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Kinect-based collision-free path planning for mobile manipulators 

 

Abstract: 
 

The objective of this project is to generate, in off-line, a path (trajectory) without collision 

for a mobile base (mobile base with an arm) in an indoor environment which is complex 

dynamic and cluttered with obstacles the case of reaching tasks. 

The generated free path must joint an initial situation of the robot base, (XB, YB, ZB)init , to 

a predefined final position, (XB, YB, ZB)End .  

In order to move the form an initial situation to the final goal while avoiding any obstacles 

(using a technique of soft-computing), the robot will operate a kinect camera. 

The implementation and validation will be performed on the mobile manipulator 

RobuTer/ULM available at the DPR CDTA. 
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Through their ability to perform tasks in unstructured environments, robots have made 

their way into applications like: transportation, geology negotiates terrain, military, 

agriculture, mining, carries payload, customer support and farming. All mobile robots use 

locomotion that generates traction. The well-designed robotic locomotion stabilizes the 

robot’s frame, smooth's the motion of sensors and insure the configuration of the working 

tools.  

In our days’ mobile robot navigation process became an essential feature that guides 

autonomous robots. During this process, the robot must have knowledge about its objectives 

starting from processing the environment to detect its location and destination then use the 

necessary strategies to reach its specified task. Hence, different steps needed from the robot 

to step through including: perception to collect information from sensors, localization to 

estimate its initial position, path planning methods to create the optimal path to reach its final 

position then execute the process. 

Several recent robotic applications are performed by a manipulator mounted on a mobile 

base. These kinds of robots are called "mobile manipulators". They are systems composed 

of robotic arm mounted on a mobile base (ex; our case of studies, RobuTER/ULM). This 

combination gives rise for a new class of robots with flexible properties. However, the many 

Degrees of freedom (Dof) of this type of robots (for our case RobuTER/ULM, 03 Dof for 

the mobile base and 06 Dof for the manipulator) present new challenges and the combination 

between the mobile base and the manipulator becomes very difficult to monitor. In addition, 

to the other problems like the modeling and perception of their environment using multi-

sensors fusion, generation of operation plans from the assigned tasks, path planning, etc...  

The project objectives focus on mobile manipulator navigation problems in general; 

particularly on perception, localization, and cognition. These points are achieved by 

designing an autonomous mobile robot using visual navigation to analyze the environment 

map with the Image processing tools, multi-sensors fusion to detect and track the robot 

position regularly, soft computing techniques to generate the path from the initial position 

to the final one, then build a closed loop control to keep the robot on the designed trajectory 

by adjusting the data sets that we will send as commends to the robot manipulator.  

Hence, this work is organized as follow: 

 



General Introduction  

2 

 

General introduction 

 Chapter 01: Localization and locomotion;  

 Chapter 02: Mobile robot manipulator Kinematics; 

 Chapter 03: Perception (different sensing devices); 

 Chapter 04: Simulation and results; 

Conclusion and perspectives. 
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I. Introduction 
A mobile robot needs locomotion mechanisms that enable it to move unbounded 

throughout its environment. But there is large variety of possible ways to move, and so the 

selection of a robot’s locomotion approach is an important aspect of mobile robot design. 

Hence this chapter deals with an overall description of the robot locomotion and navigation, 

and all the terms that have a relationship to both of them; then an overview of the robot 

control process is given. The chapter ends up with the description of the dynamic and 

kinematic characteristics of the RobuTER/ULM. 

I.1. Locomotion/Manipulation description 
Locomotion is the complement of manipulation. In manipulation, the robot arm is fixed 

but moves objects in the workspace by imparting force to them. In locomotion, the 

environment is fixed and the robot moves by imparting force to the environment. In both 

cases, the scientific basis is the study of actuators that generate interaction forces, and 

mechanisms that implement desired kinematic and dynamic properties. Locomotion and 

manipulation thus share the same core issues of stability, contact characteristics, and 

environmental type as summarized in Table 1.1.  

Table 1.1. Locomotion and manipulation some core issues. 

 

I.2. Mobile robot navigation and Autonomy 
Figure 1.1 shows the robot interaction diagram. In general, the robot in its environment 

and according to its mission needs to answer three main questions: 

 Where am I now? 

 Where am I going to? 

 How do I get there?   

To deal with these questions the robot must: 

 Perceive the environment to build a map; 

Stability

• number and geometry 
of contact points

• center of gravity

• static/dynamic stability

• inclination of terrain

Characteristics of 
contact 

• contact point/path size 
and shape

• angle of contact

• friction

Type of environment 

• structure

• medium, (e.g. water, 
air, soft or hard ground)

Chap 1 
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 Analyze the environment and its elements;  

 Find its initial position; 

 Find its final position and build an optimal path to reach it; 

 Start the execution of the tasks by starting its movement.  

 

Figure 1.1. Robot interaction diagramme. 

I.2.1. Navigation 

Navigation is one of the most challenging competences required of a mobile robot. 

Success in navigation requires success at the basic four building blocks of navigation, which 

are:  

Perception: the robot must interpret its sensors to extract meaningful data;  

Localization: the robot must determine its position in the environment;  

Cognition: the robot must decide how to act to achieve its goals;  

Motion control: the robot must modulate its motor outputs to achieve the desired 

trajectory. 

Navigation is a central capability of mobile robots and substantial progress has been made 

in the area of autonomous navigation in the past [1]. 

I.2.2. Autonomy 

Autonomy is the quality of being self-controlled. One measure of autonomy is the amount 

of human control that is required for the robot's operation. 

An autonomous robot is capable of detecting objects by means of sensors or cameras and 

processing this information into movement without a remote control.  

I.2.3. Autonomous navigation  

There exist two types of autonomous navigation:  

I.2.3.1. Indoor navigation 
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 In order to associate behaviors with a place (localization), it is required for the robot to 

know where it is and be able to navigate point-to-point. Such navigation began with wire-

guidance and progressed to beacon-based triangulation. Current commercial robots 

autonomously navigate based on sensing natural features. At first, autonomous navigation 

was based on planar sensors, such as laser range-finders, that can only sense at one level. 

The most advanced systems now fuse information from various sensors for both 

localization (position) and navigation. Systems such as Motivate can rely on different 

sensors in different areas, depending upon which provides the most reliable data at the 

time, and can re-map a building autonomously [3]. 

I.2.3.2. Outdoor navigation  

Outdoor autonomy is most easily achieved in the air, since obstacles are rare. Pilotless 

drone aircraft are increasingly used for reconnaissance. Some of these unmanned aerial 

vehicles are capable of flying their entire mission without any human interaction at all. 

Outdoor autonomy is the most difficult for ground vehicles, due to: 

 Three-dimensional terrain. 

 Great disparities in surface density. 

 The weather changes. 

 Instability of the sensed environment. 

In details, autonomous navigation includes different interrelated activities such as: 

(i) Perception, as obtaining and interpreting sensory information. Autonomous 

robots must have a range of environmental sensors to perform their task and stay 

out of trouble. Common exteroceptive sensors (Exteroception is sensing things 

about the environment) include Contact Sensors, Range Sensor and Vision 

Sensors.  

(ii)       Exploration, as the strategy that guides the robot to select the next direction to 

go. Using realistic sensors to carry out a systematic exploration of its environment. The robot 

is modeled  as  a  single  point moving  in  a  two-dimensional  configuration  space  populated  

with  visually opaque  and transparent obstacles. The robot is equipped with proximity 

sensors, a vision-based recognition system, all of which have some uncertainty associated 

with their measurements. 

(iii)   Mapping, involving the construction of a spatial representation of the environment 

by using the perceived sensory information. Mapping is that branch of one, which deals 

Chap 1 
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with the study and application of ability to construct map or floor plan by the autonomous 

robot and to localize itself in it. The problem of learning maps with mobile robots has 

received considerable attention over the past years. Most of the approaches assume that the 

environment is static during the data-acquisition phase [4]. 

(iv)  Localization, as the strategy to denotes the ability of the robot to establish its own 

position and orientation within the frame of reference.  

(v)  Path planning, as the strategy to find a path towards a goal location being optimal or 

not. Path planning is effectively an extension of localization, so that it requires the 

determination of the robot's current position and a position of a goal location, both within 

the same frame of reference or coordinates. 

(vi)  Path execution, where motor actions are determined and adapted to environmental 

changes and by sending commends to the actuators to turn them with a desired acceleration 

and angle to move forward the trajectory or path that have been built. 

To operate in crowded, dynamic environments, autonomous robots must be able to 

effectively utilize and coordinate their limited physical and computational resources. As 

complexity increases, it becomes necessary to impose explicit constraints on the control of 

planning, perception, and action to ensure that unwanted interactions between behaviors do 

not occur.  

The classical robotic control system is based on three sequence blocks: Sensing -> 

Thinking -> Acting as it is shown in figure 1.2.  

 

Figure 1.2. Classical mobile robot control system composition 

The cycle for the mobile robot control shame and the interaction between these activities 

are summarized by figure 1.3. 

Chap 1 

https://en.wikipedia.org/wiki/Frame_of_reference
https://en.wikipedia.org/wiki/Path_planning


[Tapez le titre du document] 

7 

 

 

Figure 1.3. Reference control shame for mobile robot systems [1]. 

I.3. Mobile manipulator an overview 

Nowadays, mobile manipulator is a widespread term to refer to robot systems built from 

a robotic manipulator arm mounted on a mobile base. Such systems combine the advantages 

of mobile base and robotic manipulator arms and reduce their drawbacks. This system offers 

a dual advantage of mobility offered by a mobile platform and dexterity offered by the 

manipulator. However, the operation of such system is challenging because of the many 

degrees of freedom and the unstructured environment that it performs in. The General 

compositions of such system are: 

 Mobile Platform or base. 

 Robot manipulator or arm.  

 Vision (cameras, sensors to sense the internal changes in the robot, sensors to 

sense the external changes in the environment …). 

 Tooling (End-of-the-arm design and configuration). 

I.3.1. A case of study: RobuTER/ULM 

RobuTER/ULM is an autonomous mobile robot manipulator that is available in the 

Center of Development of Advanced Technologies (CDTA) of Algiers. The locomotion of 

Chap 1 
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this robot is performed via the control of two independent DC motors coupled to each drive 

wheel, and two additional caster wheels. 

The RobuTER/ULM is shown in figure 1.4, and its geometric properties are given in the 

following table (Table 1.2).  

Table 1.2. Geometric properties for the RobuTER/ULM. 

Property Length Width Height Weight Payload Max 

speed 

Value 102.5 cm 68.0 cm 44.0 cm 150 kg 120 kg 1.0 m/s 

 

Figure 1.4. RobuTED/ULM available at CDTA [2]. 

I.3.2. The architecture of the experimental robotic system 

The experimental robotic system, shown in figure 1.5, consists of a local (Operator) site 

and a remote site, connected by wireless communication systems:  

 Local site: it includes an off-board PC running under Windows XP, a 

wireless TCP/IP communication media, a wireless video reception system and input 

devices.  

 Remote site: it includes the RobuTER/ULM mobile manipulator, a 

wireless TCP/IP Communication media and a wireless video transmission system. 

I.3.3. Description of the mobile base of RobuTER  

The robot base consists of a platform with two wheels and a load capacity of 15 kg (see 

figure 1.5). The wheels are 250 mm in diameter, and have a torque of 22 Nm nominal per 

wheel. They are driven by DC electric motors and enable it to reach a nominal speed of 2.6 

m/s. The direction of RobuTER is given by the differential speed of the two wheels. The two 

wheels are placed at the front of the platform to provide stability. 

The nominal robot consumption is 30A and between 30 to 48VDC, the peak current is 

60A to 48VDC for 2s. 

Chap 1 
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Figure 1.6. RobuTER mobile Base [2]. 

 

 
Figure 1.5. The architecture of the experimental robotic system [2]. 

Chap 1 
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I.3.4. The Ultra Light Arms (ULM) of RobuTER 
The ULM has six axes as they appear in figure 1.6 (provides 6 Dof), when the arm is fully 

extended the arm reaches 700 mm and has a repeatability of +/- 1 mm and a load capacity 

of 2kg. 

Terms of use:   Temperature: 0 ° C to 45 ° C 

Humidity: 20-80% non-condensing 

Nominal consumption of the arm: 36A when 30 to 

48VDC. 

Current crest of the arm: 60A (for 2s to 48VDC). 

 

Figure 1.6. Ultra Light Arm (ULM) of RobuTER [2]. 

 

I.3.5. The Kinematic model of RobuTER/ULM 

Kinematics is the description of motion without regard to the forces that cause it. It is a 

collection of studies of position, velocity, acceleration, and higher derivatives of the position 

variables. The mobile robot kinematics is deeply studied in chapter 2. However, a general 

idea about the RobuTER/ULM kinematic model can be assembled as shown in figure 1.7. 

Chap 1 
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Figure 1.7: The general kinematic model of the RobuTER/ULM 

1.4. Conclusion 
This chapter provides a brief introduction to locomotion and navigation in general and 

the RobuTER/ULM as a specific case of studies. All the keywords used throughout this 

chapter, including the different block paradigms, necessary terms like autonomous 

navigation and different steps that the robot take in the navigation process starting from 

perception and map building followed by finding its localization, are discussed within this 

chapter. Then an overview in mobile manipulators architecture and finally an introduction 

to the kinematics analysis for RobuTER/ULM are given also.       
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II. Introduction 
Kinematics is the most basic study of how mechanical systems behave. In mobile 

robotics, it is needed to understand the mechanical behavior of the robot both in order to 

design appropriate mobile robots for tasks and to understand how to create control software 

for an instance of mobile robot hardware. Of course, mobile robots are not the first complex 

mechanical systems which require such analysis. Robot manipulators have been the subject 

of intensive study for more than thirty years [1]. 

Hence, this chapter is organized as follow: In the first section, notation that allows the 

expression of robot motion in a global reference frame and in the robot’s local reference 

frame is introduced. Then, using this notation, the construction of simple forward kinematic 

model of motion is demonstrated by describing how the entire robot moves as a function of 

its geometry and individual wheel behavior. 

Next, the kinematic constraints of individual wheels are formally described, and then 

these kinematic constraints are combined to express the whole robot’s kinematic constraints. 

With these tools, one can evaluate the paths and trajectories that define the robot’s 

maneuverability.  

In the second section, the arm manipulator kinematics, the forward kinematics and inverse 

kinematics is studied. Forward kinematics problem is straightforward and there is no 

complexity in deriving the equations. Hence, there is always a forward kinematics solution 

of a manipulator. Inverse kinematics is a much more difficult problem than forward 

kinematics. The solution of the inverse kinematics problem is computationally expansive 

and generally takes a very long time in the real-time control of manipulators. 

 Hence, the forward and inverse kinematics transformations for an open kinematics chain 

are described based on the homogenous transformation. Then, geometric and algebraic 

approaches are given. Afterward, problems in the inverse kinematics are discussed and 

explained. Finally, the forward and inverse kinematics transformations are derived based on 

the quaternion modeling convention. 

II.1. Main reference frames 
The kinematic analysis of the robot needs to focus on the following main reference frames 

and transformation matrices:  

 𝑅𝐴 = (𝑂𝐴, �⃗�𝐴 , �⃗�𝐴 , �⃗�𝐴): Absolute reference frame.  

 𝑅𝐵 = (𝑂𝐵, �⃗�𝐵 , �⃗�𝐵 , �⃗�𝐵): Mobile base reference frame.  

 𝑅𝑀 = (𝑂𝑀, �⃗�𝑀 , �⃗�𝑀 , �⃗�𝑀): Manipulator reference frame.  
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 𝑅𝐸 = (𝑂𝐸 , �⃗�𝐸  , �⃗�𝐸  , �⃗�𝐸): End-effector reference frame.  

