
Registration Number: ………/…….

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Power and Control

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of

MASTER

In Electrical and Electronic Engineering

Option: Control

Title:

Presented by:

- BOULAHIA ALA EDDINE

Supervisor:

 BELAIDI HADJIRA

 HENTOUT ABDELFETAH

Kinect-based collision-free path
planning for mobile manipulators

II

Kinect-based collision-free path planning for mobile manipulators

Abstract:

The objective of this project is to generate, in off-line, a path (trajectory) without collision

for a mobile base (mobile base with an arm) in an indoor environment which is complex

dynamic and cluttered with obstacles the case of reaching tasks.

The generated free path must joint an initial situation of the robot base, (XB, YB, ZB)init , to

a predefined final position, (XB, YB, ZB)End .

In order to move the form an initial situation to the final goal while avoiding any obstacles

(using a technique of soft-computing), the robot will operate a kinect camera.

The implementation and validation will be performed on the mobile manipulator

RobuTer/ULM available at the DPR CDTA.

III

First and foremost, I am thankful to God almighty, for showing

heavenly blessing upon us, as without that nothing would have been

possible.

I would like to express my felt gratitude to my supervisors BELAIDI

HADJIRA from INELEC and Mr. HENTOUT ABDELFETAH from

CDTA for their support and guidance during the construction of this

work.

A big thanks to CDTA for opening their doors to me and offering

their help to make this work happen.

Also, A Special thanks to my family and friends for their support

and all INELEC staffs and teachers.

II

IV

Table of Contents

Front Page .. I

Acknowledgment .. II

Table of Contents .. III

List of Figures .. IV

List of Tables ... V

List of Acronym ... VI

General introduction .. 01

Chapter I: Locomotion and Navigation ... 03
I. Introduction ... 03

I.1. Locomotion/Manipulation description ... 03

I.2. Mobile robot navigation and Autonomy .. 03

I.2.1. Navigation .. 04

I.2.2. Autonomy .. 04

I.2.3. Autonomous navigation ... 04

I.2.3.1. Indoor navigation .. 05

I.2.3.2. Outdoor navigation .. 05

 I.3. Mobile manipulator an overview ... 07

I.3.1. A case of study: RobuTER/ULM .. 07

I.3.2. The architecture of the experimental robotic system 08

I.3.3. Description of the mobile base of RobuTER ... 08

I.3.4. The Ultra-Light Arms (ULM) of RobuTER .. 10

I.3.5. The Kinematic model of RobuTER/ULM ... 10

 I.4. Conclusion ... 11

Chapter II: Mobile robot manipulator Kinematics 12

II. Introduction ... 12

II.1. Main reference frames .. 12

II.2. Kinematic analysis of the mobile base .. 13

II.2.1. Forward kinematic models .. 14

II.2.2. The transformation matrix 𝑇𝐵
𝐴 that defines the base 15

II.2.3. Motion Control (Kinematic Control) .. 15

II.2.3.1. Open loop control (trajectory-following) 15

II.2.3.2. Feedback control ... 16

II.3. Kinematic analysis of the mobile arm .. 17

II.3.1. Forward Kinematics .. 18

III

V

 II.3.1.1. The general robot manipulator model analysis 19

 II.3.1.2. Full robot joints transformation ... 20

II.3.1.3.ULM arm manipulator model analysis and transformation matrix 𝑇𝐸
𝑀 .. 21

II.3.2. Inverse Kinematics .. 24

II.3.2.1. Geometric approach .. 25

II.3.2.2. Analytical or algebraic approach .. 27

II.4. Kinematic analysis of the mobile manipulator (RobuTER/ULM) 31

II.5. Conclusion .. 31

Chapter III : Perception .. 32

III. Introduction .. 32

III.1. Sensors classification for Mobile Robots .. 32

III.1.1. Proprioceptive sensors .. 32

III.1.2. Exteroceptive sensors ... 32

III.1.3. Passive sensors .. 32

III.1.4. Active sensors .. 32

II.2. Basic sensor characteristics ... 33

II.2.1. Dynamic range .. 33

II.2.2. Resolution ... 33

II.2.3. Linearity ... 33

II.2.3. Sensitivity ... 34

III.3. The main RobuTER/Ulm Integrated sensors .. 34

 III.3.1. The Kinect Xbox360 V1 sensor .. 34

III.3.1.1. Depth measurement model .. 35

III.3.1.2. Sensor calibration .. 36

III.3.2. The Ultrasonic Sensor in RobuTER ... 40

III.3.3. The Incremental Encoder in RobuTER .. 44

III.4. Conclusion ... 45

Chapter IV: Simulation and results ... 46

IV. Introduction .. 46

IV.1. Robot 3D model .. 46

SolidWorks .. 46

IV.2. Creating a 3D virtual environment in Gazebo ... 47

IV.3. Loading the 3D robot to the virtual environment in Gazebo 49

IV.4. Navigation stack .. 50

IV.4.1. Navigation stack – Robot Setups ... 52

IV.4.1.1. Transform Configuration TF .. 53

III

VI

Creating a broadcaster ... 54

Creating a listener .. 55

IV.4.1.2. Sensor Information ... 55

Publishing LaserScans over ROS ... 56

Publishing PointClouds over ROS ... 56

IV.4.1.3. Odometry information ... 57

IV.4.1.4. Base Controller (base controller) .. 59

IV.4.1.5. Creating a map in ROS using SLAM ... 61

Creating the map step by step .. 62

IV.4.1.6. Saving the map using map_server .. 64

IV.4.1.7. Loading the map using map_server .. 66

IV.4.2. Navigation stack – Beyond Setups ... 66

IV.4.2.1. Costmaps configuration (globalcost map and localcost map) 66

Creating a launch file for the previous configuration 69

IV.4.2.2. Adaptive Monte Carlo Localization (AMCL) for localization ... 69

IV.4.2.3. Path planning and obstacles avoidance 69

 IV.5. Conclusion .. 73

General Conclusion and Future Works .. 74
General Conclusion ... 74

Future works ... 74

References ... 75

Appendix .. 76

Appendix A: Introduction to ROS .. 76

A.1. An Introduction to Robot Operating System ROS ... 76

A.2. Understanding the ROS file system level ... 77

A.3. Visualization and Simulation in ROS ... 78

Gazebo .. 78

Installing and Launching Gazebo ... 78

Rviz .. 79

Installing and launching Rviz .. 79

STDR Simulator .. 80

Easy multi-robot 2-D simulation ... 80

To be ROS compliant ... 80

STDR Simulator ROS packages .. 81

 Appendix B: The Catkin workspace package architecture ... 82

 Appendix C: Steps to Test the Kinect in ROS.. 85

 Appendix D: Flowcharts shapes explanation .. 86

III

VII

 List of figures

Figure 1.1: Robot interaction diagram ... 04

Figure 1.2: Classical mobile robot control system composition 06

Figure 1.3: Reference control shame for mobile robot systems 07

Figure 1.4: RobuTED/ULM available at CDTA .. 08

Figure 1.5: The architecture of the experimental robotic system 09

Figure 1.6: Ultra-Light Arm (ULM) of RobuTER .. 10

Figure 1.7: The general kinematic model of the RobuTER/ULM 11

Figure 2.1: (a) The Global reference frame. (b) The robot Wheels Kinematics 13

Figure 2.2: Open loop control of a mobile robot based on straight lines and circular

trajectory segments. ... 16

Figure 2.3: The schematic representation of forward and inverse kinematics 17

Figure 2.4: Coordinate frame assignment for a general manipulator 19

Figure 2.5: (a) Tope View of the ULM manipulator. (b) Top view of the arm in

Cartesian space .. 26

Figure 2.6: (a) Planner view of the ULM. (b) Planner view of the 6DOF robotic arm

 ... 27

Figure 3.1: The Kinect sensor ... 34

Figure 3.2: Depth measurement geometry ... 36

Figure 3.3: IR/RGB camera ... 37

Figure 3.4: The difference between IR image and color image 38

Figure 3.5: Using OpenCV AP in GML Camera calibration toolbox 38

Figure 3.6: Depth Image of the RGB camera .. 39

Figure 3.7: The calibration shows that the pixels match well 40

Figure 3.8: Configuration of 24 Ultrasonic Range sensors 40

Figure 3.9: Projection of a Range Reading to External Coordinates 43

Figure 3.10: Model of the Ultrasonic Range Sensor and its Uncertainties 43

Figure 3.11: Quadrature optical wheel encoder .. 44

Figure 4.1: 360° View of RobuTER/ULM. a) Left view. b) Top view. c) Front view. d)

Rear view ... 48

Figure 4.2: Creating a Virtual environment where map exploring will be performed. .. 49

Figure 4.3: Inserting the virtual robot to the created map and test it in Gazebo 50

Figure 4.4: Display navigation stack in Rvis .. 51

Figure 4.5: The relationship between the navigation stack parts 52

IV

VIII

Figure 4.6: Navigation stack setup .. 53

Figure 4.7: Demonstration for the base_laser and base_link position. 54

Figure 4.8: Overview of the SLAM process ... 63

Figure 4.9: Step by step screenshots for the map building process 65

Figure 4.10: The files created in the catkin_robot workspace .. 66

Figure 4.11: my_map.yaml configuration file description ... 66

Figure 4.12: The final map build .. 66

Figure 4.13: Demonstration for the global navigation .. 68

Figure 4.14: Demonstration for the local navigation. .. 68

Figure 4.15: Rviz popup screen to start the robot navigation ... 73

Figure 4.16: The step by step path planning execution .. 73

Figure A.1: ROS File system level ... 77

Figure A.2: Structure of a typical ROS package ... 77

Figure A.3: The Gazebo GUI .. 79

Figure A.4: The Rviz GUI ... 80

Figure A.5: The STDR GUI ... 81

Figure B.4: The architecture of the Catkin_robot workspace files 84

Figure C.4: The Kinect test in the Rviz simulator .. 85

Figure D.1. Flowcharts shapes explanation .. 86

IV

IX

List of Tables

Table 1.1: Locomotion and manipulation some core issues .. 3

Table 1.2: Geometric properties for the RobuTER/ULM .. 8

Table 2.1: The MDH parameters and joints limits of the ULM Manipulator 22

Table 3.1: Kinect Sensor specifications ... 35

Table 3.2: The orientation of direct landmark ... 41

Table 3.3: The position information of each sensor .. 41

Table 3.4: Incremental Encoder line driver for RobuTER .. 45

V

X

List of acronym

AMCL: Adaptive Monti Carlo Localization.

A/D conversion: Analog to Digital conversion.

Acc_lim: Acceleration limit.

CDTA: Center of Development and technology of Algeria.

CMOS camera: Complementary Metal-Oxide Semiconductor camera.

CPR: Cycles Per Revolution.

CAD software: Computer Aided Design.

Dof: Degree of freedom.

DC: Direct Current.

dB: The Decibel.

2D ,3D: 2 Diamantions, 3 Diamantions.

EKF: Extended Kalman Filter.

IR: Infrared.

ICC: Instantaneous Center of Curvature.

Ir_of_robot: Internal radius of the robot.

GUI: Graphical User Interface.

GML camera: Graphic and Media Lab camera.

Max_vel: Maximum velocity.

MDH: Modified Denavit-Hartenberg.

MRPT: Mobile Robot Programming Toolkit.

Nav_msgs: Navigation messages.

VI

XI

OpenCV API: Open Source Computer Vision Application Programming Interface.

OpenNI: Open Natural Interaction.

ROS: Robot Operating System.

RVIZ: Robot visualisation.

RGB: Red, Green, Blue.

Robot_tf_publisher: Robot transformation publisher.

SLAM: Simultaneous Localization and Mapping.

STDR: Simple Two-Dimensional Robot Simulator.

STAIR : STanford Artificiel Intelligence Robot.

.SDF file: Standard Database Format.

Sensor_msgs: Sensor messages.

TF: Transformation frame.

TCP/IP: Transmission Control Protocol/ Internet Protocol.

Tf_broadcaster: Transformation broadcaster.

Tf_listener: Transformation listener.

USB: Universal Serial Bus.

URDF: Unified Robot Description Format.

ULM: Ultra-Light Arm.

. Xml file: Extensible Markup Language.

YARP: Yet Another Robot Platform.

VI

i

General Introduction

1

Through their ability to perform tasks in unstructured environments, robots have made

their way into applications like: transportation, geology negotiates terrain, military,

agriculture, mining, carries payload, customer support and farming. All mobile robots use

locomotion that generates traction. The well-designed robotic locomotion stabilizes the

robot’s frame, smooth's the motion of sensors and insure the configuration of the working

tools.

In our days’ mobile robot navigation process became an essential feature that guides

autonomous robots. During this process, the robot must have knowledge about its objectives

starting from processing the environment to detect its location and destination then use the

necessary strategies to reach its specified task. Hence, different steps needed from the robot

to step through including: perception to collect information from sensors, localization to

estimate its initial position, path planning methods to create the optimal path to reach its final

position then execute the process.

Several recent robotic applications are performed by a manipulator mounted on a mobile

base. These kinds of robots are called "mobile manipulators". They are systems composed

of robotic arm mounted on a mobile base (ex; our case of studies, RobuTER/ULM). This

combination gives rise for a new class of robots with flexible properties. However, the many

Degrees of freedom (Dof) of this type of robots (for our case RobuTER/ULM, 03 Dof for

the mobile base and 06 Dof for the manipulator) present new challenges and the combination

between the mobile base and the manipulator becomes very difficult to monitor. In addition,

to the other problems like the modeling and perception of their environment using multi-

sensors fusion, generation of operation plans from the assigned tasks, path planning, etc...

The project objectives focus on mobile manipulator navigation problems in general;

particularly on perception, localization, and cognition. These points are achieved by

designing an autonomous mobile robot using visual navigation to analyze the environment

map with the Image processing tools, multi-sensors fusion to detect and track the robot

position regularly, soft computing techniques to generate the path from the initial position

to the final one, then build a closed loop control to keep the robot on the designed trajectory

by adjusting the data sets that we will send as commends to the robot manipulator.

Hence, this work is organized as follow:

General Introduction

2

General introduction

 Chapter 01: Localization and locomotion;

 Chapter 02: Mobile robot manipulator Kinematics;

 Chapter 03: Perception (different sensing devices);

 Chapter 04: Simulation and results;

Conclusion and perspectives.

[Tapez le titre du document]

3

I. Introduction
A mobile robot needs locomotion mechanisms that enable it to move unbounded

throughout its environment. But there is large variety of possible ways to move, and so the

selection of a robot’s locomotion approach is an important aspect of mobile robot design.

Hence this chapter deals with an overall description of the robot locomotion and navigation,

and all the terms that have a relationship to both of them; then an overview of the robot

control process is given. The chapter ends up with the description of the dynamic and

kinematic characteristics of the RobuTER/ULM.

I.1. Locomotion/Manipulation description
Locomotion is the complement of manipulation. In manipulation, the robot arm is fixed

but moves objects in the workspace by imparting force to them. In locomotion, the

environment is fixed and the robot moves by imparting force to the environment. In both

cases, the scientific basis is the study of actuators that generate interaction forces, and

mechanisms that implement desired kinematic and dynamic properties. Locomotion and

manipulation thus share the same core issues of stability, contact characteristics, and

environmental type as summarized in Table 1.1.

Table 1.1. Locomotion and manipulation some core issues.

I.2. Mobile robot navigation and Autonomy
Figure 1.1 shows the robot interaction diagram. In general, the robot in its environment

and according to its mission needs to answer three main questions:

 Where am I now?

 Where am I going to?

 How do I get there?

To deal with these questions the robot must:

 Perceive the environment to build a map;

Stability

• number and geometry
of contact points

• center of gravity

• static/dynamic stability

• inclination of terrain

Characteristics of
contact

• contact point/path size
and shape

• angle of contact

• friction

Type of environment

• structure

• medium, (e.g. water,
air, soft or hard ground)

Chap 1

[Tapez le titre du document]

4

 Analyze the environment and its elements;

 Find its initial position;

 Find its final position and build an optimal path to reach it;

 Start the execution of the tasks by starting its movement.

Figure 1.1. Robot interaction diagramme.

I.2.1. Navigation

Navigation is one of the most challenging competences required of a mobile robot.

Success in navigation requires success at the basic four building blocks of navigation, which

are:

Perception: the robot must interpret its sensors to extract meaningful data;

Localization: the robot must determine its position in the environment;

Cognition: the robot must decide how to act to achieve its goals;

Motion control: the robot must modulate its motor outputs to achieve the desired

trajectory.

Navigation is a central capability of mobile robots and substantial progress has been made

in the area of autonomous navigation in the past [1].

I.2.2. Autonomy

Autonomy is the quality of being self-controlled. One measure of autonomy is the amount

of human control that is required for the robot's operation.

An autonomous robot is capable of detecting objects by means of sensors or cameras and

processing this information into movement without a remote control.

I.2.3. Autonomous navigation

There exist two types of autonomous navigation:

I.2.3.1. Indoor navigation

[Tapez le titre du document]

5

 In order to associate behaviors with a place (localization), it is required for the robot to

know where it is and be able to navigate point-to-point. Such navigation began with wire-

guidance and progressed to beacon-based triangulation. Current commercial robots

autonomously navigate based on sensing natural features. At first, autonomous navigation

was based on planar sensors, such as laser range-finders, that can only sense at one level.

