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Axisymmetric frictionless contact
between an elastic layer thickness and
a circular base under a rigid punch

Fadila Guerrache , Hamid Boutoutaou and Madjid Hachemi

Abstract
The study presented in this work deals with analytical methods for an axisymmetric problem of an elastic layer partially
reposing on a rigid circular base, and is indented along the upper surface with a rigid punch. The contact between the
medium and the base is smooth. This boundary value problem is transformed into a system of dual integral equations. In
contrast to the classical approach consisting in resolving the corresponding Fredholm equation of the second kind, the
latter equations are obtained from an infinite algebraic system of simultaneous equations, where the particular case
h! ‘ is verified. The results of this system are also obtained numerically. The normal displacement, normal stress, and
the stress singularity factor are given analytically and shown graphically with discussion. By comparison with those pre-
dicted by the finite element method, the accuracy of the numerical method is approved.
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Introduction

The problems of the theory of elasticity are more signif-
icant in mechanics in particular those concerning con-
tact. Indeed, the concentration of the efforts and the
tiredness of the material often occurs in the zone of con-
tact between structural components. This is why the
zone of contact is classified critical zone. Due to its
potential applicability to several constructions of practi-
cal importance, the contact problems in solid mechanics
involving an elastic layer sitting on an elastic half-plane,
elastic and rigid foundations have been extensively
researched. Foundation grillages, pavements of high-
ways and airfields, railways ballast, and ball and roller
bearings are some of the application areas of contact
mechanics. The classical theory of contact mechanics
started with the work of Hertz.1 The axisymmetric
problem of the surface indentation of an isotropic elas-
tic half-space by a smooth rigid circular punch or

indentor was first examined by Boussinesq.2 Lebedev
and Ufliand3 considered the punch problem for an elas-
tic layer resting on a rigid foundation. The contact
problem of the elastic medium substrate body has been
investigated by Dhaliwal.4 Hayes et al.5 obtained a the-
oretical solution to the punch problem of axisymmetric
indentation of an infinite elastic layer bonded to a rigid
half-space as a model for the layered geometry of carti-
lage and subchondral bone. An axisymmetric contact
problem for an elastic medium on a rigid foundation
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with a cylindrical hole has been studied by Dhaliwal
and Singh.6 The contact problem of a half-space
pressed onto a rigid base with a cylindrical protrusion
or pit has been treated by Shibuya et al.7 Their second
paper8 deals with the contact stresses of an elastic plate
pressed onto a rigid base with a cylindrical protrusion
or pit. In the work, the layer thickness on a rigid base
with a cylindrical protrusion or pit and is indented by a
rigid stamp has been analyzed by Hara et al.9 Kebli
et al.10 solved the problem of elastostatic deformation
of the elastic medium. The thermoelastic contact prob-
lem has been studied by Guerrache and Kebli.11 The
solution for an axisymmetric torsion problem was pre-
sented by Kebli et al.12

Various programs based on the finite element
method FEM have been created in parallel with devel-
opments in computer technology. The FEM is applied
to the calculation of contact stresses between two or
elastic bodies with friction on the contact surface by
Ohte.13 In the paper, the FEM for solving a contact
problem of elasticity theory has been examined by
Barlam.14

The half-space is compressed by a rigid cylindrical
surface has been examined by Komvopoulos,15 the con-
tact stresses, and displacements in the contact area are
determined using a numerical method. An analytical
method and a FEM are used to solve a receding contact
problem for two elastic layers supported with a Winkler
foundation by Oner et al.16 Yaylaci17 discussed a com-
parison between numerical and analytical solutions for
the receding contact problem. Their second work18

deals with the contact problem of an elastic layer rest-
ing on a rigid foundation, resolved by FEM.

The frictionless contact problem for an elastic
medium on a rigid circular base can be reduced to a sys-
tem of dual integral equations by using a Hankel trans-
formation, and the Boussinesq stress functions, which
is transformed to solving an infinite system of simulta-
neous algebraic equations through the Gegenbauer’s
formula by expressing the normal stress under the
indenter as an appropriate Chebyshev series. It seems

there is a similar method to that in works8,10 that is
convenient to obtain the numerical results. The results
analytical are presented with a discussion to illustrate
the validity and accuracy of the proposed analytical
method with this problem given by a half-space case
treated by Shibuya et al.7 An FEM based approach to
this problem is also developed. The results have shown
a graphical form that the FEM is in good agreement
with the analytical method.

