the compact embedding BVrad(Ω) ↪→ L1(Ω) and the continuous embedding BVrad(Ω) ↪→
L∞(Ω). �
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3. Proof of Theorem 1.1

This section is devoted to prove Theorem 1.1. From now on, p0 is the constant fixed in (f1). For each 
p ∈ (1, p0), let us consider the following problem⎧⎪⎨⎪⎩

ut − div
(
|∇u|p−2∇u

)
= f(u) in Ω × (0,+∞),

u = 0 in ∂Ω × (0,+∞),
u(x, 0) = u0(x) in Ω,

(3.1)

where

Ω = {x ∈ RN : 0 < a < |x| < b}.

In the sequel, we denote by Ep : W 1,p
0,rad(Ω) → R the energy functional associated with problem (3.1) given 

by

Ep(u) = 1
p

∫
Ω

|∇u|p dx−
∫
Ω

F (u) dx, (3.2)

and the Nehari set associated with Ep given by

Np =
{
u ∈ W 1,p

0,rad(Ω) \ {0} : E′
p(u)u = 0

}
.

Hereafter, let us also denote by dp the following real number

dp = inf
u∈Np

Ep(u).

The potential well associated with problem (3.1) is the set

Wp =
{
u ∈ W 1,p

0,rad(Ω) : Ep(u) < dp and Ip(u) > 0
}
∪ {0}, (3.3)

where Ip(u) = E′
p(u)u for all u ∈ W 1,p

0,rad(Ω).
Our first lemma establishes an estimate from above for dp that will be used later on.

Lemma 3.1. There are p1 ∈ (1, p0) and M > 0 such that dp ≤ M for all p ∈ (1, p1].

Proof. Let ϕ ∈ C∞
0,rad(Ω) \ {0}. By (f1) and (f2), for each p ∈ (1, p0) there is sp > 0 such that spϕ ∈ Np, 

that is,

sp−1
p

∫
Ω

|∇ϕ|p dx =
∫
Ω

f(spϕ)ϕdx.

Since lim
p→1+

∫
Ω

|∇ϕ|p dx =
∫
Ω

|∇ϕ| dx, the condition (f2) ensures that (sp) is bounded for p close to 1. Now, 

using the inequality below

dp ≤ Ep(spϕ) ≤
spp
p

∫
|∇ϕ|p dx,
Ω
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we deduce that there are p1 ∈ (1, p0) and M > 0 such that dp ≤ M for all p ∈ (1, p1). This proves the 
desired result. �

As a byproduct, decreasing p1 ∈ (1, p0) if necessary, we may assume from (1.9) that

Ep(u0) < dp and Ip(u0) > 0, ∀p ∈ (1, p1).

In the sequel, we are supposing that p ∈ (1, p1) and p1 < θ.
For the reader’s convenience, we state the definition of weak solution to (3.1).

Definition 3.1. (global weak solution) We say that u ∈ L∞(0, +∞; W 1,p
0,rad(Ω)) is a global weak solution of 

problem (3.1) if ut ∈ L2(0, +∞; L2(Ω)) and the following equalities hold:

(1)
∫
Ω ut(t)v dx +

∫
Ω |∇u|p−2∇u.∇v dx =

∫
Ω f(u(t))v dx

for each v ∈ W 1,p
0 (Ω) ∩ L2(Ω) and a.e. time 0 < t < +∞, and

(2) u(0) = u0.

In order to show the global existence of solutions to (3.1) we will apply the Galerkin method. The proof 
will be divided into three steps:

Step 1: For N ≥ 2, we have the Gelfand triple

W 1,p
0,rad(Ω) ↪→c,d L2(Ω) ↪→c,d

(
W 1,p

0,rad(Ω)
)′

,

which is well defined because of (1.6). Here, ↪→c,d denotes a dense and continuous embedding. Let 
{Vm}m∈N be a Galerkin scheme of the separable Banach space W 1,p

0,rad(Ω), i.e.,

Vm = span{w1, w2, . . . , wm},
⋃

m∈N
Vm

‖ .‖
W

1,p
0,rad

(Ω) = W 1,p
0,rad(Ω), (3.4)

where {wj}∞j=1 is an orthonormal basis in L2(Ω). Since u0 ∈ W 1,p
0,rad(Ω), there exists u0m ∈ Vm such 

that

um(0) = u0m =
m∑
j=1

ajmwj → u0 strongly in W 1,p
0,rad(Ω) as m → ∞. (3.5)

From now on, let us denote by ‖ · ‖1,p the usual norm in W 1,p
0,rad(Ω) given by

‖u‖1,p = ‖∇u‖p, ∀u ∈ W 1,p
0,rad(Ω).

For each m, we look for the approximate solutions um(x, t) =
m∑
j=1

gjm(t)wj(x) satisfying the following 

identities:∫
Ω

umt(t)wj dx +
∫
Ω

|∇um(t)|p−2∇um(t).∇wj dx =
∫
Ω

f(um(t))wj dx, j ∈ {1, . . . ,m}, (3.6)

with the initial conditions
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um(0) = u0m. (3.7)

Then (3.6)− (3.7) is equivalent to the following initial value problem for a system of nonlinear ordinary 
differential equations on gjm:{

g′jm(t) = Hj(g(t)), j = 1, 2, . . . ,m, t ∈ [0, t0],
gjm(0) = ajm, j = 1, 2, . . . ,m,

(3.8)

where Hj(g(t)) = − 
∫
Ω |∇um(t)|p−2∇um(t).∇wj dx +

∫
Ω f(um)wj dx. By the Picard iteration method, 

there is t0,m > 0 depending on |ajm| such that problem (3.8) admits a unique local solution gjm ∈
C1([0, t0,m]). Hereafter, we will assume that [0, T0,m) is the maximal interval of existence of the solution 
um(t).

