
Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
Intelligent multi-agent reinforcement learning model for resources
allocation in cloud computing
https://doi.org/10.1016/j.jksuci.2022.03.016
1319-1578/� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: a.belgacem@univ-boumerdes.dz (A. Belgacem), Said.MAH-

MOUDI@umons.ac.be (S. Mahmoudi), maria.kihl@eit.lth.se (M. Kihl).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier
Ali Belgacem a,⇑, Saïd Mahmoudi b, Maria Kihl c

aM’hamed Bougara University, Boumerdes, Algeria
bMons University, Mons, Belgium
c Lund University, Lund, Sweden

a r t i c l e i n f o a b s t r a c t
Article history:
Received 15 December 2021
Revised 11 February 2022
Accepted 13 March 2022
Available online 2 April 2022

Keywords:
Cloud computing
Resource allocation
Multi-agent system
Q-learning
Energy consumption
Fault tolerance
Load balancing
Now more than ever, optimizing resource allocation in cloud computing is becoming more critical due to
the growth of cloud computing consumers and meeting the computing demands of modern technology.
Cloud infrastructures typically consist of heterogeneous servers, hosting multiple virtual machines with
potentially different specifications, and volatile resource usage. This makes the resource allocation face
many issues such as energy conservation, fault tolerance, workload balancing, etc. Finding a comprehen-
sive solution that considers all these issues is one of the essential concerns of cloud service providers. This
paper presents a new resource allocation model based on an intelligent multi-agent system and rein-
forcement learning method (IMARM). It combines the multi-agent characteristics and the Q-learning pro-
cess to improve the performance of cloud resource allocation. IMARM uses the properties of multi-agent
systems to dynamically allocate and release resources, thus responding well to changing consumer
demands. Meanwhile, the reinforcement learning policy makes virtual machines move to the best state
according to the current state environment. Also, we study the impact of IMARM on execution time. The
experimental results showed that our proposed solution performs better than other comparable algo-
rithms regarding energy consumption and fault tolerance, with reasonable load balancing and respectful
execution time.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cloud computing is a development of information technology
(IT) that allows remote access to computing resources. It permits
sharing the resources of several computers cooperatively (Velte
et al., 2010). These resources can be dynamically configured
according to the workload, allowing for optimal use of resources
and their provision as a service to external customers (Buyya
et al., 2010). Utilizing cloud services to enhance the competitive-
ness of companies has become a prominent trend across the world.
With cloud computing, individuals and organizations can gain
on-demand network access to a shared pool of managed and scal-
able IT resources, such as servers, storage, and applications
(Sunyaev, 2020). Furthermore, in 2020, the interest in the cloud
has increased, given its use to predict the growth and trend of
the COVID-19 pandemic (Tuli et al., 2020). For this reason, the
cloud is required not only for Internet services but also for the IT
sector as a whole (Dikaiakos et al., 2009; Belgacem et al., 2020).

Cloud computing has a distributed architecture; the available
resources can be located on different physical machines. Process-
ing is spread across multiple servers, more generally, across multi-
ple virtual machines (VMs). The latter are arranged in different
configurations, with each group of them running on a single phys-
ical machine (PM) (Velte et al., 2010; Belgacem and Beghdad-Bey,
2021; Belgacem et al., 2018). The underlying technology responsi-
ble for this is virtualization. It includes a set of technologies and
tools that facilitate data center infrastructure management. This
technology permits provisioning, migration, and consolidation of
VMs within a few seconds. It saves time and makes the service
alive for customers, which makes the achievement of service level
agreements and quality-of-service (QoS) specifications more

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2022.03.016&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2022.03.016
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:a.belgacem@univ-boumerdes.dz
mailto:Said.MAHMOUDI@umons.ac.be
mailto:Said.MAHMOUDI@umons.ac.be
mailto:maria.kihl@eit.lth.se
https://doi.org/10.1016/j.jksuci.2022.03.016
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
possible. Therefore, enhancing cloud resource allocation perfor-
mance is an important research area.

The optimization-based agent is a critical technique widely
used in many disciplines, such as artificial intelligence and main-
stream computer science (Bellifemine et al., 2007; Wooldridge
and Jennings, 1995; De la Prieta et al., 2019). One of the essential
characteristics of agents is their ability to communicate with con-
sumers and with system resources, thus forming a multi-agent sys-
tem (MAS). MAS is a powerful tool for enhancing distributed
systems performance. It is suitable for modeling and design of
resources management strategies. So an optimization-based agent
is suitable for allocating cloud resources due to its distributed and
virtual nature (De la Prieta et al., 2019). Especially since resource
allocation in the cloud suffers from many.

problems (Mishra et al., 2020). Reinforcement learning
improvement methods are also necessary to solve prediction prob-
lems. Typically, they are used to create system models from data.
These models should improve with more data than those observed
during the training (Sutton and Barto, 2018). In this direction, Q-
leaning is a reinforcement learning model that learns the value
of an action in a particular state. The best advantage behind using
the Q-learning method is its flexibility and ability to adapt to dif-
ferent cloud environment changes. It is an artificial intelligence
field that allows agents to act intelligently in an environment to
maximize the notion of cumulative reward. Therefore, reinforce-
ment learning is a class of solution methods that can work well
on the problem of dynamic resources allocation.

The allocation of resources in the cloud computing environ-
ment is surfacing many issues (Mishra et al., 2020; Hasan and
Goraya, 2018; Hameed et al., 2016). Due to the variable workload,
misallocation of resources can overload some virtual machines,
while other VMs do not get the requested load. Knowing that
the load balancing in the clouds may be between physical hosts
or virtual machines. Correspondingly, fault tolerance requires the
design of methods that allow a system to continue operating in
a reduced fashion instead of completely failing when one of its
components no longer functions properly. It is among the most
imperative issues in the cloud to deliver reliable services (Hasan
and Goraya, 2018). Likewise, the number of cloud resource con-
sumers grows every year, making the energy consumption issue
one of the hottest research trends in IT and the industry
(Hameed et al., 2016; Kaur and Chana, 2015). Further, the emer-
gence of big data centers will increase the electricity demand
and thus impact on cloud operating budget. On the other hand,
the virtual machine migration mechanism can facilitate hardware
maintenance, load balancing, and disaster recovery. Additionally,
the balancing method should distribute the dynamic workload
equally among all nodes (hosts or virtual machines) (Mishra
et al., 2020). Along with that, virtual machines must be reconfig-
ured and modified dynamically with changing loads to make the
best use of resources.

Traditional resource allocation methods do not consider the
automation and distributed nature of the cloud, leading to high
implementation complexity without achieving an optimal solu-
tion. To our knowledge, there is no practical way to provide energy
consumption estimates before performing tasks. Moreover, execut-
ing many requests in the cloud will require fault tolerance to a
higher degree of errors and failures than ordinary systems. Addi-
tionally, cloud computing needs to automatically tune the VMs
state according to the increasing and decreasing workload, thereby
balancing the system load. This is why optimizing resource alloca-
tion while simultaneously considering energy consumption, fault
tolerance, and load balancing is the dream of cloud providers. In
the literature, each of these problems is optimized separately by
neglecting the impact of one on the others. This motivates us to
think of a solution that takes into account these three issues while
2392
allocating resources at the same time. In other words, the critical
contribution of this research is as follows:

� Present a mathematical formulation for fault tolerance, energy
consumption, load balancing, and execution time.
� Propose a multi-agent model using Q-Learning to optimize
resource allocation in the cloud considering fault tolerance,
energy consumption, and load balancing. Also, we study the
effect of IMARM on execution time.