The most advanced systems now fuse information from various sensors for both

localization (position) and navigation. Systems such as Motivate can rely on different

sensors in different areas, depending upon which provides the most reliable data at the

time, and can re-map a building autonomously [3].

I.2.3.2. Outdoor navigation

Outdoor autonomy is most easily achieved in the air, since obstacles are rare. Pilotless

drone aircraft are increasingly used for reconnaissance. Some of these unmanned aerial

vehicles are capable of flying their entire mission without any human interaction at all.

Outdoor autonomy is the most difficult for ground vehicles, due to:

 Three-dimensional terrain.

 Great disparities in surface density.

 The weather changes.

 Instability of the sensed environment.

In details, autonomous navigation includes different interrelated activities such as:

(i) Perception, as obtaining and interpreting sensory information. Autonomous

robots must have a range of environmental sensors to perform their task and stay

out of trouble. Common exteroceptive sensors (Exteroception is sensing things

about the environment) include Contact Sensors, Range Sensor and Vision

Sensors.

(ii) Exploration, as the strategy that guides the robot to select the next direction to

go. Using realistic sensors to carry out a systematic exploration of its environment. The robot

is modeled as a single point moving in a two-dimensional configuration space populated

with visually opaque and transparent obstacles. The robot is equipped with proximity

sensors, a vision-based recognition system, all of which have some uncertainty associated

with their measurements.

(iii) Mapping, involving the construction of a spatial representation of the environment

by using the perceived sensory information. Mapping is that branch of one, which deals

Chap 1

https://en.wikipedia.org/wiki/Triangulation
https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle
https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle

[Tapez le titre du document]

6

with the study and application of ability to construct map or floor plan by the autonomous

robot and to localize itself in it. The problem of learning maps with mobile robots has

received considerable attention over the past years. Most of the approaches assume that the

environment is static during the data-acquisition phase [4].

(iv) Localization, as the strategy to denotes the ability of the robot to establish its own

position and orientation within the frame of reference.

(v) Path planning, as the strategy to find a path towards a goal location being optimal or

not. Path planning is effectively an extension of localization, so that it requires the

determination of the robot's current position and a position of a goal location, both within

the same frame of reference or coordinates.

(vi) Path execution, where motor actions are determined and adapted to environmental

changes and by sending commends to the actuators to turn them with a desired acceleration

and angle to move forward the trajectory or path that have been built.

To operate in crowded, dynamic environments, autonomous robots must be able to

effectively utilize and coordinate their limited physical and computational resources. As

complexity increases, it becomes necessary to impose explicit constraints on the control of

planning, perception, and action to ensure that unwanted interactions between behaviors do

not occur.

The classical robotic control system is based on three sequence blocks: Sensing ->

Thinking -> Acting as it is shown in figure 1.2.

Figure 1.2. Classical mobile robot control system composition

The cycle for the mobile robot control shame and the interaction between these activities

are summarized by figure 1.3.

Chap 1

https://en.wikipedia.org/wiki/Frame_of_reference
https://en.wikipedia.org/wiki/Path_planning

[Tapez le titre du document]

7

Figure 1.3. Reference control shame for mobile robot systems [1].

I.3. Mobile manipulator an overview

Nowadays, mobile manipulator is a widespread term to refer to robot systems built from

a robotic manipulator arm mounted on a mobile base. Such systems combine the advantages

of mobile base and robotic manipulator arms and reduce their drawbacks. This system offers

a dual advantage of mobility offered by a mobile platform and dexterity offered by the

manipulator. However, the operation of such system is challenging because of the many

degrees of freedom and the unstructured environment that it performs in. The General

compositions of such system are:

 Mobile Platform or base.

 Robot manipulator or arm.

 Vision (cameras, sensors to sense the internal changes in the robot, sensors to

sense the external changes in the environment …).

 Tooling (End-of-the-arm design and configuration).

I.3.1. A case of study: RobuTER/ULM

RobuTER/ULM is an autonomous mobile robot manipulator that is available in the

Center of Development of Advanced Technologies (CDTA) of Algiers. The locomotion of

Chap 1

https://en.wikipedia.org/wiki/Robot
https://en.wikipedia.org/wiki/Dexterity
https://en.wikipedia.org/wiki/Manipulator

[Tapez le titre du document]

8

this robot is performed via the control of two independent DC motors coupled to each drive

wheel, and two additional caster wheels.

The RobuTER/ULM is shown in figure 1.4, and its geometric properties are given in the

following table (Table 1.2).

Table 1.2. Geometric properties for the RobuTER/ULM.

Property Length Width Height Weight Payload Max

speed

Value 102.5 cm 68.0 cm 44.0 cm 150 kg 120 kg 1.0 m/s

Figure 1.4. RobuTED/ULM available at CDTA [2].

I.3.2. The architecture of the experimental robotic system

The experimental robotic system, shown in figure 1.5, consists of a local (Operator) site

and a remote site, connected by wireless communication systems:

 Local site: it includes an off-board PC running under Windows XP, a

wireless TCP/IP communication media, a wireless video reception system and input

devices.

 Remote site: it includes the RobuTER/ULM mobile manipulator, a

wireless TCP/IP Communication media and a wireless video transmission system.

I.3.3. Description of the mobile base of RobuTER

The robot base consists of a platform with two wheels and a load capacity of 15 kg (see

figure 1.5). The wheels are 250 mm in diameter, and have a torque of 22 Nm nominal per

wheel. They are driven by DC electric motors and enable it to reach a nominal speed of 2.6

m/s. The direction of RobuTER is given by the differential speed of the two wheels. The two

wheels are placed at the front of the platform to provide stability.

The nominal robot consumption is 30A and between 30 to 48VDC, the peak current is

60A to 48VDC for 2s.

Chap 1

[Tapez le titre du document]

9

Figure 1.6. RobuTER mobile Base [2].

Figure 1.5. The architecture of the experimental robotic system [2].

Chap 1

[Tapez le titre du document]

10

I.3.4. The Ultra Light Arms (ULM) of RobuTER
The ULM has six axes as they appear in figure 1.6 (provides 6 Dof), when the arm is fully

extended the arm reaches 700 mm and has a repeatability of +/- 1 mm and a load capacity

of 2kg.

Terms of use: Temperature: 0 ° C to 45 ° C

Humidity: 20-80% non-condensing

Nominal consumption of the arm: 36A when 30 to

48VDC.

Current crest of the arm: 60A (for 2s to 48VDC).

Figure 1.6. Ultra Light Arm (ULM) of RobuTER [2].

I.3.5. The Kinematic model of RobuTER/ULM

Kinematics is the description of motion without regard to the forces that cause it. It is a

collection of studies of position, velocity, acceleration, and higher derivatives of the position

variables. The mobile robot kinematics is deeply studied in chapter 2. However, a general

idea about the RobuTER/ULM kinematic model can be assembled as shown in figure 1.7.

Chap 1

[Tapez le titre du document]

11

Figure 1.7: The general kinematic model of the RobuTER/ULM

1.4. Conclusion
This chapter provides a brief introduction to locomotion and navigation in general and

the RobuTER/ULM as a specific case of studies. All the keywords used throughout this

chapter, including the different block paradigms, necessary terms like autonomous

navigation and different steps that the robot take in the navigation process starting from

perception and map building followed by finding its localization, are discussed within this

chapter. Then an overview in mobile manipulators architecture and finally an introduction

to the kinematics analysis for RobuTER/ULM are given also.

Chap 1

 Mobile robot manipulator Kinematics

12

II. Introduction
Kinematics is the most basic study of how mechanical systems behave. In mobile

robotics, it is needed to understand the mechanical behavior of the robot both in order to

design appropriate mobile robots for tasks and to understand how to create control software

for an instance of mobile robot hardware. Of course, mobile robots are not the first complex

mechanical systems which require such analysis. Robot manipulators have been the subject

of intensive study for more than thirty years [1].

Hence, this chapter is organized as follow: In the first section, notation that allows the

expression of robot motion in a global reference frame and in the robot’s local reference

frame is introduced. Then, using this notation, the construction of simple forward kinematic

model of motion is demonstrated by describing how the entire robot moves as a function of

its geometry and individual wheel behavior.

Next, the kinematic constraints of individual wheels are formally described, and then

these kinematic constraints are combined to express the whole robot’s kinematic constraints.

With these tools, one can evaluate the paths and trajectories that define the robot’s

maneuverability.

In the second section, the arm manipulator kinematics, the forward kinematics and inverse

kinematics is studied. Forward kinematics problem is straightforward and there is no

complexity in deriving the equations. Hence, there is always a forward kinematics solution

of a manipulator. Inverse kinematics is a much more difficult problem than forward

kinematics. The solution of the inverse kinematics problem is computationally expansive

and generally takes a very long time in the real-time control of manipulators.

 Hence, the forward and inverse kinematics transformations for an open kinematics chain

are described based on the homogenous transformation. Then, geometric and algebraic

approaches are given. Afterward, problems in the inverse kinematics are discussed and

explained. Finally, the forward and inverse kinematics transformations are derived based on

the quaternion modeling convention.

II.1. Main reference frames
The kinematic analysis of the robot needs to focus on the following main reference frames

and transformation matrices:

 𝑅𝐴 = (𝑂𝐴, �⃗�𝐴 , �⃗�𝐴 , �⃗�𝐴): Absolute reference frame.

 𝑅𝐵 = (𝑂𝐵, �⃗�𝐵 , �⃗�𝐵 , �⃗�𝐵): Mobile base reference frame.

 𝑅𝑀 = (𝑂𝑀, �⃗�𝑀 , �⃗�𝑀 , �⃗�𝑀): Manipulator reference frame.

Chap 2

 Mobile robot manipulator Kinematics

13

 𝑅𝐸 = (𝑂𝐸 , �⃗�𝐸 , �⃗�𝐸 , �⃗�𝐸): End-effector reference frame.

 𝑇𝐸
𝑀 : Transformation matrix defining 𝑅𝐸 in 𝑅𝑀. It corresponds to the Kinematic

Model of the manipulator.

 𝑇𝐵
𝐴 : This matrix defines 𝑅𝐵 in 𝑅𝐴 .

 𝑇𝑀
𝐵 : This matrix defines 𝑅𝑀 in 𝑅𝐵.

 𝑇𝐸
𝐴 : This matrix defining 𝑅𝐸 in 𝑅𝐴.

II.2. Kinematic analysis of the mobile base
A relationship between the global reference frame of the plane and the local reference

frame of the robot was established in order to specify the position of the robot on the plane.

The axes 𝑋𝑖 and 𝑌𝑖 in figure 2.1(a) define an arbitrary inertial basis on the plane as the

global reference frame from some origin 𝑂: { 𝑋𝐼 , 𝑌𝐼 }. To specify the position of the robot,

choose a point P on the robot chassis as its position reference point. The basis { 𝑋𝑅 , 𝑌𝑅 }

defines two axes relative to P on the robot chassis and is thus the robot’s local reference

frame. The position of P in the global reference frame is specified by coordinates x and y,

and the angular difference between the global and local reference frames is given by 𝛳. The

position of the robot can be described as a vector with these three elements. Note the use of

the subscript 𝐼 to clarify the basis of this position as the global reference frame (eq. 2.1):

𝜉𝐼 = [
𝑥
𝑦
𝛳
] …………………………………. (2.1)

The velocity in the global reference frame is: �̇�𝐼 = [
�̇�
�̇�

 𝛳 ̇
].…………………………. (2.2)

Figure 2.1. (a) The Global reference frame. (b) The robot Wheels Kinematics

Chap 2

 Mobile robot manipulator Kinematics

14

To describe the robot motion in terms of component motions, it will be necessary to map

motion along the axes of the global reference frame to motion along the axes of the robot’s

local reference frame. Of course, the mapping is a function of the current position of the

robot. The mapping operation is denoted by eq. 2.3:

𝜉�̇� = 𝑅(𝛳) 𝜉�̇�
𝐼𝑛𝑣𝑒𝑟𝑠𝑒
⇒ 𝜉�̇� = 𝑅(𝛳)

−1 𝜉�̇� ……………………………………. (2.3)

This mapping is accomplished using the orthogonal rotation matrix:

𝑅(𝛳) = [
𝑐𝑜𝑠𝛳 𝑠𝑖𝑛𝛳 0
−𝑠𝑖𝑛𝛳 𝑐𝑜𝑠𝛳 0
0 0 1

]
𝐼𝑛𝑣𝑒𝑟𝑠𝑒
⇒ 𝑅(𝛳)−1 = [

𝑐𝑜𝑠𝛳 −𝑠𝑖𝑛𝛳 0
𝑠𝑖𝑛𝛳 𝑐𝑜𝑠𝛳 0
0 0 1

]… (2.4)

II.2.1. Forward kinematic models

The differential drive robot has two wheels (see Figure 2.1 (b)), each with diameter r. P

is centered between the two drive wheels; each wheel is a distance 𝑙 from 𝑃.

Given r, 𝑙, p, 𝛳 and the speed of each wheel, φ̇r and φ̇𝑙 a forward kinematic model would

predict the robot’s overall speed in the global frame given by eq. 2.5.

𝜉�̇� = 𝑓(𝑙, 𝑟, 𝛳, φ̇r, φ̇𝑙) ………………………. (2.5)

And the Instantaneous Center of Curvature is given by eq. 2.6:

 ICC = [x − R sin Ɵ , y + R cos Ɵ] ……………… (2.6)

Also we have the velocities equations on the two wheels are:

𝑉𝑟 = ω(R + l) ; V𝑙 = ω(R − l)
𝐻𝑒𝑛𝑐𝑒 𝑤𝑒 𝑔𝑒𝑡:
⇒ 𝑅 = 𝑙

𝑉𝑟 + 𝑉𝑙

𝑉𝑟 − 𝑉𝑙
 ; ω =

𝑉𝑟 − 𝑉𝑙

2𝑙
 ;

𝑉 = 𝑅ω =
𝑉𝑟+𝑉𝑙

2
 ………. (2.7)

Combining these individual formulas yields a kinematic model given by eq. 2.8 [5]:

𝜉�̇� = 𝑅(𝛳)
−1 𝜉�̇�

𝐺𝑖𝑣𝑒𝑠:
⇒ [

𝑥�̇�
𝑦�̇�
Ɵİ
] = [

𝑐𝑜𝑠𝛳 −𝑠𝑖𝑛𝛳 0
𝑠𝑖𝑛𝛳 𝑐𝑜𝑠𝛳 0
0 0 1

] [

𝑥�̇�
𝑦�̇�
�̇�𝑅

] = [
𝑉 𝑐𝑜𝑠Ɵ
𝑉𝑠𝑖𝑛Ɵ

ω

] =

[

𝑉𝑟+𝑉𝑙

2
𝑐𝑜𝑠Ɵ

𝑉𝑟+𝑉𝑙

2
𝑠𝑖𝑛Ɵ

𝑉𝑟−𝑉𝑙

2𝑙]

 …… (2.8)

Note that neither wheel can contribute to sideways motion in the robot’s frame, so 𝑥�̇� = 𝑉

, Ɵ̇R = ω and �̇�𝑅 = 0 .

During its motion, the mobile base calculates its position coordinates and orientation

angles in real time and to build a near position transformation of the position in the global

frame the following approximation are used:

 �̇�𝐼 ≈
∆𝑋

∆𝑇
 , �̇�𝐼 ≈

∆𝑌

∆𝑇
 , �̇�𝐼 ≈

∆𝑋

∆𝑇
 , while ∆𝑇 is very small.

 The curve between two positions is approximated by a line-segment with constant

angle: Ɵ +
∆Ɵ

2
 .

 ∆𝐷𝑟 , ∆𝐷𝑙: are the traveled distances for the right and left wheels respectively.