Step 2: Multiplying the jth equation in (3.6) by g′jm(t) and summing over j from 1 to m, we obtain

‖umt(t)‖2
2 + d

dt
Ep(um(t)) = 0, t ∈ [0, T0,m). (3.9)

Integrating (3.9) over (0, t) we arrive at

t∫
0

‖ums(s)‖2
2 ds + Ep(um(t)) = Ep(u0m), t ∈ [0, T0,m). (3.10)

Since (u0m) converges to u0 strongly in W 1,p
0,rad(Ω), the continuity of E ensures that

Ep(u0m) → Ep(u0), as m → +∞.

From the assumption that Ep(u0) < dp, we have Ep(u0m) < dp for sufficiently large m. This combined 
with (3.10) leads to

Ep(um(t)) < dp, t ∈ [0, T0,m), (3.11)

for sufficiently large m. Now, we are going to show that T0,m = +∞ and

um(t) ∈ Wp, ∀t ≥ 0, (3.12)

for sufficiently large m. Suppose by contradiction that um(t1) /∈ Wp for some t1 ∈ [0, T0,m). Let t∗ ∈
[0, T0,m) be the smallest time for which um(t∗) /∈ Wp. Then, by continuity of um(t), we get um(t∗) ∈ ∂Wp. 
Hence, it turns out that

Ep(um(t∗)) = dp, (3.13)

or

um(t∗) �= 0 and Ip(um(t∗)) = 0. (3.14)

It is clear that (3.13) could not occur by (3.11). On the other hand, if (3.14) holds, then the definition 
of dp implies in the inequality below

Ep(um(t∗)) ≥ inf Ep(u) = dp,

u∈N
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which also contradicts (3.11). Consequently, (3.12) holds.
From (3.11) and (3.12),

t∫
0

‖ums(s)‖2
2 ds +

(
1
p
− 1

θ

)∫
Ω

|∇um(t)|p dx < dp, t ∈ [0, T0,m). (3.15)

Thus, it turns out that

∫
Ω

|∇um(t)|p dx <
θpdp
θ − p

and
t∫

0

‖ums(s)‖2
2 ds < dp, t ∈ [0, T0,m), (3.16)

for m large enough. Hence, the above estimates give T0,m = +∞. Here we are using the fact that if 
T0,m < +∞, then we must have lim

t→T−
0,m

‖um(t)‖1,p = +∞, see [32, Lemma 2.4, p. 48].

An important inequality that we will be used later on is the following:

Claim 3.2. ‖um(t)‖2 ≤ ‖u0‖2 for all t ≥ 0 and m large enough.

Indeed, multiplying the jth equation in (3.6) by gjm(t) and summing up over j = 1, . . .m, we obtain

1
2
d

dt
‖um(t)‖2

2 = −Ip(um(t)) < 0, ∀t ∈ [0,+∞),

for m large. This yields that t �→ ‖um(t)‖2
2 is a decreasing function in [0, +∞). Thereby,

‖um(t)‖2
2 ≤ ‖u0‖2

2, ∀t ∈ [0,+∞), (3.17)

for m large enough, showing the claim.
Step 3: From (3.16) − (3.17), there is a function u and a subsequence of (um), still denoted by (um), such 

that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

um
∗
⇀ u in L∞(0,+∞;W 1,p

0,rad(Ω)),
umt ⇀ ut in L2(0,+∞;L2(Ω)),
um

∗
⇀ u in L∞(0,+∞;L2(Ω)),

−div
(
|∇um|p−2∇um

) ∗
⇀ χ in L∞

(
0,+∞;

(
W 1,p

0,rad(Ω)
)′)

.

(3.18)

Moreover, in view of (1.6), (3.16) and [34, Corollary 4, p. 85], for any T > 0 we have

um → u in C([0, T ];C(Ω)). (3.19)

In particular,

um → u in C([0, T ];Lκ(Ω)), ∀κ ∈ [1,∞] (3.20)

and

um(x, t) → u(x, t) a.e. (x, t) ∈ Ω × [0, T ]. (3.21)

Since f is a continuous function, the limit (3.19) ensures that
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f(um) → f(u) in C([0, T ];C(Ω)). (3.22)

Thereby, for any fixed j, letting m → ∞ in (3.6), we obtain

t∫
0

∫
Ω

uτ (τ)wj dxdτ +
t∫

0

〈χ(τ)), wj〉 dτ =
t∫

0

∫
Ω

f(u(τ))wj dxdτ, ∀t ∈ [0, T ]. (3.23)

From the density of Vm in W 1,p
0,rad(Ω), for any v ∈ W 1,p

0,rad(Ω) it follows that∫
Ω

ut(t)v dx + 〈χ(t), v〉 =
∫
Ω

f(u(t))v dx, a.e. t ∈ (0, T ). (3.24)

By (3.18) and [35, see, Lemma 3.1.7],

um(0) → u(0) weakly in L2(Ω).