The rest of this paper is organized as follows. Section 2 presents
related works. Section 3 gives a mathematical formula for the
problem under study. Section 4 explains our proposed solution.
Section 5 evaluates its efficacy through simulation experiments.
Section 6 discusses the advantages and limitations of our work.
Finally, section 7 concludes the paper.
2. Related works

The resources of a cloud computing infrastructure are shared in
real time between its customers. This creates serious problems for
cloud service providers regarding fault tolerance, energy consump-
tion, and load balancing. Indeed, these issues of resource allocation
are widely discussed in the literature. However, every extant
research has addressed only one or two problems, ignoring its
impact on the other issues (Belgacem, 2022).

The work provided in (Tamilvizhi and Parvathavarthini, 2019)
depicts an efficient cloud architecture that could tolerate failures
while reducing energy consumption and workload overhead. How-
ever, the assessment experiments were not performed for a large
number of consumers. In (Sharma et al., 2019), the authors have
used a failure-aware VM consolidation mechanism (FCM) to save
energy in a failure-prone cloud computing environment. In
(Marahatta et al., 2019) they presented a solution that coordinates
the optimization of resource utilization and energy consumption
with a fault-tolerant mechanism. The proposed mechanism mini-
mizes the task rejection ratio caused by machine failure and delay.
However, the complementary features of tasks need to be investi-
gated further. In addition, to reduce energy consumption and the
resultant SLA violations, two workload consolidation techniques
are presented in (Mustafa et al., 2018). However, this solution
did not consider fault tolerance or load balancing. In (Adhikari
and Amgoth, 2018), the authors combined server configuration
and task-VM mapping to improve load balancing in an IaaS cloud.
However, this work needs to consider other performance parame-
ters such as VMs usage cost, deadline, etc.

On the other hand, Wanyuan et al. (Wang et al., 2016) intro-
duced a decentralized multiagent (MA)-based VM allocation
approach. The approach aims to allocate VMs to PMs while mini-
mizing system energy costs. This method allows dispatching a
cooperative agent to each PM to assist the PM in managing
resources. However, this solution did not give consumers sufficient
quality in using scalable VM resources. Another solution based on
agent technology is proposed in (Bajo et al., 2016), called low-level
resource distribution. It allows distributing computational
resources throughout the entire cloud computing infrastructure,
considering its complexity and associated computational costs.
This monitoring and control of the system making possible to inte-
grate the new features offered by virtualization. However, this
work needs an extension to address new objectives and to include
other infrastructure parameters. For efficient resource utilization
and to minimize the cost of bandwidth, the researchers in (Gao
et al., 2020) proposed a hierarchical multi-agent optimization
(HMAO) algorithm. This algorithm outperforms other compared
algorithms in solution quality, convergence time, and robustness

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
as the number of tasks increases. Further, in (Singh et al., 2017), a
new mechanism was proposed that deploys various intelligent
agents to reduce the cost of virtual machines and resource alloca-
tion complexity. However, this technique needs more experimen-
tal results to prove its effectiveness.

In the paper (Gutierrez-Garcia and Ramirez-Nafarrate, 2015),
different agents were used to balance workloads between hetero-
geneous servers. This mechanism is capable of balancing loads in
a distributed and scalable manner. However, in the case of a large
number of servers, the algorithm becomes complex. A flexible
model that integrates an interaction between broker agents was
presented in (Kemchi et al., 2018). The model considers several cri-
teria in the processing of submitted customer requests. However,
this solution still needs to be improved to be adapted to the alloca-
tion of resources. The authors in (Singh et al., 2015) presented an
Autonomous Agent-Based Load Balancing Algorithm (AALB), which
dynamically performs a proactive load calculation of VM according
to a threshold value. However, the experiments did not show any
efficient results. In (Jena et al., 2020), the authors hybridize
between particle swarm optimization and an improved Q-
learning algorithm to form a new approach named QMPSO. The
proposed solution allows finding a suitable action from the set of
possible VM actions according to the state of the VMs while achiev-
ing system load balancing.

To overcome the poor quality of service, the authors of (Jyoti
and Shrimali, 2020) proposed a new approach that provides
dynamic provisioning of resources based on load balancing and
brokering of services. The paper used a deep reinforcement tech-
nique to predict environmental cloud activities and allocate
resources. However, the article did not discuss the issue of fault
tolerance. Another study presented in (Xu et al., 2020) has sug-
gested a strategy based on machine learning for VM placement.
It showed an accepted improvement in terms of load balance. In
(Chinnathambi et al., 2019), the authors sought to optimize fault
tolerance using a checkpoint mechanism. Its effectiveness was
evaluated mainly on byzantine errors. The proposed model per-
forms better than other algorithms and is suitable for real-time
applications.

To minimize energy consumption, the authors of (Kurdi et al.,
2018) proposed an algorithm named LACE. It is based on the sim-
ulation of behavioral phase changes in locusts. LACE allows the
workload to be distributed among servers rather than centralized
in a single component. The solution presented in (Kong et al.,
2020) takes into account the end time and the earliest end time
to achieve efficient scheduling with load balancing. However, this
work did not consider the energy consumption in data centers
and VM migration. In (Devaraj et al., 2020), the authors focus on
load balancing. The presented algorithm integrates the advantages
of two techniques to minimize the search space and respectively
identify the improved response. However, this algorithm still
needs improvements to be used for resource allocation.

In (Singhal and Singhal, 2021), the authors suggested an auction
resource allocation model that promotes genuine providers with
good feedback, discourages market saboteurs and promotes fair-
ness in the system. However, this research did not address the
energy consumption issue and has not assessed with different vir-
tual machine setups. Thein et al. (Thein et al., 2020) proposed a
solution based on reinforcement learning mechanism and fuzzy
logic to achieve high-energy efficiency of the data center. This solu-
tion is not efficient for a large number of resources and is not appli-
cable in real-time allocation. Liang et al. (Liang et al., 2019)
proposed a model based on the semi-Markovian decision process
and reinforcement learning for adaptive allocation of cloud
resources. The evaluation results show that this approach still
needs to be improved to allocate resources effectively. In
(Praveenchandar and Tamilarasi, 2021), the authors used a predic-
2393
tion mechanism and a dynamic resource table update algorithm to
minimize energy consumption. In (Pradhan and Bisoy, 2020), they
gave a heuristic approach for cloud load balancing. Similarly,
Karthiban et al. (Karthiban and Raj, 2020) proposed a resource allo-
cation scheme based on the Deep Reinforcement Learning Model
(DRLM). However, these works did not address the fault tolerance
problem.
3. Mathematical formulation

The cloud provider receives and responds to customer requests
through a browser. These requests reflect consumer resource
requirements. Growing cloud consumers can lead to increased
energy consumption due to, for example, cooling systems, fault tol-
erance mechanisms, etc. Implementation times must also be
improved to ensure the quality of service. Additionally, the work-
load distribution across virtual machines should be balanced. Fur-
ther, assigning and launching virtual machines during resource
allocations can cause them to fail. Consequently, it is necessary
to manage resources in this environment. The cloud computing
environment studied in this paper appears in (Fig. 1). The main
symbols used in this study are summarized in the Table 1.