Chap 2

 Mobile robot manipulator Kinematics

15

Hence, eq. 2.9 is gotten for the left and right wheels respectively [5]:

[
∆𝑋𝐼
∆𝑌𝐼
∆𝜃𝐼

] =

[

 ∆𝐷 𝑐𝑜𝑠(𝜃 +

∆𝜃

2
)

∆𝐷 𝑠𝑖𝑛(𝜃 +
∆𝜃

2
)

(∆𝐷𝑟−∆𝐷𝑙)

2𝑙]

=

[

∆𝐷𝑟+∆𝐷𝑙

2
 cos (𝜃 +

∆𝜃

2
)

∆𝐷𝑟+∆𝐷𝑙

2
 sin (𝜃 +

∆𝜃

2
)

∆𝐷𝑟−∆𝐷𝑙

2𝑙]

…………… (2.9)

And in the Global reference frame, the next position can be found by eq. 2.10 [5]:

𝜉𝐼(𝑘 + 1) = 𝜉𝐼(𝑘) + ∆𝜉𝐼 = [
𝑋𝐼
𝑌𝐼
𝜃𝐼

] +

[

∆𝐷𝑟+∆𝐷𝑙

2
 cos (𝜃 +

∆𝜃

2
)

∆𝐷𝑟+∆𝐷𝑙

2
 sin (𝜃 +

∆𝜃

2
)

∆𝐷𝑟−∆𝐷𝑙

2𝑙]

…….. (2.10)

II.2.2. The transformation matrix 𝑻𝑩
𝑨 that defines the base

Assuming that the non-holonomic mobile base, RobuTER, moves on the plan, its

kinematic model can be decided by three parameters 𝑥𝐵, 𝑦𝐵 𝑎𝑛𝑑 𝜃𝐵 , which represent the

Cartesian coordinates of 𝑂𝐵 in 𝑅𝐴 and the orientation angle of the mobile base. Hence the

transformation matrix that defines the base is given by eq. 2.11:

𝑇 = [

cos 𝜃𝐵 – sin 𝜃𝐵 0 𝑥𝐵
sin 𝜃𝐵 cos 𝜃𝐵 0 𝑦𝐵
0 0 1 𝑧𝐵
0 0 0 1

]𝐵
𝐴 ………………………….…… (2.11)

II.2.3. Motion Control (Kinematic Control)

Motion control might not be an easy task for non-holonomic systems. However, different

studies have been done on the topic and some adequate solutions for motion control of a

mobile robot system are available:

II.2.3.1. Open loop control (trajectory-following)

The objective of a kinematic controller is to follow a trajectory described by its position

or velocity profile versus time. This is often done by dividing the trajectory (path) into

motion segments of clearly defined shape, for example, straight lines and segments of a

circle [1]. The control problem is thus to pre-compute a smooth trajectory based on line and

circle segments which drives the robot from the initial position to the final position as shown

in figure 2.2. This approach can be regarded as open-loop motion control, because the

measured robot position is not fed back for velocity or position control. It has several

disadvantages such as:

• It is not at all an easy task to pre-compute a feasible trajectory if all limitations and

constraints of the robot’s velocities and accelerations have to be considered.

• The robot will not automatically adapt or correct the trajectory if dynamic changes

of the environment occur.

Chap 2

 Mobile robot manipulator Kinematics

16

• The resulting trajectories are usually not smooth, because the transitions from one

trajectory segment to another are not smooth. This means there is a discontinuity in

the robot’s acceleration.

Figure 2.2. Open loop control of a mobile robot based on straight lines and circular trajectory

segments.

II.2.3.2. Feedback control

In automatic control, feedback improves system performance by allowing the successful

completion of a task even in the presence of external disturbances or initial errors.

A more appropriate approach in motion control of a mobile robot is to use a real-state

feedback controller [1]. With such a controller the robot’s path-planning task is reduced to

setting intermediate positions (sub goals) lying on the requested path.

However, the most common approach to feedback motion planning in the presence of

obstacles is based on potential fields [1]. Based on developed navigation functions (potential

functions with a unique minimum at the goal and meeting certain other criteria) using

potential functions in a generalized sphere world utilized a potential field over the

operational space to guide a manipulator or mobile robot to the goal.

II.3. Kinematic analysis of the mobile arm
There are mainly two different spaces used in kinematics modeling of manipulators

namely, Cartesian space and Quaternion space. The transformation between two Cartesian

Chap 2

 Mobile robot manipulator Kinematics

17

coordinate systems can be decomposed into a rotation and a translation. There are many

ways to represent rotation, including the following: Euler angles, Gibbs vector, Cayley-Klein

parameters, Pauli spin matrices, axis and angle, orthonormal matrices, and Hamilton's

quaternions [6]. However, homogenous transformations based on 4x4 real matrices

(orthonormal matrices) have been used most often in robotics.

Although quaternions constitute an elegant representation for rotation, they have not been

used as much as homogenous transformations by the robotics community. Dual quaternion

can present rotation and translation in a compact form of transformation vector,

simultaneously. While the orientation of a body is represented by nine elements in

homogenous transformations, the dual quaternions reduce the number of elements to four. It

offers considerable advantage in terms of computational robustness and storage efficiency

for dealing with the kinematics of robot chains.

The robot kinematics can be divided into forward kinematics and inverse kinematics. The

relationship between forward and inverse kinematics is illustrated in Figure 2.3.

Forward kinematics problem is straight forward and there is no complexity in deriving

the equations, always there is a forward kinematics solution of a manipulator.

Figure 2.3. The schematic representation of forward and inverse kinematics.

For the inverse kinematics problem there are two main solution techniques: analytical and

numerical methods. In the first type, the joint variables are solved analytically according to

given configuration data. In the second type of solution, the joint variables are obtained

based on the numerical techniques. In this chapter, the analytical solution of the manipulators

is examined rather than numerical solution.

II.3.1. Forward Kinematics

Determining the position and orientation of the end-effector in a workspace frame by a

known joint variables of a manipulator is the main problem in the forward kinematic. Each

joint has a single degree of freedom.

Denavit & Hartenberg (1955) [6] showed that a general transformation between two joints

requires four parameters. These parameters are known as the Denavit-Hartenberg (DH)

Chap 2

 Mobile robot manipulator Kinematics

18

parameters. This method that uses the four parameters is the most common method for

describing the robot kinematics. These parameters are:

 𝑎𝑖−1: The link length.

 α𝑖−1 : The link twist

 𝑑𝑖 : The link offset

 𝜃𝑖 : The joint angle

II.3.1.1. The general robot manipulator model analysis

To determine DH parameters a coordinate frame is attached to each joint. 𝑍𝑖 axis of the

coordinate frame is pointing along the rotary or sliding direction of the joints. Figure 2.4

shows the coordinate frame assignment for a general manipulator; such that:

 𝑍𝑖 is a unit vector along the axis in space about which the link i-1 and i are connected.

 The distance from 𝑍𝑖−1 to 𝑍𝑖 measured along 𝑋𝑖−1 is assigned as 𝑎𝑖−1 .

 The angle between 𝑍𝑖−1 and 𝑍𝑖 measured along 𝑋𝑖 is assigned as α𝑖−1.

 The distance from 𝑋𝑖−1 to 𝑋𝑖 measured along 𝑍𝑖 is assigned as 𝑑𝑖 .

 The angle between X𝑖−1 to X𝑖 measured about Z𝑖 is assigned as 𝜃𝑖 [6].

Figure 2.4. Coordinate frame assignment for a general manipulator.

The general transformation matrix 𝑇𝑖
𝑖−1 for a single link can be obtained as follows (eq.

2.12):

𝑇 = 𝑅𝑋(α𝑖−1). 𝐷𝑋(𝑎𝑖−1). 𝑅𝑍(𝜃𝑖). 𝑄𝑖(𝑑𝑖) = 𝑅𝑜𝑡(𝑋, α𝑖). 𝑇𝑟𝑎𝑛𝑠(𝑋, 𝑎𝑖). 𝑅𝑜𝑡(𝑍, 𝜃𝑖). 𝑇𝑟𝑎𝑛𝑠(𝑍, 𝑑𝑖) 𝑖
𝑖−1

…

………………………………… (2.12)

Where the notation:

 𝑅𝑜𝑡(𝑋, α𝑖) : Stands for rotation around X𝑖 axis by α𝑖.

Chap 2

 Mobile robot manipulator Kinematics

19

 𝑇𝑟𝑎𝑛𝑠(𝑋, 𝑎𝑖) : Is a transition along X𝑖 axis by a distance 𝑎𝑖.

 𝑅𝑜𝑡(𝑍, 𝜃𝑖) : Stands for rotation around 𝑍𝑖 axis by 𝜃𝑖.

 𝑇𝑟𝑎𝑛𝑠(𝑍, 𝑑𝑖) : The transition along 𝑍𝑖 by a distance 𝑑𝑖.

Hence we have for a single link the transition matrix can be written by eq. 2.13 and eq. 2.14:

𝑇 = 𝑅𝑋(α𝑖−1). 𝐷𝑋(𝑎𝑖−1). 𝑅𝑍(𝜃𝑖). 𝑄𝑖(𝑑𝑖)𝑖
𝑖−1

𝑇 = [

1 0 0 0
0 𝑐α𝑖−1 −𝑠α𝑖−1 0
0 𝑠α𝑖−1 𝑐α𝑖−1 0
0 0 0 1

]𝑖
𝑖−1 . [

1 0 0 𝑎𝑖−1
0 1 0 0
0 0 1 0
0 0 0 1

] . [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 0
𝑠𝜃𝑖 𝑐𝜃𝑖 0 0
0 0 1 0
0 0 0 1

] . [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖
0 0 0 1

]

.. (2.13)

𝑇 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1
cα𝑖−1. 𝑠𝜃𝑖 cα𝑖−1. 𝑐𝜃𝑖 −𝑠α𝑖−1 −𝑑𝑖. sα𝑖−1
sα𝑖−1. 𝑠𝜃𝑖 sα𝑖−1. 𝑐𝜃𝑖 cα𝑖−1 𝑑𝑖 . 𝑐α𝑖−1

0 0 0 1

]𝑖
𝑖−1 ………………… (2.14)

Where:

 𝑐𝜃𝑖: The short hands 𝑐𝑜𝑠𝜃𝑖 .

 𝑠𝜃𝑖: The short hands of 𝑠𝑖𝑛𝜃𝑖.

 cα𝑖−1: The short hands cos α𝑖−1 .

 𝑠α𝑖−1: The short hands of sin α𝑖−1 .

Each homogenous transformation is of the form of the matrix:

𝑇 = [𝑅𝑖
𝑖−1 𝑃𝑖

𝑖−1

0 1
]𝑖

𝑖−1 ………………………….………… (2.15)

Where:

 𝑃𝑖
𝑖−1 : Three-dimensional vector denoting the position.

 𝑅𝑖
𝑖−1 : 3x3 rotational matrix.

II.3.1.2. Full robot joints transformation

Now, suppose a robot has n-1 Links numbered from zero to n-1 starting from the base of

the robot as link 0 to the end-effector as link n-1. The joints are numbered from 1 to n. The

ith joint variable is denoted by 𝑞𝑖.

The matrix 𝑇𝑖
𝑖−1 is not constant, but varies according to the change of the robot

configuration, however, 𝑇𝑖
𝑖−1 is a function of only a single joint variable, namely 𝑞𝑖 , as

shown in eq. 2.16:

𝑇 =𝑖
𝑖−1 𝑇(𝑞𝑖)𝑖

𝑖−1 ………………………..…….………… (2.16)

Chap 2

 Mobile robot manipulator Kinematics

20

Then for n-joint, the position and orientation of the end-effector in the inertial frame is

determined by multiplication of all the 𝑇𝑖
𝑖−1 matrices:

𝑇(𝑞1, 𝑞2… . 𝑞𝑛) =𝑛
0 𝑇(𝑞1). 𝑇(𝑞2).2

1 … . . 𝑇(𝑞𝑛)𝑛
𝑛−1

1
0 …..… (2.17)

Hence,

 𝑇 =𝑒𝑛𝑑_𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟
𝑏𝑎𝑠𝑒 𝑇(𝑞1). 𝑇(𝑞2).2

1 … . . 𝑇(𝑞𝑛)𝑛
𝑛−1

1
0 …..… (2.18)

An alternative representation of 𝑇𝑒𝑛𝑑_𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟
𝑏𝑎𝑠𝑒 can be written as eq. 2.19:

 𝑇𝑒𝑛𝑑_𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟
𝑏𝑎𝑠𝑒 = [

𝑟11 𝑟12 𝑟13 𝑝𝑥
𝑟21 𝑟22 𝑟23 𝑝𝑦
𝑟31 𝑟32 𝑟33 𝑝𝑧
0 0 0 1

] = [𝑅𝑖
𝑗

𝑃𝑖
𝑗

0 1
]…… (2.19)

Where:

 𝑟𝑘𝑗: Represent the rotational elements of transformation matrix (𝑘 and j =

1, 2 and 3).

 𝑅𝑖
𝑗

: Express the orientation of frame 𝑖 relative to frame 𝑗 (𝑖 > 𝑗) and is given as:

 𝑅𝑖
𝑗
= 𝑅𝑗+1

𝑗
… 𝑅𝑖
𝑖−1 .

 𝑝𝑥, 𝑝𝑦, 𝑝𝑧: Denote the elements of the position vector.

 𝑃𝑖
𝑗

: Express the vector position and is given by for (𝑖 > 𝑗): 𝑃𝑖
𝑗
= 𝑃𝑗+1

𝑗
+ 𝑅 𝑖−1

𝑗
. 𝑃𝑖
𝑖−1 .

II.3.1.3. ULM arm manipulator model analysis and transformation matrix 𝑻𝑬
𝑴

For the RobuTER/ULM arm of six jointed manipulator or six degrees of freedom the

position coordinates and orientation angles of the end-effector are calculated in 𝑅𝑀 =

(𝑂𝑀, �⃗�𝑀 , �⃗�𝑀 , �⃗�𝑀) by using the Modified Denavit-Hartenberg (MDH) representation where

the transformation matrix linking the base to the end-effector is constructed first as:

 𝑇 = 𝑇 =𝑒𝑛𝑑_𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑟
𝑏𝑎𝑠𝑒

𝐸
𝑀 𝑇(𝑞1). 𝑇(𝑞2).2

1
1
0 𝑇(𝑞3). 𝑇(𝑞4).4

3
3
2 𝑇(𝑞5). 𝑇(𝑞6)6

5
5
4 . 𝑇(𝑞7)7

6 ……

(2.20)

Now, to calculate the different joints transformation from 0 to 6 the matrix given by eq.

2.21 is used:

𝑇 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1
cα𝑖−1. 𝑠𝜃𝑖 cα𝑖−1. 𝑐𝜃𝑖 −𝑠α𝑖−1 −𝑑𝑖. sα𝑖−1
sα𝑖−1. 𝑠𝜃𝑖 sα𝑖−1. 𝑐𝜃𝑖 cα𝑖−1 𝑑𝑖. 𝑐α𝑖−1

0 0 0 1

]𝑖
𝑖−1 ………….… (2.21)

However, first the MDH for the ULM manipulator is needed.

Chap 2

 Mobile robot manipulator Kinematics

21

The different MDH parameters α𝑖 , 𝑑𝑖, 𝜃𝑖 and 𝑎𝑖 and the joints limits of the ULM

manipulator are given in the following table (Table 2):

Table 2.1. The MDH parameters and joints limits of the ULM Manipulator.

𝒊
Denavit-Hartenberg (DH) parameters Joints limits

α𝑖−1(°) 𝑑𝑖(𝑚𝑚) 𝜃𝑖 𝑎𝑖(𝑚𝑚) 𝑄𝑚𝑖𝑛(°) 𝑄𝑚𝑎𝑥(°)

1 0 d1=290 𝜃1 0 -95 96

2 90 d2=108.49 𝜃2 0 -24 88

3 -90 d3=113 0 𝑎3= 402 -- --

4 90 0 𝜃3 0 -2 160

5 90 d4=389 𝜃4 0 -50 107

6 -90 0 𝜃5 0 -73 40

7 90 deff=220 𝜃6 0 -91 91

It is straightforward to compute each of the link transformation matrices using eq. 2.21,

as follows:

𝑇 = [

𝑐𝜃1 −𝑠𝜃1 0 𝑎1
cα0. 𝑠𝜃1 cα0. 𝑐𝜃1 −𝑠α0 −𝑑1. sα0
sα0. 𝑠𝜃1 sα0. 𝑐𝜃1 cα0 𝑑1. 𝑐α0
0 0 0 1

]1
0 = [

𝑐𝜃1 −𝑠𝜃1 0 0
𝑠𝜃1 𝑐𝜃1 0 0
0 0 1 𝑑1
0 0 0 1

]…….… (2.22)

𝑇 = [

𝑐𝜃2 −𝑠𝜃2 0 𝑎2
cα1. 𝑠𝜃2 cα1. 𝑐𝜃2 −𝑠α1 −𝑑2. sα1
sα1. 𝑠𝜃2 sα1. 𝑐𝜃2 cα1 𝑑2. 𝑐α1
0 0 0 1

]2
1 = [

𝑐𝜃2 −𝑠𝜃2 0 0
0 0 −1 −𝑑2
𝑠𝜃2 𝑐𝜃2 0 0
0 0 0 1

]...… (2.23)

𝑇 = [

𝑐0 −𝑠0 0 𝑎3
cα2. 𝑠0 cα2. 𝑐0 −𝑠α2 −𝑑3. sα2
sα2. 𝑠0 sα2. 𝑐0 cα2 𝑑3. 𝑐α2
0 0 0 1

]3
2 = [

1 0 0 𝑎3
0 0 1 𝑑3
0 0 0 0
0 0 0 1

]……………..… (2.24)

𝑇 = [

𝑐𝜃3 −𝑠𝜃3 0 𝑎4
cα3. 𝑠𝜃3 cα3. 𝑐𝜃3 −𝑠α3 −0. sα3
sα3. 𝑠𝜃3 sα3. 𝑐𝜃3 cα3 0. 𝑐α3
0 0 0 1

]4
3 = [

𝑐𝜃3 −𝑠𝜃3 0 0
0 0 −1 0
𝑠𝜃3 𝑐𝜃3 0 0
0 0 0 1

]…….… (2.25)

𝑇 = [

𝑐𝜃4 −𝑠𝜃4 0 𝑎5
cα4. 𝑠𝜃4 cα4. 𝑐𝜃4 −𝑠α4 −𝑑4. sα4
sα4. 𝑠𝜃4 sα4. 𝑐𝜃4 cα4 𝑑4. 𝑐α4
0 0 0 1