However, by (3.5) we know that um(0) → u0 in W 1,p
0,rad(Ω), in particular um(0) → u0 in L2(Ω), and so, 

u(0) = u0. This shows that u satisfies the initial condition.
Our next step is to prove that

−div
(
|∇u|p−2∇u

)
= χ. (3.25)

In doing so, multiplying (3.6) by gjm(t) and summing up from 1 to m, afterward integrating over (0, T )
yields

T∫
0

〈−div
(
|∇um(t)|p−2∇um(t)

)
, um(t)〉 dt = −1

2‖um(T )‖2
2 + 1

2‖um(0)‖2
2 +

T∫
0

∫
Ω

f(um(t))um(t) dxdt.

(3.26)
From (3.19) and (3.22),

T∫
0

∫
Ω

f(um(t))um(t) dxdt →
T∫

0

∫
Ω

f(u(t))u(t) dxdt. (3.27)

Letting m → ∞ in (3.26), we get

lim sup
m→∞

T∫
0

〈−div
(
|∇um|p−2∇um

)
, um(t)〉 dt = −1

2 lim inf
m→∞

‖um(T )‖2
2 + 1

2 lim
m→∞

‖u0m‖2
2

+ lim
m→∞

T∫
0

∫
Ω

f(um)um dxdt

≤ −1
2‖u(T )‖2

2 + 1
2‖u0‖2

2 +
T∫

0

∫
Ω

f(u)u dxdt

=
T∫
〈χ(t), u(t)〉 dt.
0
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Hence, from this and the theory of monotone operators (see, e.g., [35, Remark 3.2.2]), we conclude

−div
(
|∇u|p−2∇u

)
= χ. (3.28)

Replacing (3.28) in (3.24) we find∫
Ω

ut(t)v dx +
∫
Ω

|∇u(t)|p−2∇u(t).∇v dx =
∫
Ω

f(u(t))v dx, a.e. in (0, T ). (3.29)

As T > 0 is arbitrary, it follows that∫
Ω

ut(t)v dx +
∫
Ω

|∇u(t)|p−2∇u(t).∇v dx =
∫
Ω

f(u(t))v dx, a.e. in (0,+∞), (3.30)

for any v ∈ W 1,p
0,rad(Ω).

Claim 3.3. ∫
Ω

ut(t)v dx +
∫
Ω

|∇u(t)|p−2∇u(t).∇v dx =
∫
Ω

f(u(t))v dx, a.e. in (0,+∞), (3.31)

for all v ∈ W 1,p
0 (Ω) ∩ L2(Ω).

In order to prove Claim 3.3, we will use the Palais’ principle due to Squassina [33, Theorem 4]. However, 
since the energy functional Ep given in (3.2) is not well defined in whole v ∈ W 1,p

0 (Ω), we cannot use 
this principle directly in our problem. Here, we need to do the following trick: First of all, we fix t > 0
such that equality in (3.31) is true. Setting M = ‖u(t)‖∞ + 1, g(x) = −ut(t)(x) for all x ∈ Ω and 
h : R → R by

h(t) =

⎧⎪⎨⎪⎩
f(M), if t ≥ M,

f(t), if |t| ≤ M,

f(−M), if t ≤ −M,

it follows that ∫
Ω

|∇u(t)|p−2∇u(t).∇v dx =
∫
Ω

h(u(t))v dx +
∫
Ω

g(x)v dx, ∀v ∈ W 1,p
0,rad(Ω). (3.32)

Considering the functional J : W 1,p
0 (Ω) ∩ L2(Ω) → R given by

J(w) = 1
p

∫
Ω

|∇w|p dx−
∫
Ω

H(w) dx−
∫
Ω

g(x)w(x) dx,

where H(t) =
∫ t

0 h(s) ds and the space W 1,p
0 (Ω) ∩ L2(Ω) endowed with its usual norm, that is,

‖u‖1,p,2 = ‖∇u‖p + ‖u‖2, ∀u ∈ W 1,p
0 (Ω) ∩ L2(Ω),

which is a Banach space. A simple computation gives J ∈ C1(W 1,p
0 (Ω) ∩ L2(Ω), R) and that u(t) is 

a critical point of J restricts to W 1,p
0,rad(Ω). Therefore, by Palais’ principle due to Squassina [33], we 

deduce that u(t) is a critical point of J in whole W 1,p
0 (Ω) ∩ L2(Ω), that is,
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∫
Ω

|∇u(t)|p−2∇u(t).∇v dx =
∫
Ω

h(u(t))v dx +
∫
Ω

g(x)v dx, ∀v ∈ W 1,p
0 (Ω) ∩ L2(Ω), (3.33)

or equivalently∫
Ω

ut(t)v dx +
∫
Ω

|∇u(t)|p−2∇u(t).∇v dx =
∫
Ω

f(u(t))v dx, ∀v ∈ W 1,p
0 (Ω) ∩ L2(Ω), (3.34)

showing the Claim 3.3.
Next, we show that the solution u satisfies the following energy inequality

t∫
0

‖uτ (τ)‖2
2 dτ + Ep(u(t)) ≤ Ep(u0), a.e. t ∈ [0,+∞). (3.35)

To this end, let ψ be a nonnegative function that belongs to C0([0, +∞)). From (3.10),

T∫
0

ψ(t) dt
T∫

0

‖umτ (τ)‖2
2 dτ +

T∫
0

Ep(um(t))ψ(t) dt =
T∫

0

E(um(0))ψ(t) dt. (3.36)

The right-hand side of (3.36) converges to

T∫
0

Ep(u0)ψ(t) dt,

as m → ∞. The second term in the left-hand side 
∫ T

0 Ep(um(t))ψ(t) dt is lower semicontinuous with 
respect to the weak topology of W 1,p

0 (Ω). Hence

T∫
0

Ep(u(t))ψ(t) dt ≤ lim inf
m→∞

T∫
0

Ep(um(t))ψ(t) dt. (3.37)

Thus, the proof is now complete.