 𝑇𝐸
𝑀 : Transformation matrix defining 𝑅𝐸  in 𝑅𝑀. It corresponds to the Kinematic 

Model of the manipulator.  

 𝑇𝐵
𝐴 : This matrix defines 𝑅𝐵 in 𝑅𝐴 .  

 𝑇𝑀
𝐵 : This matrix defines 𝑅𝑀  in  𝑅𝐵. 

 𝑇𝐸
𝐴 : This matrix defining 𝑅𝐸  in 𝑅𝐴. 

II.2. Kinematic analysis of the mobile base  
A relationship between the global reference frame of the plane and the local reference 

frame of the robot was established in order to specify the position of the robot on the plane. 

The axes 𝑋𝑖 and 𝑌𝑖 in figure 2.1(a) define an arbitrary inertial basis on the plane as the 

global reference frame from some origin 𝑂: { 𝑋𝐼 , 𝑌𝐼 }. To specify the position of the robot, 

choose a point P on the robot chassis as its position reference point. The basis { 𝑋𝑅 , 𝑌𝑅 } 

defines two axes relative to P on the robot chassis and is thus the robot’s local reference 

frame. The position of P in the global reference frame is specified by coordinates x and y, 

and the angular difference between the global and local reference frames is given by 𝛳. The 

position of the robot can be described as a vector with these three elements. Note the use of 

the subscript 𝐼 to clarify the basis of this position as the global reference frame (eq. 2.1): 

𝜉𝐼 = [
𝑥
𝑦
𝛳
]  …………………………………. (2.1) 

The velocity in the global reference frame is:  �̇�𝐼 = [
�̇�
�̇�

 𝛳 ̇
].…………………………. (2.2) 

      

Figure 2.1. (a) The Global reference frame. (b) The robot Wheels Kinematics 
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To describe the robot motion in terms of component motions, it will be necessary to map 

motion along the axes of the global reference frame to motion along the axes of the robot’s 

local reference frame. Of course, the mapping is a function of the current position of the 

robot. The mapping operation is denoted by eq. 2.3:  

𝜉�̇� = 𝑅(𝛳) 𝜉�̇�  
𝐼𝑛𝑣𝑒𝑟𝑠𝑒 
⇒      𝜉�̇� = 𝑅(𝛳)

−1 𝜉�̇� ……………………………………. (2.3)   

This mapping is accomplished using the orthogonal rotation matrix: 

𝑅(𝛳) = [
𝑐𝑜𝑠𝛳 𝑠𝑖𝑛𝛳 0
−𝑠𝑖𝑛𝛳 𝑐𝑜𝑠𝛳 0
0 0 1

]    
𝐼𝑛𝑣𝑒𝑟𝑠𝑒 
⇒       𝑅(𝛳)−1 = [

𝑐𝑜𝑠𝛳 −𝑠𝑖𝑛𝛳 0
𝑠𝑖𝑛𝛳 𝑐𝑜𝑠𝛳 0
0 0 1

]… (2.4) 

II.2.1. Forward kinematic models 

The differential drive robot has two wheels (see Figure 2.1 (b)), each with diameter r. P 

is centered between the two drive wheels; each wheel is a distance 𝑙  from 𝑃. 

Given r, 𝑙, p, 𝛳 and the speed of each wheel, φ̇r and φ̇𝑙  a forward kinematic model would 

predict the robot’s overall speed in the global frame given by eq. 2.5.  

𝜉�̇� = 𝑓(𝑙, 𝑟, 𝛳, φ̇r, φ̇𝑙 ) ………………………. (2.5) 

And the Instantaneous Center of Curvature is given by eq. 2.6: 

 ICC =  [x − R sin Ɵ , y + R cos Ɵ] ……………… (2.6) 

Also we have the velocities equations on the two wheels are:  

𝑉𝑟 = ω(R + l) ;  V𝑙 = ω(R − l)    
𝐻𝑒𝑛𝑐𝑒 𝑤𝑒 𝑔𝑒𝑡: 
⇒             𝑅 = 𝑙

𝑉𝑟 + 𝑉𝑙

𝑉𝑟 − 𝑉𝑙
  ;  ω =

𝑉𝑟 − 𝑉𝑙

2𝑙
 ;  

𝑉 = 𝑅ω =
𝑉𝑟+𝑉𝑙

2
 ………. (2.7) 

Combining these individual formulas yields a kinematic model given by eq. 2.8 [5]: 

𝜉�̇� = 𝑅(𝛳)
−1 𝜉�̇�  

𝐺𝑖𝑣𝑒𝑠:
⇒    [

𝑥�̇�
𝑦�̇�
Ɵİ
] = [

𝑐𝑜𝑠𝛳 −𝑠𝑖𝑛𝛳 0
𝑠𝑖𝑛𝛳 𝑐𝑜𝑠𝛳 0
0 0 1

] [

𝑥�̇�
𝑦�̇�
�̇�𝑅

] = [
𝑉 𝑐𝑜𝑠Ɵ
𝑉𝑠𝑖𝑛Ɵ

ω

] =

[
 
 
 
 
𝑉𝑟+𝑉𝑙

2
𝑐𝑜𝑠Ɵ

𝑉𝑟+𝑉𝑙

2
𝑠𝑖𝑛Ɵ

𝑉𝑟−𝑉𝑙

2𝑙 ]
 
 
 
 

  …… (2.8) 

Note that neither wheel can contribute to sideways motion in the robot’s frame, so  𝑥�̇� = 𝑉 

, Ɵ̇R = ω  and �̇�𝑅 = 0 . 

During its motion, the mobile base calculates its position coordinates and orientation 

angles in real time and to build a near position transformation of the position in the global 

frame the following approximation are used: 

 �̇�𝐼 ≈
∆𝑋

∆𝑇
 ,  �̇�𝐼 ≈

∆𝑌

∆𝑇
 , �̇�𝐼 ≈

∆𝑋

∆𝑇
  , while ∆𝑇 is very small. 

  The curve between two positions is approximated by a line-segment with constant 

angle:  Ɵ +
∆Ɵ

2
 . 

 ∆𝐷𝑟 , ∆𝐷𝑙: are the traveled distances for the right and left wheels respectively. 
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Hence, eq. 2.9 is gotten for the left and right wheels respectively [5]:  

[
∆𝑋𝐼
∆𝑌𝐼
∆𝜃𝐼

] =

[
 
 
 
 ∆𝐷 𝑐𝑜𝑠(𝜃 +

∆𝜃

2
)

∆𝐷 𝑠𝑖𝑛(𝜃 +
∆𝜃

2
)

(∆𝐷𝑟−∆𝐷𝑙)

2𝑙 ]
 
 
 
 

=

[
 
 
 
 
∆𝐷𝑟+∆𝐷𝑙

2
 cos (𝜃 +

∆𝜃

2
)

∆𝐷𝑟+∆𝐷𝑙

2
 sin (𝜃 +

∆𝜃

2
)

∆𝐷𝑟−∆𝐷𝑙

2𝑙 ]
 
 
 
 

…………… (2.9)  

And in the Global reference frame, the next position can be found by eq. 2.10 [5]:  

𝜉𝐼(𝑘 + 1) = 𝜉𝐼(𝑘)  + ∆𝜉𝐼  = [
𝑋𝐼
𝑌𝐼
𝜃𝐼

] +

[
 
 
 
 
∆𝐷𝑟+∆𝐷𝑙

2
 cos (𝜃 +

∆𝜃

2
)

∆𝐷𝑟+∆𝐷𝑙

2
 sin (𝜃 +

∆𝜃

2
)

∆𝐷𝑟−∆𝐷𝑙

2𝑙 ]
 
 
 
 

…….. (2.10) 

II.2.2. The transformation matrix 𝑻𝑩
𝑨  that defines the base 

Assuming that the non-holonomic mobile base, RobuTER, moves on the plan, its 

kinematic model can be decided by three parameters 𝑥𝐵, 𝑦𝐵 𝑎𝑛𝑑 𝜃𝐵 , which represent the 

Cartesian coordinates of  𝑂𝐵 in 𝑅𝐴 and the orientation angle of the mobile base. Hence the 

transformation matrix that defines the base is given by eq. 2.11: 

𝑇 = [

cos 𝜃𝐵 – sin 𝜃𝐵 0 𝑥𝐵
sin 𝜃𝐵 cos 𝜃𝐵 0 𝑦𝐵
0 0 1 𝑧𝐵
0 0 0 1

]𝐵
𝐴 ………………………….…… (2.11) 

II.2.3. Motion Control (Kinematic Control) 

Motion control might not be an easy task for non-holonomic systems. However, different 

studies have been done on the topic and some adequate solutions for motion control of a 

mobile robot system are available: 

II.2.3.1. Open loop control (trajectory-following) 

The objective of a kinematic controller is to follow a trajectory described by its position 

or velocity profile versus time. This is often done by dividing the trajectory (path) into 

motion segments of clearly defined shape, for example, straight lines and segments of a 

circle [1]. The control problem is thus to pre-compute a smooth trajectory based on line and 

circle segments which drives the robot from the initial position to the final position as shown 

in figure 2.2. This approach can be regarded as open-loop motion control, because the 

measured robot position is not fed back for velocity or position control. It has several 

disadvantages such as:  

• It is not at all an easy task to pre-compute a feasible trajectory if all limitations and 

constraints of the robot’s velocities and accelerations have to be considered. 

• The robot will not automatically adapt or correct the trajectory if dynamic changes 

of the environment occur. 
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• The resulting trajectories are usually not smooth, because the transitions from one 

trajectory segment to another are not smooth. This means there is a discontinuity in 

the robot’s acceleration. 

 

Figure 2.2. Open loop control of a mobile robot based on straight lines and circular trajectory 

segments. 

II.2.3.2. Feedback control 

In automatic control, feedback improves system performance by allowing the successful 

completion of a task even in the presence of external disturbances or initial errors. 

A more appropriate approach in motion control of a mobile robot is to use a real-state 

feedback controller [1]. With such a controller the robot’s path-planning task is reduced to 

setting intermediate positions (sub goals) lying on the requested path.  

However, the most common approach to feedback motion planning in the presence of 

obstacles is based on potential fields [1]. Based on developed navigation functions (potential 

functions with a unique minimum at the goal and meeting certain other criteria) using 

potential functions in a generalized sphere world utilized a potential field over the 

operational space to guide a manipulator or mobile robot to the goal.  

II.3. Kinematic analysis of the mobile arm 
There are mainly two different spaces used in kinematics modeling of manipulators 

namely, Cartesian space and Quaternion space. The transformation between two Cartesian 
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coordinate systems can be decomposed into a rotation and a translation. There are many 

ways to represent rotation, including the following: Euler angles, Gibbs vector, Cayley-Klein 

parameters, Pauli spin matrices, axis and angle, orthonormal matrices, and Hamilton's 

quaternions [6]. However, homogenous transformations based on 4x4 real matrices 

(orthonormal matrices) have been used most often in robotics.  

Although quaternions constitute an elegant representation for rotation, they have not been 

used as much as homogenous transformations by the robotics community. Dual quaternion 

can present rotation and translation in a compact form of transformation vector, 

simultaneously.  While the orientation of a body is represented by nine elements in 

homogenous transformations, the dual quaternions reduce the number of elements to four. It 

offers considerable advantage in terms of computational robustness and storage efficiency 

for dealing with the kinematics of robot chains. 

The robot kinematics can be divided into forward kinematics and inverse kinematics. The 

relationship between forward and inverse kinematics is illustrated in Figure 2.3. 

Forward kinematics problem is straight forward and there is no complexity in deriving 

the equations, always there is a forward kinematics solution of a manipulator.  

 

Figure 2.3. The schematic representation of forward and inverse kinematics. 

For the inverse kinematics problem there are two main solution techniques: analytical and 

numerical methods. In the first type, the joint variables are solved analytically according to 

given configuration data. In the second type of solution, the joint variables are obtained 

based on the numerical techniques. In this chapter, the analytical solution of the manipulators 

is examined rather than numerical solution.   

II.3.1. Forward Kinematics 

Determining the position and orientation of the end-effector in a workspace frame by a 

known joint variables of a manipulator is the main problem in the forward kinematic.  Each 

joint has a single degree of freedom.  

Denavit & Hartenberg (1955) [6] showed that a general transformation between two joints 

requires four parameters. These parameters are known as the Denavit-Hartenberg (DH) 
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parameters. This method that uses the four parameters is the most common method for 

describing the robot kinematics. These parameters are: 

 𝑎𝑖−1: The link length. 

 α𝑖−1  : The link twist 

 𝑑𝑖 : The link offset 

 𝜃𝑖 : The joint angle  

II.3.1.1. The general robot manipulator model analysis 

To determine DH parameters a coordinate frame is attached to each joint.  𝑍𝑖 axis of the 

coordinate frame is pointing along the rotary or sliding direction of the joints. Figure 2.4 

shows the coordinate frame assignment for a general manipulator; such that:  

 𝑍𝑖  is a unit vector along the axis in space about which the link i-1 and i are connected.  

 The distance from 𝑍𝑖−1 to 𝑍𝑖  measured along 𝑋𝑖−1 is assigned as  𝑎𝑖−1 . 

 The angle between 𝑍𝑖−1 and 𝑍𝑖  measured along 𝑋𝑖  is assigned as α𝑖−1.  

 The distance from 𝑋𝑖−1  to 𝑋𝑖  measured along 𝑍𝑖  is assigned as  𝑑𝑖 . 

 The angle between X𝑖−1 to X𝑖 measured about Z𝑖 is assigned as  𝜃𝑖  [6].  

 

Figure 2.4. Coordinate frame assignment for a general manipulator. 

The general transformation matrix 𝑇𝑖
𝑖−1  for a single link can be obtained as follows (eq. 

2.12): 

𝑇 = 𝑅𝑋(α𝑖−1). 𝐷𝑋(𝑎𝑖−1). 𝑅𝑍( 𝜃𝑖). 𝑄𝑖(𝑑𝑖) = 𝑅𝑜𝑡(𝑋, α𝑖). 𝑇𝑟𝑎𝑛𝑠(𝑋, 𝑎𝑖  ). 𝑅𝑜𝑡(𝑍, 𝜃𝑖). 𝑇𝑟𝑎𝑛𝑠(𝑍, 𝑑𝑖) 𝑖
𝑖−1

… 

………………………………… (2.12) 

Where the notation: 

 𝑅𝑜𝑡(𝑋, α𝑖) : Stands for rotation around X𝑖  axis by α𝑖. 
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 𝑇𝑟𝑎𝑛𝑠(𝑋, 𝑎𝑖 ) : Is a transition along X𝑖  axis by a distance 𝑎𝑖. 

 𝑅𝑜𝑡(𝑍, 𝜃𝑖) : Stands for rotation around 𝑍𝑖 axis by 𝜃𝑖. 

 𝑇𝑟𝑎𝑛𝑠(𝑍, 𝑑𝑖) : The transition along 𝑍𝑖 by a distance 𝑑𝑖.  

Hence we have for a single link the transition matrix can be written by eq. 2.13 and eq. 2.14:  

𝑇 = 𝑅𝑋(α𝑖−1). 𝐷𝑋(𝑎𝑖−1). 𝑅𝑍( 𝜃𝑖). 𝑄𝑖(𝑑𝑖)𝑖
𝑖−1  

𝑇 = [

1 0 0 0
0 𝑐α𝑖−1 −𝑠α𝑖−1 0
0 𝑠α𝑖−1 𝑐α𝑖−1 0
0 0 0 1

]𝑖
𝑖−1 . [

1 0 0 𝑎𝑖−1
0 1 0 0
0 0 1 0
0 0 0 1

] . [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 0
𝑠𝜃𝑖 𝑐𝜃𝑖 0 0
0 0 1 0
0 0 0 1

] . [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖
0 0 0 1

]

.. (2.13) 

𝑇 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1
cα𝑖−1. 𝑠𝜃𝑖 cα𝑖−1. 𝑐𝜃𝑖 −𝑠α𝑖−1 −𝑑𝑖. sα𝑖−1
sα𝑖−1. 𝑠𝜃𝑖 sα𝑖−1. 𝑐𝜃𝑖 cα𝑖−1 𝑑𝑖 . 𝑐α𝑖−1

0 0 0 1

]𝑖
𝑖−1 ………………… (2.14) 

 

Where: 

 𝑐𝜃𝑖: The short hands 𝑐𝑜𝑠𝜃𝑖 . 