3.1. Application model

We schedule a Bag of Task (BoT) application in this work. The
BoT application is widely used in scientific and engineering
disciplines and commercial organizations such as Facebook
(Thai et al., 2018). A BoT application consists of a set of parallel
tasks T = {Ti|1 � Ti � m}, where each task is characterized by an
identifier (id), and length (lg). Tasks are executed on set of
VM = {VMj|1 � VMj � n}, where each task is characterized by
an identifier (idvm), the speed of the CPU resource is represented
by the parameter multi instruction per second (mips), and its
bandwidth BW. The VMs are placed on a set of hosts H = {Hk|
1 � Hk � s}, where n, m, and s are the number of Tasks, VMs,
and Hosts respectively.

3.2. Fault tolerance model

Implementing a fault-tolerant technique can be performed at
different levels of cloud services (Hasan and Goraya, 2018). Some
techniques are used to target specific types of failures, others
detect and correct failures, etc. Briefly, faulttolerant (#) is the abil-
ity of the system to control the state in order to deal with different
interruptions (faults, errors, failure) before they occur. In this
study, we are interested in preemptive fault tolerance. For that,
we need to predict the failure through resource allocation opera-
tions, thereby a checkpoint mechanism is adopted (Fig. 2).

Checkpointing mechanisms allow the system to periodically
save the task execution states. In case of any failure, the task is
restarted from the last saved state rather than restarting the task
from the beginning. Checkpoints are selected at regular intervals
after a certain number of execution time units (quantum time D
(Belgacem et al., 2020). During a period D, a checkpoint of length
C is taken. This leads to the challenge of determining in which exe-
cution task situation the checkpoint is blocked or not. In other
words, it is necessary to store checkpoint data during resource allo-
cation processes using a proper architecture. For that, a slowdown
factor O is defined to measure the time units lost in the event of a
disrupting checkpoint jitter. Thus, the units of work wasted due to
the disturbance of the checkpoint jitter are expressed as (1 � OC)C
knowing that 0 � O � 1. O = 0 corresponds to an entirely blocked
checkpoint, while O = 1 corresponds to a checkpoint overlapped
with computations.

Fig. 1. Problem description.

Table 1
Symbols.

Symbols Signification Symbols Signification

Fault-tolerant D Quantum time
h Energy consumption C Checkpoint time length
u Execution time MTBF Mean Time Between Failures
r Load balancing O Slowdown factor
F The number of failures rB Load-balancing threshold
m Value of MTBF W Objective function

Fig. 2. Checkpoint mechanism steps.

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
The number of failures, F, is expected by F
m, knowing that m is the

Mean Time Between Failures (MTBF) (Herault and Robert, 2015).
Note that for n identical resources with MTBF = mind, the ¼ MTBF

mind
. In

the event of a failure, a downtime of length CD is happening, then
recovery of length CR. The task is re-executed from the last check-
point before the failure (Rollback). It is noted that the shorter the
period D, the less work to re-execute, but also the more overhead
due to frequent checkpoints in a failure-free execution (Herault
and Robert, 2015). So, the best trade-off is achieved according to
2394
the formula D =
ffiffiffiffiffiffiffiffiffi
2Cm
p

+ C (Young, 1974). In the rest of the article,
we assume that # reflects the number of failures F.

3.3. Energy consumption model

In this study, we consider the energy consumption in different
virtual machine states during resource allocation:

� Static energy (hs): This is the base energy consumption when
operating the cloud system. More precisely, it corresponds to
the energy consumed by VM when no tasks run inside it, which
is the energy of the CPU idle (Belgacem et al., 2020). Each VM in
the resource pool has energy profile information, such as mini-
mum and maximum operating power consumption.
� Processing energy (hp): This is the energy consumption that
corresponds to the case when there is workload performed on
the VM, in addition to the static power (Herault and Robert,
2015).

hp ¼ hs þ hs
m
þ ðXCþ D2 � C2 þXC2

2D
Þ ð1Þ
� Migration energy (hm): The migration power depends on
VMcpu(mips), network bandwidth (BW), and migration time
(CM). Therefore, if the average dissipated power is denoted hr,
and the migration duration is CM ¼ mips

BW , hm is given by:

hm ¼ hr � CM ð2Þ
� Downtime energy (hd): This is the power consumed when one
machine is down.

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
� Checkpoint energy (hc): This is the energy consumed in
checkpointing.
� Failure energy (hf): This is the energy lost due to re-execution.
According to (Herault and Robert, 2015); hf is calculated as
follows:

hf ¼ D2 � 2C
2D

� hp ð3Þ

From the above, the total VM energy consumption is computed
as shown in equation (4). Hence, the total energy consumed by the
cloud environment (hE) is the sum of all hVM (equation (4a)).

hVM ¼ hc þ hp þ hm þ hd þ hf ð4Þ

hE ¼
Xn
j¼0

hVMj
ð4aÞ
3.4. Load balancing model

In this research, we are interested in selecting an optimal host
in a data center to place virtual machines on that host. To this
end, VM migration is adopted to balance the cloud system. Select-
ing a suitable host is subject to some rules. The rules are defined
according to the state of the system. The weight of VMj (rj) is con-
trolled periodically during a quantum of time (D). This way, if a vir-
tual machine can handle several tasks, it is prevented from getting
overloaded. Therefore, the controller will assign the task to the
most powerful VM for each allocation. Equation (5) shows the
VM weight expression, knowing that

P
lg is the total amount of

tasks (length) running on the VMj, and rB ¼
Pn

j¼0rj

n is load balancing
factor of the system.

rj ¼
P

lg
mipsj

if rj ¼ 0VMjisshutdown

if rj > rBVMjisoverloaded
if rj < rBVMjisloaded

if rj ¼ rBVMjisbalanced

8>>><
>>>:

ð5Þ

In each period, the system maintains a record of the state of
each virtual machine (busy, ideal, failure). If a task arrives for allo-
cation, it is sent to the ideal virtual machine. In the case of VM fail-
ure, the task is migrated to another ready VM. The system energy
consumption in the balanced state (hB) is calculated as shown in
equation (6).

hB ¼
Xn
j¼0

rj � hpj ð6Þ
3.5. Execution time model

The first time considers in resource allocation is the checkpoint
period without failure. It is the periodic checkpoint intervals dur-
ing fault-free execution (ubas). During each D period, the system
spends OC of time on checkpoints processes which makes the ubas

calculated as follows:

ubas ¼ D� XC ð7Þ
For each failure, the time lost is expressed according to the

downtimeCD and recovery timeCR. During the D period, the prob-
ability that a failure happens while we are not checkpointing is
assumed to be D�X

2 . The likelihood that a loss occurs during check-
pointing is D� X

2 (Hasan and Goraya, 2018). Thereby the failure
time is expressed as shown in equation (8).
2395
ufail ¼ CD þ CR þ D
2

ð8Þ

Each task Ti is assigned to one VMj, and executed at a period uij.

uij ¼
lgi

mipsj
ð9Þ

Therefore, the total execution time of the task depends on ubas,
VM settings, task length, and the time lost due to failures ufail

(equation (10)).

uE ¼
Xm
i¼0

uij þubas þufail ð10Þ
3.6. Objective function

This research aims to minimize energy consumption and pro-
vide fault tolerance while maintaining cloud system load balanc-
ing, as shown in equation (11).