3.1. Existence of solution for (1.1)

In what follows, we set pm → 1+ and um = upm
the solution obtained in the last subsection, that is,

um ∈ L∞(0,+∞;W 1,pm

0,rad(Ω)),

umt ∈ L2(0,+∞;L2(Ω))

and ∫
Ω

umt(t)v dx +
∫
Ω

|∇um(t)|pm−2∇um(t).∇v dx =
∫
Ω

f(um(t))v dx, a.e. in (0,+∞), (3.38)

for all v ∈ W 1,pm

0 (Ω) ∩ L2(Ω) and m ∈ N. Moreover, from above we have
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∫
Ω

|∇um(t)|pm dx ≤ θpmdpm

θ − pm
,

t∫
0

‖ums(s)‖2 ds ≤ dpm
and ‖um(t)‖2 ≤ ‖u0‖2, for t ∈ [0,+∞). (3.39)

Since θ > 1, pm → 1+ and (dpm
) is bounded by Lemma 3.1, there exists C1 > 0 such that

∫
Ω

|∇um(t)|pm dx < C1,

t∫
0

‖ums(s)‖2
2 ds < C1, ‖um(t)‖2 ≤ ‖u0‖2, ∀ t ∈ [0,+∞) and m ∈ N. (3.40)

By Young’s inequality,∫
Ω

|∇um(t)| dx ≤ 1
pm

∫
Ω

|∇um(t)|pm dx + pm − 1
pm

|Ω|, ∀t ∈ [0,+∞) and m ∈ N. (3.41)

Hence, there exists C2 > 0 such that∫
Ω

|∇um(t)| dx ≤ C2, ∀t ∈ [0,+∞) and m ∈ N. (3.42)

Using Hölder’s inequality and (3.40),

‖um(t)‖1 ≤ |Ω|1/2‖um‖2 ≤ |Ω|1/2‖u0‖2, for any t ∈ [0,+∞) and m ∈ N, (3.43)

showing that (um) is a bounded sequence in L∞(0, +∞; L1(Ω)). Recalling that the usual norm in BV (Ω) is

‖u‖BV (Ω) =
∫
Ω

|Du| + ‖u‖1, ∀u ∈ BV (Ω),

it follows from (3.42) and (3.43) that there is C4 > 0 such that∫
Ω

|∇um| dx +
∫
Ω

|um| dx ≤ C4, ∀t ∈ (0,+∞),

showing that (um) is bounded in L∞(0, +∞; BVrad(Ω)). Then, by Lemma 2.1, we derive that (um)
is also bounded in L∞(0, +∞; L∞(Ω)). Moreover, this implies that (f(um)) is a bounded sequence in 
L∞(0, +∞; L∞(Ω)).

As an immediate consequence of the above analysis, we deduce that{
um

∗
⇀ u in L∞(0,+∞;BVrad(Ω)),

umt ⇀ ut in L2(0,+∞;L2(Ω)).
(3.44)

By Lemma 2.1 and [34, Corollary 4, p. 85], for any T > 0 we have

um → u in C([0, T ];Lκ(Ω)), ∀κ ∈ [1,∞] (3.45)

and

um(x, t) → u(x, t) a.e. (x, t) ∈ Ω × [0, T ]. (3.46)
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In view of (3.45), um(t) → u(t) in L1(Ω) for any t ∈ [0, +∞). Therefore, u(t) ∈ BV (Ω) for any t ∈ [0, +∞)
and

lim inf
m→+∞

∫
Ω

ϕ|∇um(t)| dx ≥
∫
Ω

ϕ|Du(t)|, ∀0 ≤ ϕ ∈ C1
0 (Ω) and ∀t ∈ [0,+∞) (see [1]).

Moreover, from (2.1) and (3.41),

lim inf
m→+∞

∫
Ω

|∇um(t)|pm dx ≥ lim inf
m→+∞

⎛⎝∫
Ω

|∇um(t)| dx +
∫
∂Ω

|um| dHN−1

⎞⎠ ≥ ‖u(t)‖, ∀t ∈ [0,+∞) (3.47)

and by (3.46),

f(um) ∗
⇀ f(u) in L∞(0, T ;Ls(Ω)), ∀s ∈ (1,∞), ∀T > 0. (3.48)

Claim 3.4. There exists a vector field z ∈ L∞(0, +∞; L∞(Ω)) with div z(t) ∈ L2(Ω) such that, up to subse-
quence,

(i) |∇um|pn−2∇un ⇀ z in Ls(0, T ;Ls(Ω)), ∀s > 1 and ∀T > 0,

(ii) |z(t)|∞ ≤ 1, ∀t > 0,

(iii) (z(t), Du(t)) = |Du(t)|, as measures on Ω, a.e. in (0,+∞),

(iv) [z(t), ν] ∈ sign(−u(t)) HN−1 − a.e on ∂Ω,

and

(v) ut(t) − div z(t) = f(u(t)), in D′(Ω), a.e. in (0,+∞).