 𝑠𝜃𝑖: The short hands of 𝑠𝑖𝑛𝜃𝑖. 

 cα𝑖−1: The short hands cos α𝑖−1 . 

 𝑠α𝑖−1: The short hands of sin α𝑖−1 . 

Each homogenous transformation is of the form of the matrix: 

𝑇 = [ 𝑅𝑖
𝑖−1 𝑃𝑖

𝑖−1

0 1
]𝑖

𝑖−1 ………………………….………… (2.15) 

Where: 

 𝑃𝑖
𝑖−1 : Three-dimensional vector denoting the position. 

 𝑅𝑖
𝑖−1  : 3x3 rotational matrix. 

II.3.1.2. Full robot joints transformation 

Now, suppose a robot has n-1 Links numbered from zero to n-1 starting from the base of 

the robot as link 0 to the end-effector as link n-1. The joints are numbered from 1 to n. The 

ith   joint variable is denoted by 𝑞𝑖. 

The matrix 𝑇𝑖
𝑖−1  is not constant, but varies according to the change of the robot 

configuration, however, 𝑇𝑖
𝑖−1  is a function of only a single joint variable, namely 𝑞𝑖 , as 

shown in eq. 2.16: 

𝑇 =𝑖
𝑖−1 𝑇(𝑞𝑖)𝑖

𝑖−1 ………………………..…….………… (2.16) 
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Then for n-joint, the position and orientation of the end-effector in the inertial frame is 

determined by multiplication of all the 𝑇𝑖
𝑖−1  matrices: 

𝑇(𝑞1, 𝑞2… . 𝑞𝑛) =𝑛
0 𝑇(𝑞1). 𝑇(𝑞2).2

1 … . . 𝑇(𝑞𝑛)𝑛
𝑛−1

1
0 …..… (2.17) 

 

Hence,  

 𝑇 =𝑒𝑛𝑑_𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 
𝑏𝑎𝑠𝑒 𝑇(𝑞1). 𝑇(𝑞2).2

1 … . . 𝑇(𝑞𝑛)𝑛
𝑛−1

1
0 …..… (2.18)  

 

 

 

An alternative representation of  𝑇𝑒𝑛𝑑_𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 
𝑏𝑎𝑠𝑒   can be written as eq. 2.19:   

 𝑇𝑒𝑛𝑑_𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 
𝑏𝑎𝑠𝑒 = [

𝑟11 𝑟12 𝑟13 𝑝𝑥
𝑟21 𝑟22 𝑟23 𝑝𝑦
𝑟31 𝑟32 𝑟33 𝑝𝑧
0 0 0 1

] = [ 𝑅𝑖
𝑗

𝑃𝑖
𝑗

0 1
]…… (2.19) 

Where: 

 𝑟𝑘𝑗: Represent the rotational elements of transformation matrix (𝑘 and j =

1, 2 and 3). 

 𝑅𝑖
𝑗

: Express the orientation of frame 𝑖 relative to frame 𝑗 (𝑖 > 𝑗) and is given as: 

 𝑅𝑖
𝑗
= 𝑅𝑗+1

𝑗
… 𝑅𝑖
𝑖−1   . 

  𝑝𝑥, 𝑝𝑦, 𝑝𝑧: Denote the elements of the position vector. 

 𝑃𝑖
𝑗

: Express the vector position and is given by for (𝑖 > 𝑗): 𝑃𝑖
𝑗
= 𝑃𝑗+1

𝑗
+ 𝑅 𝑖−1

𝑗
. 𝑃𝑖
𝑖−1 . 

II.3.1.3. ULM arm manipulator model analysis and transformation matrix  𝑻𝑬 
𝑴  

For the RobuTER/ULM arm of six jointed manipulator or six degrees of freedom the 

position coordinates and orientation angles of the end-effector are calculated in 𝑅𝑀 =

(𝑂𝑀, �⃗�𝑀 , �⃗�𝑀 , �⃗�𝑀) by using the Modified Denavit-Hartenberg (MDH) representation where 

the transformation matrix linking the base to the end-effector is constructed first as:  

 𝑇 =  𝑇 =𝑒𝑛𝑑_𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟 
𝑏𝑎𝑠𝑒 

𝐸 
𝑀 𝑇(𝑞1). 𝑇(𝑞2).2

1
1
0 𝑇(𝑞3). 𝑇(𝑞4).4

3
3
2 𝑇(𝑞5). 𝑇(𝑞6)6

5
5
4 . 𝑇(𝑞7)7

6 …… 

(2.20) 

Now, to calculate the different joints transformation from 0 to 6 the matrix given by eq. 

2.21 is used:  

𝑇 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1
cα𝑖−1. 𝑠𝜃𝑖 cα𝑖−1. 𝑐𝜃𝑖 −𝑠α𝑖−1 −𝑑𝑖. sα𝑖−1
sα𝑖−1. 𝑠𝜃𝑖 sα𝑖−1. 𝑐𝜃𝑖 cα𝑖−1 𝑑𝑖. 𝑐α𝑖−1

0 0 0 1

]𝑖
𝑖−1 ………….… (2.21) 

However, first the MDH for the ULM manipulator is needed.  
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The different MDH parameters α𝑖 , 𝑑𝑖, 𝜃𝑖  and 𝑎𝑖 and the joints limits of the ULM 

manipulator are given in the following table (Table 2):  

Table 2.1. The MDH parameters and joints limits of the ULM Manipulator.  

𝒊 
Denavit-Hartenberg (DH) parameters Joints limits 

α𝑖−1(°) 𝑑𝑖(𝑚𝑚) 𝜃𝑖 𝑎𝑖(𝑚𝑚) 𝑄𝑚𝑖𝑛(°) 𝑄𝑚𝑎𝑥(°) 

1 0 d1=290 𝜃1 0 -95 96 

2 90 d2=108.49 𝜃2 0 -24 88 

3 -90 d3=113 0 𝑎3= 402 -- -- 

4 90 0 𝜃3 0 -2 160 

5 90 d4=389 𝜃4 0 -50 107 

6 -90 0 𝜃5 0 -73 40 

7 90 deff=220 𝜃6 0 -91 91 

 

It is straightforward to compute each of the link transformation matrices using eq. 2.21, 

as follows: 

𝑇 = [

𝑐𝜃1 −𝑠𝜃1 0 𝑎1
cα0. 𝑠𝜃1 cα0. 𝑐𝜃1 −𝑠α0 −𝑑1. sα0
sα0. 𝑠𝜃1 sα0. 𝑐𝜃1 cα0 𝑑1. 𝑐α0
0 0 0 1

]1
0 = [

𝑐𝜃1 −𝑠𝜃1 0 0
𝑠𝜃1 𝑐𝜃1 0 0
0 0 1 𝑑1
0 0 0 1

]…….… (2.22) 

𝑇 = [

𝑐𝜃2 −𝑠𝜃2 0 𝑎2
cα1. 𝑠𝜃2 cα1. 𝑐𝜃2 −𝑠α1 −𝑑2. sα1
sα1. 𝑠𝜃2 sα1. 𝑐𝜃2 cα1 𝑑2. 𝑐α1
0 0 0 1

]2
1 = [

𝑐𝜃2 −𝑠𝜃2 0 0
0 0 −1 −𝑑2
𝑠𝜃2 𝑐𝜃2 0 0
0 0 0 1

]...… (2.23) 

𝑇 = [

𝑐0 −𝑠0 0 𝑎3
cα2. 𝑠0 cα2. 𝑐0 −𝑠α2 −𝑑3. sα2
sα2. 𝑠0 sα2. 𝑐0 cα2 𝑑3. 𝑐α2
0 0 0 1

]3
2 = [

1 0 0 𝑎3
0 0 1 𝑑3
0 0 0 0
0 0 0 1

]……………..… (2.24) 

𝑇 = [

𝑐𝜃3 −𝑠𝜃3 0 𝑎4
cα3. 𝑠𝜃3 cα3. 𝑐𝜃3 −𝑠α3 −0. sα3
sα3. 𝑠𝜃3 sα3. 𝑐𝜃3 cα3 0. 𝑐α3
0 0 0 1

]4
3 = [

𝑐𝜃3 −𝑠𝜃3 0 0
0 0 −1 0
𝑠𝜃3 𝑐𝜃3 0 0
0 0 0 1

]…….… (2.25) 

𝑇 = [

𝑐𝜃4 −𝑠𝜃4 0 𝑎5
cα4. 𝑠𝜃4 cα4. 𝑐𝜃4 −𝑠α4 −𝑑4. sα4
sα4. 𝑠𝜃4 sα4. 𝑐𝜃4 cα4 𝑑4. 𝑐α4
0 0 0 1

]5
4 = [

𝑐𝜃4 −𝑠𝜃4 0 0
0 0 −1 −𝑑4
𝑠𝜃4 𝑐𝜃4 0 0
0 0 0 1

]…….. (2.26) 

𝑇 = [

𝑐𝜃5 −𝑠𝜃5 0 𝑎6
cα5. 𝑠𝜃5 cα5. 𝑐𝜃5 −𝑠α5 −0. sα5
sα5. 𝑠𝜃5 sα5. 𝑐𝜃5 cα5 0. 𝑐α5
0 0 0 1

]6
5 = [

𝑐𝜃5 −𝑠𝜃5 0 0
0 0 1 0

−𝑠𝜃5 −𝑐𝜃5 0 0
0 0 0 1

]……….… (2.27) 
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𝑇 =

[
 
 
 
𝑐𝜃6 −𝑠𝜃6 0 𝑎7

cα6. 𝑠𝜃6 cα6. 𝑐𝜃6 −𝑠α6 −𝑑𝑒𝑓𝑓. sα6
sα6. 𝑠𝜃6 sα6. 𝑐𝜃6 cα6 𝑑𝑒𝑓𝑓 . 𝑐α6
0 0 0 1 ]

 
 
 

7
6 = [

𝑐𝜃6 −𝑠𝜃6 0 0
0 0 −1 −𝑑𝑒𝑓𝑓
𝑠𝜃6 𝑐𝜃6 0 0
0 0 0 1

]… (2.28) 

Hence, the Transformation matrix from manipulator to the end-effector is given by eq. 2.29 

and 2.30 as follow:  

 𝑇 =𝐸 
𝑀 𝑇(𝑞1). 𝑇(𝑞2).2

1
1
0 𝑇(𝑞3). 𝑇(𝑞4).4

3
3
2 𝑇(𝑞5). 𝑇(𝑞6). 𝑇(𝑞7)7

6
6
5

5
4  ……….….… (2.29)  

 𝑇𝐸 
𝑀 = [

𝑟11 𝑟12 𝑟13 𝑝𝑥
𝑟21 𝑟22 𝑟23 𝑝𝑦
𝑟31 𝑟32 𝑟33 𝑝𝑧
0 0 0 1

]…………………………..……………………… (2.30) 

Where: 

 𝑟11 = − c6. (s5. (c1. c2. s3 +  c1. c3. s2)  −  c4. c5. (c1. c2. c3 −  c1. s2. s3))  −

 s4. s6. (c1. c2. c3 −  c1. s2. s3)  

 𝑟12 = s6. (s5. (c1. c2. s3 +  c1. c3. s2) − c4. c5. (c1. c2. c3 –  c1. s2. s3)) −    

c6. s4. (c1. c2. c3 −  c1. s2. s3)  

 𝑟13 =  𝑐5. (𝑐1. 𝑐2. 𝑠3 +  𝑐1. 𝑐3. 𝑠2)  +  𝑐4. 𝑠5. (𝑐1. 𝑐2. 𝑐3 −  𝑐1. 𝑠2. 𝑠3) 

 𝑟21 = − c6. (s5. (c2. s1. s3 +  c3. s1. s2)  −  c4. c5. (c2. c3. s1 −  s1. s2. s3))  −

 s4. s6. (c2. c3. s1 −  s1. s2. s3)  

 𝑟22 = 𝑠6. (𝑠5. (𝑐2. 𝑠1. 𝑠3 +  𝑐3. 𝑠1. 𝑠2) −  𝑐4. 𝑐5. (𝑐2. 𝑐3. 𝑠1 −  𝑠1. 𝑠2. 𝑠3)) −  

𝑐6. 𝑠4. (𝑐2. 𝑐3. 𝑠1 −  𝑠1. 𝑠2. 𝑠3) 

 𝑟23 = 𝑐5. (𝑐2. 𝑠1. 𝑠3 +  𝑐3. 𝑠1. 𝑠2)  +  𝑐4. 𝑠5. (𝑐2. 𝑐3. 𝑠1 −  𝑠1. 𝑠2. 𝑠3) 

 𝑟31 = c6. (s5. (c2. c3 −  s2. s3)  +  c4. c5. (c2. s3 +  c3. s2))  −  s4. s6. (c2. s3 +

 c3. s2)  

 𝑟32 = − 𝑠6. (𝑠5. (𝑐2. 𝑐3 −  𝑠2. 𝑠3)  +  𝑐4. 𝑐5. (𝑐2. 𝑠3 +  𝑐3. 𝑠2))  −

 𝑐6. 𝑠4. (𝑐2. 𝑠3 +  𝑐3. 𝑠2)  

 𝑟33 =  𝑐4. 𝑠5. (𝑐2. 𝑠3 +  𝑐3. 𝑠2)  −  𝑐5. (𝑐2. 𝑐3 −  𝑠2. 𝑠3) 

 𝑝𝑥 =  𝑑2. 𝑠1 +  𝑑𝑒𝑓𝑓. (𝑐5. (𝑐1. 𝑐2. 𝑠3 +  𝑐1. 𝑐3. 𝑠2)  +  𝑐4. 𝑠5. (𝑐1. 𝑐2. 𝑐3 −

 𝑐1. 𝑠2. 𝑠3))  +  𝑑4. (𝑐1. 𝑐2. 𝑠3 +  𝑐1. 𝑐3. 𝑠2)  +  𝑎3. 𝑐1. 𝑐2 −  𝑐1. 𝑑3. 𝑠2 

 𝑝𝑦 =  𝑑4. (𝑐2. 𝑠1. 𝑠3 +  𝑐3. 𝑠1. 𝑠2) −  𝑐1. 𝑑2 +  𝑑𝑒𝑓𝑓. (𝑐5. (𝑐2. 𝑠1. 𝑠3 +

 𝑐3. 𝑠1. 𝑠2)  +  𝑐4. 𝑠5. (𝑐2. 𝑐3. 𝑠1 −  𝑠1. 𝑠2. 𝑠3))  +  𝑎3. 𝑐2. 𝑠1 −  𝑑3. 𝑠1. 𝑠2 

 𝑝𝑧 =   𝑑1 +  𝑐2. 𝑑3 +  𝑎3. 𝑠2 −  𝑑4. (𝑐2. 𝑐3 −  𝑠2. 𝑠3)–  𝑑𝑒𝑓𝑓. (𝑐5. (𝑐2. 𝑐3 −

 𝑠2. 𝑠3)  −  𝑐4. 𝑠5. (𝑐2. 𝑠3 +  𝑐3. 𝑠2)) 

Note: Here just for simplicity we used:  𝑠𝜃𝑖 = si, 𝑐𝜃𝑖 = ci, where (𝑖 = 1…6).  