]5
4 = [

𝑐𝜃4 −𝑠𝜃4 0 0
0 0 −1 −𝑑4
𝑠𝜃4 𝑐𝜃4 0 0
0 0 0 1

]…….. (2.26)

𝑇 = [

𝑐𝜃5 −𝑠𝜃5 0 𝑎6
cα5. 𝑠𝜃5 cα5. 𝑐𝜃5 −𝑠α5 −0. sα5
sα5. 𝑠𝜃5 sα5. 𝑐𝜃5 cα5 0. 𝑐α5
0 0 0 1

]6
5 = [

𝑐𝜃5 −𝑠𝜃5 0 0
0 0 1 0

−𝑠𝜃5 −𝑐𝜃5 0 0
0 0 0 1

]……….… (2.27)

Chap 2

 Mobile robot manipulator Kinematics

22

𝑇 =

[

𝑐𝜃6 −𝑠𝜃6 0 𝑎7

cα6. 𝑠𝜃6 cα6. 𝑐𝜃6 −𝑠α6 −𝑑𝑒𝑓𝑓. sα6
sα6. 𝑠𝜃6 sα6. 𝑐𝜃6 cα6 𝑑𝑒𝑓𝑓 . 𝑐α6
0 0 0 1]

7
6 = [

𝑐𝜃6 −𝑠𝜃6 0 0
0 0 −1 −𝑑𝑒𝑓𝑓
𝑠𝜃6 𝑐𝜃6 0 0
0 0 0 1

]… (2.28)

Hence, the Transformation matrix from manipulator to the end-effector is given by eq. 2.29

and 2.30 as follow:

 𝑇 =𝐸
𝑀 𝑇(𝑞1). 𝑇(𝑞2).2

1
1
0 𝑇(𝑞3). 𝑇(𝑞4).4

3
3
2 𝑇(𝑞5). 𝑇(𝑞6). 𝑇(𝑞7)7

6
6
5

5
4 ……….….… (2.29)

 𝑇𝐸
𝑀 = [

𝑟11 𝑟12 𝑟13 𝑝𝑥
𝑟21 𝑟22 𝑟23 𝑝𝑦
𝑟31 𝑟32 𝑟33 𝑝𝑧
0 0 0 1

]…………………………..……………………… (2.30)

Where:

 𝑟11 = − c6. (s5. (c1. c2. s3 + c1. c3. s2) − c4. c5. (c1. c2. c3 − c1. s2. s3)) −

 s4. s6. (c1. c2. c3 − c1. s2. s3)

 𝑟12 = s6. (s5. (c1. c2. s3 + c1. c3. s2) − c4. c5. (c1. c2. c3 – c1. s2. s3)) −

c6. s4. (c1. c2. c3 − c1. s2. s3)

 𝑟13 = 𝑐5. (𝑐1. 𝑐2. 𝑠3 + 𝑐1. 𝑐3. 𝑠2) + 𝑐4. 𝑠5. (𝑐1. 𝑐2. 𝑐3 − 𝑐1. 𝑠2. 𝑠3)

 𝑟21 = − c6. (s5. (c2. s1. s3 + c3. s1. s2) − c4. c5. (c2. c3. s1 − s1. s2. s3)) −

 s4. s6. (c2. c3. s1 − s1. s2. s3)

 𝑟22 = 𝑠6. (𝑠5. (𝑐2. 𝑠1. 𝑠3 + 𝑐3. 𝑠1. 𝑠2) − 𝑐4. 𝑐5. (𝑐2. 𝑐3. 𝑠1 − 𝑠1. 𝑠2. 𝑠3)) −

𝑐6. 𝑠4. (𝑐2. 𝑐3. 𝑠1 − 𝑠1. 𝑠2. 𝑠3)

 𝑟23 = 𝑐5. (𝑐2. 𝑠1. 𝑠3 + 𝑐3. 𝑠1. 𝑠2) + 𝑐4. 𝑠5. (𝑐2. 𝑐3. 𝑠1 − 𝑠1. 𝑠2. 𝑠3)

 𝑟31 = c6. (s5. (c2. c3 − s2. s3) + c4. c5. (c2. s3 + c3. s2)) − s4. s6. (c2. s3 +

 c3. s2)

 𝑟32 = − 𝑠6. (𝑠5. (𝑐2. 𝑐3 − 𝑠2. 𝑠3) + 𝑐4. 𝑐5. (𝑐2. 𝑠3 + 𝑐3. 𝑠2)) −

 𝑐6. 𝑠4. (𝑐2. 𝑠3 + 𝑐3. 𝑠2)

 𝑟33 = 𝑐4. 𝑠5. (𝑐2. 𝑠3 + 𝑐3. 𝑠2) − 𝑐5. (𝑐2. 𝑐3 − 𝑠2. 𝑠3)

 𝑝𝑥 = 𝑑2. 𝑠1 + 𝑑𝑒𝑓𝑓. (𝑐5. (𝑐1. 𝑐2. 𝑠3 + 𝑐1. 𝑐3. 𝑠2) + 𝑐4. 𝑠5. (𝑐1. 𝑐2. 𝑐3 −

 𝑐1. 𝑠2. 𝑠3)) + 𝑑4. (𝑐1. 𝑐2. 𝑠3 + 𝑐1. 𝑐3. 𝑠2) + 𝑎3. 𝑐1. 𝑐2 − 𝑐1. 𝑑3. 𝑠2

 𝑝𝑦 = 𝑑4. (𝑐2. 𝑠1. 𝑠3 + 𝑐3. 𝑠1. 𝑠2) − 𝑐1. 𝑑2 + 𝑑𝑒𝑓𝑓. (𝑐5. (𝑐2. 𝑠1. 𝑠3 +

 𝑐3. 𝑠1. 𝑠2) + 𝑐4. 𝑠5. (𝑐2. 𝑐3. 𝑠1 − 𝑠1. 𝑠2. 𝑠3)) + 𝑎3. 𝑐2. 𝑠1 − 𝑑3. 𝑠1. 𝑠2

 𝑝𝑧 = 𝑑1 + 𝑐2. 𝑑3 + 𝑎3. 𝑠2 − 𝑑4. (𝑐2. 𝑐3 − 𝑠2. 𝑠3)– 𝑑𝑒𝑓𝑓. (𝑐5. (𝑐2. 𝑐3 −

 𝑠2. 𝑠3) − 𝑐4. 𝑠5. (𝑐2. 𝑠3 + 𝑐3. 𝑠2))

Note: Here just for simplicity we used: 𝑠𝜃𝑖 = si, 𝑐𝜃𝑖 = ci, where (𝑖 = 1…6).

And we used trigonometric identities:

Chap 2

 Mobile robot manipulator Kinematics

23

𝑠(𝑖 ± 𝑗) = 𝑠𝑖𝑗
± = 𝑠𝑖. 𝑐𝑗 ± 𝑐𝑖. 𝑠𝑗

𝑐(𝑖 ± 𝑗) = 𝑐𝑖𝑗
± = 𝑐𝑖. 𝑐𝑗 ∓ 𝑠𝑖. 𝑠𝑗

where: (𝑖 = 1…6), (𝑗 = 1…6)

Hence, the final simplified format is given by:

 𝑟11 = c6. c4. c1. c23. c5 − c6. c1. s23. s5 – s6. s4. c1. c23

 𝑟12 = s6. c1. s23. s5 − s6. c4. c1. c23. c5 − c6. s4. c1. c23

 𝑟13 = 𝑐1. 𝑠23. 𝑐5 + 𝑐4. 𝑐1. 𝑐23. 𝑠5

 𝑟21 = c6. c4. s1. c23. c5 − c6. s1. s23. s5 − s6. s4. s1. c23

 𝑟22 = 𝑠6. 𝑠1. 𝑠23. 𝑠5 − 𝑠6. 𝑐4. 𝑠1. 𝑐23. 𝑐5 − 𝑐6. 𝑠4. 𝑠1. 𝑐23

 𝑟23 = 𝑠1. 𝑠23. 𝑐5 + 𝑐4. 𝑠1. 𝑐23. 𝑠5

 𝑟31 = c6. s5. c23 + c6. c4. c5. s23 − s4. s6. s23

 𝑟32 = − 𝑠6. 𝑠5. 𝑐23 − 𝑠6. 𝑐4. 𝑐5. 𝑠23 − 𝑐6. 𝑠4. 𝑠23

 𝑟33 = 𝑐4. 𝑠23. 𝑠5 − 𝑐23. 𝑐5

 𝑝𝑥 = 𝑑2. 𝑠1 + 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐1. 𝑠23 + 𝑐4. 𝑠5. 𝑐1. 𝑐23) + 𝑑4. 𝑐1. 𝑠23 +

𝑎3. 𝑐1. 𝑐2 – 𝑐1. 𝑑3. 𝑠2

 𝑝𝑦 = 𝑑4. 𝑠1. 𝑠23 − 𝑐1. 𝑑2 + 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠1. 𝑠23 + 𝑐4. 𝑠5. 𝑠1. 𝑐23) +

 𝑎3. 𝑐2. 𝑠1 – 𝑑3. 𝑠1. 𝑠2

 𝑝𝑧 = 𝑑1 + 𝑐2. 𝑑3 + 𝑎3. 𝑠2 − 𝑑4. 𝑐23 – 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 − 𝑐4. 𝑠5. 𝑠23)

II.3.2. Inverse Kinematics

The Inverse Kinematics (IK) analyses of the serial manipulators have been putted to

studies for many decades. It is needed in the control of manipulators. Solving the inverse

kinematics is computationally expensive and generally takes a very long time in the real time

control of manipulators. The aim here is to find a solution to the problem of IK using a

Geometric Approach and an Algebraic Approach by determining the joint angles for desired

position and orientations in Cartesian space. Hence, the ULM arm transformation matrix

defined by eq. 2.30 is used to build an inverse kinematic analysis. The IK is more complex

to deal with then the forward kinematic.

II.3.2.1. Geometric approach

First we specify the target position of the end-effector by (𝑥 , 𝑦 , 𝑧) in the Cartesian space

where:

 𝑧 is the height relative to the base.

 (𝑥 , 𝑦) are the 2D Cartesian space position.

The inverse kinematic equations that will be built can be solved in a closed manner.

Chap 2

 Mobile robot manipulator Kinematics

24

From figure 2.5, which shows the top view of the ULM manipulator range of rotation in

Cartesian space, it can be seen clearly that the distance d and the position estimation xd and

yd are equal to:

𝑑 = √𝑥𝑑
2 + 𝑦𝑑

2

𝑥𝑑 = cos 𝜃1

𝑦𝑑 = sin 𝜃1

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑥, 𝑦)

The angles 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5 𝑎𝑛𝑑 𝜃6 correspond to the joints 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5 𝑎𝑛𝑑 𝑞6

respectively filling the range angles as shown in figures 2.5(a), 2.6(a), between:

−135° ≤ 𝜃1 ≤ 135°

−120° ≤ 𝜃2 ≤ 120°

−90° ≤ 𝜃3 ≤ 90°

0° ≤ 𝜃4 ≤ 360°

−55° ≤ 𝜃5 ≤ 55°

0° ≤ 𝜃6 ≤ 360°

Figure 2.5. (a) Tope View of the ULM manipulator. (b) Top view of the arm in Cartesian

space

The lengths 𝑑1, 𝑑2, 𝑑3, 𝑎3, 𝑑4 𝑎𝑛𝑑 𝑑𝑒𝑓𝑓 as shown in figure 2.6(a) and 2.6(b) are the main

parameters that specify our manipulator (the ULM arm), they are essential parameters to use

in our geometric analysis.

Chap 2

 Mobile robot manipulator Kinematics

25

𝛿 is a small constant that allows the end-effector to pick up objects without changing its

Cartesian position or orientation, we look for a solution to the inverse kinematics as a closed

form in the case of 𝛿 is already fixed and adapted by the manufacturer of the ULM arm.

From figure 2.6 (b), we find a relationship between 𝛿, 𝜃2, 𝜃3 𝑎𝑛𝑑 𝜃5 as:

𝛿 ≈ (𝜃2 + 𝜃3) − 𝜃5………………………………………………………………..… (2.31)

Looking for the radial distance and height at joint 𝑞5 :

𝑟5 = 𝑟𝑒𝑓𝑓 − 𝑑𝑒𝑓𝑓 cos(𝛿) 𝑜𝑟 𝑟5 = 𝑎3 cos(𝜃2) + 𝑑4 cos(𝜃2 + 𝜃3) …….……….…

(2.32)

𝑧5 = 𝑧𝑒𝑓𝑓 − 𝑑𝑒𝑓𝑓 sin(𝛿) 𝑜𝑟 𝑧5 = 𝑎3 sin(𝜃2) + 𝑑4 sin(𝜃2 + 𝜃3) + (𝑑1+𝑑3) ...… (2.33)

Before looking for the angles 𝜃2, 𝜃3 𝑎𝑛𝑑 𝜃5 geometrically, 𝛽, 𝑎 𝑎𝑛𝑑 𝑠 must be found first

from figure 2.6(b) by eq. 2.34, eq. 2.35 and eq. 2.36:

𝛽 = 𝑎𝑡𝑎𝑛2(𝑠2 + 𝑎3
2 − 𝑑4

2, 2𝑎3𝑠) …………………………………………….….… (2.34)

𝑎 = 𝑎𝑡𝑎𝑛2(𝑧5 − 𝑑1 , 𝑟5) ……………………………………………………...….… (2.35)

𝑠 = √(𝑧5 − 𝑑1)2 + 𝑟52 ……………………………………………………….….… (2.36)

Hence, the desired angels are:

𝜃2 = 𝑎 ± 𝛽…………………….………………………………………………….… (2.37)

𝜃3 = 𝑎𝑡𝑎𝑛2(𝑠
2 − 𝑎3

2 − 𝑑4
2, 2𝑎3𝑑4) ……………………..……………………….… (2.38)

𝜃5 ≈ (𝜃2 + 𝜃3) − 𝛿…………………………………………...………………….… (2.39)

Note that: 𝜃4 𝑎𝑛𝑑 𝜃6 are both rotating symmetrically around the axis of joints 𝑞4 𝑎𝑛𝑑 𝑞6

respectively where the range of rotation for both has already been set:

0° ≤ (𝜃4 , 𝜃6) ≤ 360°

Chap 2

 Mobile robot manipulator Kinematics

26

Figure 2.6. (a) Planner view of the ULM. (b) Planner view of the 6 DOF robotic arm.

II.3.2.2. Analytical or algebraic approach

The position vector denoted by the elements(𝑝𝑥 , 𝑝𝑦, 𝑝𝑧), that has been calculated in eq.

2.30, is used to solve the IK.