Let us prove this claim. For each s > 1, there exists m0 = m0(s) ∈ N such that s(pm − 1) < pm for all 
m ≥ m0. Thus, for each T > 0, |∇um|pm−2∇um ∈ Ls(0, T ; Ls(Ω)) for all m ≥ m0 and

⎛⎝ T∫
0

‖|∇um(t)|pm−2∇um(t)‖sLs(Ω) dt

⎞⎠
1
s

≤ |Ω| 1s−
pm−1
pm

⎛⎝ T∫
0

‖∇um‖(pm−1)s
pm

dt

⎞⎠
1
s

, ∀m ≥ m0.

Thus, by (3.40),

⎛⎝ T∫
0

‖|∇um(t)|pm−2∇um(t)‖sLs(Ω) dt

⎞⎠
1
s

≤ M
(pm−1)

pm |Ω| 1s−
pm−1
pm T

1
s , ∀m ≥ n0, (3.49)

where M = sup
m∈N

∫
Ω

|∇um|pm dx. Since Ls(0, T ; Ls(Ω)) is reflexive, there is z ∈ Ls
loc(0, +∞; Ls(Ω)), such 

that for all s > 1,

|∇um|pm−2∇um ⇀ z in Ls(0, T ;Ls(Ω)), ∀T > 0. (3.50)

The last limit combined with (3.49) gives
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|z|Ls(0,T ;Ls(Ω)) ≤ (|Ω|T ) 1
s , ∀s > 1,

from where it follows that z ∈ L∞(0, T ; L∞(Ω)) with

|z|L∞(0,T ;L∞(Ω)) ≤ 1, ∀T > 0.

Hence, z ∈ L∞(0, +∞; L∞(Ω))) with |z(t)|∞ ≤ 1 for all t > 0. Finally the equality below∫
Ω

umt(t)ϕdx +
∫
Ω

|∇um(t)|pm−2∇um.∇ϕdx =
∫
Ω

f(um)ϕdx, ∀ϕ ∈ C1
0 (Ω)

leads to

T∫
0

∫
Ω

umt(t)ϕdxdt +
T∫

0

∫
Ω

|∇um(t)|pm−2∇um.∇ϕdxdt =
T∫

0

∫
Ω

f(um)ϕdxdt,

for all ϕ ∈ C1
0 (Ω) and T > 0. This together with the limits (3.50) and (3.48) gives

T∫
0

∫
Ω

ut(t)ϕdxdt +
T∫

0

∫
Ω

z(t).∇ϕdxdt =
T∫

0

∫
Ω

f(u)ϕdxdt, ∀ϕ ∈ C1
0 (Ω) and T > 0,

that is,

ut(t) − div z(t) = f(u(t)), in D′(Ω) a.e. in (0,+∞),

showing (v), and that div z(t) ∈ L2(Ω). Finally, in order to prove (iii) − (iv), we will adapt some arguments 
developed in [30, page 57]. As mentioned in [30], the item (iii) follows if we prove the below inequality

−
∫
Ω

udivz(t) dx−
∫
Ω

uz(t).∇ϕdx ≥
∫
Ω

ϕ|Du(t)|, for all 0 ≤ ϕ ∈ C1
0 (Ω) a.e. in (0,+∞).

From definition of um, it follows that for any 0 ≤ ϕ ∈ C1
0 (Ω) and T > 0,

T∫
0

∫
Ω

umt(t)um(t)ϕdxdt +
T∫

0

∫
Ω

|∇um(t)|pm−2∇um.∇(umϕ) dxdt =
T∫

0

∫
Ω

f(um)umϕdxdt,

and so,

T∫
0

∫
Ω

umt(t)um(t)ϕdxdt +
T∫

0

∫
Ω

|∇um(t)|pmϕdxdt +
T∫

0

∫
Ω

|∇um(t)|pm−2um(t)∇um(t).∇ϕdxdt

=
T∫

0

∫
Ω

f(um(t))um(t)ϕdxdt.

A direct computation gives

T∫ ∫
umt(t)um(t)ϕdxdt →

T∫ ∫
ut(t)u(t)ϕdxdt,
0 Ω 0 Ω
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and

T∫
0

∫
Ω

f(um(t))um(t)ϕdxdt →
T∫

0

∫
Ω

f(u(t))u(t)ϕdxdt.

Finally, we would like to point out that by lower semicontinuity,

lim inf
n→+∞

∫
Ω

|∇um(t)|pmϕdx ≥ lim inf
n→+∞

∫
Ω

ϕ|∇um(t)| dx ≥
∫
Ω

ϕ|Du(t)| in (0,+∞).

The above analysis implies that

−
T∫

0

∫
Ω

udivz(t) dxdt−
T∫

0

∫
Ω

uz(t).∇ϕdxdt ≥
T∫

0

∫
Ω

ϕ|Du| dt, ∀T > 0.