W ¼ MinðhEÞ ð11Þ

S.t
D ¼ D� ð11aÞ

rj � rB for each VMj ð11bÞ

8j 2 1;2; � � � ;nf g;
Xn
j¼0

VMj � 1 ð11cÞ

The constraints mentioned express the following meanings:

� Constraint 11a means that we select an optimal checkpointing
interval.
� Constraint 11b means that the load of each VM must be inferior
or equal to the load balancing threshold of the cloud system.
� Constraint 11c means that each virtual machine can only run on
one server.

4. Proposed Multi-Agent reinforcement model

The proposed Intelligent Multi-Agent Reinforcement Model
(IMARM) is structured by different types of agents, as shown in
Fig. 3. One set of agents is named Sensing agents= {ECCA, FDA,
LCA}. These agents are a group of autonomous, interacting entities
that collect information about the cloud environment using
sensors. Also, there is a set of agents named VM agents= {VMA1,
VMA2,. . .,VMAm}. These agents react according to a report from a
Sensing agent. The proposed system relies on a central organiza-
tion. Therefore, the system is monitored by a central Resource Allo-
cation Agent (RAA) that acts with a Consumer Agent (CA).

4.1. Sensing agents (Environment)

Autonomous Sensing agents interact with VM agents to provide
data about the cloud environment andmake the system intelligent.
Sensor agents provide real-time tracking of consumer require-
ments and monitoring of VMs to improve the quality of service.
These agents communicate with RAA by messages.

� Energy consumption controller agent (ECCA): This agent consid-
ers the five different states of energy consumption mentioned
above. In other words, they detect different energy

Fig. 3. Sequence diagram of proposed multi-agent system behavior.

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
consumption values of the environment and store these values
in the registry.
� Fault tolerance detection agent (FDA): This agent collects fail-
ure, downtime, and recovery time at regular intervals.
� Load balancing agent (LCA): As mentioned before, virtual
machines are distributed to various hosts while tasks are sub-
mitted to different virtual machines decentralized. LCA acts to
collect precise state information about a load of virtual
machines. As a result, it measures the VMs weight (r) and load
balancing factor of the system, thereby deducing the load bal-
ancing of energy consumption (hB).

This category of agents gives a global measure of the environ-
ment E = (uE, hB, #, rB), in each D time. The global measure can
be calculated according to the following matrix:

E ¼

u1;1 h1;2
u2;1 h2;2

#1;3 r1;m

#2;2 r2;m

..

. ..
.

un;1 hn;2

..

. ..
.

#n;m rn;m

0
BBBBB@

1
CCCCCA

ð12Þ

here, each row of the matrix presents the values sent by VMA to
sensing agents and # 2 [0,1].

4.2. Service provider agents

The role of a VMA (Virtual Machine Agent) is to control the VMs,
make them autonomous and react to various environmental
changes. For this, the Q-learning method is employed to enhance
the behavior of VMs. Q-Learning is a reinforcement learning
method that allows for optimal allocation of resources according
to environmental requirements and changes. VMA uses data
acquired with the precedent category of agents to improve load
balancing and energy consumption with fault tolerance. In the con-
sidered multi-agent system, each VM is regarded as an agent to
determine its optimal computation offloading strategy by interact-
ing with the environment. Sensing agents observe the local envi-
ronment state of VM si 2 S, and then RAA decides the correct
action for each VM. For the Q-learning method, a stochastic formu-
2396
lation is given. The formulation is a generalization of a Markov
decision process. It includes the tuples < Cr,S,A,Pr,r >.

� Cr is the set of n VMAs;
� S is the set of possible states of each VMA;
� A represents set of possible actions for each VM;
� Pr is the probability function of transitioning to state S, (Pr:
S � A 2 [0,1]);
� r is the reward function for each transition.

Based on the definition above, the main items in the tuple will
be as follows:

VMA state-space: At a time instant, the position and/or orienta-
tion of the VMA in the environment are: ready, off, failure, over-
load, balance.

VMA action-space: Each VMA takes action based on energy con-
sumption, fault tolerance, and load balancing. We designate the
actions downtime, migration, rollback, and switching (from ready
to off and vice versa). The method will need a reward matrix and
will output a quantity matrix.

Reward: At each quantum time, VMA receives an indication of
the current state of the environment from the RAA agent. After
that, VMA chooses an action to change the state of the environ-
ment. In each state transition, VMA receives a reward (Fig. 4).

Reward function:. This research aims to minimize the number of
failures and energy consumption while maintaining load balanc-
ing. Thereby, the reward function should be defined as:

r ¼

1
x1hjþx2uj

if#j ¼ 0; ðrandomx1;x2 2 ½0;1�Þ
1 if#j ¼ 1ðfailureÞ
�1 impossibletransition

0 keepthesamestate

1 ifrj > rBand#j ¼ 0

8>>>>>>>><
>>>>>>>>:

ð13Þ

The Q-learning method aims to learn a policy that maximizes
the total reward. The Q-learning process will have two main
stages:

Q-table creation stage:. First, the Q-learning table (matrix) is
built, where the number of columns and rows correspond to the

Fig. 4. The different changes of VMs state.

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
number of actions and states. Each state-action combination repre-
sents the quality value of an action taken from that state. The Q-
value is initialized to zero; it will be updated and stored after each
training. The Q-learning table is considered a reference to select
the best action according to the Q-value.

Q-learning and making updates stage:. The VMA agent interacts
with the cloud environment using one of two ways. The first way
is exploitation, which uses the Q-table as a reference to select
the action based on the maximum value of all possible actions
for a given state. The second way is called exploring, which takes
action to act randomly. This lets the agent explore and discover
new states that otherwise may not be selected during the exploita-
tion process. In addition, it is possible to balance exploration/ex-
ploitation by determining the value of exploring vs. exploiting.
Briefly, Q-learning lets the VMA agent use the environment
rewards to learn the best action decided for a given state. It is nec-
essary to consult a Q-table to choose a sequence of actions that
should maximize the reward. More precisely, the transition to state
(si + 1), with an action (ai + 1), is accompanied by receiving a
reward (ri + 1).

The Q-values are updated using the rule given by Sutton and
Barto (1998) (Sutton and Barto, 2011) and Kaelbling et al.
(Kaelbling et al., 1996) (Kaelbling et al., 1996):
Q s; að Þ Q s; að Þ þ aðr þ cmax
0
aQ s

0
; a
0� �� Qðs; aÞÞ ð14Þ
here, s’ is the state attained from state s when performing action ai.
In each iteration, the Q-values are adjusted according to equation
(14). Here, two operators are used. The first operator is the learning
rate (a), which gradually decreases for convergence (0 < a � 1). The
second operator is (c), which is the discount factor (0 � c � 1)
(Sutton and Barto, 2011; Even-Dar et al., 2003). Moreover, the cur-
rent action is updated with the possible future reward, and the
maximum of the future reward is used and applied to the reward
of the current state. This permits the VMA agent to select the high-
est return action at any given state (Fig. 5). Thus, multiple updates
of every state-action pair lead Q-learning to achieve the optimal
state-action decisions. The pseudocode of the Q-learning method
is presented in algorithm 2, and algorithm 3 gives the source code
of the proposed solution (IMARM).
2397
4.3. Resource management agents

The cloud system is monitored by a central Resource Allocation
Agent (RAA) that interacts with a Consumer Agent (CA).