Governing equation of the problem and its
solution

Problem description

Figure 1 shows the geometry and coordinate system
studied. It uses a cylindrical coordinate system r, u, zð Þ,
u and w are represented the components of displace-
ment in the plane r and z, respectively. Shear modulus
G and Poisson’s ratio n define the material’s character-
istics. The stress tensor’s elements are denoted as
sr, sz, su, trz, tru, and tzu. h is the thickness of the
isotropic elastic medium, partially reposing on a
smooth rigid circular base of radius a. As we see, the
layer tends to be infinite. An indented displacement d is
pressed on the plane z= h using a rigid punch. It is
assumed to be small. Displacement and stress fields
must check the boundary conditions

w r, 0ð Þ= 0, r ł a, ð1aÞ
sz r, 0ð Þ= 0, r.a, ð1bÞ
trz r, 0ð Þ= 0, r ø 0, ð1cÞ

w r, hð Þ= � d , r ø 0, ð1dÞ
trz r, hð Þ= 0, r ø 0: ð1eÞ

All stress components vanish at infinity.

Analytical solutions

To satisfy the field equations of the linear theory of
elasticity and in the absence of the body force fields, the
displacements and stresses in a medium without torsion
can conveniently be expressed in terms of two harmonic
stress Boussinesq u0 r, zð Þ and u3 r, zð Þ through the fol-
lowing relations8

2Gu r, zð Þ= ∂u0 r, zð Þ
∂r

+ z
∂u3 r, zð Þ

∂r
, ð2Þ

2Gw r, zð Þ= ∂u0 r, zð Þ
∂z

+ z
∂u3 r, zð Þ

∂z
� xu3 r, zð Þ, ð3Þ

v r, zð Þ= 0, ð4Þ

sr r, zð Þ= ∂2u0 r, zð Þ
∂r2

+ z
∂2u3 r, zð Þ

∂r2
� 2n

∂u3 r, zð Þ
∂z

, ð5Þ

Figure 1. Coordinates and configuration.
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su r, zð Þ= ∂u0 r, zð Þ
r∂r

+ z
∂u3 r, zð Þ

r∂r
� 2n

∂u3 r, zð Þ
∂z

, ð6Þ

sz r, zð Þ= ∂2u0 r, zð Þ
∂z2

+ z
∂2u3 r, zð Þ

∂z2
� 2 1� nð Þ ∂u3 r, zð Þ

∂z
,

ð7Þ

trz r,zð Þ= ∂

∂r

∂u0 r,zð Þ
∂z

+z
∂u3 r,zð Þ

∂z
� 1�2nð Þu3 r,zð Þ

� �
,

ð8Þ

tru r, zð Þ= tuz r, zð Þ= 0: ð9Þ

x = 3� 4n denote the Kosolov’s constant. The stress
functions u0 r, zð Þ and u3 r, zð Þ meets the following
equation

r2u0 r, zð Þ=r2u3 r, zð Þ= 0,

r2[
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
:

8<
: ð10Þ

r2 is Laplace’s operator. To solve the problem, it is
useful to use a Hankel integral transform to develop
equation (3), which is described as follows19

Hn f lð Þ, r½ �=
ð‘

0

l f lð ÞJn lrð Þdl : ð11Þ

Hn is the Hankel operator of order n, Jn is the first kind
of order n of the Bessel function. The integral represen-
tation u0 r, zð Þ and u3 r, zð Þ can be chosen to satisfy
equation (3)9

u0 r, zð Þ= � n G
h

d 2z� r2
� �

+

ð‘

0

A lð Þ cos hlz+B lð Þ sin hlz½ �J0 lrð Þdl,

ð12Þ

u3 r,zð Þ=G

h
dz+

ð‘

0

C lð Þsinhlz+D lð Þcoshlz½ �J0 lrð Þdl:

ð13Þ

A, B, C, and D are arbitrary functions of l. Substituting
equations (12) and (13) into equations (2) to (9), using
boundary conditions (1c), (1d), and (1e), allows us to
derive the expression

lA lð Þ= l h � 1� 2nð Þ sin hlh cos hlh

sin h2lh
D lð Þ, ð14Þ

lB lð Þ= 1� 2nð ÞD lð Þ , ð15Þ

C lð Þ= � cot hlh D lð Þ : ð16Þ

The w and sz of equations (2) to (9) can be chosen using
functions Boussinesq u0 r, zð Þ and u3 r, zð Þ of equations
(2) to (9). By the boundary conditions (1a) and (1b), we
find that the function D(l) must meet the system of

dual integral equations in terms of the Hankel trans-
form as follows

w r, 0ð Þ=h

ð‘

0

D lð ÞJ0 lrð Þdl= 0, r ł a, ð17Þ

sz r, 0ð Þ+ E

h
d= 0)

ð‘

0

l q lð ÞD lð ÞJ0 lrð Þdl = 0, r.a:

ð18Þ

E is defined by Young’s modulus

h=
�1+ n

G
, ð19Þ

q lð Þ= lh+ sin hlh cos hlh

sin h2lh
: ð20Þ

Assuming20 (formula 6.522.2), the integral formula

ð‘

0

l Mn l xð ÞJ0 l rð Þ dl =
2

pr

T2n+ 1 r=xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p , r\x,

0, r.x:

8<
:

ð21Þ

Tn is the first kind of order n of Chebyshev’s polyno-
mials. Here, putting

Mn l xð Þ= Jn+ 1
2

l x

2

� �
J� n+ 1

2ð Þ
l x

2

� �
, n= 0, 1, 2:::ð Þ :

ð22Þ

Permits us to solve the dual integral equations (17) and
(18), using the following expression

q lð ÞD lð Þ= d

h

X‘

n= 0
anMn l að Þ: ð23Þ

Substituting from equation (23) into equation (17), and
making Gegenbauer’s formula20 (formula 8.531.1), we
get

J0 lrð Þ=
X‘

m=0
2�d0mð ÞXm lxð Þcos mfð Þ, f=arcsin

r

x

	 
	 

:

ð24Þ

d0m being the Kronecker delta function dnm =

1, m= n,
0, m 6¼ n:

�

Xm l xð Þ= J 2
m

l x

2

� �
, m= 0, 1, 2:::ð Þ : ð25Þ

we obtained

X‘

n= 0
an

X‘

n= 0
2� d0mð Þ cosmfð‘

0

q�1 lð ÞMn l að ÞXm l að Þdl= 0, r ł a:
ð26Þ
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where

an = d an , n= 0, 1, 2:::ð Þ : ð27Þ

Equation (26) must hold for an arbitrary value of f.
The an coefficients are carried from equation (28), as a
result of matching the coefficients on both sides of
equation (26).

X‘

n=0
an

ð‘

0

q�1 lð ÞMn lað ÞXm lað Þdl=0, m=0,1,2:::ð Þ:

ð28Þ

In matrix form, equation (28) becomes

X‘

n= 0
anAmn = 0, m= 0, 1, 2:::ð Þ : ð29Þ

where

Amn =

ð‘

0

q�1 lð ÞMn l að ÞXm l að Þdl: ð30Þ

We can derive the results for the particular case. The
result obtained in the problem7 is easily obtained by
taking h! ‘, the infinite integrals of the system equa-
tion (29), we find that equation

X‘

n= 0
an

ð‘

0

Mn lað ÞXm lað Þdl = 0, m= 0, 1, 2:::ð Þ :

ð31Þ

We write the system equation (29) in dimensionless
form, which allows us to facilitate their simplification
and to generalize the results. By setting the following
changes of variables

t = l a , H =
h

a
: ð32Þ

Then

X‘

n= 0
a0n A0mn = 0 : ð33Þ

where

a0n = an, ð34Þ

A0mn =

ð‘

0

q�1 tð ÞMn tð ÞXm tð Þdt, ð35Þ

and

q�1 tð Þ= sin h2Ht

Ht+ cos hHt sin hHt
, ð36Þ

Mn tð Þ= Jn+ 1
2

t

2

	 