Therefore,

−
∫
Ω

udivz(t) dx−
∫
Ω

uz(t).∇ϕdx ≥
∫
Ω

ϕ|Du|, for all 0 ≤ ϕ ∈ C1
0 (Ω) a.e. in (0,+∞),

proving (iii).
Now, in order to prove (iv), as shown in [30], it is enough to prove

∫
∂Ω

(|u(t)| + u[z(t), ν]) dHN−1 ≤ 0 a.e. in (0,+∞).

Using (um − ϕ) as a test function, we get

T∫
0

∫
Ω

umt(t)(um(t) − ϕ) dxdt +
T∫

0

∫
Ω

|∇um(t)|pm dxdt−
T∫

0

∫
Ω

|∇um(t)|pm−2∇um(t).∇ϕdxdt

=
T∫

0

∫
Ω

f(um(t))(um(t) − ϕ) dxdt, ∀T > 0.

Letting m → +∞ and using (3.47), we find

T∫
0

∫
Ω

|Du(t)| dt +
T∫

0

∫
∂Ω

|u(t)| dHN−1dt ≤ −
T∫

0

∫
Ω

ut(t)(u− ϕ) dxdt +
T∫

0

∫
Ω

z(t).∇ϕdxdt

−
T∫

0

∫
Ω

f(u)ϕdxdt +
T∫

0

∫
Ω

f(u)u dxdt,

that is,
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T∫
0

∫
Ω

|Du(t)| dt +
T∫

0

∫
∂Ω

|u(t)| dHN−1dt ≤ −
T∫

0

∫
Ω

ut(t)u(t) +
T∫

0

∫
Ω

f(u)u dxdt

= −
T∫

0

∫
Ω

divz(t)u(t) dxdt.

Then by Green’s formula (2.6),

T∫
0

∫
Ω

|Du(t)| dt +
T∫

0

∫
∂Ω

|u(t)| dHN−1dt ≤ −
T∫

0

∫
∂Ω

u(t)[z(t), ν] dHN−1 +
T∫

0

∫
Ω

|Du(t)| dt

which leads to

T∫
0

∫
∂Ω

(|u(t)| + u(t)[z(t), ν]) dHN−1dt ≤ 0, ∀T > 0.

Therefore, ∫
∂Ω

(|u(t)| + u(t)[z(t), ν]) dHN−1 ≤ 0, a.e. in (0,+∞),

showing the desired result. In order to prove (1.10), we can use a similar argument as in the proof of (3.36)
and the weak lower semicontinuity of the total variation combined with (3.44) and (3.48). Hence, the proof 
is now complete.

4. Proof of Theorem 1.2

In this section, we are concerned with the proof Theorem 1.2. Here we just sketch it since it follows 
similarly as above.

Step 1: For N ≥ 2, we have the Gelfand triple

W 1,p
0 (Ω) ∩ L2(Ω) ↪→c,d L2(Ω) ↪→c,d

(
W 1,p

0 (Ω) ∩ L2(Ω)
)′

.

In this section, we denote by ‖ ‖1,p,2 the usual norm in W 1,p
0 (Ω) ∩ L2(Ω) given by

‖u‖1,p,2 = ‖∇u‖p + ‖u‖2, ∀u ∈ W 1,p
0 (Ω) ∩ L2(Ω).

Let {Vm}m∈N be a Galerkin scheme of the separable Banach space W 1,p
0 (Ω) ∩ L2(Ω), i.e.,

Vm = span{w1, w2, . . . , wm},
⋃

m∈N
Vm

‖ .‖1,p,2

= W 1,p
0 (Ω) ∩ L2(Ω), (4.1)

where {wj}∞j=1 is an orthonormal basis in L2(Ω). Since u0 ∈ W 1,p
0 (Ω) ∩L2(Ω) then we can find u0m ∈ Vm

such that

um(0) = u0m → u0 strongly in W 1,p
0 (Ω) ∩ L2(Ω) as m → ∞. (4.2)
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For each m, we look for the approximate solutions um(x, t) =
m∑
j=1

gjm(t)wj(x) satisfying the following 

identities:∫
Ω

umt(t)wj dx +
∫
Ω

|∇um(t)|p−2∇um(t).∇wj dx =
∫
Ω

f(um(t))wj dx, j ∈ {1, . . . ,m}, (4.3)

with the initial conditions

um(0) = u0m. (4.4)

As in the last section, (4.3) − (4.4) is equivalent to the following initial value problem for a system of 
nonlinear ordinary differential equations on gjm:{

g′jm(t) = Hj(g(t)), j = 1, 2, . . . ,m, t ∈ [0, t0],
gjm(0) = ajm, j = 1, 2, . . . ,m,

(4.5)

where Hj(g(t)) = − 
∫
Ω |∇um(t)|p−2∇um(t).∇wj dx +

∫
Ω f(um)wj dx. By the Picard iteration method, 

there is t0,m > 0 depending on |ajm| such that problem (3.8) admits a unique local solution gjm ∈
C1([0, t0,m]). Hereafter, we will assume that [0, T0,m) is the maximal interval of existence of the solution 
um(t).

Step 2: Multiplying the jth equation in (4.3) by g′jm(t) and summing over j from 1 to m, we obtain

‖umt(t)‖2
2 + d

dt
Ep(um(t)) = 0, t ∈ [0, T0,m). (4.6)

Integrating (3.9) over (0, t) we arrive at

t∫
0

‖umt(s)‖2
2 ds + Ep(um(t)) = E(u0m), t ∈ [0, T0,m). (4.7)

Since u0m converges to u0 strongly in W 1,p
0 (Ω) ∩ L2(Ω), the continuity of E ensures that

Ep(u0m) → Ep(u0), as m → +∞.