� Consumer agent (CA): The CA agent represents the cloud con-
sumer. It negotiates with the RAA to reach a service level agree-
ment (SLA) about resources. The SLA should be taken into
account in the resource allocation process. The result of the
negotiation is a set of tasks directed to be executed on VMs.
� Resource allocation agent (RAA): This agent contains the
resource allocation policy, responsible for mapping the tasks
to VMs. In this research, we use our approach suggested in pre-
vious work (MOSOS) to assign tasks to virtual machines
(Belgacem et al., 2020). RAA acts as a broker and receives inqui-
ries from consumers to provide them with resources. It receives
consumer requests and analyzes them to extract the resource
requirements. Therefore, RAA allows allocating appropriate
resources to every corresponding request. Consequently, it is
an intermediary between sensing agents and service provider
agents to facilitate resource allocation (Fig. 6).
Algorithm 1: States changing
Input: Q-table (si), Information given by sensor agents

(VMinf), r, Action set (a).
Output: Best VMs adjusting state (a).
1:For Each (VM: n).
2: For Each (si, VMinf).
3: Calculate the reward r and the state using the equation

(13).
4: IF(r < r’).
5: si (s’i).
6: a (a’).
7: End If.
8: End For.
9: End For.

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
Algorithm 2: Update Q-table:
Input: (s, a) the current state and action, s’ is the next state, r

is the immediate reward received.
Output: Best Q-table values.
1: Call Function1.
2: Q(s, a) Q(s, a) + a(r + cmaxa0Q(s’, a’) � Q(s, a)).
3: Construct Q-matrix for state-action pairs.
4: For Each State.
5: Choose an action a.
6: Observe next state, s’, select a action.
7: Switch (Case).
8: Case1: (#j = 0).
9: r =. 1

hjþx2hj

10: Case2: (0j = 1) (failure) or rj > rB and 0j = 0 rB
and 0j = 0).

11: r 1.
12: Case3: (impossible transition).
13: r � 1.
14: Case4: (a = a’).
15: r 0.
16: End Switch.
17: Q � table (s, a’) (case where r is minimun).
18: End For.
Function 1: Q-table creation stage
Input: Set of Action, set of State.
Output: Q-values table.
1: For Each (state).
2: Choose randomly action.
3: Q � table (s, a’).
4: End For.
Algorithm 3: IMARM
Input: Set VMs, set T.
Output: Best mapping T-VM,
Best Cloud environment management.
1: While t 1.
2: For Each (t = D).
3: RAA collects information from sensor agents.
4: Call Algorithm 1.
5: Call Algorithm 2.
6: Call MOSOS Algorithm.
7: End For.
8: End While.

5. Experimental evaluation

This section presents our experimental platform, evaluation,
and results.

5.1. Implementation

The proposed solution is implemented with the Cloudsim 3.0.3
toolkit based on JAVA and JADE (Java Agent Development Environ-
ment). JADE is a software platform that provides basic
middleware-layer functionalities. The functionalities are indepen-
dent of the specific application, and they simplify the realization
of distributed applications, which exploit the software agent
2398
abstraction (Wooldridge and Jennings, 1995). The experiments
are performed on an Intel (R) Core (TM) i5 3320 M Processor
2.6 GHz, equipped with 4 GB RAM, Windows 7 platform, using
the Eclipse IDE Luna release 4.4.0.
5.2. Performance metrics

Three series of experiments are conducted to evaluate the per-
formance of our proposed intelligent multiagent model. The
IMARM is compared with a failure-aware VM consolidation mech-
anism (FCM), the QMPSO and DRLM algorithms presented in the
works (Sharma et al., 2019; Jena et al., 2020; Karthiban and Raj,
2020), respectively. FCM is selected since it can significantly
improve energy consumption by considering the failure character-
istics of physical resources and using the VM consolidation mech-
anism. QMPSO allows efficient execution time during load
balancing. While the DRLM algorithm permits highlighting the
effectiveness of combining MAS and Q-learning reinforcement
methods. Therefore, our IMARM is assessed according to the fol-
lowing scenarios.

Fault tolerance evaluation scenario. This experiment was
designed to assess and compare the effectiveness of the proposed
multi-agent model for fault tolerance in heterogeneous cloud data
centers. Therefore, the Grid5000 fault data set is used. The data set
was collected for 1.5 years between 2005 and 2006, and it has been
downloaded from Failure Trace Archive (FTA). The dataset includes
traces containing information about failures and physical machine
configurations for approximately 1300 nodes (Kondo et al., 2010).
The mean time between failures (MTBF) and the meantime to
return (MTTR) for each node in each cluster is determined based
on the failure information given in the traces.

In this scenario, the cumulative distribution functions (CDF) of
time between failures are evaluated. Another important forecast-
ing technique that many organizations widely use is the value of
the smoothing constant (Gelper et al., 2010). Therefore, we per-
formed a statistical analysis of the failure accuracy using different
smoothing constant values for failure prediction. The reason for
choosing the average-based prediction method is the inconsistency
and non-stationarity of the available data collected from the Fail-
ure Trace Archive (Kondo et al., 2010). For each constant smooth-
ing value, a set of forecasts is generated. Then these forecasts are
compared with the actual observations of the time series (A time
series is a sequence of time intervals of observations). Finally, the
value that offers the smallest sum of squared forecast errors is
selected. This study was conducted for seven values of the smooth-
ing constant, where the maximum checkpointing overhead was
20 s.

Energy consumption experiments scenario. This experiment
instantiates a scenario taken from projections for the Exascale plat-
forms (Ferreira et al., 2011; Dongarra et al., 2009; Herault and
Robert, 2015). Therefore, real values for energy consumption and
fault tolerance parameters are chosen. The energy consumption
of a VM is capped to hs = 20mW, and there are 106 VMs. This sce-
nario assumes that the platform energy is about 50% of this power,
hence hs = 10. A key parameter for this experiment is the energy
environment hE defined in equation (4a). According to (Zheng
et al., 2012) and with one fault per day, mind equal to 45,208 365
	 125 years. We take hc = hd = 10 min, D = 1 min, and O = 1/2.
The MTBF (m) is varied from m = 300 min (5 h) down to m = 30 min.

Load balancing experiments scenario. The experiment is designed
to assess the effectiveness of the proposed IMARM in terms of load
balancing. Therefore, we investigated its behavior during VM
migration. More precisely, the performance of IMARM load balanc-

Fig. 5. The transition states in the cloud system.

Fig. 6. Diagram of the IMARM solution.

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
ing is analyzed, and the degree of imbalance is calculated according
to the number of virtual machine migrations during the balancing
process. The number of tasks is fixed to 1000, and VMs vary from
500 to 2500 in 50 s. We keep the same tasks and VMs configuration
as in work (Jena et al., 2020).
5.3. Results and discussions

The performance evaluation of the proposed multi-agent solu-
tion was carried out in terms of fault tolerance, energy consump-
2399
tion, load balancing, and execution time. The results given are
simulated 20 times then the average value is taken.
5.3.1. Fault tolerance evaluation
Fig. 7(a) shows the variation of the cumulative distribution

function in different times between failures. The vertical axis is
between 0 and 0.5, which gives the probability values of the CDF.
The same behavior can be observed between the occurrence of
failed and recovery events in (Fig. 7(b)). Both graphs fit a weibull
and normal distribution with a slight deviation.