And we used trigonometric identities:  
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𝑠(𝑖 ± 𝑗) = 𝑠𝑖𝑗
± = 𝑠𝑖. 𝑐𝑗 ± 𝑐𝑖. 𝑠𝑗  

𝑐(𝑖 ± 𝑗) = 𝑐𝑖𝑗
± = 𝑐𝑖. 𝑐𝑗 ∓ 𝑠𝑖. 𝑠𝑗  

where: (𝑖 = 1…6), (𝑗 = 1…6) 

Hence, the final simplified format is given by:  

 𝑟11 = c6. c4. c1. c23. c5 − c6. c1. s23. s5 – s6. s4. c1. c23 

 𝑟12 = s6. c1. s23. s5 −  s6. c4. c1. c23. c5 − c6. s4. c1. c23 

 𝑟13 = 𝑐1. 𝑠23. 𝑐5 +  𝑐4. 𝑐1. 𝑐23. 𝑠5 

 𝑟21 = c6. c4. s1. c23. c5 − c6. s1. s23. s5  − s6. s4. s1. c23 

 𝑟22 = 𝑠6. 𝑠1. 𝑠23. 𝑠5 −  𝑠6. 𝑐4. 𝑠1. 𝑐23. 𝑐5 − 𝑐6. 𝑠4. 𝑠1. 𝑐23 

 𝑟23 = 𝑠1. 𝑠23. 𝑐5 +  𝑐4. 𝑠1. 𝑐23. 𝑠5 

 𝑟31 = c6. s5. c23 +  c6. c4. c5. s23 −  s4. s6. s23 

 𝑟32 = − 𝑠6. 𝑠5. 𝑐23 −  𝑠6. 𝑐4. 𝑐5. 𝑠23 −  𝑐6. 𝑠4. 𝑠23 

 𝑟33 =  𝑐4. 𝑠23. 𝑠5 −  𝑐23. 𝑐5 

 𝑝𝑥 =  𝑑2. 𝑠1 +  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐1. 𝑠23 +  𝑐4. 𝑠5. 𝑐1. 𝑐23) +  𝑑4. 𝑐1. 𝑠23 +

𝑎3. 𝑐1. 𝑐2 –  𝑐1. 𝑑3. 𝑠2 

 𝑝𝑦 =  𝑑4. 𝑠1. 𝑠23 −  𝑐1. 𝑑2 +  𝑑𝑒𝑓𝑓. (𝑐5. 𝑠1. 𝑠23 +  𝑐4. 𝑠5. 𝑠1. 𝑐23) +

 𝑎3. 𝑐2. 𝑠1 –  𝑑3. 𝑠1. 𝑠2 

 𝑝𝑧 = 𝑑1 +  𝑐2. 𝑑3 +  𝑎3. 𝑠2 −  𝑑4. 𝑐23 –  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 −  𝑐4. 𝑠5. 𝑠23) 

II.3.2. Inverse Kinematics 

The Inverse Kinematics (IK) analyses of the serial manipulators have been putted to 

studies for many decades. It is needed in the control of manipulators. Solving the inverse 

kinematics is computationally expensive and generally takes a very long time in the real time 

control of manipulators. The aim here is to find a solution to the problem of IK using a 

Geometric Approach and an Algebraic Approach by determining the joint angles for desired 

position and orientations in Cartesian space. Hence, the ULM arm transformation matrix 

defined by eq. 2.30 is used to build an inverse kinematic analysis. The IK is more complex 

to deal with then the forward kinematic.     

 

II.3.2.1. Geometric approach 

First we specify the target position of the end-effector by (𝑥 , 𝑦 , 𝑧) in the Cartesian space 

where: 

 𝑧 is the height relative to the base. 

 (𝑥 , 𝑦) are the 2D Cartesian space position. 

The inverse kinematic equations that will be built can be solved in a closed manner. 
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From figure 2.5, which shows the top view of the ULM manipulator range of rotation in 

Cartesian space, it can be seen clearly that the distance d and the position estimation xd and 

yd are equal to: 

𝑑 = √𝑥𝑑
2 + 𝑦𝑑

2 

𝑥𝑑 = cos 𝜃1 

𝑦𝑑 = sin 𝜃1 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑥, 𝑦) 

The angles 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5 𝑎𝑛𝑑 𝜃6 correspond to the joints 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5 𝑎𝑛𝑑 𝑞6 

respectively filling the range angles as shown in figures 2.5(a), 2.6(a), between: 

−135° ≤ 𝜃1 ≤ 135° 

−120° ≤ 𝜃2 ≤ 120° 

−90° ≤ 𝜃3 ≤ 90° 

0° ≤ 𝜃4 ≤ 360° 

−55° ≤ 𝜃5 ≤ 55° 

0° ≤ 𝜃6 ≤ 360° 

 

Figure 2.5. (a) Tope View of the ULM manipulator.  (b) Top view of the arm in Cartesian 

space 

The lengths 𝑑1, 𝑑2, 𝑑3, 𝑎3, 𝑑4 𝑎𝑛𝑑 𝑑𝑒𝑓𝑓 as shown in figure 2.6(a) and 2.6(b) are the main 

parameters that specify our manipulator (the ULM arm), they are essential parameters to use 

in our geometric analysis.      
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𝛿  is a small constant that allows the end-effector to pick up objects without changing its 

Cartesian position or orientation, we look for a solution to the inverse kinematics as a closed 

form in the case of  𝛿 is already fixed and adapted by the manufacturer of the ULM arm.  

From figure 2.6 (b), we find a relationship between 𝛿, 𝜃2, 𝜃3 𝑎𝑛𝑑 𝜃5 as: 

𝛿 ≈ (𝜃2 + 𝜃3) − 𝜃5………………………………………………………………..… (2.31) 

Looking for the radial distance and height at joint 𝑞5 :  

𝑟5 = 𝑟𝑒𝑓𝑓 − 𝑑𝑒𝑓𝑓 cos(𝛿)   𝑜𝑟   𝑟5 = 𝑎3 cos(𝜃2) + 𝑑4 cos(𝜃2 + 𝜃3) …….……….… 

(2.32) 

𝑧5 = 𝑧𝑒𝑓𝑓 − 𝑑𝑒𝑓𝑓 sin(𝛿)   𝑜𝑟  𝑧5 = 𝑎3 sin(𝜃2) + 𝑑4 sin(𝜃2 + 𝜃3) + (𝑑1+𝑑3) ...… (2.33) 

Before looking for the angles 𝜃2, 𝜃3 𝑎𝑛𝑑 𝜃5 geometrically, 𝛽, 𝑎 𝑎𝑛𝑑 𝑠 must be found first 

from figure 2.6(b) by eq. 2.34, eq. 2.35 and eq. 2.36:     

𝛽 = 𝑎𝑡𝑎𝑛2(𝑠2 + 𝑎3
2 − 𝑑4

2, 2𝑎3𝑠) …………………………………………….….… (2.34) 

𝑎 = 𝑎𝑡𝑎𝑛2(𝑧5 − 𝑑1 , 𝑟5) ……………………………………………………...….… (2.35) 

𝑠 = √(𝑧5 − 𝑑1)2 + 𝑟52  ……………………………………………………….….… (2.36) 

Hence, the desired angels are: 

𝜃2 = 𝑎 ± 𝛽…………………….………………………………………………….… (2.37) 

𝜃3 = 𝑎𝑡𝑎𝑛2(𝑠
2 − 𝑎3

2 − 𝑑4
2, 2𝑎3𝑑4) ……………………..……………………….… (2.38) 

𝜃5 ≈ (𝜃2 + 𝜃3) − 𝛿…………………………………………...………………….… (2.39) 

Note that: 𝜃4 𝑎𝑛𝑑 𝜃6 are both rotating symmetrically around the axis of joints  𝑞4 𝑎𝑛𝑑 𝑞6 

respectively where the range of rotation for both has already been set:  

0° ≤ (𝜃4 , 𝜃6) ≤ 360° 
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Figure 2.6. (a) Planner view of the ULM.  (b) Planner view of the 6 DOF robotic arm.  

II.3.2.2. Analytical or algebraic approach 

The position vector denoted by the elements(𝑝𝑥 , 𝑝𝑦, 𝑝𝑧), that has been calculated in eq. 

2.30, is used to solve the IK.  

{

𝑝𝑥 =  𝑑2. 𝑠1 +  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐1. 𝑠23 +  𝑐4. 𝑠5. 𝑐1. 𝑐23) +  𝑑4. 𝑐1. 𝑠23 + 𝑎3. 𝑐1. 𝑐2 –  𝑐1. 𝑑3. 𝑠2

𝑝𝑦 =  𝑑4. 𝑠1. 𝑠23 −  𝑐1. 𝑑2 +  𝑑𝑒𝑓𝑓. (𝑐5. 𝑠1. 𝑠23 +  𝑐4. 𝑠5. 𝑠1. 𝑐23) +  𝑎3. 𝑐2. 𝑠1 –  𝑑3. 𝑠1. 𝑠2

𝑝𝑧 = 𝑑1 +  𝑐2. 𝑑3 +  𝑎3. 𝑠2 −  𝑑4. 𝑐23 –  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 −  𝑐4. 𝑠5. 𝑠23)

 

………………. (2.40) 

 

 

 

→ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝜃1: 

We can calculate the angle 𝜃1 just from the geometric approach as shown in figure 2.5.(b), 

Hence:  

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑥, 𝑦) ……………………………………………………….……….… (2.41) 

→ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝜃3: 

Eq. 2.40 can be written as follow: 

{

𝑝𝑥 −  𝑑2. 𝑠1 =  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐1. 𝑠23 +  𝑐4. 𝑠5. 𝑐1. 𝑐23) +  𝑑4. 𝑐1. 𝑠23 + 𝑎3. 𝑐1. 𝑐2 –  𝑐1. 𝑑3. 𝑠2…… . . (2.40𝑎)

𝑝𝑦 −  𝑑4. 𝑠1. 𝑠23 = − 𝑐1. 𝑑2 +  𝑑𝑒𝑓𝑓. (𝑐5. 𝑠1. 𝑠23 +  𝑐4. 𝑠5. 𝑠1. 𝑐23) +  𝑎3. 𝑐2. 𝑠1 –  𝑑3. 𝑠1. 𝑠2……(2.40𝑏)

𝑝𝑧 = 𝑑1 +  𝑐2. 𝑑3 +  𝑎3. 𝑠2 −  𝑑4. 𝑐23 –  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 −  𝑐4. 𝑠5. 𝑠23)…………………………… . . (2.40𝑐)

 

Squaring the two sides of eq. 2.40a and 2.40b then sum them gives eq. 42 below: 
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 (𝑝𝑥 −  𝑑2. 𝑠1)
2 + (𝑝𝑦 +  𝑐1. 𝑑2)

2
= 

= 𝑐12(𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 +  𝑐4. 𝑠5. 𝑐23) +  𝑑4. 𝑠23 + 𝑎3. 𝑐2 –  𝑑3. 𝑠2)2

+ 𝑠12( 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 +  𝑐4. 𝑠5. 𝑐23) + 𝑑4. 𝑠23

+  𝑎3. 𝑐2 –  𝑑3. 𝑠2)2 

    = (𝑐12 + 𝑠12). (𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 +  𝑐4. 𝑠5. 𝑐23) +  𝑑4. 𝑠23 + 𝑎3. 𝑐2 –  𝑑3. 𝑠2)2 

= (𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 +  𝑐4. 𝑠5. 𝑐23) +  𝑑4. 𝑠23 +

𝑎3. 𝑐2 –  𝑑3. 𝑠2)2……………...…… (2.42) 

Where: 𝑐𝑖2 + 𝑠𝑖2 = 1 

Hence eq. 2.42 and eq. 2.40c can be simplified to get eq. 2.43a and eq. 2.43b:  

{
𝑎3. 𝑐2 + 𝑑4. 𝑠23 = ±√(𝑝𝑥 −  𝑑2. 𝑠1)

2 + (𝑝𝑦 +  𝑐1. 𝑑2)
2 − 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 +  𝑐4. 𝑠5. 𝑐23) +  𝑑3. 𝑠2…… . . (2.43𝑎)

𝑎3. 𝑠2 − 𝑑4. 𝑐23 = 𝑝𝑧 +  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 −  𝑐4. 𝑠5. 𝑠23) − 𝑑3. 𝑐2 − 𝑑1……………………………………… . (2.43𝑏)

  

Squaring both sides of eq.2.43 and adding them together leads to: 

 (𝑎3. 𝑐2 + 𝑑4. 𝑠23)2 + (𝑎3. 𝑠2 − 𝑑4. 𝑐23)2 = 

= (±√(𝑝𝑥 −  𝑑2. 𝑠1)2 + (𝑝𝑦 +  𝑐1. 𝑑2)
2
− 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 +  𝑐4. 𝑠5. 𝑐23) +  𝑑3. 𝑠2)

2

+ (𝑝𝑧 +  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 −  𝑐4. 𝑠5. 𝑠23) − 𝑑3. 𝑐2 − 𝑑1)
2 

 𝑎32 + 𝑑42 − 2𝑎3. 𝑑4. (𝑠2𝑐23 − 𝑐2. 𝑠23) = 

= 𝑎32 + 𝑑42 − 2𝑎3. 𝑑4. 𝑠3 

= (±√(𝑝𝑥 −  𝑑2. 𝑠1)2 + (𝑝𝑦 +  𝑐1. 𝑑2)
2
− 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 +  𝑐4. 𝑠5. 𝑐23) +  𝑑3. 𝑠2)

2

+

(𝑝𝑧 +  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 −  𝑐4. 𝑠5. 𝑠23) − 𝑑3. 𝑐2 − 𝑑1)
2 

…………………………………………. (2.44) 

So, clearly 𝑠3 = sin 𝜃3 𝑎𝑛𝑑 𝑐3 = cin 𝜃3can be found as follow: 

𝑠3 =

−
(±√(𝑝𝑥− 𝑑2.𝑠1)

2+(𝑝𝑦+ 𝑐1.𝑑2)
2
−𝑑𝑒𝑓𝑓.(𝑐5.𝑠23 + 𝑐4.𝑠5.𝑐23)+ 𝑑3.𝑠2)

2

+(𝑝𝑧+ 𝑑𝑒𝑓𝑓.(𝑐5.𝑐23 − 𝑐4.𝑠5.𝑠23)−𝑑3.𝑐2−𝑑1)
2−𝑎32−𝑑42

2𝑎3.𝑑4
  

𝑐3 = ±√1 − 𝑠2 

Hence, 𝜃3is given by: 

𝜃3 = 𝑎𝑡𝑎𝑛2(𝑠3, 𝑐3)………………………………………………………...………. (2.45) 

→ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝜃2: 

From figure 2.6(b) eq. 2.46 is gotten: 

𝜃2 = 𝑎 − 𝛽………………………………………………………...…………..……. (2.46) 

And we know that: 
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 𝑎 = 𝑎𝑡𝑎𝑛2(𝑝𝑧 +  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 −  𝑐4. 𝑠5. 𝑠23) − 𝑑3. 𝑐2 − 𝑑1    ,

±√(𝑝𝑥 −  𝑑2. 𝑠1)
2 + (𝑝𝑦 +  𝑐1. 𝑑2)

2 − 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 +  𝑐4. 𝑠5. 𝑐23) +  𝑑3. 𝑠2) 

 𝛽 = 𝑎𝑡𝑎𝑛2(𝑑4. 𝑠3  , 𝑎3 + 𝑑4. 𝑐3) 

Hence, 𝜃2is given by:  

𝜃2 = 𝑎𝑡𝑎𝑛2(𝑝𝑧 +  𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 −  𝑐4. 𝑠5. 𝑠23) − 𝑑3. 𝑐2 − 𝑑1    ,

±√(𝑝𝑥 −  𝑑2. 𝑠1)2 + (𝑝𝑦 +  𝑐1. 𝑑2)
2
− 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 +  𝑐4. 𝑠5. 𝑐23) +  𝑑3. 𝑠2) −