From the assumption that Ep(u0) < dp, we have Ep(u0m) < dp for sufficiently large m. This combined 
with (3.10) yields

Ep(um(t)) < dp, t ∈ [0, T0,m), (4.8)

for sufficiently large m. In a similar fashion to above, we immediately obtain

um(t) ∈ Wp, ∀t ∈ [0, T0,m). (4.9)

Gathering (3.11) and (3.12), we deduce

t∫
0

‖ums(s)‖2
2 ds +

(
1
p
− 1

θ

)∫
Ω

|∇um(t)|p dx < dp, t ∈ [0, T0,m). (4.10)

Thus, it turns out that
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∫
Ω

|∇um(t)|p dx <
θpdp
θ − p

,

t∫
0

‖ums(s)‖2
2 ds < dp, t ∈ [0, T0,m). (4.11)

Next, multiplying the jth equation in (4.3) by gjm(t) and summing up over j = 1, . . .m, we obtain

1
2
d

dt
‖um(t)‖2

2 = −Ip(um(t)) < 0 ∀t ∈ [0, T0,m).

Hence, the function t �→ ‖um(t)‖2
2 for t ∈ [0, T0,m) is decreasing, and so,

‖um(t)‖2
2 ≤ ‖u0‖2

2, t ∈ [0, T0,m), (4.12)

for m large enough. The above estimates ensure that T0,m = +∞. Here we are using the fact that if 
T0,m < +∞, then we must have lim

t→T−
0,m

‖um(t)‖1,p,2 = +∞, see [32, Lemma 2.4, p. 48].

Step 3: From (4.11) − (4.12) we get the existence of a function u and a subsequence of (um) still denoted 
by (um) such that⎧⎪⎪⎨⎪⎪⎩

um
∗
⇀ u in L∞(0,+∞;W 1,p

0 (Ω) ∩ L2(Ω)),
umt ⇀ ut in L2(0,+∞;L2(Ω)),

−div
(
|∇um|p−2∇um

) ∗
⇀ χ in L∞

(
0,+∞;

(
W 1,p

0 (Ω)
)′)

.

(4.13)

Moreover, from (4.11) and [34, Corollary 4, p. 85], for any T > 0 we have

um → u in C([0, T ];Lκ(Ω)), ∀κ ∈ [1, p∗) (4.14)

and

um(x, t) → u(x, t) a.e. (x, t) ∈ Ω × [0, T ]. (4.15)

Since f is a continuous function, the limit (4.15) yields that

f(um) → f(u) a.e. (x, t) ∈ Ω × [0, T ]. (4.16)

On the other hand, from (f3), (4.12), and the Hölder inequality,∫
Ω

|f(um)|2 dx ≤ 2C
(
|Ω| + |Ω| 4−2q

2 ‖u0‖2q−2
2

)
(4.17)

for m large enough. Therefore, from (4.15) and (4.17),

f(um) ∗
⇀ f(u) in L∞(0, T ;L2(Ω)), ∀T > 0. (4.18)

For any fixed j, letting m → ∞ in (4.3), we obtain

t∫
0

∫
Ω

uτ (τ)wj dxdτ +
t∫

0

〈χ(τ)), wj〉 dτ =
t∫

0

∫
Ω

f(u(τ))wj dxdτ, ∀t ∈ [0, T ]. (4.19)

From the density of Vm in W 1,p
0 (Ω) ∩ L2(Ω), for any v ∈ W 1,p

0 (Ω) ∩ L2(Ω) we have
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∫
Ω

ut(t)v dx + 〈χ(t), v〉 =
∫
Ω

f(u(t))v dx, a.e. t ∈ (0, T ). (4.20)

By using a similar argument as in the proof of Theorem 1.1, one can shows that u satisfies the first 
initial condition. Next step is to prove that

−div
(
|∇u|p−2∇u

)
= χ. (4.21)

Since the proof of (4.21) will be similar to that of Theorem 1.1, we only need to prove the following 
claim

Claim 4.1. 
∫ T

0
∫
Ω f(um(t))um(t) dxdt →

∫ T

0
∫
Ω f(u(t))u(t) dxdt as m → ∞.

Indeed, from (f3), (4.11) and using Hölder’s inequality for each measurable set V ⊂ Ω × [0, T ], we have

∫
V

f(um)um dxdt ≤ CT

(
3|V |1/2‖u0‖2 + |V |

p∗
p∗−q

(
θpdp
θ − p

)q/p
)

for m large enough. In view of (4.15), we have f(um(x, t))um(x, t) → f(u(x, t))u(x, t) a.e. in Ω × [0, T ]. 
Thus, the desired result follows from the Vitali’s convergence theorem.
Replacing (3.28) in (4.20) yields∫
Ω

ut(t)v dx+
∫
Ω

|∇u(t)|p−2∇u(t).∇v dx =
∫
Ω

f(u(t))v dx, a.e. in (0, T ), ∀v ∈ W 1,p
0 (Ω)∩L2(Ω). (4.22)

As T > 0 is arbitrary, it follows that∫
Ω

ut(t)v dx +
∫
Ω

|∇u(t)|p−2∇u(t).∇v dx =
∫
Ω

f(u(t))v dx, a.e. in (0,+∞), (4.23)

for all v ∈ W 1,p
0 (Ω) ∩ L2(Ω).