{

𝑝𝑥 = 𝑑2. 𝑠1 + 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐1. 𝑠23 + 𝑐4. 𝑠5. 𝑐1. 𝑐23) + 𝑑4. 𝑐1. 𝑠23 + 𝑎3. 𝑐1. 𝑐2 – 𝑐1. 𝑑3. 𝑠2

𝑝𝑦 = 𝑑4. 𝑠1. 𝑠23 − 𝑐1. 𝑑2 + 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠1. 𝑠23 + 𝑐4. 𝑠5. 𝑠1. 𝑐23) + 𝑎3. 𝑐2. 𝑠1 – 𝑑3. 𝑠1. 𝑠2

𝑝𝑧 = 𝑑1 + 𝑐2. 𝑑3 + 𝑎3. 𝑠2 − 𝑑4. 𝑐23 – 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 − 𝑐4. 𝑠5. 𝑠23)

………………. (2.40)

→ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝜃1:

We can calculate the angle 𝜃1 just from the geometric approach as shown in figure 2.5.(b),

Hence:

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑥, 𝑦) ……………………………………………………….……….… (2.41)

→ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝜃3:

Eq. 2.40 can be written as follow:

{

𝑝𝑥 − 𝑑2. 𝑠1 = 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐1. 𝑠23 + 𝑐4. 𝑠5. 𝑐1. 𝑐23) + 𝑑4. 𝑐1. 𝑠23 + 𝑎3. 𝑐1. 𝑐2 – 𝑐1. 𝑑3. 𝑠2…… . . (2.40𝑎)

𝑝𝑦 − 𝑑4. 𝑠1. 𝑠23 = − 𝑐1. 𝑑2 + 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠1. 𝑠23 + 𝑐4. 𝑠5. 𝑠1. 𝑐23) + 𝑎3. 𝑐2. 𝑠1 – 𝑑3. 𝑠1. 𝑠2……(2.40𝑏)

𝑝𝑧 = 𝑑1 + 𝑐2. 𝑑3 + 𝑎3. 𝑠2 − 𝑑4. 𝑐23 – 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 − 𝑐4. 𝑠5. 𝑠23)…………………………… . . (2.40𝑐)

Squaring the two sides of eq. 2.40a and 2.40b then sum them gives eq. 42 below:

Chap 2

 Mobile robot manipulator Kinematics

27

 (𝑝𝑥 − 𝑑2. 𝑠1)
2 + (𝑝𝑦 + 𝑐1. 𝑑2)

2
=

= 𝑐12(𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 + 𝑐4. 𝑠5. 𝑐23) + 𝑑4. 𝑠23 + 𝑎3. 𝑐2 – 𝑑3. 𝑠2)2

+ 𝑠12(𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 + 𝑐4. 𝑠5. 𝑐23) + 𝑑4. 𝑠23

+ 𝑎3. 𝑐2 – 𝑑3. 𝑠2)2

 = (𝑐12 + 𝑠12). (𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 + 𝑐4. 𝑠5. 𝑐23) + 𝑑4. 𝑠23 + 𝑎3. 𝑐2 – 𝑑3. 𝑠2)2

= (𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 + 𝑐4. 𝑠5. 𝑐23) + 𝑑4. 𝑠23 +

𝑎3. 𝑐2 – 𝑑3. 𝑠2)2……………...…… (2.42)

Where: 𝑐𝑖2 + 𝑠𝑖2 = 1

Hence eq. 2.42 and eq. 2.40c can be simplified to get eq. 2.43a and eq. 2.43b:

{
𝑎3. 𝑐2 + 𝑑4. 𝑠23 = ±√(𝑝𝑥 − 𝑑2. 𝑠1)

2 + (𝑝𝑦 + 𝑐1. 𝑑2)
2 − 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 + 𝑐4. 𝑠5. 𝑐23) + 𝑑3. 𝑠2…… . . (2.43𝑎)

𝑎3. 𝑠2 − 𝑑4. 𝑐23 = 𝑝𝑧 + 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 − 𝑐4. 𝑠5. 𝑠23) − 𝑑3. 𝑐2 − 𝑑1……………………………………… . (2.43𝑏)

Squaring both sides of eq.2.43 and adding them together leads to:

 (𝑎3. 𝑐2 + 𝑑4. 𝑠23)2 + (𝑎3. 𝑠2 − 𝑑4. 𝑐23)2 =

= (±√(𝑝𝑥 − 𝑑2. 𝑠1)2 + (𝑝𝑦 + 𝑐1. 𝑑2)
2
− 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 + 𝑐4. 𝑠5. 𝑐23) + 𝑑3. 𝑠2)

2

+ (𝑝𝑧 + 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 − 𝑐4. 𝑠5. 𝑠23) − 𝑑3. 𝑐2 − 𝑑1)
2

 𝑎32 + 𝑑42 − 2𝑎3. 𝑑4. (𝑠2𝑐23 − 𝑐2. 𝑠23) =

= 𝑎32 + 𝑑42 − 2𝑎3. 𝑑4. 𝑠3

= (±√(𝑝𝑥 − 𝑑2. 𝑠1)2 + (𝑝𝑦 + 𝑐1. 𝑑2)
2
− 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 + 𝑐4. 𝑠5. 𝑐23) + 𝑑3. 𝑠2)

2

+

(𝑝𝑧 + 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 − 𝑐4. 𝑠5. 𝑠23) − 𝑑3. 𝑐2 − 𝑑1)
2

…………………………………………. (2.44)

So, clearly 𝑠3 = sin 𝜃3 𝑎𝑛𝑑 𝑐3 = cin 𝜃3can be found as follow:

𝑠3 =

−
(±√(𝑝𝑥− 𝑑2.𝑠1)

2+(𝑝𝑦+ 𝑐1.𝑑2)
2
−𝑑𝑒𝑓𝑓.(𝑐5.𝑠23 + 𝑐4.𝑠5.𝑐23)+ 𝑑3.𝑠2)

2

+(𝑝𝑧+ 𝑑𝑒𝑓𝑓.(𝑐5.𝑐23 − 𝑐4.𝑠5.𝑠23)−𝑑3.𝑐2−𝑑1)
2−𝑎32−𝑑42

2𝑎3.𝑑4

𝑐3 = ±√1 − 𝑠2

Hence, 𝜃3is given by:

𝜃3 = 𝑎𝑡𝑎𝑛2(𝑠3, 𝑐3)………………………………………………………...………. (2.45)

→ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝜃2:

From figure 2.6(b) eq. 2.46 is gotten:

𝜃2 = 𝑎 − 𝛽………………………………………………………...…………..……. (2.46)

And we know that:

Chap 2

 Mobile robot manipulator Kinematics

28

 𝑎 = 𝑎𝑡𝑎𝑛2(𝑝𝑧 + 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 − 𝑐4. 𝑠5. 𝑠23) − 𝑑3. 𝑐2 − 𝑑1 ,

±√(𝑝𝑥 − 𝑑2. 𝑠1)
2 + (𝑝𝑦 + 𝑐1. 𝑑2)

2 − 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 + 𝑐4. 𝑠5. 𝑐23) + 𝑑3. 𝑠2)

 𝛽 = 𝑎𝑡𝑎𝑛2(𝑑4. 𝑠3 , 𝑎3 + 𝑑4. 𝑐3)

Hence, 𝜃2is given by:

𝜃2 = 𝑎𝑡𝑎𝑛2(𝑝𝑧 + 𝑑𝑒𝑓𝑓. (𝑐5. 𝑐23 − 𝑐4. 𝑠5. 𝑠23) − 𝑑3. 𝑐2 − 𝑑1 ,

±√(𝑝𝑥 − 𝑑2. 𝑠1)2 + (𝑝𝑦 + 𝑐1. 𝑑2)
2
− 𝑑𝑒𝑓𝑓. (𝑐5. 𝑠23 + 𝑐4. 𝑠5. 𝑐23) + 𝑑3. 𝑠2) −

𝑎𝑡𝑎𝑛2(𝑑4. 𝑠3 , 𝑎3 + 𝑑4. 𝑐3)

………………………………………………………...………. (2.47)

→ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝜃5:

From the transformation matrix 𝑇𝐸
𝑀 given by eq. 2.30 and after applying trigonometric

identities, eq. 2.48 can be written:

{

𝑟11 = c6. c4. c1. c23. c5 − c6. c1. s23. s5 − s6. s4. c1. c23
𝑟12 = s6. c1. s23. s5 − s6. c4. c1. c23. c5 − c6. s4. c1. c23

𝑟13 = 𝑐1. 𝑠23. 𝑐5 + 𝑐4. 𝑐1. 𝑐23. 𝑠5
𝑟21 = c6. c4. s1. c23. c5 − c6. s1. s23. s5 − s6. s4. s1. c23
𝑟22 = 𝑠6. 𝑠1. 𝑠23. 𝑠5 − 𝑠6. 𝑐4. 𝑠1. 𝑐23. 𝑐5 − 𝑐6. 𝑠4. 𝑠1. 𝑐23

𝑟23 = 𝑠1. 𝑠23. 𝑐5 + 𝑐4. 𝑠1. 𝑐23. 𝑠5
𝑟31 = c6. c23. s5 + c6. c4. s23. c5 − s6. s4. s23

𝑟32 = − 𝑠6. 𝑐23. 𝑠5 − 𝑠6. 𝑐4. 𝑠23. 𝑐5 − 𝑐6. 𝑠4. 𝑠23
𝑟33 = 𝑐4. 𝑠23. 𝑠5 − 𝑐23. 𝑐5

………….…(2.48)

The following pairs of algebraic equations taken from 2.48 are solved to find 𝑐5 :

{
𝑠23. 𝑟23 = 𝑠23. (𝑠1. 𝑠23. 𝑐5 + 𝑐4. 𝑠1. 𝑐23. 𝑠5)

(−𝑠1. 𝑐23). 𝑟33 = (−𝑠1. 𝑐23). (𝑐4. 𝑠23. 𝑠5 − 𝑐23. 𝑐5)
………….………….……. (2.49)

By adding both sides of eq. 2.49 c5 is gotten:

𝑐5 =
𝑠23.𝑟23−𝑠1.𝑐23.𝑟33

𝑠1
……………….………………………………………..…. (2.50)

The following pairs of algebraic equations taken from 2.48 are also solved to find 𝑠5:

{
𝑠23. 𝑟22 = 𝑠23. (𝑠6. 𝑠1. 𝑠23. 𝑠5 − 𝑠6. 𝑐4. 𝑠1. 𝑐23. 𝑐5 − 𝑐6. 𝑠4. 𝑠1. 𝑐23)

(−𝑠1. 𝑐23). 𝑟32 = (−𝑠1. 𝑐23). (− 𝑠6. 𝑐23. 𝑠5 − 𝑠6. 𝑐4. 𝑠23. 𝑐5 − 𝑐6. 𝑠4. 𝑠23)
... (2.51)

Adding both sides of eq. 2.51, s5 is gotten:

𝑠5 =
𝑠23.𝑟23−𝑠1.𝑐23.𝑟33

𝑠6.𝑠1
……………….……………………………………………..... (2.52)

Hence, from eq. 2.51 and eq. 2.52, 𝜃5is given by:

𝜃5 = 𝑎𝑡𝑎𝑛2(𝑠5, 𝑐5) ……………….…………………………………………....…. (2.53)

Chap 2

 Mobile robot manipulator Kinematics

29

→ 𝐹𝑖𝑛𝑑𝑖𝑛𝑔 𝜃4 𝑎𝑛𝑑 𝜃6:

As it has already mentioned 𝜃4 𝑎𝑛𝑑 𝜃6are both rotating symmetrically in joints 𝑞4𝑎𝑛𝑑 𝑞6

respectively around the axis that links the joints 𝑞3 𝑡𝑜 𝑞5 𝑎𝑛𝑑 𝑞5 with the end-effector,

where the range of rotation for both is already set:

0° ≤ (𝜃4 , 𝜃6) ≤ 360°

II.4. Kinematic analysis of the mobile manipulator (RobuTER/ULM)
In this section, the full system from manipulator to base will be analyzed. This involves

the interaction between the mobile base and the manipulator. This analysis is based in the

direct kinematic transformation matrixes that have been derived. The location of the end-

effector is given in 𝑅𝐴 = (𝑂𝐴, �⃗�𝐴 , �⃗�𝐴 , �⃗�𝐴) by:

 𝑇 =𝐸
𝐴 𝑇. 𝑇.𝑀

𝐵
𝐵
𝐴 𝑇𝐸

𝑀

The transformations of 𝑇𝐵
𝐴 , 𝑇𝐸

𝑀 of the RobuTER base and the ULM manipulator

respectively are already obtained. Now, for the transformation defining the base to the

manipulator is given by letting: (𝑥𝐵, 𝑦𝐵, 𝑧𝐵) are the Cartesian coordinates of 𝑂𝐵 in 𝑅𝐴 and

(𝑥𝑀, 𝑦𝑀, 𝑧𝑀) are the Cartesian coordinates of 𝑂𝑀 in 𝑅𝐵 . Hence, the transformation matrix

𝑇𝑀
𝐵 is denoted by:

𝑇 = [

1 0 0 𝑥𝑀
0 1 0 𝑦𝑀
0 0 1 𝑧𝑀
0 0 0 1

] 𝑀
𝐵 ………….……………………………………………....…. (2.54)

So, now the total transformation matrix linking base to the end-effector (This analysis

involves the interaction between the mobile base and the manipulator) can be constructed

as:

 𝑇 =𝐸
𝐴 𝑇. 𝑇.𝑀

𝐵
𝐵
𝐴 𝑇𝐸

𝑀

 𝑇 =𝐸
𝐴 [

cos 𝜃𝐵 – sin 𝜃𝐵 0 𝑥𝐵
sin 𝜃𝐵 cos 𝜃𝐵 0 𝑦𝐵
0 0 1 𝑧𝐵
0 0 0 1

] . [

1 0 0 𝑥𝑀
0 1 0 𝑦𝑀
0 0 1 𝑧𝑀
0 0 0 1

] . [

𝑟11 𝑟12 𝑟13 𝑝𝑥
𝑟21 𝑟22 𝑟23 𝑝𝑦
𝑟31 𝑟32 𝑟33 𝑝𝑧
0 0 0 1

]…… (2.55)

II.5. Conclusion
This chapter provides a deep explanation of the kinematic analysis of the RobuTER/ULM

robot. Where both direct kinematic models of the base to arm and base to manipulator are

built based on the transformation matrixes. Then, an inverse kinematic analysis based in

geometric approach and analytic approach to find the mathematical model of the different

joints angels has been constructed. Finally, this chapter ends up by describing the Kinematic

analysis of the mobile manipulator by building the final matrix which describes the robot

model.

Chap 2

Perception

30

III. Introduction
One of the most important tasks of an autonomous system of any kind is to acquire

knowledge about its environment. This is done by taking measurements using various

sensors and then extracting meaningful information from those measurements. There are a

wide variety of sensors used in mobile robots. Some sensors are used to measure simple

values like the rotational speed of the motors. Other, more sophisticated sensors can be used

to acquire information about the robot’s environment or even to directly measure a robot’s

global position and in constructing the environments map. This chapter focuses primarily on

sensors used to extract information about the robot’s environment (Kinect 360, Ultrasonic

captures and Motors encoder). Because a mobile robot moves around, it will frequently

encounter unforeseen environmental characteristics, and therefore such sensing is

particularly critical. A functional classification of sensors is given first. Then, the selected

sensors are described in detail.

III.1. Sensors classification for Mobile Robots
Sensors are classified using two important functional axes: proprioceptive/exteroceptive

and

Passive/active [1].

III.1.1. Proprioceptive sensors

They measure values internal to the robot system; for example, motor speed, wheel load,

robot arm joint angles, battery voltage.

III.1.2. Exteroceptive sensors

They acquire information from the robot’s environment; for example, distance

measurements, light intensity, sound amplitude. Hence exteroceptive sensor measurements

are interpreted by the robot in order to extract meaningful environmental features.

III.1.3. Passive sensors

They measure ambient environmental energy entering the sensor. Examples of passive

sensors include temperature probes, microphones and CMOS camera’s.

III.1.4. Active sensors
They emit energy into the environment, and then measure the environmental reaction.

Because active sensors can manage more controlled interactions with the environment, they

often achieve superior performance. However, active sensing introduces several risks: The

outbound energy may affect the very characteristics that the sensor is attempting to measure.

Furthermore, an active sensor may suffer from interference between its signal and those

beyond its control. For example, signals emitted by other nearby robots, or similar sensors

on the same robot, may influence the resulting measurements. Examples of active sensors

Chap 3

Perception

31

include wheel quadrature encoders, the Kinect camera, ultrasonic sensors, and laser

rangefinders.

II.2. Basic sensor characteristics
A number of sensor characteristics can be rated quantitatively in a laboratory setting. Such

performance ratings will necessarily be best-case scenarios when the sensor is placed on a

real world robot, but are nevertheless useful. Hence, some important sensors characteristics

are discussed below.

II.2.1. Dynamic range

It is the ratio of the maximum input value to the minimum measurable input value.

Because this raw ratio can be unwieldy, it is usually measured in decibels, which are

computed as ten times the common logarithm of the dynamic range.

𝑑𝐵 = 𝛼 . log (
𝑎

𝑏
) 𝑤ℎ𝑒𝑟𝑒 𝛼 = 10 𝑜𝑟 20 …………………….. (3.1)

However, there is potential confusion in the calculation of decibels, which are meant to

measure the ratio between powers, such as watts. Range is also an important rating in mobile

robot applications because often robot sensors operate in environments where they are

frequently exposed to input values beyond their working range. In such cases, it is critical to

understand how the sensor will respond. For example, an optical rangefinder will have a

minimum operating range and can thus provide spurious data when measurements are taken

with the object closer than that minimum.

II.2.2. Resolution

It is the minimum difference between two values that can be detected by a sensor. Usually,

the lower limit of the dynamic range of a sensor is equal to its resolution. However, in the

case of digital sensors, this is not necessarily. For example, suppose that you have a sensor

that measures voltage, and performs an analog-to-digital (A/D) conversion, and outputs the

converted value as an 8-bit number linearly corresponding to between 0 and 5 V. If this

sensor is truly linear, then it has 28-1 total output values, or a resolution of 5V (255) = 20

mV.

II.2.3. Linearity

It is an important measure governing the behaviour of the sensor’s output signal as the

input signal varies. A linear response indicates that if two inputs 𝑋 and 𝑌 result in the two

outputs 𝑓(𝑋) and 𝑓(𝑌), then for any values a and b:

 𝑓(𝑎𝑋 + 𝑏𝑌) = 𝑎𝑓(𝑋) + 𝑏𝑓(𝑌) …………………………….. (3.2)

This means that a plot of the sensor’s input/output response is simply a straight line.

Chap 3

Perception

32

II.2.3. Sensitivity

It is a measure of the degree to which an incremental change in the target input signal

changes the output signal. Formally, sensitivity is the ratio of output change to input change.

Unfortunately, the sensitivity of exteroceptive sensors is often confounded by undesirable

sensitivity and performance coupling to another environmental parameter.

III.3. The main RobuTER/Ulm Integrated sensors

III.3.1. The Kinect Xbox360 V2 sensor

The innovative technology behind Kinect is a combination of hardware and software

contained within the Kinect sensor (see figure 3.1). It is a flat black box that sits on a small

platform and inside the sensor case contains:

 An RGB camera (Color sensor) that stores three channel data in a 1280x960

resolution. This makes capturing a color image possible.