𝑎𝑡𝑎𝑛2(𝑑4. 𝑠3  , 𝑎3 + 𝑑4. 𝑐3) 

………………………………………………………...………. (2.47) 

→ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝜃5: 

From the transformation matrix  𝑇𝐸 
𝑀  given by eq. 2.30 and after applying trigonometric 

identities, eq. 2.48 can be written:  

{
 
 
 
 

 
 
 
 
𝑟11 = c6. c4. c1. c23. c5 − c6. c1. s23. s5 − s6. s4. c1. c23
𝑟12 = s6. c1. s23. s5 −  s6. c4. c1. c23. c5 − c6. s4. c1. c23

𝑟13 = 𝑐1. 𝑠23. 𝑐5 +  𝑐4. 𝑐1. 𝑐23. 𝑠5
𝑟21 = c6. c4. s1. c23. c5 − c6. s1. s23. s5  − s6. s4. s1. c23
𝑟22 = 𝑠6. 𝑠1. 𝑠23. 𝑠5 −  𝑠6. 𝑐4. 𝑠1. 𝑐23. 𝑐5 − 𝑐6. 𝑠4. 𝑠1. 𝑐23

𝑟23 = 𝑠1. 𝑠23. 𝑐5 +  𝑐4. 𝑠1. 𝑐23. 𝑠5
𝑟31 = c6. c23. s5 +  c6. c4. s23. c5 − s6. s4. s23

𝑟32 = − 𝑠6. 𝑐23. 𝑠5 −  𝑠6. 𝑐4. 𝑠23. 𝑐5 −  𝑐6. 𝑠4. 𝑠23
𝑟33 =  𝑐4. 𝑠23. 𝑠5 −  𝑐23. 𝑐5

………….…(2.48)  

The following pairs of algebraic equations taken from 2.48 are solved to find 𝑐5 : 

{
𝑠23. 𝑟23 = 𝑠23. (𝑠1. 𝑠23. 𝑐5 +  𝑐4. 𝑠1. 𝑐23. 𝑠5)

(−𝑠1. 𝑐23). 𝑟33 = (−𝑠1. 𝑐23). (𝑐4. 𝑠23. 𝑠5 −  𝑐23. 𝑐5)
………….………….……. (2.49) 

By adding both sides of eq. 2.49 c5 is gotten: 

𝑐5 =
𝑠23.𝑟23−𝑠1.𝑐23.𝑟33

𝑠1
……………….………………………………………..…. (2.50) 

The following pairs of algebraic equations taken from 2.48 are also solved to find 𝑠5: 

{
𝑠23. 𝑟22 = 𝑠23. (𝑠6. 𝑠1. 𝑠23. 𝑠5 −  𝑠6. 𝑐4. 𝑠1. 𝑐23. 𝑐5 − 𝑐6. 𝑠4. 𝑠1. 𝑐23)

(−𝑠1. 𝑐23). 𝑟32 = (−𝑠1. 𝑐23). (− 𝑠6. 𝑐23. 𝑠5 −  𝑠6. 𝑐4. 𝑠23. 𝑐5 −  𝑐6. 𝑠4. 𝑠23)
... (2.51) 

Adding both sides of eq. 2.51, s5 is gotten: 

𝑠5 =
𝑠23.𝑟23−𝑠1.𝑐23.𝑟33

𝑠6.𝑠1
……………….……………………………………………..... (2.52) 

Hence, from eq. 2.51 and eq. 2.52, 𝜃5is given by: 

𝜃5 = 𝑎𝑡𝑎𝑛2(𝑠5, 𝑐5) ……………….…………………………………………....…. (2.53) 
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→ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝜃4 𝑎𝑛𝑑 𝜃6: 

As it has already mentioned 𝜃4 𝑎𝑛𝑑 𝜃6are both rotating symmetrically in joints 𝑞4𝑎𝑛𝑑 𝑞6 

respectively around the axis that links the joints 𝑞3 𝑡𝑜 𝑞5 𝑎𝑛𝑑 𝑞5 with the end-effector, 

where the range of rotation for both is already set:  

0° ≤ (𝜃4 , 𝜃6) ≤ 360° 

II.4. Kinematic analysis of the mobile manipulator (RobuTER/ULM)  
In this section, the full system from manipulator to base will be analyzed. This involves 

the interaction between the mobile base and the manipulator. This analysis is based in the 

direct kinematic transformation matrixes that have been derived. The location of the end-

effector is given in 𝑅𝐴 = (𝑂𝐴, �⃗�𝐴 , �⃗�𝐴 , �⃗�𝐴) by:  

 𝑇 =𝐸 
𝐴 𝑇. 𝑇.𝑀

𝐵
𝐵
𝐴 𝑇𝐸

𝑀  

The transformations of  𝑇𝐵
𝐴  , 𝑇𝐸

𝑀  of the RobuTER base and the ULM manipulator 

respectively are already obtained. Now, for the transformation defining the base to the 

manipulator is given by letting:  (𝑥𝐵, 𝑦𝐵, 𝑧𝐵) are the Cartesian coordinates of 𝑂𝐵 in 𝑅𝐴 and 

(𝑥𝑀, 𝑦𝑀, 𝑧𝑀) are the Cartesian coordinates of  𝑂𝑀 in  𝑅𝐵 . Hence, the transformation matrix 

𝑇𝑀
𝐵  is denoted by:   

𝑇 = [

1 0 0 𝑥𝑀
0 1 0 𝑦𝑀
0 0 1 𝑧𝑀
0 0 0 1

] 𝑀
𝐵 ………….……………………………………………....…. (2.54) 

So, now the total transformation matrix linking base to the end-effector (This analysis 

involves the interaction between the mobile base and the manipulator) can be constructed 

as: 

 𝑇 =𝐸 
𝐴 𝑇. 𝑇.𝑀

𝐵
𝐵
𝐴 𝑇𝐸

𝑀  

 𝑇 =𝐸 
𝐴 [

cos 𝜃𝐵 – sin 𝜃𝐵 0 𝑥𝐵
sin 𝜃𝐵 cos 𝜃𝐵 0 𝑦𝐵
0 0 1 𝑧𝐵
0 0 0 1

] . [

1 0 0 𝑥𝑀
0 1 0 𝑦𝑀
0 0 1 𝑧𝑀
0 0 0 1

] . [

𝑟11 𝑟12 𝑟13 𝑝𝑥
𝑟21 𝑟22 𝑟23 𝑝𝑦
𝑟31 𝑟32 𝑟33 𝑝𝑧
0 0 0 1

]…… (2.55) 

II.5. Conclusion  
This chapter provides a deep explanation of the kinematic analysis of the RobuTER/ULM 

robot. Where both direct kinematic models of the base to arm and base to manipulator are 

built based on the transformation matrixes. Then, an inverse kinematic analysis based in 

geometric approach and analytic approach to find the mathematical model of the different 

joints angels has been constructed. Finally, this chapter ends up by describing the Kinematic 

analysis of the mobile manipulator by building the final matrix which describes the robot 

model.        
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III. Introduction 
One of the most important tasks of an autonomous system of any kind is to acquire 

knowledge about its environment. This is done by taking measurements using various 

sensors and then extracting meaningful information from those measurements. There are a 

wide variety of sensors used in mobile robots. Some sensors are used to measure simple 

values like the rotational speed of the motors. Other, more sophisticated sensors can be used 

to acquire information about the robot’s environment or even to directly measure a robot’s 

global position and in constructing the environments map. This chapter focuses primarily on 

sensors used to extract information about the robot’s environment (Kinect 360, Ultrasonic 

captures and Motors encoder). Because a mobile robot moves around, it will frequently 

encounter unforeseen environmental characteristics, and therefore such sensing is 

particularly critical. A functional classification of sensors is given first. Then, the selected 

sensors are described in detail. 

III.1. Sensors classification for Mobile Robots  
Sensors are classified using two important functional axes: proprioceptive/exteroceptive 

and 

Passive/active [1]. 

III.1.1. Proprioceptive sensors  

They measure values internal to the robot system; for example, motor speed, wheel load, 

robot arm joint angles, battery voltage. 

III.1.2. Exteroceptive sensors 

They acquire information from the robot’s environment; for example, distance 

measurements, light intensity, sound amplitude. Hence exteroceptive sensor measurements 

are interpreted by the robot in order to extract meaningful environmental features. 

III.1.3. Passive sensors  

They measure ambient environmental energy entering the sensor. Examples of passive 

sensors include temperature probes, microphones and CMOS camera’s. 

III.1.4. Active sensors 
They emit energy into the environment, and then measure the environmental reaction. 

Because active sensors can manage more controlled interactions with the environment, they 

often achieve superior performance. However, active sensing introduces several risks: The 

outbound energy may affect the very characteristics that the sensor is attempting to measure. 

Furthermore, an active sensor may suffer from interference between its signal and those 

beyond its control. For example, signals emitted by other nearby robots, or similar sensors 

on the same robot, may influence the resulting measurements. Examples of active sensors 
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include wheel quadrature encoders, the Kinect camera, ultrasonic sensors, and laser 

rangefinders. 

II.2. Basic sensor characteristics  
A number of sensor characteristics can be rated quantitatively in a laboratory setting. Such 

performance ratings will necessarily be best-case scenarios when the sensor is placed on a 

real world robot, but are nevertheless useful. Hence, some important sensors characteristics 

are discussed below.   

II.2.1. Dynamic range  

It is the ratio of the maximum input value to the minimum measurable input value. 

Because this raw ratio can be unwieldy, it is usually measured in decibels, which are 

computed as ten times the common logarithm of the dynamic range. 

𝑑𝐵 = 𝛼 . log (
𝑎

𝑏
)  𝑤ℎ𝑒𝑟𝑒 𝛼 = 10 𝑜𝑟 20  …………………….. (3.1) 

However, there is potential confusion in the calculation of decibels, which are meant to 

measure the ratio between powers, such as watts. Range is also an important rating in mobile 

robot applications because often robot sensors operate in environments where they are 

frequently exposed to input values beyond their working range. In such cases, it is critical to 

understand how the sensor will respond. For example, an optical rangefinder will have a 

minimum operating range and can thus provide spurious data when measurements are taken 

with the object closer than that minimum. 

II.2.2. Resolution  

It is the minimum difference between two values that can be detected by a sensor. Usually, 

the lower limit of the dynamic range of a sensor is equal to its resolution. However, in the 

case of digital sensors, this is not necessarily. For example, suppose that you have a sensor 

that measures voltage, and performs an analog-to-digital (A/D) conversion, and outputs the 

converted value as an 8-bit number linearly corresponding to between 0 and 5 V. If this 

sensor is truly linear, then it has 28-1 total output values, or a resolution of 5V (255) = 20 

mV. 

 

II.2.3. Linearity  

It is an important measure governing the behaviour of the sensor’s output signal as the 

input signal varies. A linear response indicates that if two inputs 𝑋 and 𝑌 result in the two 

outputs  𝑓(𝑋) and 𝑓(𝑌), then for any values a and b: 

      𝑓(𝑎𝑋 + 𝑏𝑌) = 𝑎𝑓(𝑋) + 𝑏𝑓(𝑌) …………………………….. (3.2) 

This means that a plot of the sensor’s input/output response is simply a straight line.  
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II.2.3. Sensitivity  

It is a measure of the degree to which an incremental change in the target input signal 

changes the output signal. Formally, sensitivity is the ratio of output change to input change. 

Unfortunately, the sensitivity of exteroceptive sensors is often confounded by undesirable 

sensitivity and performance coupling to another environmental parameter. 

III.3. The main RobuTER/Ulm Integrated sensors 

III.3.1. The Kinect Xbox360 V2 sensor 

The innovative technology behind Kinect is a combination of hardware and software 

contained within the Kinect sensor (see figure 3.1). It is a flat black box that sits on a small 

platform and inside the sensor case contains: 

 An RGB camera (Color sensor) that stores three channel data in a 1280x960 

resolution. This makes capturing a color image possible. 

 An infrared (IR) emitter and an IR depth sensor. The emitter emits infrared light 

beams and the depth sensor reads the IR beams reflected back to the sensor. The 

reflected beams are converted into depth information measuring the distance between 

an object and the sensor. This makes capturing a depth image possible. 

 A multi-array microphone, which contains four microphones for capturing sound. 

Because there are four microphones, it is possible to record audio as well as find the 

location of the sound source and the direction of the audio wave. 

 A 3-axis accelerometer configured for a 2G range, where G is the acceleration due 

to gravity. It is possible to use the accelerometer to determine the current orientation 

of the Kinect. 

 

Figure 3.1. The Kinect sensor. 

The main feature is that the sensor is made by differential pixels, meaning that each pixel 

is split in two accumulators and a clock regulates which one of the pixel side is the one 
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currently active. This permits creating a series of different output images (depth images, grey 

scale images dependent from ambient lighting and grey scale images independent from 

ambient lighting). The system measures the phase shift of the modulated signal and 

computes the depth from phase using Eq. 3.3:  

2𝑑 =
𝑝ℎ𝑎𝑠𝑒

2𝜋
 
𝑐

𝑓𝑚𝑜𝑑
   …………………………………................ (3.3) 

where d is the depth measure, c is the speed of light, fmod is the modulation frequency. Table 

3.1 gives some specifications of the Kinect sensor.  

Table 3.1. Kinect Sensor specifications 

Sensor Specifications Kinect 1.0   

RGB camera (pixel)   1280 × 1024 or 640 × 480 

Depth camera (pixel)   640 × 480   

Max depth distance (m)   4.0   

Min depth distance (m)   0.8   

Tilt motor   Yes 

USB 2.0 

 

III.3.1.1. Depth measurement model  

Operation of Kinect depth sensor is grounded on structured light analysis approach.  The 

sensor   incorporates a laser IR diode for emitting a dotted light pattern and an IR camera for 

capturing reflected patterns. By using a suitable window size, the sensor compares reflected 

patterns to reference  patterns, obtained for a plane placed at a known distance from the 

sensor,  and  uses  the position of  the best  match pattern to infer disparity of reflected bean 

and further calculate  the depth of  reflection  surface.  A supplementary RGB camera is 

added to provide additional information on the color and the texture of the surface. The 

relationship between depth of reflection surface and the disparity between images of light 

beans obtained for a reference and measurement (object) surface may be derived in the 

following manner (the derivation closely follows Khoshelham and Elberink [7]). Looking at 

Figure 3.2, where the reference bean is assumed to pass the path P- R-C and the measurement 

bean passes  the path P- M-C  ,from similarity of triangles MR*C and M’R’C we obtain: 

𝑑

𝐷
=
𝑓

𝑍
………………………………….................................... (3.4) 

Where Z is the distance of the measurement (Object) plane from the sensor, d = R’M′̅̅ ̅̅ ̅̅  

denotes the disparity between images of reference R’ and measurement M’ beans, and f  is 

the focal length of IR camera. From similarity of triangles CPR and R’’MR , another relation 

is obtained :  
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𝐷

𝑏
=
𝑍0−𝑍

𝑍0
 ………………………………….............................. (3.5) 

  

Figure 3.2. Depth measurement geometry. 

where Z is the distance of the measurement (object) plane from the sensor, 𝑑 =  𝑅 𝑀̅̅ ̅̅ ̅̅  denotes 

the disparity between images  of  reference R’ and  measurement M’ beans, and f is  the  

focal  length  of  IR camera. 

III.3.1.2. Sensor calibration 

Kinect-type 3D sensors, considered in this work, operates as structured light sensors. A 

sensor (Figure 3.1) incorporates a laser infra-red (IR) diode for emitting a dotted light pattern 

and an IR camera for capturing reflected patterns. Depth is calculated by sensor software on 

the basis of disparity of reflected patterns with the respect to the reference patterns obtained 

for a plane placed at a known distance from the sensor. A supplementary RGB camera is 

added to provide additional information on colour and texture of the surface. Thus, sensor 

output consists of flowing three data: images from RGB camera, raw images from IR camera 

and depth maps calculated by sensor firmware. Sensor calibration can be viewed as a 

refinement of correspondences between 3D object coordinates and coordinates in RGB, IR 

and depth images [7].  