4.1. Existence of solution for the original problem

In what follows, we set pm → 1+ and um = upm
the solution obtained in the last version, that is,

um ∈ L∞(0,+∞;W 1,pm

0 (Ω) ∩ L2(Ω)),

umt ∈ L2(0,+∞;L2(Ω)),

and ∫
Ω

umt(t)v dx +
∫
Ω

|∇um(t)|pm−2∇um(t).∇v dx =
∫
Ω

f(um(t))v dx, a.e. in (0,+∞), (4.24)

for all v ∈ W 1,pm

0 (Ω) ∩ L2(Ω).
Moreover, we also have

∫
|∇um(t)|pm dx ≤ θpmdpm

θ − pm
,

t∫
‖ums(s)‖2

2 ds ≤ dpm
, ‖um(t)‖2 ≤ ‖u0‖, t ∈ [0,+∞). (4.25)
Ω 0
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Since θ > 1, pm → 1+, and (dpm
) is a bounded sequence by Lemma 3.1, there is C1 > 0 such that

∫
Ω

|∇um(t)|pm dx < C1,

t∫
0

‖ums(s)‖2
2 ds < C1, ‖um(t)‖2 ≤ ‖u0‖ , ∀m ∈ N. (4.26)

By Young inequality,∫
Ω

|∇um(t)| dx ≤ 1
pm

∫
Ω

|∇um(t)|pm dx + pm − 1
pm

|Ω|, t ∈ [0,∞), ∀m ∈ N.

Hence, there is C2 > 0 such that∫
Ω

|∇um(t)| dx < C2, t ∈ [0,+∞), ∀m ∈ N. (4.27)

Claim 4.2. (um) is a bounded sequence in L∞(0, +∞; L1(Ω)). Hence, (um) is a bounded sequence in 
L∞(0, +∞; BV (Ω)) and (f(um)) is a bounded sequence in L∞(0, +∞; L2(Ω)).

Indeed, from Hölder’s inequality and (4.26),

‖um(t)‖1 ≤ |Ω|1/2‖um‖2
2 ≤ |Ω|1/2‖u0‖2

2, ∀t ∈ [0,+∞) and ∀m ∈ N (4.28)

showing that (um) is a bounded sequence in L∞(0, +∞; L1(Ω)). Recalling that the usual norm in BV (Ω) is

‖u‖ =
∫
Ω

|Du| + |u|1, ∀u ∈ BV (Ω),

it follows from (4.25) and (4.28) that there is C4 > 0 such that∫
Ω

|∇um| dx +
∫
Ω

|um| dx ≤ C4, ∀t ∈ (0,+∞)

showing that (um) is bounded in L∞(0, T ; BV (Ω)). Since 2q − 2 < 2, the second part of the claim follows 
directly from (4.17). Hence, (f(um)) is a bounded sequence in L∞(0, +∞; L2(Ω)).

The last claim permits to conclude that{
um

∗
⇀ u in L∞(0, T ;BV (Ω) ∩ L2(Ω)),

umt ⇀ ut in L2(0, T ;L2(Ω)).
(4.29)

By [34, Corollary 4, p. 85], for any T > 0 we have

um → u in C([0, T ];Lκ(Ω)), ∀κ ∈ [1, 1∗), (4.30)

and

um(x, t) → u(x, t) a.e. (x, t) ∈ Ω × [0, T ]. (4.31)

Using (4.30), we infer that um(t) → u(t) in L1(Ω) for all t ∈ [0, +∞). Hence, u(t) ∈ BV (Ω) for all t ∈ [0, +∞)
and
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lim inf
m→+∞

∫
Ω

ϕ|∇um(t)| dx ≥
∫
Ω

ϕ|Du(t)|, ∀0 ≤ ϕ ∈ C1
0 (Ω) and t ∈ [0,+∞) (see [1])

and

lim inf
m→+∞

∫
Ω

|∇um(t)|pm dx ≥ lim inf
m→+∞

⎛⎝∫
Ω

|∇um(t)| dx +
∫
∂Ω

|um| dHN−1

⎞⎠ ≥ ‖u(t)‖, ∀t ∈ [0,+∞)

Moreover, by (4.31) we get

f(um) ∗
⇀ f(u) in L∞(0, T ;L2(Ω)), ∀T > 0. (4.32)

Claim 4.3. There exists a vector field z ∈ L∞(0, +∞; L∞(Ω)) with div z(t) ∈ L2(Ω) such that, up to subse-
quence,

(i) |∇um|pm−2∇um ⇀ z in Ls(0, T ;Ls(Ω)), ∀s > 1 and ∀T > 0,

(ii) |z(t)|∞ ≤ 1, ∀t > 0,

(iii) (z(t), Du(t)) = |Du(t)|, as measures on Ω, a.e. in (0,+∞),

(iv) [z(t), ν] ∈ sign(−u(t)) HN−1 − a.e on ∂Ω,

and

(v) ut(t) − div z(t) = f(u(t)), in D′(Ω), a.e. in (0,+∞).

Now the proof of this claim follows as in the proof of Claim 3.4. Therefore the proof of Theorem 1.2 is 
now complete.
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