 An infrared (IR) emitter and an IR depth sensor. The emitter emits infrared light

beams and the depth sensor reads the IR beams reflected back to the sensor. The

reflected beams are converted into depth information measuring the distance between

an object and the sensor. This makes capturing a depth image possible.

 A multi-array microphone, which contains four microphones for capturing sound.

Because there are four microphones, it is possible to record audio as well as find the

location of the sound source and the direction of the audio wave.

 A 3-axis accelerometer configured for a 2G range, where G is the acceleration due

to gravity. It is possible to use the accelerometer to determine the current orientation

of the Kinect.

Figure 3.1. The Kinect sensor.

The main feature is that the sensor is made by differential pixels, meaning that each pixel

is split in two accumulators and a clock regulates which one of the pixel side is the one

Chap 3

Perception

33

currently active. This permits creating a series of different output images (depth images, grey

scale images dependent from ambient lighting and grey scale images independent from

ambient lighting). The system measures the phase shift of the modulated signal and

computes the depth from phase using Eq. 3.3:

2𝑑 =
𝑝ℎ𝑎𝑠𝑒

2𝜋

𝑐

𝑓𝑚𝑜𝑑
 …………………………………................ (3.3)

where d is the depth measure, c is the speed of light, fmod is the modulation frequency. Table

3.1 gives some specifications of the Kinect sensor.

Table 3.1. Kinect Sensor specifications

Sensor Specifications Kinect 1.0

RGB camera (pixel) 1280 × 1024 or 640 × 480

Depth camera (pixel) 640 × 480

Max depth distance (m) 4.0

Min depth distance (m) 0.8

Tilt motor Yes

USB 2.0

III.3.1.1. Depth measurement model

Operation of Kinect depth sensor is grounded on structured light analysis approach. The

sensor incorporates a laser IR diode for emitting a dotted light pattern and an IR camera for

capturing reflected patterns. By using a suitable window size, the sensor compares reflected

patterns to reference patterns, obtained for a plane placed at a known distance from the

sensor, and uses the position of the best match pattern to infer disparity of reflected bean

and further calculate the depth of reflection surface. A supplementary RGB camera is

added to provide additional information on the color and the texture of the surface. The

relationship between depth of reflection surface and the disparity between images of light

beans obtained for a reference and measurement (object) surface may be derived in the

following manner (the derivation closely follows Khoshelham and Elberink [7]). Looking at

Figure 3.2, where the reference bean is assumed to pass the path P- R-C and the measurement

bean passes the path P- M-C ,from similarity of triangles MR*C and M’R’C we obtain:

𝑑

𝐷
=
𝑓

𝑍
………………………………….................................... (3.4)

Where Z is the distance of the measurement (Object) plane from the sensor, d = R’M′̅̅ ̅̅ ̅̅

denotes the disparity between images of reference R’ and measurement M’ beans, and f is

the focal length of IR camera. From similarity of triangles CPR and R’’MR , another relation

is obtained :

Chap 3

Perception

34

𝐷

𝑏
=
𝑍0−𝑍

𝑍0
 ………………………………….............................. (3.5)

Figure 3.2. Depth measurement geometry.

where Z is the distance of the measurement (object) plane from the sensor, 𝑑 = 𝑅 𝑀̅̅ ̅̅ ̅̅ denotes

the disparity between images of reference R’ and measurement M’ beans, and f is the

focal length of IR camera.

III.3.1.2. Sensor calibration

Kinect-type 3D sensors, considered in this work, operates as structured light sensors. A

sensor (Figure 3.1) incorporates a laser infra-red (IR) diode for emitting a dotted light pattern

and an IR camera for capturing reflected patterns. Depth is calculated by sensor software on

the basis of disparity of reflected patterns with the respect to the reference patterns obtained

for a plane placed at a known distance from the sensor. A supplementary RGB camera is

added to provide additional information on colour and texture of the surface. Thus, sensor

output consists of flowing three data: images from RGB camera, raw images from IR camera

and depth maps calculated by sensor firmware. Sensor calibration can be viewed as a

refinement of correspondences between 3D object coordinates and coordinates in RGB, IR

and depth images [7].

The proposed calibration procedure consists of two steps:

- The first step comprises calibration of sensor’s RGB/IR cameras.

- The second is the performance of depth model calibration.

Although real-time depth information is provided by IR camera, the depth map tells how

far the IR camera's pixels are and we actually do not know the depth information of the color

image because the two cameras have different characteristics. As it is shown in the image

below (figure 3.3) the pixels do not match in the two images. The locations of the hand and

the arm are completely different in the two images.

Chap 3

Perception

35

Figure 3.3. IR/RGB camera.

If it would be used for 3D scene capture or it is wanted to relate the RGB and the depth

images, it is needed to match the color image's pixels to the depth image's. Thus, the

calibration is needed to be performed.

Kinect camera calibration is not different from the general camera calibration. It is just

needed to capture images of a chessboard pattern from IR and RGB cameras. Several images

of a chessboard pattern are needed to be captured. When capturing images from the IR

camera, the emitter with something for good corner detection in chessboard images must be

blocked. If not, the captured images will look like below and corner detection will fail.

If the lightings in our environment do not have enough IR rays, a light source that emits

IR rays is needed. It might be good to capture the same scenes with two cameras. The images

below show two images captured from the IR and RGB cameras, respectively (see Figure

3.4).

Figure 3.4. The difference between IR image and color image.

Perception

36

Once images are taken, calibration can be performed for each camera by using OpenCV

API GML calibration toolbox. After calibration, the intrinsic camera matrices, K_ir and

K_rgb, and distortion parameters of the two cameras are obtained (see figure 3.5).

Figure 3.5. Using OpenCV API in GML Camera calibration toolbox.

To achieve our goal, a more information is needed, the geometrical relationship between

the two cameras expressed as a rotation matrix R and a translation vector t. To compute

them, capture the same scene containing the chessboard pattern with the two cameras and

compute extrinsic parameters. From two extrinsic parameters, the relative transformation

can be computed easily.

Now, the depth of the colour image can be computed from the depth image provided by

the IR camera. Let's consider a pixel p_ir in the IR image. The 3D point P_ir corresponding

to the p_ir can be computed by back-projecting p_ir in the IR camera's coordinate system.

Pir = inv(K) × p_ir …………………….............................. (3.6)

P_ir can be transformed to the RGB camera's coordinate system through relative

transformation R and t.

P_rgb = R × P_ir + t …………………………………......... (3.7)

Then, P_rgb is projected onto the RGB camera image and we obtain a 2D point p_rgb.

prgb = Krgb × P_rgb ………………………………....... (3.8)

Finally, the depth value corresponding to the location p_rgb in RGB image is P_rgb's Z

axis value.

Chap 3

Perception

37

depth of p_rgb = Z axis value of P_rgb ……………......... (3.9)

P_ir : 3D point in the IR camera's coordinate system.

R, t : Relative transformation between two cameras.

P_rgb : 3D point in the RGB camera's coordinate system.

p_rgb : The projection of P_rgb onto the RGB image.

In the above, conversion to homogeneous coordinates are omitted. When two or more 3D

points are projected to the same 2D location in the RGB image, the closest one is chosen.

The colour values of the depth map pixels can also be computed in the same way. p_ir's

colour corresponds to the colour of p_rgb.

Figure 3.6 illustrate the resulting depth image of the RGB camera. Since the RGB camera

sees wider region than the IR camera, not all pixels' depth information are available.

Figure 3.6. Depth Image of the RGB camera.

In Figure 3.7 bellow we can see that the two match well, while they do not before calibration

as shown at the beginning of this test.

Figure 3.7. The calibration shows that the pixels match well.

Chap 3

Perception

38

III.3.2. The Ultrasonic Sensor in RobuTER

Unfortunately, the sensing devices which are available for mobile robots often fail in a

variety of circumstances. This is especially true for the less expensive devices such as

ultrasonic and infrared range sensors. Combining data from several sensors and from a pre-

stored model of the domain provides a way to enhance the reliability of a perception system.

Such combination may be accomplished by integrating range measurements into a geometric

model of the local environment.

The robuTER the case of our studies has an ultrasonic belt. Next, the position (x, y, z,

theta) of each sensor is proposed, where the first is the one that is in the left of the belt before

starting the direction of robuter. For information, the robuTER is equipped with a ring of 24

ultrasonic range sensors as shown in figure 3.8.

Figure 3.8. Configuration of 24 Ultrasonic Range sensors [7].

The table 3.2 shows the orientation of the landmark; while, the table 3.3 shows the

position information of each sensor.

Table 3.2. The orientation of direct landmark.

Axe Direction Sense

X In the axis of robuTER Forward

Y Vertical To the top

Z In the axis of the drive

wheels

To the right

Theta 0 ° along the x axis Trigonometric

Dimensions are in millimetres and degrees by taking the middle as the origin of the axis

of the drive wheels.

Chap 3

Perception

39

Table 3.3. The position information of each sensor.

Sensors X Y Z Theta

1 285.96 428.50 -278.50 90

2 535.98 428.50 -265.10 60

3 572.60 428.50 -228.48 30

4 586.00 428.50 -178.46 0

5 586.00 428.50 -90.00 0

6 586.00 428.50 -30.00 0

7 586.00 428.50 30.00 0

8 586.00 428.50 60.00 0

9 586.00 428.50 178.46 0

10 572.60 428.50 228.48 330

11 535.98 428.50 265.10 300

12 485.96 428.50 278.50 270

13 -39.96 428.50 278.50 270

14 -89.98 428.50 265.10 240

15 -126.60 428.50 228.48 210

16 -140.00 428.50 178.46 180

17 -140.00 428.50 90.00 180

18 -140.00 428.50 30.00 180

19 -140.00 428.50 -30.00 180

20 -140.00 428.50 -90.00 180

21 -140.00 428.50 -178.46 180

22 -126.60 428.50 -228.48 150

23 -89.98 428.50 -265.10 120

24 -39.96 428.50 -278.50 90

The position and orientation of the sensors with respect to the origin of the robot are

defined in a sensor configuration parameter (figure 3.9). So for each sensor, the sensor

configuration parameter gives:

 𝑟: The distance from the robot's origin to the sensor.

 Ɣ: The angle from the robot's axis to the sensor

 𝛽: The orientation of the sensor with respect to the robot's axis.

Chap 3

Perception

40

The sensor description algorithm can be made to work with a variety of sensor

configurations.

Figure 3.9. Projection of a Range Reading to External Coordinates [7].

A sensor data description process reads range measurements from the sonar table, as well

as the estimated position of the robot from the vehicle controller. With this information, the

depth measure, d, for each sensor, s, is projected to external coordinates, (𝑋𝑠, 𝑌𝑠), using the

estimated position of the robot, (𝑋, 𝑌, 𝛼) , as shown in figure 3.10.

𝑋𝑠 = 𝑋 + 𝑟 𝐶𝑜𝑠(Ɣ + 𝛼) + 𝑑 𝐶𝑜𝑠(𝛽 + 𝛼)

𝑌𝑠 = 𝑌 + 𝑟 𝑆𝑖𝑛(Ɣ + 𝛼) + 𝑑 𝑆𝑖𝑛(𝛽 + 𝛼)

Fig 3.10. Model of the Ultrasonic Range Sensor and its Uncertainties.

In order to combine data from different viewpoints and sensors, the inherent precision of the

data must be estimated. A model of an ultrasonic range sensor has been developed, which

predicts that an echo comes from an arc shaped region as illustrated in figure 3.10. This

region is determined by the composition of an arc blurred in a perpendicular direction. The

length of the arc is given by the uncertainty in orientation, 𝜎𝑊, while the perpendicular

blurring is caused by an uncertainty in depth 𝜎𝐷.

Chap 3

Perception

41

III.3.3. The Incremental Encoder in RobuTER

Optical incremental encoders have become the most popular device for measuring

angular speed and position within a motor drive or at the shaft of a wheel or steering

mechanism. In mobile robotics, encoders are used to control the position or speed of wheels

and other motor-driven joints. Because these sensors are proprioceptive, their estimate of

position is best in the reference frame of the robot and, when applied to the problem of robot

localization, significant corrections are required.

An optical encoder is basically a mechanical light chopper that produces a certain number

of sine or square wave pulses for each shaft revolution. It consists of an illumination source,

a fixed grating that masks the light, a rotor disc with a fine optical grid that rotates with the

shaft, and fixed optical detectors. As the rotor moves, the amount of light striking the optical

detectors varies based on the alignment of the fixed and moving gratings. In robotics, the

resulting sine wave is transformed into a discrete square wave using a threshold to choose

between light and dark states. Resolution is measured in Cycles Per Revolution (CPR). The

minimum angular resolution can be readily computed from an encoder’s CPR rating. A

typical encoder in mobile robotics may have 2000 CPR, while the optical encoder industry

can readily manufacture encoders with 10000 CPR. In terms of required bandwidth, it is of

course critical that the encoder be sufficiently fast to count at the shaft spin speeds that are

expected.

Industrial optical encoders present no bandwidth limitation to mobile robot applications.

Usually in mobile robotics the quadrature encoder is used. In this case, a second illumination

and detector pair is placed 90 degrees shifted with respect to the original in terms of the rotor

disc. The resulting twin square waves, shown in figure 3.11, provide significantly more

information. The ordering of which square wave produces a rising edge first identifies the

direction of rotation. Furthermore, the four detectably different states improve the resolution

by a factor of four with no change to the rotor disc. Thus, a 2000 CPR encoder in quadrature

yields 8000 counts. Further improvement is possible by retaining the sinusoidal wave

measured by the optical detectors and performing sophisticated interpolation.

Figure 3.11. Quadrature optical wheel encoder.

Chap 3

Perception

42

In figure 3.11, the observed phase relationship between channel A and B pulse trains are

used to determine the direction of the rotation. A single slot in the outer track generates a

reference (index) pulse per revolution. The characteristics of the incremental encoder of

robuTER are summarized in Table 3.4.

Table 3.4. Incremental Encoder line driver for RobuTER.

Number of points 500

Mass 0,085 kg

Such methods, although rare in mobile robotics, can yield 1000-fold improvements in

resolution. As with most proprioceptive sensors, encoders are generally in the controlled

environment of a mobile robot’s internal structure, and so systematic error and cross-

sensitivity can be engineered away. The accuracy of optical encoders is often assumed to be

100% and, although this may not be entirely correct, any errors at the level of an optical

encoder are dwarfed by errors downstream of the motor shaft.

III.4. Conclusion
This chapter provides a deep explanation of the different sensors characteristics of the

RobuTER. Where, the different classifications of those sensors are given, which can be

proprioceptive/exteroceptive and Passive/active. Then, their basic characteristics to the

change of environment are stepped over. Finally, the chapter ends up by a deep description

of the different sensors integrated in RobuTER from the Kinect to the Ultrasonic sensor and

the Incremental Encoder.

Chap 3

Simulation and Results

43

IV. Introduction
 Simulation is a flexible methodology which can be used to analyze the behavior of a

present or proposed scenarios, and by performing simulation and analyzing the results,

an understanding of how a system operates can be gained even if it was a complicated one.

This chapter will focus primarily in creating the necessary files that construct our simulation

results in simulation and insure making the navigation tasks in a correct manner. The chapter

will end up by a step by step demonstration of our simulation results and of the path planning

execution in ROS.

IV.1. Robot 3D model
 The first phase of robot manufacturing is its design and modeling. The robot can be

designed and modeled using CAD tools such as AutoCAD, Solid Works, Blender, and so

on. One of the main purposes of modeling robot is simulation.

 The virtual robot model must have all the characteristics of real hardware, the shape of

robot may or may not look like the actual robot but it must be an abstract, which has all the

physical characteristics of the actual robot.

SolidWorks

 SolidWorks is modern computer aided design (CAD) software. It enables designers to

create a mathematically correct solid model of an object that can be stored in a database.

When the mathematical model of a part or assembly is associated with the properties of the

materials used, we get a solid model that can be used to simulate and predict the behavior of

the part or model with finite element and other simulation software. The same solid model

can be used to manufacture the object and also contains the information necessary to inspect

and assemble the product. SolidWorks and similar CAD programs have made possible

concurrent engineering, where all the groups that contribute to the product development

process can share real-time information.

 In this part, a 3D model for our RobuTER/ULM will be built; then, the model to an URDF

(Unified Robot Description Format), the one that is suitable to be processed in robot

operating system (ROS), will be extracted.

a)

Chap 4

Simulation and Results

44

b)

c)

d)

Figure 4.1. 360° View of RobuTER/ULM. a) Left view. b) Top view. c) Front view. d) Rear

view.

IV.2. Creating a 3D virtual environment in Gazebo
 After creating the robot model in solidworks and extract it to an URDF file. We need now

to build a 3D virtual environment where we simulate and test the robot navigation tasks.

 First, we need to launch gazebo in an empty word by writing the following command line

Chap 4

Simulation and Results

45

 Then, we need to Build the virtual map by clicking on -- Edit—Building Editor. After

that, we sketch the walls to create the virtual map as shown in Figure 4.2.

Figure 4.2. Creating a Virtual environment where map exploring will be performed.

 After creating the environment, we save the file as a “.SDF” file to use it in other

processes and simulators like rviz (ROS visualization check appendix A.3).