The proposed calibration procedure consists of two steps: 

- The first step comprises calibration of sensor’s RGB/IR cameras. 

- The second is the performance of depth model calibration.  

Although real-time depth information is provided by IR camera, the depth map tells how 

far the IR camera's pixels are and we actually do not know the depth information of the color 

image because the two cameras have different characteristics. As it is shown in the image 

below (figure 3.3) the pixels do not match in the two images.  The locations of the hand and 

the arm are completely different in the two images.  
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Figure 3.3. IR/RGB camera. 

If it would be used for 3D scene capture or it is wanted to relate the RGB and the depth 

images, it is needed to match the color image's pixels to the depth image's. Thus, the 

calibration is needed to be performed.  

Kinect camera calibration is not different from the general camera calibration. It is just 

needed to capture images of a chessboard pattern from IR and RGB cameras. Several images 

of a chessboard pattern are needed to be captured. When capturing images from the IR 

camera, the emitter with something for good corner detection in chessboard images must be 

blocked. If not, the captured images will look like below and corner detection will fail. 

If the lightings in our environment do not have enough IR rays, a light source that emits 

IR rays is needed. It might be good to capture the same scenes with two cameras. The images 

below show two images captured from the IR and RGB cameras, respectively (see Figure 

3.4). 

 

Figure 3.4. The difference between IR image and color image. 
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Once images are taken, calibration can be performed for each camera by using OpenCV 

API GML calibration toolbox. After calibration, the intrinsic camera matrices, K_ir and 

K_rgb, and distortion parameters of the two cameras are obtained (see figure 3.5).  

 

Figure 3.5. Using OpenCV API in GML Camera calibration toolbox. 

To achieve our goal, a more information is needed, the geometrical relationship between 

the two cameras expressed as a rotation matrix R and a translation vector t. To compute 

them, capture the same scene containing the chessboard pattern with the two cameras and 

compute extrinsic parameters. From two extrinsic parameters, the relative transformation 

can be computed easily.  

Now, the depth of the colour image can be computed from the depth image provided by 

the IR camera. Let's consider a pixel p_ir in the IR image. The 3D point P_ir corresponding 

to the p_ir can be computed by back-projecting p_ir in the IR camera's coordinate system. 

Pir =  inv(K) × p_ir  …………………….............................. (3.6) 

P_ir can be transformed to the RGB camera's coordinate system through relative 

transformation R and t. 

P_rgb =  R × P_ir +  t  …………………………………......... (3.7) 

 

Then, P_rgb is projected onto the RGB camera image and we obtain a 2D point p_rgb. 

prgb = Krgb × P_rgb  ………………………………....... (3.8) 

Finally, the depth value corresponding to the location p_rgb in RGB image is P_rgb's Z 

axis value. 
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depth of p_rgb =  Z axis value of P_rgb ……………......... (3.9)  

 

P_ir : 3D point in the IR camera's coordinate system. 

R, t : Relative transformation between two cameras. 

P_rgb : 3D point in the RGB camera's coordinate system. 

p_rgb : The projection of P_rgb onto the RGB image. 

In the above, conversion to homogeneous coordinates are omitted. When two or more 3D 

points are projected to the same 2D location in the RGB image, the closest one is chosen. 

The colour values of the depth map pixels can also be computed in the same way. p_ir's 

colour corresponds to the colour of p_rgb. 

Figure 3.6 illustrate the resulting depth image of the RGB camera. Since the RGB camera 

sees wider region than the IR camera, not all pixels' depth information are available. 

 

Figure 3.6. Depth Image of the RGB camera. 

In Figure 3.7 bellow we can see that the two match well, while they do not before calibration 

as shown at the beginning of this test. 

 

Figure 3.7. The calibration shows that the pixels match well. 
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III.3.2. The Ultrasonic Sensor in RobuTER 

Unfortunately, the sensing devices which are available for mobile robots often fail in a 

variety of circumstances. This is especially true for the less expensive devices such as 

ultrasonic and infrared range sensors. Combining data from several sensors and from a pre-

stored model of the domain provides a way to enhance the reliability of a perception system. 

Such combination may be accomplished by integrating range measurements into a geometric 

model of the local environment. 

The robuTER the case of our studies has an ultrasonic belt. Next, the position (x, y, z, 

theta) of each sensor is proposed, where the first is the one that is in the left of the belt before 

starting the direction of robuter. For information, the robuTER is equipped with a ring of 24 

ultrasonic range sensors as shown in figure 3.8. 

 

Figure 3.8. Configuration of 24 Ultrasonic Range sensors [7]. 

The table 3.2 shows the orientation of the landmark; while, the table 3.3 shows the 

position information of each sensor. 

Table 3.2. The orientation of direct landmark. 

Axe Direction Sense 

X In the axis of robuTER Forward 

Y Vertical To the top 

Z In the axis of the drive 

wheels 

To the right 

Theta 0 ° along the x axis Trigonometric 

Dimensions are in millimetres and degrees by taking the middle as the origin of the axis 

of the drive wheels. 
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Table 3.3. The position information of each sensor.  

Sensors  X Y Z Theta 

1 285.96 428.50 -278.50 90 

2 535.98 428.50 -265.10 60 

3 572.60 428.50 -228.48 30 

4 586.00 428.50 -178.46 0 

5 586.00 428.50 -90.00 0 

6 586.00 428.50 -30.00 0 

7 586.00 428.50 30.00 0 

8 586.00 428.50 60.00 0 

9 586.00 428.50 178.46 0 

10 572.60 428.50 228.48 330 

11 535.98 428.50 265.10 300 

12 485.96 428.50 278.50 270 

13 -39.96 428.50 278.50 270 

14 -89.98 428.50 265.10 240 

15 -126.60 428.50 228.48 210 

16 -140.00 428.50 178.46 180 

17 -140.00 428.50 90.00 180 

18 -140.00 428.50 30.00 180 

19 -140.00 428.50 -30.00 180 

20 -140.00 428.50 -90.00 180 

21 -140.00 428.50 -178.46 180 

22 -126.60 428.50 -228.48 150 

23 -89.98 428.50 -265.10 120 

24 -39.96 428.50 -278.50 90 

The position and orientation of the sensors with respect to the origin of the robot are 

defined in a sensor configuration parameter (figure 3.9). So for each sensor, the sensor 

configuration parameter gives: 

 𝑟: The distance from the robot's origin to the sensor. 

 Ɣ: The angle from the robot's axis to the sensor 

 𝛽: The orientation of the sensor with respect to the robot's axis. 
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The sensor description algorithm can be made to work with a variety of sensor 

configurations. 

 

Figure 3.9. Projection of a Range Reading to External Coordinates [7]. 

A sensor data description process reads range measurements from the sonar table, as well 

as the estimated position of the robot from the vehicle controller. With this information, the 

depth measure, d, for each sensor, s, is projected to external coordinates, (𝑋𝑠, 𝑌𝑠), using the 

estimated position of the robot, (𝑋, 𝑌, 𝛼) , as shown in figure 3.10. 

𝑋𝑠 = 𝑋 + 𝑟 𝐶𝑜𝑠(Ɣ + 𝛼 ) + 𝑑 𝐶𝑜𝑠(𝛽 + 𝛼) 

𝑌𝑠 = 𝑌 + 𝑟 𝑆𝑖𝑛(Ɣ + 𝛼 ) + 𝑑 𝑆𝑖𝑛(𝛽 + 𝛼) 

 

Fig 3.10. Model of the Ultrasonic Range Sensor and its Uncertainties. 

In order to combine data from different viewpoints and sensors, the inherent precision of the 

data must be estimated. A model of an ultrasonic range sensor has been developed, which 

predicts that an echo comes from an arc shaped region as illustrated in figure 3.10.  This 

region is determined by the composition of an arc blurred in a perpendicular direction. The 

length of the arc is given by the uncertainty in orientation, 𝜎𝑊, while the perpendicular 

blurring is caused by an uncertainty in depth 𝜎𝐷. 
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III.3.3. The Incremental Encoder in RobuTER 

Optical incremental encoders have become the most popular device for measuring 

angular speed and position within a motor drive or at the shaft of a wheel or steering 

mechanism. In mobile robotics, encoders are used to control the position or speed of wheels 

and other motor-driven joints. Because these sensors are proprioceptive, their estimate of 

position is best in the reference frame of the robot and, when applied to the problem of robot 

localization, significant corrections are required.  

An optical encoder is basically a mechanical light chopper that produces a certain number 

of sine or square wave pulses for each shaft revolution. It consists of an illumination source, 

a fixed grating that masks the light, a rotor disc with a fine optical grid that rotates with the 

shaft, and fixed optical detectors. As the rotor moves, the amount of light striking the optical 

detectors varies based on the alignment of the fixed and moving gratings. In robotics, the 

resulting sine wave is transformed into a discrete square wave using a threshold to choose 

between light and dark states. Resolution is measured in Cycles Per Revolution (CPR). The 

minimum angular resolution can be readily computed from an encoder’s CPR rating. A 

typical encoder in mobile robotics may have 2000 CPR, while the optical encoder industry 

can readily manufacture encoders with 10000 CPR. In terms of required bandwidth, it is of 

course critical that the encoder be sufficiently fast to count at the shaft spin speeds that are 

expected.  

Industrial optical encoders present no bandwidth limitation to mobile robot applications. 

Usually in mobile robotics the quadrature encoder is used. In this case, a second illumination 

and detector pair is placed 90 degrees shifted with respect to the original in terms of the rotor 

disc. The resulting twin square waves, shown in figure 3.11, provide significantly more 

information. The ordering of which square wave produces a rising edge first identifies the 

direction of rotation. Furthermore, the four detectably different states improve the resolution 

by a factor of four with no change to the rotor disc. Thus, a 2000 CPR encoder in quadrature 

yields 8000 counts. Further improvement is possible by retaining the sinusoidal wave 

measured by the optical detectors and performing sophisticated interpolation. 

 

Figure 3.11. Quadrature optical wheel encoder. 
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In figure 3.11, the observed phase relationship between channel A and B pulse trains are 

used to determine the direction of the rotation. A single slot in the outer track generates a 

reference (index) pulse per revolution. The characteristics of the incremental encoder of 

robuTER are summarized in Table 3.4. 

Table 3.4. Incremental Encoder line driver for RobuTER. 

Number of points 500 

Mass 0,085 kg 

 

Such methods, although rare in mobile robotics, can yield 1000-fold improvements in 

resolution. As with most proprioceptive sensors, encoders are generally in the controlled 

environment of a mobile robot’s internal structure, and so systematic error and cross-

sensitivity can be engineered away. The accuracy of optical encoders is often assumed to be 

100% and, although this may not be entirely correct, any errors at the level of an optical 

encoder are dwarfed by errors downstream of the motor shaft. 

III.4. Conclusion  
This chapter provides a deep explanation of the different sensors characteristics of the 

RobuTER. Where, the different classifications of those sensors are given, which can be 

proprioceptive/exteroceptive and Passive/active. Then, their basic characteristics to the 

change of environment are stepped over. Finally, the chapter ends up by a deep description 

of the different sensors integrated in RobuTER from the Kinect to the Ultrasonic sensor and 

the Incremental Encoder.      
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IV. Introduction 
     Simulation is a flexible methodology which can be used to analyze the behavior of a 

present or proposed scenarios, and by performing simulation and analyzing the results, 

an understanding of how a system operates can be gained even if it was a complicated one. 

This chapter will focus primarily in creating the necessary files that construct our simulation 

results in simulation and insure making the navigation tasks in a correct manner. The chapter 

will end up by a step by step demonstration of our simulation results and of the path planning 

execution in ROS. 

IV.1. Robot 3D model  
     The first phase of robot manufacturing is its design and modeling. The robot can be 

designed and modeled using CAD tools such as AutoCAD, Solid Works, Blender, and so 

on. One of the main purposes of modeling robot is simulation. 

     The virtual robot model must have all the characteristics of real hardware, the shape of 

robot may or may not look like the actual robot but it must be an abstract, which has all the 

physical characteristics of the actual robot. 

SolidWorks 

     SolidWorks is modern computer aided design (CAD) software. It enables designers to 

create a mathematically correct solid model of an object that can be stored in a database. 

When the mathematical model of a part or assembly is associated with the properties of the 

materials used, we get a solid model that can be used to simulate and predict the behavior of 

the part or model with finite element and other simulation software. The same solid model 

can be used to manufacture the object and also contains the information necessary to inspect 

and assemble the product. SolidWorks and similar CAD programs have made possible 

concurrent engineering, where all the groups that contribute to the product development 

process can share real-time information. 

     In this part, a 3D model for our RobuTER/ULM will be built; then, the model to an URDF 

(Unified Robot Description Format), the one that is suitable to be processed in robot 

operating system (ROS), will be extracted. 

 
a) 
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b) 

 
c) 

 
d) 

Figure 4.1. 360° View of RobuTER/ULM. a) Left view. b) Top view. c) Front view. d) Rear 

view.  

IV.2. Creating a 3D virtual environment in Gazebo  
     After creating the robot model in solidworks and extract it to an URDF file. We need now 

to build a 3D virtual environment where we simulate and test the robot navigation tasks. 

     First, we need to launch gazebo in an empty word by writing the following command line  
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    Then, we need to Build the virtual map by clicking on -- Edit—Building Editor. After 

that, we sketch the walls to create the virtual map as shown in Figure 4.2.  

 
Figure 4.2. Creating a Virtual environment where map exploring will be performed. 

     After creating the environment, we save the file as a “.SDF” file to use it in other 

processes and simulators like rviz (ROS visualization check appendix A.3). 

IV.3. Loading the 3D robot to the virtual environment in Gazebo 
     Now, we will test our robot by integrating it in the map and locate it in a position 

according to the global reference frame. We will execute the following command line to 

run the robot_world.launch file from the created robot_gazebo  package which contains the 

created map and the robot as shown in figure 4.3. 
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Figure 4.3. Inserting the virtual robot to the created map and test it in Gazebo. 

IV.4. Navigation stack  
     In the previous sections we have seen how to create our robot and mount it through the 

virtual world in gazebo simulator.  

 

     In this section, we will learn something that is probably one of the most powerful features 

in ROS, something that will let us move our robot autonomously. 

 

     ROS has many algorithms that can be used for navigation. First of all, we will learn the 

necessary ways to configure the navigation stack with our robot model. Then, we will learn 

how to configure and launch the navigation stack on the simulated robot; by inserting goals 

and configuring some parameters to get the best results. In particular, we will cover the 

following items in the first part [11]: 

 Introduction to the navigation stacks and their powerful capabilities. Clearly one of 

the greatest pieces of software that comes with ROS. 

 The TF (Transform Frames) is explained in order to show how to transform from the 

frame of one physical element to another; for example, the data received using a 

sensor or the command for the desired position of an actuator. 

 Create a laser driver and Kinect laser scan (see figure 4.4). 

 Explain how the odometry is published, and how integrate it in Rviz. 

 A base controller will be presented, including a description of how to create one for 

our robot. 
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Figure 4.4. Display navigation stack in Rvis. 

 

     Figure 4.5 shows how the navigation stacks are linked together to perform the process 

of map building then path planning and navigation is presented in an organized way. 

Figure 4.5. The relationship between the navigation stack parts.      
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IV.4.1. Navigation stack – Robot Setups 

     In order to understand the navigation stack, we should think of it as a set of algorithms 

that use the sensors of the robot and the odometry, and the robot can be controlled using a 

standard message. It can move the robot without problems (for example, without crashing 

or getting stuck in some location, or getting lost) to another position. We should assume that 

this stack can be easily used with any robot. This is almost true, but it is necessary to tune 

some configuration files and write some nodes to use the stack. 