Fig. 7. Fault tolerance evaluation results.

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
The smoothing constant indicates the level at which past obser-
vations impact the forecast. From examining Fig. 7(c), we observe
that the value of the smoothing constant increases between 0.2
and 1, at the same time as the accuracy of the failure prediction
also increases. Consequently, the smaller the values, the smoother
the pattern in the smoothed values, thereby achieving better pre-
diction results in the short term. Likewise, when using the moving
average prediction method, IMARM showed better failure predic-
tion accuracy. Because we generate a corresponding failure
expectancy-value for each failure event value in failure traces (in-
terpolation expectation). Generally, the prediction accuracy
obtained by IMARM using a smoothing constant of 0.9 is
significant.

Fig. 7(d) shows the average reliability behavior under different
states with and without consolidation. Generally, it is noticed that
the system with consolidation has higher reliability than the sce-
narios without consolidation. This can be due to the reduction in
the occurrence of failures. However, when the overhead of virtual
machines increased (increase in incoming tasks), the system relia-
2400
bility decreased. The results show that VM migration was mainly
used for fault-tolerance reactions and system load balancing. In a
failure, the system recovers the failed virtual machines, and the
tasks are re-executed, which increases the system reliability.

5.3.2. Energy consumption evaluation
Fig. 8 shows the different types of average energy consumption

of the system. Our proposed solution generally shows minimal
energy consumption compared to the FCM, QMPSO, and DRLM
algorithms. Our solution allows for a reduction of 24.25% of energy.
Obviously, the system consumes maximum power in the case of
processing due to a large number of incoming tasks. The system
consumes minimal energy in recovery due to the low number of
failures, reflecting IMARM fault tolerance efficiency. At the check-
point, the system spends little energy. The energy consumed dur-
ing VM migration is due to VM overload. The consolidation
technique helps to reduce this type of energy consumed. The LCA
and ECCA agents periodically inform the RAA of the load and
energy consumption of the virtual machines, which leads to select-

Fig. 8. Energy consumption.

Fig. 9. Number of tasks with degree of imbalance before and after load balance.
Fig. 10. Execution time results according to different numbers of virtual machines.

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
ing a set of suitable ready virtual machines in each allocation and
shutdown others. Therefore, the overload and energy consumption
of virtual machines are reduced.
2401
5.3.3. Load balancing evaluation
The system load before and after balancing has been evaluated

and is shown in Fig. 9. The degree of imbalance is calculated using
equation (15). It is the number of VMs that have a load greater or

Table 2
Statistical analysis.

SSDfMSF-statistic P-value F-critical

Energy consumption

Between groups 8170894.173 2 4085447.0863.631 0.081 3.16
Within groups 88508850.29 57 1552786.847
Total 96679744.47 59

Execution time
Between groups 235255.870 2 117627.9350.315 0.706 3.16
Within groups 19111018.19 57 352628.924
Total 19346274.06 59

Load balancing
Between groups 68.359 2 34.1800.052 0.950 3.16
Within groups 36720.559 57 660.010
Total 37688.918 59

Comparison of statistical results
Energy consumption Execution time Load balancing

IMARM ±0.065 ±0.737 ±0.945
FCM ±0.765 0.999 ±0.986
QMPSO ±0.483 ± 1.02 ±0.955

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
less than the balance factor (rB) in the system. The imbalance
degree is measured before and after the cloud system balancing,
knowing that VMs are migrated due to overload. The figure illus-
trates that the degree of imbalance is the lowest after applying
the IMARM algorithm compared to other algorithms. This is due
to the regular task distribution that keeps the workload balanced
on the virtual machines. Therefore, the proposed solution helps
to maintain the balance of the cloud system when allocating
resources.

Imbalance VM degree ¼ Number of Imbalanced VMs
n

� 100 ð15Þ
5.3.4. Execution time evaluation
Fig. 10 shows the execution time of tasks using different num-

bers of VMs. The execution time is calculated using equation (10).
Initially, the standard deviation value is the same for IMARM and
QMPSO. Then, gradually it decreases. However, when the number
of VMs equals 30, it declines, and the degree of the standard devi-
ation of QMPSO is greater than IMARM. This is due to the proposed
sensor agent, which provides information regarding optimal VMs,
quickly permits the selection of a set of high-performance VMs.
In addition, as the number of VMs increases, the availability of
optimal resources that can perform tasks in a short time increases.
The same behavior is observed for FCM. Deviation starts when the
number of VMs equals 36 because the number of VMs, in the
beginning, was not very important compared to the upcoming
tasks. After that, the number became sufficient, which justified
the quasi stability of the curves. The same explanation we can
say about the DRLM algorithm. Precisely, the IMARM curve falls
below other curves, reflecting the minimum execution time com-
pared to the others. Furthermore, using MOSOS that gives a better
result in makespan has impacted the execution time.

5.4. Statistical analysis

Statistical analysis is performed to determine the accuracy of
the classification by applying an ANOVA (Analyse of Variance) test
to the experimental results. The results obtained from the test are
presented in Table 2. The results show the experiences based on
energy consumption, execution time, and load balancing. Here,
SS is the sum of the square, Df is the degree of freedom, and MS
2402
is the average of the square. This statistical analysis is performed
by obtaining the average test result from the data of different
groups to determine whether the proposed algorithm has a statis-
tical difference compared to other algorithms. This statistical test
includes two main rules: the null hypothesis (H0) and the alterna-
tive hypothesis (H1). It is defined as, H0: z0 = z1 = . . . = zk, H1: not all
means are equal, and zi is the mean of ith level of the factor.

The ANOVA test examines the variance between the data
groups and measures the F-statistical value and the P-probability
value; to decide whether there is a significant difference between
the groups. During the statistical test, if the F-statistic is less than
the F-critical, then the test rejects the null hypothesis, and this
condition indicates that the mean value of each group is not the
same. If the F-statistic is more significant than F-critical, the null
hypothesis is rejected, and the test accepts all the alternative
hypotheses.

In this analysis, we perform the ANOVA test for each group of
different values of the studied metrics, considering that alpha is
0.05. From the Table 2, the F-statistic > F-critical; so, null hypothe-
ses are rejected. This establishes that the probability value of the F-
statistic (P-value) < (0.05). The comparison between statistical
results shows that the mean values of compared algorithms are
not equal in terms of energy consumption and execution time. This
means that the performance of IMARM is better than that of other
algorithms (Miller, 1997). However, it shows a behavior close to
the other compared algorithms in load balancing.
6. Discussion

To our knowledge, this paper is important, and it is a con-
siderably extended version of the work reported in (Belgacem
et al., 2020). The idea used in this work is based on agent
and learning techniques to improve fault tolerance, energy con-
sumption, and load balancing. The proposed model is intelligent
since it automatically changes the VMs according to the state of
the environment. The desired advantage when using the pro-
posed solution is directly proportional to the creation and
updating of the Q-table. More precisely, Q-learning is dedicated
to training RAA and VMA agents to operate in a cloud environ-
ment. Our proposed solution is an excellent idea that combines
agents and learning methods and completes the previous

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
MOSOS algorithm, using VMs migration and checkpoints tech-
niques. It is an overall solution for the main resource allocation
problems knowing that MOSOS improves the makespan and
VMs cost usage.