IV.3. Loading the 3D robot to the virtual environment in Gazebo
 Now, we will test our robot by integrating it in the map and locate it in a position

according to the global reference frame. We will execute the following command line to

run the robot_world.launch file from the created robot_gazebo package which contains the

created map and the robot as shown in figure 4.3.

Chap 4

Simulation and Results

46

Figure 4.3. Inserting the virtual robot to the created map and test it in Gazebo.

IV.4. Navigation stack
 In the previous sections we have seen how to create our robot and mount it through the

virtual world in gazebo simulator.

 In this section, we will learn something that is probably one of the most powerful features

in ROS, something that will let us move our robot autonomously.

 ROS has many algorithms that can be used for navigation. First of all, we will learn the

necessary ways to configure the navigation stack with our robot model. Then, we will learn

how to configure and launch the navigation stack on the simulated robot; by inserting goals

and configuring some parameters to get the best results. In particular, we will cover the

following items in the first part [11]:

 Introduction to the navigation stacks and their powerful capabilities. Clearly one of

the greatest pieces of software that comes with ROS.

 The TF (Transform Frames) is explained in order to show how to transform from the

frame of one physical element to another; for example, the data received using a

sensor or the command for the desired position of an actuator.

 Create a laser driver and Kinect laser scan (see figure 4.4).

 Explain how the odometry is published, and how integrate it in Rviz.

 A base controller will be presented, including a description of how to create one for

our robot.

Chap 4

Simulation and Results

47

Figure 4.4. Display navigation stack in Rvis.

 Figure 4.5 shows how the navigation stacks are linked together to perform the process

of map building then path planning and navigation is presented in an organized way.

Figure 4.5. The relationship between the navigation stack parts.

Chap 4

Simulation and Results

48

IV.4.1. Navigation stack – Robot Setups

 In order to understand the navigation stack, we should think of it as a set of algorithms

that use the sensors of the robot and the odometry, and the robot can be controlled using a

standard message. It can move the robot without problems (for example, without crashing

or getting stuck in some location, or getting lost) to another position. We should assume that

this stack can be easily used with any robot. This is almost true, but it is necessary to tune

some configuration files and write some nodes to use the stack.

The robot must satisfy some requirements before it uses the navigation stack [11]:

 - The navigation stack can only handle a differential drive and holonomic wheeled

robots. The shape of the robot must be either a square or a rectangle.

However, it can also do certain things with biped robots, such as robot localization, as long

as the robot does not move sideways.

 - It requires that the robot publishes information about the relationships between all

the joints and sensors' position.

 - The robot must send messages with linear and angular velocities.

 - A planar laser must be on the robot to create the map for localization.

 The navigation stack assumes that the robot is configured in a particular manner in order

to run. Figure 4.6 shows an overview of this configuration. The white components are the

required ones and are already implemented, the gray components are optional components

and are also already implemented, and the blue components must be created for each robot

platform. The pre requisites of the navigation stack, along with instructions on how to fulfil

each requirement, are provided in the sections below.

Figure 4.6. Navigation stack setup [11].

Chap 4

Simulation and Results

49

IV.4.1.1. Transform Configuration TF

 The navigation stack needs to know the position of sensors, wheels; and joints. To do

that, we use the TF (which stands for Transform Frames) software library. It manages a

transform tree. We could do this with mathematics, but if we have a lot of frames to calculate,

it will be a bit complicated and messy. Thanks to TF, we can add more sensors and parts to

the robot, and the TF will handle all the relations for us.

 At this point, let we assume that we have some data from the laser in the form of distances

from the laser's center point. In other words, we have some data in the base_laser coordinate

frame. Now suppose we want to take this data and use it to help the mobile base avoid

obstacles in the world. To do this successfully, we need a way of transforming the laser scan

we have received from the base_laser frame to the base_link frame. In essence, we need to

define a relationship between the base_laser and base_link coordinate frames (see figure 4.7).

Figure 4.7. Demonstration for the base_laser and base_link position.

 If we put the laser 10-cm backwards and 20-cm above with regard to the origin of the

coordinates of the base_link, we would need to add a new frame to the transformation tree

with these offsets. Once inserted and created, we could easily know the position of the laser

with regard to the base_link value or the wheels. The only thing we need to do is call the TF

library and get the transformation. Now, we have to take the transform tree and create it with

code.

 First of all, we need to create a new package in our workspace name it robot_Nav_stack1

and once we have get our package, we need to create the nodes that will do the work of

broadcaster and a listener.

Creating a broadcaster

 First, we create a robot_Nav_stack1/src/tf_broadcaster.cpp file as described in the following

algorithm:

 Where first, we call the tow libraries “ros.h” and “transform_broadcaster.h” to run ROS

nodes and integrate some broadcaster transformation parameters, then we set the TF

broadcaster parameters position.
 Call header file ros.h

 Call header file transform_broadcaster.h

 Set variables integer argc, character argv

 initialize roscore with (argc, argv, "robot_tf_publisher")

 initialize ros NodeHandle as n;

 initialize ros Rate as r (100);

 initialize tf TransformBroadcaster broadcaster;

start loop

while(n,r()){

 use functions

 broadcaster.sendTransform(tf_StampedTransform(tf_Transform

(set tf_Quaternion to (0, 0, 0, 1), set tf_Vector to (0.1, 0.0, 0.2)),"base_link", "base_laser"));

 r.sleep()

 }

 After that we need to create another node that will use the transform, and it will give us

the position of a point from the sensor with regard to the center of base_link (our robot).

Chap 4

Simulation and Results

50

Creating a listener

 Now, we are going to write a node that will use that transform to take a point in the

base_laser frame and transform it to a point in the base_link frame. Once again, open an editor

and write the code into the robot_Nav_stack1/src/tf_listener.cpp file described by the following

algorithm:

 Where we call the necessary libraries at first, to use functions to link the nodes with a

specific messages described with initial laser position than collect information about the

position transformation from the base laser to the base link.
 Call header file ros.h

 Call header file PointStamped.h

 Call header file transform_listener.h

//we will create a point in the base_laser frame that we would like to transform to the base_link frame:

 laser_point.header.frame_id = "base_laser"

//we will just use the most recent transform available for our simple example:

 laser_point.header.stamp = ros_Time(

//just an arbitrary point in space

 Fix position laser_point.point.x to 1.0

 Fix position laser_point.point.y to 0.2

 Fix position laser_point.point.z to 0.0

 Collect information about Tf position "base_laser: (%.2f, %.2f. %.2f) -----> base_link: (%.2f, %.2f,

%.2f) at time “%.2f".

 If Receive an excepted error trying to transform a point from "base_laser" to "base_link" type

“%s”.

 Now that we have written our nodes, we need to build them. Open up the CMakeLists.txt

file and add the following lines to the bottom of the file.

 Next, we save the file and build the package using Catkin_Make command line.

IV.4.1.2. Sensor Information

 Our robot can have a lot of sensors to see perceive the world. In our case, we use the

Kinect V2 as an IR laser scan to provide information; we can program a lot of nodes to take

this data and do something, but the navigation stack is prepared only to use the planar laser's

sensor. So, the sensor must publish either sensor_msgs/LaserScan or

sensor_msgs/PointCloud messages over ROS.

Publishing LaserScans over ROS

 Now we create a new file in the package robot_Nav_stack1/src with the name laser.cpp

the following flowchart describe the code in it:

Chap 4

Simulation and Results

51

Publishing PointClouds over ROS
 For storing and sharing information about a number of points in the virtual world, ROS

provides a sensor_msgs/PointCloud message. This message is meant to support arrays of

points in three dimensions along with any associated data stored as a channel.

 Publishing a PointCloud with ROS is fairly straightforward. We create now a new file in

the package robot_Nav_stack1/src name it PointCloud.cpp, the following flowchart describe

the C++ code.

Chap 4

Simulation and Results

52

 Now that we've written our nodes, we need to build it using Catkin_Make commend line.

We note that with the previous nodes codes template, you can use any laser although it has

no driver for ROS. You only have to change the fake data with the right data from your laser

in our case we have used the data from the Kinect V2 specially IR Emitter information.

IV.4.1.3. Odometry information

 The odometry is the distance of something relative to a point. The navigation stack uses

Tf to determine the robot's location in the world and relate sensor data to a static map.

However, Tf does not provide any information about the velocity of the robot. Because of

this, the navigation stack requires that any odometry source publish both a transform and a

message over ROS that contains velocity information. The type of message used by the

navigation stack is nav_msgs/Odometry. This message stores an estimate of the position and

velocity of a robot in free space.

 Any odometry source must publish information about the coordinate frame that it

manages. In the following we will take a look in the flowchart describing the C++ code for

Chap 4

Simulation and Results

53

publishing odometry, after creating a new file in the package robot_Nav_stack1/src name it
odometry.cpp.

 We need to write down the following dependences in to the Manifest.xml file then build

the package using Catkin_Make command line.

Chap 4

Simulation and Results

54

IV.4.1.4. Base Controller (base controller)

 A base controller is an important element in the navigation stack because it is the only

way to effectively control our robot. It communicates directly with the electronics of our

robot. ROS does not provide a standard base controller, so we must write a base controller

for our mobile platform.

 Our robot has to be controlled with the message type geometry_msgs/Twist. This

message is used on the Odometry message that we have seen before. For our robot, we will

only use the linear velocity x and the angular velocity z. This is because our robot is on a

differential wheeled platform, and it has two motors to move the robot forward and backward

and to turn.

 Now we create a new file in the package robot_Nav_stack1/src and name it

base_controller.cpp. The following flowchart describes the file internal code file:

Chap 4

Simulation and Results

55

 We should insert the following line in the CMakeListes.txt file to create an executable

from this file; then, we run the command line catkin_make to build the package.

Chap 4

Simulation and Results

56

IV.4.1.5. Creating a map in ROS using SLAM (Simultaneous Localization and

Mapping)

 SLAM is concerned with the problem of building a map of an unknown environment by

a mobile robot while at the same time navigating the environment using the map. The term

SLAM is an acronym for Simultaneous Localization and Mapping. It was originally

developed by Hugh Durrant-Whyte and John J. Leonard [9]. SLAM consists of multiple

parts: Landmark extraction, data association, state estimation, state update and landmark

update. SLAM is more like a concept than a single algorithm. There are many steps involved

in SLAM and these different steps can be implemented using different algorithms. SLAM is

applicable for both 2D and 3D motion [9].

 The SLAM process consists of several steps. The goal of the process is to use the

environment to update the position of the robot. Since the odometry of the robot (which

gives the robots position) is often erroneous, we cannot rely directly on the odometry. We

can use laser scans of the environment to correct the position of the robot. This is

accomplished by extracting features from the environment and re-observing when the robot

moves around. An EKF (Extended Kalman Filter) is the heart of the SLAM process. It is

responsible for updating where the robot thinks it is based on these features. These features

are commonly called landmarks. The EKF keeps track an estimate of the uncertainty in the

robot’s position and also the uncertainty in these landmarks while seeing the environment.

An outline of the SLAM process is given in figure 4.8[10].

Figure 4.8. Overview of the SLAM process [10].

 When the odometry changes as the robot moves the uncertainty pertaining to the robot’s

new position is updated in the EKF using Odometry update. Landmarks are then extracted

from the environment from the robot new position. The robot then attempts to associate these

landmarks to the previously seen landmarks observations. Re-observed landmarks are then

used to update the robot’s position in the EKF. Landmarks which have not been seen

previously are added to the EKF as new observations so they can be re-observed later [10].

Chap 4

Simulation and Results

57

Creating the map step by step

 To start building the map we need to run the following commands one by one in Ubuntu

terminal. To run the slam_gmapping package we use.

 To move the robot in rviz environment using keyboard touch so that we can explore the

map and receive data we use the command line:

 To start the visual scan for the map in rviz we use the command line:

 When we see that we have explored the full closed map we need to run the following

commend line to save the map (see figure 4.9). This will be detailed in next part.

Chap 4

Simulation and Results

58

Figure 4.9. Step by step screenshots for the map building process

IV.4.1.6. Saving the map using map_server

 To save the map in a specific folder like /tmp as my_map we use the command line as

have been shown in the previous section

 This command will create tow files: map.pgm and map.yaml. The first one is the map in the

-.pgm format. The other is the configuration file for the map (see figure 4.10, figure 4.11 and

figure 4.12).

Figure 4.10. The files created in the catkin_robot workspace.

Chap 4

Simulation and Results

59

Figure 4.11. my_map.yaml configuration file description.

Figure 4.12. The final map build.

IV.4.1.7. Loading the map using map_server

 When we want to use the map built with our robot, it is necessary to load it with the

map_server package. The following command will load the map:

 But to make it easy, we create another .launch file in the package robot_gazebo/launch

with the name gazebo_map_robot.launch and described by the following algorithm:

-- start up gazebo world --

 call file "gazebo_map_robot.launch"

 call node "joint_state_publisher"

-- start robot state publisher --

 call node "robot_state_publisher"

 set parameter name "publish_frequency" to value "50.0"

 call node "map_server" and load file "map.yaml"

 call node to start map in "rviz"

 Now launch the file using the next command and we should remember the model of the

robot that which will be used; then, we will see rviz with the robot and the map.

Chap 4

Simulation and Results

60

IV.4.2. Navigation stack – Beyond Setups

 The main aim of the ROS navigation stack packages is to move the robot from the start

position to the goal position, with avoiding collision with the environment. This packages

come with an implementation of several navigation related algorithms which can easily help

implement autonomous navigation in the mobile robot. In the following we will take a look

in the essential additional packages that we need to create to perform autonomous navigation

correctly and create the optimal path when we specify a goal target for our robot navigation.

IV.4.2.1. Costmaps configuration (globalcost map and localcost map)

The robot will move through the map using two types of navigation—global and local.

 The global navigation is used to create paths to a desired goal in the map or a far-off

distance as shown in figure 4.13.

Figure 4.13. Demonstration for the global navigation.

 The local navigation is used to create paths in the nearby distances and avoid

obstacles, for example, a square window of 4 x 4 meters around the robot as shown

in figure 4.14.

Figure 4.14. Demonstration for the local navigation.

 These modules use costmaps to save all the information of our map. The cosmaps have

parameters to configure the behaviours, and they have common parameters as well, which

Chap 4

Simulation and Results

61

are configured in a shared file. Configuration basically consists of three files where we can

set-up different parameters. These files are as follows:

 costmap_common_params.yaml

 global_costmap_params.yaml

 local_costmap_params.yaml

 Let's start by creating three different files in the package robot_nav_stack2/launch with

the names costmap_common_params.yaml, global_costmap_params.yaml and

local_costmap_params.yaml.

 The following algorithm describes the costmap_common_params.yaml file:
 set obstacle_range to 2.5

 set raytrace_range to 3.0

 Fix footprint position to [[-0.2, -0.2], [-0.2,0.2], [0.2, 0.2], [0.2, -0.2]]

-- set parameter to robot_radius: ir_of_robot --

 set inflation_radius to 0.55

 set observation_sources to the value of laser_scan_sensor

 This file is used to configure common parameters. The parameters are used in

local_costmap and global_costmap.

 The algorithm below is describes the global_costmap_params.yaml file:
For the global_costmap:

 set global_frame to path /map

 set robot_base_frame to path /base_footprint

 set update_frequency to 1.0

 set static_map to true

 The following script is present in local_costmap_params.yaml file:
For the local_costmap:

 set global_frame to path /map

 set robot_base_frame to path /base_footprint

 set update_frequency to 1.0

 set publish_frequency to 2.0

 set static_map to true

 set rolling_window to false

 set width to 10.0

 set height to 10.0

 set resolution to 0.1

Once we have the costmaps configured, it is necessary to configure the base planner. The

base planner is used to generate the velocity commands to move the robot. So we need to

create a new file in the package robot_nav_stack2/launch and name it

base_local_planner_params.yaml; then, we write the following algorithm as a description to

the real code:
For TrajectoryPlannerROS:

 set max_vel_x to 1

 set min_vel_x to 0.5

 set max_rotational_vel to 1.0

 set min_in_place_rotational_vel to 0.4

 set acc_lim_th to 3.2

 set acc_lim_x to 2.5

 set acc_lim_y to 2.5

 set holonomic_robot to false

 After creating those files and save them we need to build them using the command line

catkin_make in ubuntu terminal.

Creating a launch file for the previous configuration

 Now, we have all the files created and the navigation stack configured. To run everything,

we need to create a launch file in the package robot_nav_stack2/launch with the name

move_base.launch. The following algorithm describes the launch program:
-- Run the map server --

 call node "map_server" find “map.yaml"

Chap 4

Simulation and Results

62

 find amcl "amcl_demo.launch"

 call node "move_base"

-- Run the configuration files --

 call file "costmap_common_params.yaml" command "load global_costmap"

 call file "costmap_common_params.yaml" command "load local_costmap"

 call file "local_costmap_params.yaml" command "load"

 call file "global_costmap_params.yaml" command "load"

 call file "base_local_planner_params.yaml" command "load"

 With this file we will launch all the files that we have created in the above section at the

same time.