The robot must satisfy some requirements before it uses the navigation stack [11]: 

 

  - The navigation stack can only handle a differential drive and holonomic wheeled 

robots. The shape of the robot must be either a square or a rectangle. 

However, it can also do certain things with biped robots, such as robot localization, as long 

as the robot does not move sideways. 

 

 - It requires that the robot publishes information about the relationships between all 

the joints and sensors' position. 

 

  - The robot must send messages with linear and angular velocities. 

 

 - A planar laser must be on the robot to create the map for localization. 

     The navigation stack assumes that the robot is configured in a particular manner in order 

to run. Figure 4.6 shows an overview of this configuration. The white components are the 

required ones and are already implemented, the gray components are optional components 

and are also already implemented, and the blue components must be created for each robot 

platform. The pre requisites of the navigation stack, along with instructions on how to fulfil 

each requirement, are provided in the sections below. 

 
Figure 4.6. Navigation stack setup [11]. 
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IV.4.1.1. Transform Configuration TF 

     The navigation stack needs to know the position of sensors, wheels; and joints. To do 

that, we use the TF (which stands for Transform Frames) software library. It manages a 

transform tree. We could do this with mathematics, but if we have a lot of frames to calculate, 

it will be a bit complicated and messy. Thanks to TF, we can add more sensors and parts to 

the robot, and the TF will handle all the relations for us.  

     At this point, let we assume that we have some data from the laser in the form of distances 

from the laser's center point. In other words, we have some data in the base_laser coordinate 

frame. Now suppose we want to take this data and use it to help the mobile base avoid 

obstacles in the world. To do this successfully, we need a way of transforming the laser scan 

we have received from the base_laser frame to the base_link frame. In essence, we need to 

define a relationship between the base_laser and base_link coordinate frames (see figure 4.7). 

 
Figure 4.7. Demonstration for the base_laser and base_link position. 

     If we put the laser 10-cm backwards and 20-cm above with regard to the origin of the 

coordinates of the base_link, we would need to add a new frame to the transformation tree 

with these offsets. Once inserted and created, we could easily know the position of the laser 

with regard to the base_link value or the wheels. The only thing we need to do is call the TF 

library and get the transformation. Now, we have to take the transform tree and create it with 

code. 

     First of all, we need to create a new package in our workspace name it robot_Nav_stack1 

and once we have get our package, we need to create the nodes that will do the work of 

broadcaster and a listener.   

Creating a broadcaster  

     First, we create a robot_Nav_stack1/src/tf_broadcaster.cpp file as described in the following 

algorithm: 

     Where first, we call the tow libraries “ros.h” and “transform_broadcaster.h” to run ROS 

nodes and integrate some broadcaster transformation parameters, then we set the TF 

broadcaster parameters position.  
  Call header file ros.h 

 Call header file transform_broadcaster.h 

  Set variables integer argc, character argv 

    initialize roscore with (argc, argv, "robot_tf_publisher") 

    initialize ros NodeHandle as n; 

    initialize ros Rate as r (100); 

    initialize tf TransformBroadcaster broadcaster; 

 

start loop  

while(n,r()){ 

     use functions  

 broadcaster.sendTransform(tf_StampedTransform(tf_Transform 

(set tf_Quaternion to (0, 0, 0, 1), set tf_Vector to (0.1, 0.0, 0.2)),"base_link", "base_laser")); 

 r.sleep() 

 } 

    

    After that we need to create another node that will use the transform, and it will give us 

the position of a point from the sensor with regard to the center of base_link (our robot). 
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Creating a listener 

     Now, we are going to write a node that will use that transform to take a point in the 

base_laser frame and transform it to a point in the base_link frame. Once again, open an editor 

and write the code into the robot_Nav_stack1/src/tf_listener.cpp file described by the following 

algorithm: 

     Where we call the necessary libraries at first, to use functions to link the nodes with a 

specific messages described with initial laser position than collect information about the 

position transformation from the base laser to the base link.  
 Call header file ros.h 

 Call header file PointStamped.h 

 Call header file transform_listener.h 

   

//we will create a point in the base_laser frame that we would like to transform to the base_link frame: 

   laser_point.header.frame_id = "base_laser" 

 

//we will just use the most recent transform available for our simple example: 

   laser_point.header.stamp = ros_Time( 

 

//just an arbitrary point in space 

   Fix position laser_point.point.x to 1.0 

   Fix position laser_point.point.y to 0.2 

   Fix position laser_point.point.z to 0.0 

 

  Collect information about Tf position "base_laser: (%.2f, %.2f. %.2f) -----> base_link: (%.2f, %.2f, 

%.2f) at time “%.2f". 

 

 If Receive an excepted error trying to transform a point from "base_laser" to "base_link" type 

“%s”.  
 

   

     Now that we have written our nodes, we need to build them. Open up the CMakeLists.txt 

file and add the following lines to the bottom of the file. 

 
     Next, we save the file and build the package using Catkin_Make command line. 

IV.4.1.2. Sensor Information 

     Our robot can have a lot of sensors to see perceive the world. In our case, we use the 

Kinect V2 as an IR laser scan to provide information; we can program a lot of nodes to take 

this data and do something, but the navigation stack is prepared only to use the planar laser's 

sensor. So, the sensor must publish either sensor_msgs/LaserScan or 

sensor_msgs/PointCloud messages over ROS. 

 

Publishing LaserScans over ROS 

     Now we create a new file in the package robot_Nav_stack1/src with the name laser.cpp 

the following flowchart describe the code in it: 
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Publishing PointClouds over ROS 
     For storing and sharing information about a number of points in the virtual world, ROS 

provides a sensor_msgs/PointCloud message. This message is meant to support arrays of 

points in three dimensions along with any associated data stored as a channel. 

     Publishing a PointCloud with ROS is fairly straightforward. We create now a new file in 

the package robot_Nav_stack1/src name it PointCloud.cpp, the following flowchart describe 

the C++ code. 
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     Now that we've written our nodes, we need to build it using Catkin_Make commend line. 

We note that with the previous nodes codes template, you can use any laser although it has 

no driver for ROS. You only have to change the fake data with the right data from your laser 

in our case we have used the data from the Kinect V2 specially IR Emitter information. 

IV.4.1.3. Odometry information  

     The odometry is the distance of something relative to a point. The navigation stack uses 

Tf to determine the robot's location in the world and relate sensor data to a static map. 

However, Tf does not provide any information about the velocity of the robot. Because of 

this, the navigation stack requires that any odometry source publish both a transform and a 

message over ROS that contains velocity information. The type of message used by the 

navigation stack is nav_msgs/Odometry. This message stores an estimate of the position and 

velocity of a robot in free space.  

     Any odometry source must publish information about the coordinate frame that it 

manages. In the following we will take a look in the flowchart describing the C++ code for 
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publishing odometry, after creating a new file in the package robot_Nav_stack1/src name it 
odometry.cpp. 

 
     We need to write down the following dependences in to the Manifest.xml file then build 

the package using Catkin_Make command line. 
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IV.4.1.4. Base Controller (base controller) 

     A base controller is an important element in the navigation stack because it is the only 

way to effectively control our robot. It communicates directly with the electronics of our 

robot. ROS does not provide a standard base controller, so we must write a base controller 

for our mobile platform. 

     Our robot has to be controlled with the message type geometry_msgs/Twist. This 

message is used on the Odometry message that we have seen before. For our robot, we will 

only use the linear velocity x and the angular velocity z. This is because our robot is on a 

differential wheeled platform, and it has two motors to move the robot forward and backward 

and to turn. 

     Now we create a new file in the package robot_Nav_stack1/src and name it 

base_controller.cpp.  The following flowchart describes the file internal code file:  
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     We should insert the following line in the CMakeListes.txt file to create an executable 

from this file; then, we run the command line catkin_make to build the package. 
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IV.4.1.5. Creating a map in ROS using SLAM (Simultaneous Localization and 

Mapping) 

     SLAM is concerned with the problem of building a map of an unknown environment by 

a mobile robot while at the same time navigating the environment using the map. The term 

SLAM is an acronym for Simultaneous Localization and Mapping. It was originally 

developed by Hugh Durrant-Whyte and John J. Leonard [9]. SLAM consists of multiple 

parts: Landmark extraction, data association, state estimation, state update and landmark 

update. SLAM is more like a concept than a single algorithm. There are many steps involved 

in SLAM and these different steps can be implemented using different algorithms. SLAM is 

applicable for both 2D and 3D motion [9]. 

     The SLAM process consists of several steps. The goal of the process is to use the 

environment to update the position of the robot. Since the odometry of the robot (which 

gives the robots position) is often erroneous, we cannot rely directly on the odometry. We 

can use laser scans of the environment to correct the position of the robot. This is 

accomplished by extracting features from the environment and re-observing when the robot 

moves around. An EKF (Extended Kalman Filter) is the heart of the SLAM process. It is 

responsible for updating where the robot thinks it is based on these features. These features 

are commonly called landmarks. The EKF keeps track an estimate of the uncertainty in the 

robot’s position and also the uncertainty in these landmarks while seeing the environment. 

An outline of the SLAM process is given in figure 4.8[10]. 

 
Figure 4.8. Overview of the SLAM process [10].  

     When the odometry changes as the robot moves the uncertainty pertaining to the robot’s 

new position is updated in the EKF using Odometry update. Landmarks are then extracted 

from the environment from the robot new position. The robot then attempts to associate these 

landmarks to the previously seen landmarks observations. Re-observed landmarks are then 

used to update the robot’s position in the EKF. Landmarks which have not been seen 

previously are added to the EKF as new observations so they can be re-observed later [10]. 
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Creating the map step by step 

     To start building the map we need to run the following commands one by one in Ubuntu 

terminal. To run the slam_gmapping package we use.  

 
     To move the robot in rviz environment using keyboard touch so that we can explore the 

map and receive data we use the command line: 

      
     To start the visual scan for the map in rviz we use the command line: 

 
     When we see that we have explored the full closed map we need to run the following 

commend line to save the map (see figure 4.9). This will be detailed in next part. 
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Figure 4.9. Step by step screenshots for the map building process 

IV.4.1.6. Saving the map using map_server 

     To save the map in a specific folder like /tmp as my_map we use the command line as 

have been shown in the previous section 

 

 
     This command will create tow files: map.pgm and map.yaml. The first one is the map in the 

-.pgm format. The other is the configuration file for the map (see figure 4.10, figure 4.11 and 

figure 4.12). 

 
Figure 4.10. The files created in the catkin_robot workspace. 
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Figure 4.11. my_map.yaml configuration file description.  

 

  
Figure 4.12. The final map build.   

 

 

 

IV.4.1.7. Loading the map using map_server 

     When we want to use the map built with our robot, it is necessary to load it with the 

map_server package. The following command will load the map: 

 
     But to make it easy, we create another .launch file in the package robot_gazebo/launch 

with the name gazebo_map_robot.launch and described by the following algorithm: 
 

-- start up gazebo world -- 

  call file "gazebo_map_robot.launch" 

  call node "joint_state_publisher"  

-- start robot state publisher -- 

  call node "robot_state_publisher" 

  set parameter name "publish_frequency" to value "50.0" 

  call node "map_server" and load file "map.yaml" 

  call node to start map in "rviz" 

     Now launch the file using the next command and we should remember the model of the 

robot that which will be used; then, we will see rviz with the robot and the map. 
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IV.4.2. Navigation stack – Beyond Setups  

     The main aim of the ROS navigation stack packages is to move the robot from the start 

position to the goal position, with avoiding collision with the environment. This packages 

come with an implementation of several navigation related algorithms which can easily help 

implement autonomous navigation in the mobile robot. In the following we will take a look 

in the essential additional packages that we need to create to perform autonomous navigation 

correctly and create the optimal path when we specify a goal target for our robot navigation. 

IV.4.2.1. Costmaps configuration (globalcost map and localcost map) 

The robot will move through the map using two types of navigation—global and local. 

 The global navigation is used to create paths to a desired goal in the map or a far-off 

distance as shown in figure 4.13. 

Figure 4.13. Demonstration for the global navigation. 

 The local navigation is used to create paths in the nearby distances and avoid 

obstacles, for example, a square window of 4 x 4 meters around the robot as shown 

in figure 4.14. 

 
Figure 4.14. Demonstration for the local navigation. 

     These modules use costmaps to save all the information of our map. The cosmaps have 

parameters to configure the behaviours, and they have common parameters as well, which 
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are configured in a shared file. Configuration basically consists of three files where we can 

set-up different parameters. These files are as follows:  

 costmap_common_params.yaml 

 global_costmap_params.yaml 

 local_costmap_params.yaml 

     Let's start by creating three different files in the package robot_nav_stack2/launch with 

the names costmap_common_params.yaml, global_costmap_params.yaml and 

local_costmap_params.yaml. 

     The following algorithm describes the costmap_common_params.yaml file: 
  set obstacle_range to 2.5 

  set raytrace_range to 3.0 

  Fix footprint position to [[-0.2, -0.2], [-0.2,0.2], [0.2, 0.2], [0.2, -0.2]] 

-- set parameter to robot_radius: ir_of_robot -- 

  set inflation_radius to 0.55 

  set observation_sources to the value of laser_scan_sensor  

     This file is used to configure common parameters. The parameters are used in 

local_costmap and global_costmap. 

     The algorithm below is describes the global_costmap_params.yaml file: 
For the global_costmap: 

  set global_frame to path /map 

  set robot_base_frame to path /base_footprint 

  set update_frequency to 1.0 

  set static_map to true 

     The following script is present in local_costmap_params.yaml file: 
For the local_costmap: 

  set global_frame to path /map 

  set robot_base_frame to path /base_footprint 

  set update_frequency to 1.0 

  set publish_frequency to 2.0 

  set static_map to true 

  set rolling_window to false 

  set width to 10.0 

  set height to 10.0 

  set resolution to 0.1 

Once we have the costmaps configured, it is necessary to configure the base planner. The 

base planner is used to generate the velocity commands to move the robot. So we need to 

create a new file in the package robot_nav_stack2/launch and name it 

base_local_planner_params.yaml; then, we write the following algorithm as a description to 

the real code: 
For TrajectoryPlannerROS: 

  set max_vel_x to 1 

  set min_vel_x to 0.5 

  set max_rotational_vel to 1.0 

  set min_in_place_rotational_vel to 0.4 

  set acc_lim_th to 3.2 

  set acc_lim_x to 2.5 

  set acc_lim_y to 2.5 

  set holonomic_robot to false 

     After creating those files and save them we need to build them using the command line 

catkin_make in ubuntu terminal. 

Creating a launch file for the previous configuration  

     Now, we have all the files created and the navigation stack configured. To run everything, 

we need to create a launch file in the package robot_nav_stack2/launch with the name 

move_base.launch. The following algorithm describes the launch program:   
-- Run the map server -- 

   call node "map_server" find “map.yaml"  
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   find amcl "amcl_demo.launch"  

   call node "move_base"  

 

-- Run the configuration files -- 

   call file "costmap_common_params.yaml" command "load global_costmap" 

   call file "costmap_common_params.yaml" command "load local_costmap" 

   call file "local_costmap_params.yaml" command "load" 

   call file "global_costmap_params.yaml" command "load" 

   call file "base_local_planner_params.yaml" command "load" 

 
     With this file we will launch all the files that we have created in the above section at the 

same time.  

IV.4.2.2. Adaptive Monte Carlo Localization (AMCL) for localization  

     This package provides probabilistic localization system for a robot moving on 2D. It 

implements the adaptive Monte Carlo localization approach, which uses a particle filter to 

track the pose of a robot against a known map. To run this package manually we us the 

following command line in Ubuntu terminal:  

 

IV.4.2.3. Path planning and obstacles avoidance  

     Previously, we have created the necessary files needed to perform the navigation process 

in a proper way. So, now we deal with the last step in this process by generating the last 

.launch file in the package robot_stdr/launch and name it  robot_in_stdr with the following 

algorithm to describe the launch file code and start performing path planning, obstacle 

avoidance and reaching the needed goals. 