7. Conclusion

This paper presents an Intelligent Multi-Agent Reinforcement
Model (IMARM) for optimizing cloud resource allocation. It
addresses the issue of resource allocation from several aspects,
making it a comprehensive solution for cloud service providers.
The proposed model provides fault tolerance and achieves load
balancing using checkpointing and VM migration mechanisms.
To determine the system reaction (recovery, downtime, migra-
tion, etc.), sensor agents periodically report system failure status,
energy consumption, and workload. Correspondly, Q-Learning
allows indicating the action to be performed in each system state.
Knowing that the main parameters used to optimize the system
are the weight of the virtual machines, the total energy consump-
tion, and the quantum time. It is a compelling new strategy for
finding the best response to changing cloud environments, with
the ability to decide whether a task or virtual machine should
be migrated, restored, shutdown, etc. To demonstrate the impor-
tance of IMARM, we evaluated it using FCM, QMPSO, and DRLM.
The results and experimental analysis confirmed that our pro-
posed algorithm outperforms others algorithms. It showed a good
impact on the execution time by allowing a minimum execution
time while using resources efficiently. Moreover, statistical analy-
sis proves that IMARM has lower energy consumption and
acceptable load balancing than its competitors. In the future, we
plan to implement the IMARM solution on a real cloud computing
platform.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Velte, A.T., Velte, T.J., Elsenpeter, R.C., Elsenpeter, R.C., 2010. Cloud Computing: A
Practical Approach. McGraw-Hill New York.

Buyya, R., Broberg, J., Goscinski, A.M., 2010. Cloud Computing: Principles and
Paradigms, Vol. 87. John Wiley & Sons.

A. Sunyaev, Cloud computing, in: Internet computing, Springer, 2020, pp. 195–236.
Tuli, S., Tuli, S., Tuli, R., Gill, S.S., 2020. Predicting the growth and trend of covid-19

pandemic using machine learning and cloud computing. Internet Things 11,
100222.

Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A., 2009. Cloud computing:
Distributed internet computing for it and scientific research. IEEE Internet
Comput. 13 (5), 10–13.

Belgacem, A., Beghdad-Bey, K., Nacer, H., 2020. Dynamic resource allocation method
based on symbiotic organism search algorithm in cloud computing. IEEE Trans.
Cloud Comput.

Belgacem, A., Beghdad-Bey, K., 2021. Multi-objective workflow scheduling in cloud
computing: trade-off between makespan and cost. Cluster Comput., 1–17

Belgacem, A., Beghdad-Bey, K., Nacer, H., 2018. Task scheduling optimization in
cloud based on electromagnetism metaheuristic algorithm. In: 2018 3rd
International Conference on Pattern Analysis and Intelligent Systems (PAIS),
pp. 1–7.

Bellifemine, F., Caire, G., Greenwood, D., 2007. Developing Multi-Agent Systems
with JADE. John Wiley & Sons.

Wooldridge, M.J., Jennings, N.R., 1995. Intelligent agents: Theory and practice.
Knowl. Eng. Rev. 10 (2), 115–152.

De la Prieta, F., Rodríguez-González, S., Chamoso, P., Corchado, J.M., Bajo, J., 2019.
Survey of agent-based cloud computing applications. Fut. Gen. Comput. Syst.
100, 223–236.

Mishra, S.K., Sahoo, B., Parida, P.P., 2020. Load balancing in cloud computing: A big
picture. J. King Saud Univ.-Comput. Inform. Sci. 32 (2), 149–158.

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction. MIT Press.
Hasan, M., Goraya, M.S., 2018. Fault tolerance in cloud computing environment: A

systematic survey. Comput. Ind. 99, 156–172.
2403
Hameed, A., Khoshkbarforoushha, A., Ranjan, R., Jayaraman, P.P., Kolodziej, J., Balaji,
P., Zeadally, S., Malluhi, Q.M., Tziritas, N., Vishnu, A., Khan, S.U., Zomaya, A.,
2016. A survey and taxonomy on energy efficient resource allocation techniques
for cloud computing systems. Computing 98 (7), 751–774.

Kaur, T., Chana, I., 2015. Energy efficiency techniques in cloud computing: A survey
and taxonomy. ACM Comput. Surveys (CSUR) 48 (2), 1–46.

Belgacem, A., 2022. Dynamic resource allocation in cloud computing: analysis and
taxonomies. Computing, 1–30.

Tamilvizhi, T., Parvathavarthini, B., 2019. A novel method for adaptive fault
tolerance during load balancing in cloud computing. Cluster Comput. 22 (5),
10425–10438.

Sharma, Y., Si, W., Sun, D., Javadi, B., 2019. Failure-aware energy-efficient vm
consolidation in cloud computing systems. Fut. Gener. Comput. Syst. 94, 620–
633.

Marahatta, A., Wang, Y., Zhang, F., Sangaiah, A.K., Tyagi, S.K.S., Liu, Z., 2019. Energy-
aware fault-tolerant dynamic task scheduling scheme for virtualized cloud data
centers. Mobile Networ. Appl. 24 (3), 1063–1077.

Mustafa, S., Bilal, K., Malik, S.U.R., Madani, S.A., 2018. Sla-aware energy efficient
resource management for cloud environments. IEEE Access 6, 15004–15020.

Adhikari, M., Amgoth, T., 2018. Heuristic-based load-balancing algorithm for iaas
cloud. Fut. Gen. Comput. Syst. 81, 156–165.

Wang, W., Jiang, Y., Wu, W., 2016. Multiagent-based resource allocation for energy
minimization in cloud computing systems. IEEE Trans. Syst. Man. Cybern. Syst.
47 (2), 205–220.

Bajo, J., De, F., la, Prieta, Corchado, J.M., S., Rodŕıguez,, 2016. A low-level resource
allocation in an agent-based cloud computing platform. Appl. Soft Comput. 48,
716–728.

Gao, X., Liu, R., Kaushik, A., 2020. Hierarchical multi-agent optimization for
resource allocation in cloud computing. IEEE Trans. Parallel Distrib. Syst. 32
(3), 692–707.

Singh, A., Juneja, D., Malhotra, M., 2017. A novel agent based autonomous and
service composition framework for cost optimization of resource provisioning
in cloud computing. J. King Saud Univ.-Comput. Inform. Sci. 29 (1), 19–28.

Gutierrez-Garcia, J.O., Ramirez-Nafarrate, A., 2015. Agent-based load balancing in
cloud data centers. Cluster Comput. 18 (3), 1041–1062.

Kemchi, S., Zitouni, A., Djoudi, M., 2018. Amace: agent based multi-criterions
adaptation in cloud environment. Human-centric Comput. Inform. Sci. 8 (1), 1–
28.

Singh, A., Juneja, D., Malhotra, M., 2015. Autonomous agent based load balancing
algorithm in cloud computing. Proc. Comput. Sci. 45, 832–841.

Jena, U.K., Das, P.K., Kabat, M.R., 2020. Hybridization of meta-heuristic algorithm for
load balancing in cloud computing environment. J. King Saud Univ. – Comput.
Inform. Sci.