IV.4.2.2. Adaptive Monte Carlo Localization (AMCL) for localization

 This package provides probabilistic localization system for a robot moving on 2D. It

implements the adaptive Monte Carlo localization approach, which uses a particle filter to

track the pose of a robot against a known map. To run this package manually we us the

following command line in Ubuntu terminal:

IV.4.2.3. Path planning and obstacles avoidance

 Previously, we have created the necessary files needed to perform the navigation process

in a proper way. So, now we deal with the last step in this process by generating the last

.launch file in the package robot_stdr/launch and name it robot_in_stdr with the following

algorithm to describe the launch file code and start performing path planning, obstacle

avoidance and reaching the needed goals.

 Where here we just start the necessary nodes and packages listed at first to start the

navigation process.
-- The Robot navigation simulation: --

 - stdr

 - move_base

 - amcl

 - map_server

 - rviz view

 set names to "base", "stacks", "3d_sensor", "laser_topic", "odom_topic", "odom_frame_id",

"global_frame_id".

-- Name of the map to use (without path nor extension) and initial position --

 Set name as "map_file" value is "find map file"

 Set name as "initial_pose_x" value is "2.0"

 Set name as "initial_pose_y" value is "2.0"

 Set name as "initial_pose_a" value is "0.0"

 Set name as "min_obstacle_height" value is "0.0"

 Set name as "max_obstacle_height" value is "5.0"

-- ******************** Stdr******************** --

 call file “robot_manager.launch"

-- Run STDR server with a prefedined map--

 call node "stdr_server" with screen output" map_file"

-- Run Gui --

 call file "stdr_gui.launch"

-- Run the relay to remap topics --

 call file “relays.launch.xml"

-- ***************** Robot Model ***************** --

 call file "robot.launch.xml"

 call "base"

Chap 4

Simulation and Results

63

 call "stacks"

 call "3d_sensor"

 call node "joint_state_publisher"

 call node "mobile_base_nodelet_manager"

 call node "cmd_vel_mux"

-- ****** Maps ***** --

 call node "map_server"

-- ************** Navigation *************** --

 call file "move_base.launch.xml"

 call "odom_topic"

 call "laser_topic"

 call "odom_frame_id"

 call "base_frame_id"

 call "global_frame_id"

-- ***************** Manually setting some parameters ******************** --

 set parameter value to "min_obstacle_height"

 set parameter value to "max_obstacle_height"

 set parameter value to "min_obstacle_height"

 set parameter value to "max_obstacle_height"

-- ************** AMCL ************** --

 call file "amcl.launch.xml"

 check name "scan_topic" with value "laser_topic"

 check name "use_map_topic" with value "true"

 check name "odom_frame_id" with value "odom_frame_id"

 check name "base_frame_id" with value "base_frame_id"

 check name "global_frame_id" with value "global_frame_id"

 check name "initial_pose_x" with value "initial_pose_x"

 check name "initial_pose_y" with value "initial_pose_y"

 check name "initial_pose_a" with value "initial_pose_a"

-- ******* Small tf tree connector between robot0 and base_footprint******* --

 call node "tf_connector" and load file "tf_connector.py"

 -- **************** Visualisation **************** --

 Call node to start "rviz" and load the file "robot_navigation.rviz"

 Finally, we should build the package using catkin_make command line to make the files

executable.

 When we run the previous .launch file using the following command line, the Rvis

simulator popup as shown in Figure 4.15. The map and the robot will be loaded to the

simulator.

Chap 4 Chap 4

Simulation and Results

64

Figure 4.15. Rviz popup screen to start the robot navigation.

 Now, we just perform navigation in the map that we have created using the rviz parameter

“2D Nav Goal” button is used to create an optimum path for the robot to reach the needed

goal. Figure 4.16 shows the step by step path execution for a desired goal in known generated

map.

1 2

3 4

Simulation and Results

65

Figure 4.16. Step by step path planning execution.

IV.5. Conclusion
 This chapter provides a depth explanation of the simulation of the RobuTER/ULM

navigation process. Where, we have seen how to construct the 3D model of the robot in

Solidworks and how to simulate the robot inside ROS indigo. Then, we showed how to build

a map using SLAM package. Finally, we close the chapter by providing the path planning

simulation procedure in 2D global map from one place to another. Hence, obstacles

avoidance is done automatically in the local and global plane and adapting the path for new

goals actualized regularly.

6 5
Chap 4

General Conclusion

66

The aim of this project was to simulate and test an artificial intelligent navigation for

differential drive autonomous mobile robot based on the Kinect camera. Hence, the first

purpose was to make the mobile robot able to achieve any desired position by itself,

including sensing the surrounding environment and building a virtual map. The second

purpose was determining its position as a localization process, and finding and executing its

path.

During this work, we have stated some aspects about autonomous navigation for mobile

robot, technical robot terms, sensors and present the robot data. In the simulation, we have

created a virtual environment for the robot to explore and build a map; then, we have used

this 2D map to perform navigation and path planning.

Initially, the robot 3D model and the virtual map were designed. Then, we have started

by building files for navigation stack. The first part was for the robot setup where we have

configured the transformation frame, Odometry information, sensor information and the

base controller; so that this will allow the mobile robot to explore the virtual environment

and construct the 2D map through the execution of the SLAM algorithm. The second part

consist of building the navigation stack which concerns the path planning in local and global

map by configuring the local costmap and global costmap and running the AMCL algorithm

for localization. Finally, we have reached the needed simulation and received the desired

results.

Future Works

 Implementing this study in the real RobuTER/ULM was kind-off impossible since

the robot does not have a driver that is compatible with ROS so that all the algorithms

will be installed inside the robot. Hence, for now the robot just receives a set of data

for the velocities of the tow wheels and the angles of the arm joints. In addition, once

they, at CDTA, integrate a driver compatible with ROS; it is needed to add files extra

to the ones that we have created, files that will detect and communicate with the robot

hardware and read and adapt information from the real world.

 The creation of a 3D map is possible using the Kinect camera and RTAB-Map (Real-

Time Appearance-Based Mapping) package in ROS. It is an RGB-D SLAM

approach based on a global loop closure detector with real-time constraints. So,

navigation in 3D will be more accurate for obstacle avoidance than 2D map.

67

References and Bibliography

[1] Roland Siegwart and Illah R. Nourbakhsh “Introduction to autonomous

mobile robots” MIT press. 2004.

[2] A. HENTOUT, B. BOUZOUIA, I. AKLI and R. TOUMI “Mobile

Manipulation: A Case Study” InTech April, 2010.

[3] Jonathan Dixon, Oliver Henlich “Mobile Robot Navigation’’, 10 June

1997.

[4] Ulrich Nehmzow “Mobile Robotics: A Practical Introduction” Second

Edition. Springer. 2003

[5] BAKDI Azzeddine, BOUTAMAI Hakim “Visual path planning for

autonomous

mobile robots: Case of RobuTER” Final Year Project Report for the Degree

of MASTER, 2015.

[6] Carl D. Crane III , Joseph Duffy “Kinematic Analysis of Robot

Manipulators” Cambridge University Press, 2008.

[7] Editado por Margarita N. Favorskaya,Lakhmi C. Jain “Computer

Vision in Control Systems-2: Innovations in Practice”, Spring.

[8] Arbnor Pajaziti, Petrit Avdullahu “SLAM – Map Building and

Navigation via ROS” International Journal of Intelligent Systems and

Applications in Engineering, Received 05th September 2014, Accepted 18th

December 2014.

[9] Søren Riisgaard and Morten Rufus Blas “SLAM for Dummies” A

Tutorial Approach to Simultaneous Localization and Mapping, By the

dummies’.

[10] Aaron Martinez, Enrique Fernández “Learning ROS for Robotics

Programming” Published by Packt Publishing Ltd, September 2013.

[11] Lentin Joseph “Mastering ROS for Robotics Programming” Published

by Packt Publishing Ltd, December 2015.

http://www.doc.ic.ac.uk/~nd/surprise_97/journal/vol4/jmd/
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Carl+D.+Crane++III&search-alias=books&field-author=Carl+D.+Crane++III&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Joseph+Duffy&search-alias=books&field-author=Joseph+Duffy&sort=relevancerank

68

Appendix

-A-

A.1. An Introduction to Robot Operating System ROS
 Robot Operating System (ROS) is a trending robot application development platform that

provides various features such as message passing, distributed computing, code reusing, and

so on.

 The ROS project was started in 2007 with the name Switchyard by Morgan Quigley as

part of the Stanford STAIR robot project. The main development of ROS happened at

Willow Garage.

 Here are some of the reasons why people choose ROS over other robotic platforms such

as Player,YARP, Orocos, MRPT, and so on [12]:

• High-end capabilities: ROS comes with ready to use capabilities, for example, SLAM

(Simultaneous Localization and Mapping) and AMCL (Adaptive Monte Carlo

Localization) packages in ROS can be used for performing autonomous navigation in

mobile robots and the MoveIt package for motion planning of robot manipulators.

• Tons of tools: ROS is packed with tons of tools for debugging, visualizing, and performing

simulation. The tools such as rqt_gui, RViz and Gazebo are some of the strong open source

tools for debugging, visualization, and simulation. The software framework that has these

many tools is very rare.

• Support high-end sensors and actuators: ROS is packed with device drivers and

interface packages of various sensors and actuators in robotics. The high-end sensors include

Velodyne-LIDAR, Laser scanners, Kinect, and so on and actuators such as Dynamixel

servos. We can interface these

components to ROS without any hassle.

• Inter-platform operability: The ROS message-passing middleware allows

communicating between different nodes. These nodes can be programmed in any language

that has ROS client libraries. We can write high performance nodes in C++ or C and other

nodes in Python or Java. This kind of flexibility is not available in other frameworks.

• Modularity: One of the issues that can occur in most of the standalone robotic applications

are, if any of the threads of main code crash, the entire robot application can stop. In ROS,

the situation is different, we are writing different nodes for each process and if one node

crashes, the system can still

work. Also, ROS provides robust methods to resume operation even if any sensors or motors

are dead.

• Concurrent resource handling: Handling a hardware resource by more than two

processes is always a headache. Imagine, we want to process an image from a camera for

face detection and motion detection, we can either write the code as a single entity that can

do both, or we can write a single threaded code for concurrency. If we want to add more than

two features in threads, the application behavior will get complex and will be difficult to

debug. But in ROS, we can access the devices using ROS topics from the ROS drivers. Any

number of ROS nodes can subscribe to the image message from the ROS camera driver and

each node can perform different functionalities. It can

reduce the complexity in computation and also increase the debug-ability of the entire

system.

• Active community: When we choose a library or software framework, especially from an

open source community, one of the main factors that needs to be checked before using it is

its software support and developer community. There is no guarantee of support from an

69

open source tool. Some tools provide good support and some tools don't. In ROS, the support

community is active. The ROS community has a steady growth in developers worldwide.

A.2. Understanding the ROS file system level
 Similar to an operating system, ROS files are also organized on the hard disk in a

particular fashion. In this level, we can see how these files are organized on the disk. The

following graph shows how ROS files and folder are organized on the disk:

Figure A.1. ROS File system level [12].

 A typical structure of a ROS package is shown here:

 Figure A.2. Structure of a typical ROS package [12].

 Let us now introduce some of ROS’s architecture keywords. ROS uses the concept of

nodes, messages, topics, stacks, and packages, below a quick described of this concepts:

 Node: A process that performs computation; nodes communicate with each other

through messages.

 Message: A strictly type of data structure; a node sends a message by publishing it

to a topic.

 Topic: Channel between tow or more nodes; nodes communicate by publishing

and/or subscribing to the appropriate topics.

 Package: Compilation of nodes that can easily be compiled and ported to other

computers, necessary to build a complete ROS-based controller system.

 Stack: Groups of ROS packages making easier the process of sharing code with the

community.

70

A.3. Visualization and Simulation in ROS
 The ROS framework comes with a great number of powerful tools to help the user and

developer in the process of debugging the code, and detecting problems with both the

hardware and software. In order to make simulations with our robots on ROS, we are going

to use Gazebo, Rvize and Moveit.

Gazebo

 Robot simulation is an essential tool in every roboticist's toolbox. A well-designed

simulator makes it possible to rapidly test algorithms, design robots, and perform regression

testing using realistic scenarios. Gazebo offers the ability to accurately and efficiently

simulate populations of robots in complex indoor and outdoor environments. At your

fingertips is a robust physics engine, high-quality graphics, and convenient programmatic

and graphical interfaces.

Installing and Launching Gazebo

Install ROS indigo and get the simulator_gazebo package by the commend line:

Setup ros environnement variables :

The standard Gazebo launch file is started using:

Except in the case of Indigo, where the launch file is started using:

This should start the simulator and open up a GUI window that looks like this:

Figure A.3. The Gazebo GUI.

Rviz

 Rviz stands for ROS visualization. It is a general-purpose 3D visualization environment

for robots, sensors, and algorithms. Like most ROS tools, it can be used for any robot and

rapidly configured for a particular application.

 Rviz can plot a variety of data types streaming through a typical ROS system, with

heavy emphasis on the three-dimensional nature of the data. In ROS, all forms of data are

attached to a frame of reference.

71

Installing and launching Rviz

Download the rviz sources into your ros_workspace. First to satisfy any system

dependencies.

Now build the visualiser:

You might have to run a line such as

Then start the simulator :

When rviz starts for the first time, you will see an empty window:

Figure A.4. The Rviz GUI.

STDR Simulator

 Simple Two-Dimensional Robot Simulator (STDR Simulator) is a 2-D multi-robot Unix

simulator. Its goals are:

Easy multi-robot 2-D simulation

 STDR Simulator's goal is not to be the most realistic simulator, or the one with the most

functionalities. Our intention is to make a single robot's, or a swarm's simulation as simple

as possible, by minimizing the needed actions the researcher has to perform to start his/hers

experiment. In addition, STDR can function with or without a graphical environment, which

allows for experiments to take place even using ssh connections.

72

To be ROS compliant

 STDR Simulator is created in way that makes it totally ROS compliant. Every robot and

sensor emits a ROS transformation (Tf) and all the measurements are published in ROS

topics. In that way, STDR uses all ROS advantages, aiming at easy usage with the world's

most state-of-the-art robotic framework. The ROS compliance also suggests that the

Graphical User Interface and the STDR Server can be executed in different machines, as

well as that STDR can work together with the Rviz simulator in ROS.

Figure A.5. The STDR GUI.

STDR Simulator ROS packages

 stdr_server, Implements synchronization and coordination functionalities of STDR

Simulator.

 stdr_robot, Provides robot, sensor implementation, using nodelets for stdr_server to

load them.

 stdr_parser, Provides a library to STDR Simulator, to parse yaml and xml description

files.

 stdr_gui, A gui in Qt for visualizing purposes in STDR Simulator.

 stdr_msgs, Provides msgs, services and actions for STDR Simulator.

 stdr_launchers, Launch files, to easily bringup server, robots, guis.

 stdr_resources, Provides robot and sensor descripiton files for STDR Simulator.

 stdr_samples, Provides sample codes to demonstrate STDR simulator functionalities.

http://wiki.ros.org/stdr_server
http://wiki.ros.org/stdr_robot
http://wiki.ros.org/stdr_parser
http://wiki.ros.org/stdr_gui
http://wiki.ros.org/stdr_msgs
http://wiki.ros.org/stdr_launchers
http://wiki.ros.org/stdr_resources
http://wiki.ros.org/stdr_samples

73

Appendix

-B-

The Catkin workspace package architecture
 In this part we will take a look on the packages that we have created in the catkin_robot

workspace that we had made as a place to save our simulation files.

 As we can see in the Figure C.1 below we do have three main files that are the basic

architecture of our catkin_robot workspace where the src folder saves the packages that we

create then to make this packages readable or executable we build them using the commend

line catkin_make so that we generate system files in the build and devel folders of our

catkin_robot workspace.

 As we can see also we do have seven packages that describe the robot and the process of

navigation with its files, each file contains codes either in C++, Python or Xml programing

language.

 For the description of the robot modal we do have the URDF package that we have

created starting from the simulation in Solidworks 2015 and extracting the files to an URDF

format by describing the joints and likes that build a transformation frame to each join point

in the robot.

74

75

Figure B.1. The architecture of the Catkin_robot workspace files.

76

Appendix

-C-

Steps to Test the Kinect in ROS

In the following we will take a look on the process of installing and running the Kinect

Xbox360-V2 driver in ROS indigo. Here with the Kinect V2 we use the OpenNI drivers

instead of Libfreenect drivers that are compatible with the Kinect V1.

 sudo apt-get install libopenni0 libopenni-dev.

 sudo apt-get install ros-indigo-openni-camera.

 sudo apt-get install ros-indigo-openni-launch.

o cd ~/Downloads

unzip avin2-SensorKinect-v0.93-5.1.2.1-0-g15f1975.zip

cd avin2-SensorKinect-15f1975/Bin

tar -xjf SensorKinect093-Bin-Linux-x64-v5.1.2.1.tar.bz2

cd Sensor-Bin-Linux-x64-v5.1.2.1

sudo ./install.sh

 To test in Rviz simulator the kinect.

 roscore

 roslaunch openni_launch openni.launch

 rosrun image_view image_view image:=/camera/rgb/image_color

 rosrun rviz rviz

Figure C.1. The Kinect test in the Rviz simulator.

77

Appendix

-D-

Flowcharts shapes explanation

Figure D.1. Flowcharts shapes explanation