     Where here we just start the necessary nodes and packages listed at first to start the 

navigation process.  
-- The Robot navigation simulation: -- 

  - stdr 

  - move_base 

  - amcl 

  - map_server 

  - rviz view 

 

   set names to "base", "stacks", "3d_sensor", "laser_topic", "odom_topic", "odom_frame_id", 

"global_frame_id".   

   

  

-- Name of the map to use (without path nor extension) and initial position -- 

   Set name as "map_file"        value is "find map file" 

   Set name as "initial_pose_x"  value is "2.0" 

   Set name as "initial_pose_y"  value is "2.0" 

   Set name as "initial_pose_a"  value is "0.0" 

   Set name as "min_obstacle_height"  value is "0.0" 

   Set name as "max_obstacle_height"  value is "5.0" 

 

-- ******************** Stdr******************** -- 

   call file “robot_manager.launch" 

-- Run STDR server with a prefedined map-- 

   call node "stdr_server" with screen output" map_file" 

-- Run Gui -- 

   call file "stdr_gui.launch" 

-- Run the relay to remap topics -- 

   call file “relays.launch.xml" 

   

-- ***************** Robot Model ***************** -- 

   call file "robot.launch.xml" 

     call "base"  
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     call "stacks"  

     call "3d_sensor"  

   call node "joint_state_publisher" 

      call node "mobile_base_nodelet_manager"  

   call node "cmd_vel_mux"  

 

-- ****** Maps ***** --   

   call node "map_server"   

      

-- ************** Navigation *************** -- 

   call file "move_base.launch.xml" 

    call "odom_topic"  

    call "laser_topic" 

    call "odom_frame_id"    

    call "base_frame_id"    

    call "global_frame_id"  

 

-- ***************** Manually setting some parameters ******************** -- 

     set parameter value to "min_obstacle_height" 

     set parameter value to "max_obstacle_height" 

     set parameter value to "min_obstacle_height" 

     set parameter value to "max_obstacle_height" 

 

-- ************** AMCL ************** -- 

   call file "amcl.launch.xml" 

     check name "scan_topic" with value "laser_topic" 

     check name "use_map_topic" with value "true" 

     check name "odom_frame_id" with value "odom_frame_id" 

     check name "base_frame_id" with value "base_frame_id" 

      check name "global_frame_id" with value "global_frame_id" 

     check name "initial_pose_x" with value "initial_pose_x" 

     check name "initial_pose_y" with value "initial_pose_y" 

     check name "initial_pose_a" with value "initial_pose_a" 

 

-- ******* Small tf tree connector between robot0 and base_footprint******* -- 

   call node "tf_connector" and load file "tf_connector.py" 

   

 -- **************** Visualisation **************** -- 

   Call node to start "rviz" and load the file "robot_navigation.rviz" 

   

     Finally, we should build the package using catkin_make command line to make the files 

executable. 

     When we run the previous .launch file using the following command line, the Rvis 

simulator popup as shown in Figure 4.15. The map and the robot will be loaded to the 

simulator. 
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Figure 4.15. Rviz popup screen to start the robot navigation.  

 

     Now, we just perform navigation in the map that we have created using the rviz parameter 

“2D Nav Goal” button is used to create an optimum path for the robot to reach the needed 

goal. Figure 4.16 shows the step by step path execution for a desired goal in known generated 

map.  

    

     

1 2 

3 4 
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Figure 4.16. Step by step path planning execution.  

IV.5. Conclusion  
     This chapter provides a depth explanation of the simulation of the RobuTER/ULM 

navigation process. Where, we have seen how to construct the 3D model of the robot in 

Solidworks and how to simulate the robot inside ROS indigo. Then, we showed how to build 

a map using SLAM package. Finally, we close the chapter by providing the path planning 

simulation procedure in 2D global map from one place to another. Hence, obstacles 

avoidance is done automatically in the local and global plane and adapting the path for new 

goals actualized regularly.  
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The aim of this project was to simulate and test an artificial intelligent navigation for 

differential drive autonomous mobile robot based on the Kinect camera. Hence, the first 

purpose was to make the mobile robot able to achieve any desired position by itself, 

including sensing the surrounding environment and building a virtual map. The second 

purpose was determining its position as a localization process, and finding and executing its 

path. 

During this work, we have stated some aspects about autonomous navigation for mobile 

robot, technical robot terms, sensors and present the robot data. In the simulation, we have 

created a virtual environment for the robot to explore and build a map; then, we have used 

this 2D map to perform navigation and path planning.   

Initially, the robot 3D model and the virtual map were designed. Then, we have started 

by building files for navigation stack. The first part was for the robot setup where we have 

configured the transformation frame, Odometry information, sensor information and the 

base controller; so that this will allow the mobile robot to explore the virtual environment 

and construct the 2D map through the execution of the SLAM algorithm. The second part 

consist of building the navigation stack which concerns the path planning in local and global 

map by configuring the local costmap and global costmap and running the AMCL algorithm 

for localization. Finally, we have reached the needed simulation and received the desired 

results. 

Future Works 

 Implementing this study in the real RobuTER/ULM was kind-off impossible since 

the robot does not have a driver that is compatible with ROS so that all the algorithms 

will be installed inside the robot. Hence, for now the robot just receives a set of data 

for the velocities of the tow wheels and the angles of the arm joints. In addition, once 

they, at CDTA, integrate a driver compatible with ROS; it is needed to add files extra 

to the ones that we have created, files that will detect and communicate with the robot 

hardware and read and adapt information from the real world.  

 

 The creation of a 3D map is possible using the Kinect camera and RTAB-Map (Real-

Time Appearance-Based Mapping) package in ROS. It is an RGB-D SLAM 

approach based on a global loop closure detector with real-time constraints. So, 

navigation in 3D will be more accurate for obstacle avoidance than 2D map.  
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Appendix 

-A- 

A.1. An Introduction to Robot Operating System ROS 
     Robot Operating System (ROS) is a trending robot application development platform that 

provides various features such as message passing, distributed computing, code reusing, and 

so on. 

     The ROS project was started in 2007 with the name Switchyard by Morgan Quigley as 

part of the Stanford STAIR robot project. The main development of ROS happened at 

Willow Garage. 

     Here are some of the reasons why people choose ROS over other robotic platforms such 

as Player,YARP, Orocos, MRPT, and so on [12]: 

• High-end capabilities: ROS comes with ready to use capabilities, for example, SLAM 

(Simultaneous Localization and Mapping) and AMCL (Adaptive Monte Carlo 

Localization) packages in ROS can be used for performing autonomous navigation in 

mobile robots and the MoveIt package for motion planning of robot manipulators. 

• Tons of tools: ROS is packed with tons of tools for debugging, visualizing, and performing 

simulation. The tools such as rqt_gui, RViz and Gazebo are some of the strong open source 

tools for debugging, visualization, and simulation. The software framework that has these 

many tools is very rare. 

• Support high-end sensors and actuators: ROS is packed with device drivers and 

interface packages of various sensors and actuators in robotics. The high-end sensors include 

Velodyne-LIDAR, Laser scanners, Kinect, and so on and actuators such as Dynamixel 

servos. We can interface these 

components to ROS without any hassle. 

• Inter-platform operability: The ROS message-passing middleware allows 

communicating between different nodes. These nodes can be programmed in any language 

that has ROS client libraries. We can write high performance nodes in C++ or C and other 

nodes in Python or Java. This kind of flexibility is not available in other frameworks. 

• Modularity: One of the issues that can occur in most of the standalone robotic applications 

are, if any of the threads of main code crash, the entire robot application can stop. In ROS, 

the situation is different, we are writing different nodes for each process and if one node 

crashes, the system can still 

work. Also, ROS provides robust methods to resume operation even if any sensors or motors 

are dead. 

• Concurrent resource handling: Handling a hardware resource by more than two 

processes is always a headache. Imagine, we want to process an image from a camera for 

face detection and motion detection, we can either write the code as a single entity that can 

do both, or we can write a single threaded code for concurrency. If we want to add more than 

two features in threads, the application behavior will get complex and will be difficult to 

debug. But in ROS, we can access the devices using ROS topics from the ROS drivers. Any 

number of ROS nodes can subscribe to the image message from the ROS camera driver and 

each node can perform different functionalities. It can 

reduce the complexity in computation and also increase the debug-ability of the entire 

system. 

• Active community: When we choose a library or software framework, especially from an 

open source community, one of the main factors that needs to be checked before using it is 

its software support and developer community. There is no guarantee of support from an 
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open source tool. Some tools provide good support and some tools don't. In ROS, the support 

community is active. The ROS community has a steady growth in developers worldwide. 

 

A.2. Understanding the ROS file system level 
     Similar to an operating system, ROS files are also organized on the hard disk in a 

particular fashion. In this level, we can see how these files are organized on the disk. The 

following graph shows how ROS files and folder are organized on the disk: 

 
Figure A.1. ROS File system level [12]. 

     A typical structure of a ROS package is shown here: 

 
 Figure A.2. Structure of a typical ROS package [12].  

     Let us now introduce some of ROS’s architecture keywords. ROS uses the concept of 

nodes, messages, topics, stacks, and packages, below a quick described of this concepts:   

 Node: A process that performs computation; nodes communicate with each other 

through messages. 

 Message: A strictly type of data structure; a node sends a message by publishing it 

to a topic. 

 Topic: Channel between tow or more nodes; nodes communicate by publishing 

and/or subscribing to the appropriate topics. 

 Package: Compilation of nodes that can easily be compiled and ported to other 

computers, necessary to build a complete ROS-based controller system. 

 Stack: Groups of ROS packages making easier the process of sharing code with the 

community. 
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A.3. Visualization and Simulation in ROS 
     The ROS framework comes with a great number of powerful tools to help the user and 

developer in the process of debugging the code, and detecting problems with both the 

hardware and software. In order to make simulations with our robots on ROS, we are going 

to use Gazebo, Rvize and Moveit. 

 

Gazebo 

     Robot simulation is an essential tool in every roboticist's toolbox. A well-designed 

simulator makes it possible to rapidly test algorithms, design robots, and perform regression 

testing using realistic scenarios. Gazebo offers the ability to accurately and efficiently 

simulate populations of robots in complex indoor and outdoor environments. At your 

fingertips is a robust physics engine, high-quality graphics, and convenient programmatic 

and graphical interfaces. 

 

Installing and Launching Gazebo 

Install ROS indigo and get the simulator_gazebo package by the commend line: 

 
Setup ros environnement variables : 

 
The standard Gazebo launch file is started using: 

 
Except in the case of Indigo, where the launch file is started using: 

 
This should start the simulator and open up a GUI window that looks like this: 

 
Figure A.3. The Gazebo GUI. 

 

Rviz  

     Rviz stands for ROS visualization. It is a general-purpose 3D visualization environment 

for robots, sensors, and algorithms. Like most ROS tools, it can be used for any robot and 

rapidly configured for a particular application.  

     Rviz can plot a variety of data types streaming through a typical ROS system, with 

heavy emphasis on the three-dimensional nature of the data. In ROS, all forms of data are 

attached to a frame of reference.   
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Installing and launching Rviz 

Download the rviz sources into your ros_workspace. First to satisfy any system 

dependencies. 

 
Now build the visualiser: 

 
You might have to run a line such as 

 
Then start the simulator : 

 

When rviz starts for the first time, you will see an empty window: 

 

Figure A.4. The Rviz GUI. 

STDR Simulator 

     Simple Two-Dimensional Robot Simulator (STDR Simulator) is a 2-D multi-robot Unix 

simulator. Its goals are:  

Easy multi-robot 2-D simulation  

     STDR Simulator's goal is not to be the most realistic simulator, or the one with the most 

functionalities. Our intention is to make a single robot's, or a swarm's simulation as simple 

as possible, by minimizing the needed actions the researcher has to perform to start his/hers 

experiment. In addition, STDR can function with or without a graphical environment, which 

allows for experiments to take place even using ssh connections. 
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To be ROS compliant  

     STDR Simulator is created in way that makes it totally ROS compliant. Every robot and 

sensor emits a ROS transformation (Tf) and all the measurements are published in ROS 

topics. In that way, STDR uses all ROS advantages, aiming at easy usage with the world's 

most state-of-the-art robotic framework. The ROS compliance also suggests that the 

Graphical User Interface and the STDR Server can be executed in different machines, as 

well as that STDR can work together with the Rviz simulator in ROS. 

 

 

Figure A.5. The STDR GUI. 

 

STDR Simulator ROS packages  

 stdr_server, Implements synchronization and coordination functionalities of STDR 

Simulator.  

 stdr_robot, Provides robot, sensor implementation, using nodelets for stdr_server to 

load them.  

 stdr_parser, Provides a library to STDR Simulator, to parse yaml and xml description 

files.  

 stdr_gui, A gui in Qt for visualizing purposes in STDR Simulator.  

 stdr_msgs, Provides msgs, services and actions for STDR Simulator.  

 stdr_launchers, Launch files, to easily bringup server, robots, guis. 

 stdr_resources, Provides robot and sensor descripiton files for STDR Simulator.  

 stdr_samples, Provides sample codes to demonstrate STDR simulator functionalities.  

http://wiki.ros.org/stdr_server
http://wiki.ros.org/stdr_robot
http://wiki.ros.org/stdr_parser
http://wiki.ros.org/stdr_gui
http://wiki.ros.org/stdr_msgs
http://wiki.ros.org/stdr_launchers
http://wiki.ros.org/stdr_resources
http://wiki.ros.org/stdr_samples
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Appendix 

-B- 

The Catkin workspace package architecture 
     In this part we will take a look on the packages that we have created in the catkin_robot 

workspace that we had made as a place to save our simulation files. 

     As we can see in the Figure C.1 below we do have three main files that are the basic 

architecture of our catkin_robot workspace where the src folder saves the packages that we 

create then to make this packages readable or executable we build them using the commend 

line catkin_make so that we generate system files in the build and devel folders of our 

catkin_robot workspace. 

     As we can see also we do have seven packages that describe the robot and the process of 

navigation with its files, each file contains codes either in C++, Python or Xml programing 

language. 

     For the description of the robot modal we do have the URDF package that we have 

created starting from the simulation in Solidworks 2015 and extracting the files to an URDF 

format by describing the joints and likes that build a transformation frame to each join point 

in the robot.    
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Figure B.1. The architecture of the Catkin_robot workspace files. 
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Appendix 

-C- 

Steps to Test the Kinect in ROS 

In the following we will take a look on the process of installing and running the Kinect 

Xbox360-V2 driver in ROS indigo. Here with the Kinect V2 we use the OpenNI drivers 

instead of Libfreenect drivers that are compatible with the Kinect V1. 

 sudo apt-get install libopenni0 libopenni-dev. 

 sudo apt-get install ros-indigo-openni-camera. 

 sudo apt-get install ros-indigo-openni-launch. 

o cd ~/Downloads 

unzip avin2-SensorKinect-v0.93-5.1.2.1-0-g15f1975.zip  

cd avin2-SensorKinect-15f1975/Bin 

tar -xjf SensorKinect093-Bin-Linux-x64-v5.1.2.1.tar.bz2 

cd Sensor-Bin-Linux-x64-v5.1.2.1 

sudo ./install.sh 

 To test in Rviz simulator the kinect.  

     roscore 

     roslaunch openni_launch openni.launch 

     rosrun image_view image_view image:=/camera/rgb/image_color 

     rosrun rviz rviz   

 
Figure C.1. The Kinect test in the Rviz simulator. 
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Appendix 

-D- 

Flowcharts shapes explanation  

 
Figure D.1. Flowcharts shapes explanation 

 

 