Jyoti, A., Shrimali, M., 2020. Dynamic provisioning of resources based on load
balancing and service broker policy in cloud computing. Cluster Comput. 23 (1),
377–395.

Xu, X., Fu, S., Li, W., Dai, F., Gao, H., Chang, V., 2020. Multi-objective data placement
for workflow management in cloud infrastructure using nsga-ii. IEEE Trans.
Emerg. Top. Comput. Intell. 4 (5), 605–615.

Chinnathambi, S., Santhanam, A., Rajarathinam, J., Senthilkumar, M., 2019.
Scheduling and checkpointing optimization algorithm for byzantine fault
tolerance in cloud clusters. Cluster Comput. 22 (6), 14637–14650.

Kurdi, H.A., Alismail, S.M., Hassan, M.M., 2018. Lace: a locust-inspired scheduling
algorithm to reduce energy consumption in cloud datacenters. IEEE Access 6,
35435–35448.

Kong, L., Mapetu, J.P.B., Chen, Z., 2020. Heuristic load balancing based zero
imbalance mechanism in cloud computing. J. Grid Comput. 18 (1), 123–148.

Devaraj, A.F.S., Elhoseny, M., Dhanasekaran, S., Lydia, E.L., Shankar, K., 2020.
Hybridization of firefly and improved multi-objective particle swarm
optimization algorithm for energy efficient load balancing in cloud computing
environments. J. Parallel Distrib. Comput. 142, 36–45.

Singhal, R., Singhal, A., 2021. A feedback-based combinatorial fair economical
double auction resource allocation model for cloud computing. Fut. Gener.
Comput. Syst. 115, 780–797.

Thein, T., Myo, M.M., Parvin, S., Gawanmeh, A., 2020. Reinforcement learning based
methodology for energyefficient resource allocation in cloud data centers. J.
King Saud Univ.-Comput. Inform. Sci. 32 (10), 1127–1139.

Liang, H., Zhang, X., Zhang, J., Li, Q., Zhou, S., Zhao, L., 2019. A novel adaptive
resource allocation model based on smdp and reinforcement learning algorithm
in vehicular cloud system. IEEE Trans. Veh. Technol. 68 (10), 10018–10029.

Praveenchandar, J., Tamilarasi, A., 2021. Dynamic resource allocation with
optimized task scheduling and improved power management in cloud
computing. J. Ambient Intell. Hum. Comput. 12 (3), 4147–4159.

Pradhan, A., Bisoy, S.K., 2020. A novel load balancing technique for cloud computing
platform based on PSO. J. King Saud Univ.-Comput. Inform. Sci.

Karthiban, K., Raj, J.S., 2020. An efficient green computing fair resource allocation in
cloud computing using modified deep reinforcement learning algorithm. Soft.
Comput. 24 (19), 14933–14942.

Thai, L., Varghese, B., Barker, A., 2018. A survey and taxonomy of resource
optimisation for executing bag-of-task applications on public clouds. Fut.
Gener. Comput. Syst. 82, 1–11.

Herault, T., Robert, Y., 2015. Fault-Tolerance Techniques For High-Performance
Computing. Springer.

Young, J.W., 1974. A first order approximation to the optimum checkpoint interval.
Commun. ACM 17 (9), 530–531.

R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction (2011).

http://refhub.elsevier.com/S1319-1578(22)00100-8/h0005
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0005
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0010
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0010
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0020
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0020
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0025
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0025
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0025
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0030
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0030
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0030
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0035
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0035
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0040
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0040
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0040
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0040
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0045
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0045
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0050
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0050
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0055
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0055
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0055
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0060
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0060
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0065
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0070
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0070
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0075
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0075
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0075
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0075
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0080
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0080
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0085
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0085
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0090
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0090
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0090
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0095
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0095
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0095
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0100
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0100
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0100
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0105
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0105
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0110
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0110
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0115
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0115
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0115
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0120
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0120
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0120
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0120
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0125
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0125
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0125
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0130
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0130
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0130
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0135
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0135
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0140
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0140
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0140
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0145
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0145
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0150
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0150
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0150
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0155
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0155
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0155
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0160
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0160
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0160
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0165
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0165
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0165
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0170
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0170
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0170
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0175
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0175
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0180
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0180
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0180
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0180
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0185
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0185
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0185
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0190
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0190
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0190
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0195
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0195
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0195
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0200
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0200
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0200
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0205
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0205
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0210
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0210
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0210
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0215
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0215
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0215
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0220
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0220
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0225
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0225

A. Belgacem, Saïd Mahmoudi and M. Kihl Journal of King Saud University – Computer and Information Sciences 34 (2022) 2391–2404
Kaelbling, L.P., Littman, M.L., Moore, A.W., 1996. Reinforcement learning: A survey.
J. Artif. Intell. Res. 4, 237–285.

Even-Dar, E., Mansour, Y., Bartlett, P., 2003. Learning rates for q-learning. J. Machine
Learn. Res. 5 (1).

Kondo, D., Javadi, B., Iosup, A., Epema, D., 2010. The failure trace archive: Enabling
comparative analysis of failures in diverse distributed systems. In: 2010 10th
IEEE/ACM International Conference On Cluster, Cloud And Grid Computing.
IEEE, pp. 398–407.

Gelper, S., Fried, R., Croux, C., 2010. Robust forecasting with exponential and holt–
winters smoothing. J. Forecast. 29 (3), 285–300.

K. Ferreira, J. Stearley, J. H. Laros III, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen, P.
G. Bridges, D. Arnold, Evaluating the viability of process replication reliability
2404
for exascale systems, in: Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

Dongarra, J., Beckman, P., Aerts, P., Cappello, F., Lippert, T., Matsuoka, S., Messina, P.,
Moore, T., Stevens, R., Trefethen, A., et al., 2009. The international exascale
software project: a call to cooperative action by the global high-performance
community. Internat. J. High Perform. Comput. Appl. 23 (4), 309–322.

Zheng, G., Ni, X., Kaĺe, L.V., 2012. A scalable double in-memory checkpoint and
restart scheme towards exascale. In: IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN 2012), pp. 1–6.

Miller Jr, R.G., 1997. Beyond ANOVA: basics of applied statistics. CRC Press.

http://refhub.elsevier.com/S1319-1578(22)00100-8/h0235
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0235
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0240
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0240
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0245
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0245
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0245
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0245
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0250
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0250
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0260
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0260
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0260
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0260
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0265
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0265
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0265
http://refhub.elsevier.com/S1319-1578(22)00100-8/h0270

	Intelligent multi-agent reinforcement learning model for resources allocation in cloud computing
	1 Introduction
	2 Related works
	3 Mathematical formulation
	3.1 Application model
	3.2 Fault tolerance model
	3.3 Energy consumption model
	3.4 Load balancing model
	3.5 Execution time model
	3.6 Objective function

	4 Proposed Multi-Agent reinforcement model
	4.1 Sensing agents (Environment)
	4.2 Service provider agents
	4.3 Resource management agents

	5 Experimental evaluation
	5.1 Implementation
	5.2 Performance metrics
	5.3 Results and discussions
	5.3.1 Fault tolerance evaluation
	5.3.2 Energy consumption evaluation
	5.3.3 Load balancing evaluation
	5.3.4 Execution time evaluation

	5.4 Statistical analysis

	6 Discussion
	7 Conclusion
	Declaration of Competing Interest
	References