J� n+ 1

2ð Þ
t

2

	 

, ð37Þ

Xm tð Þ= J2
m

t

2

	 

: ð38Þ

Numerical results

To estimate the unknown coefficients a0n, it is necessary
to solve the infinite set of simultaneous equation (33),
which involves the multiplication of Bessel functions in
the integrand. Therefore, we follow the steps described
in the work of Kebli et al.10 The numerical values of
coefficients a0n with values for the various values of the
parameter H are presented in the following Table 1. A
good convergent solution can be achieved using eight
terms.

Expressions for the physical quantities

The nondimensional normal displacement in the
plane z= 0 can be obtained by solving the following
equation

Table 1. Coefficient values a0n.

a0n

n H= 0:75 H= 1 H= 1:5

0 0.000290751991865906 0.001088955486405 0.00106534756817198
1 20.000360749489995402 20.001526440370283 20.00117263625004920
2 0.000104751189188284 0.000579796833755 0.00024352913575814
3 20.000019911540295819 20.000117589292941 20.00005248678208980
4 20.000000681653785655 0.000007418581197 20.00000957747694767
5 20.000001436598849622 20.000003519173837 20.00000759248737481
6 20.000000862916750635 20.000001808580884 20.00000471927687651
7 20.000000514438425896 20.000001082331256 20.00000280506434363
8 20.000000208367030836 20.000000410528142 20.00000117807920084
9 20.000000012790110256 0.000000000819269 20.00000011117948242
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w� r,0ð Þ=w r,0ð Þ
d

=
X‘

n=0

an

ð‘

0

q�1 lð Þ�1
� 

Mn lað ÞJ0 lrð Þdl

�

+

ð‘

0

Mn lað Þ� 2

lpa
sinla

� �
J0 lrð Þdr

+
2

pa
H a�rð Þp

2
+H r�að Þsin�1a

r

h i�
:

ð39Þ

where
H denotes Heaviside’s step function H x� rð Þ=

1, r\x,
0, r.x:

�

Therefore, the nondimensional normal stress in the
contact region between the elastic medium and the rigid
base can be expressed in appropriate Chebyshev series,
with unknown coefficients an as follows as

s� r, 0ð Þ= h

Ed
sz r, 0ð Þ+ 1½ �

=
2

p
H a� rð Þ

X‘

n= 0
an

T2n+ 1 r=að Þ
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2
p :

ð40Þ

The stress state around the plane of contact base can be
described by the stress singularity factor defined as10

S = lim
r!a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p r � að Þ

p
s� r, 0ð Þ : ð41Þ

The substitution of equation (40) into equation (41), we
obtained

S =
2

a
ffiffiffiffi
p
p

X‘

n= 0
an: ð42Þ

The behavior of nondimensional normal displacement

w� r, 0ð Þ where r=
r

a
, on the region r ø 1 for different

values H is given in Figure 2. We remarked that the
value w� r, 0ð Þ is decreasing with an increase H . The

nondimensional normal stress s� r, 0ð Þ can be seen in
Figure 3. It is shown, the values s� r, 0ð Þ get their maxi-
mum at the center of the rigid base with increased val-
ues for the parameter H . The slope s� r, 0ð Þ tends to
infinity at r= 1. The nondimensional stress singularity
factor S around the region of contact is graphically illu-
strated in Figure 4. From the graph lines, it is clear that
the S gives a large value with decreasing layer thick-
ness. It is important to note that, the layer thickness
and the base radius affect the distribution of S values

Finite element simulation modeling

In the modeling carried out, an axisymmetric finite ele-
ment method Figure 5 is constructed based on the joint
model of Figure 1. The method numerical solution
requires as an input some material and geometrical
properties. The layer is assumed isotropic and elastic,
geometric are taken as L= 2 500 mm in x the direction,
h= 20 mm in y direction, and the radius of the base as

Figure 2. Variation of w� r, 0ð Þ with different values of H.
Figure 3. Variation of s� r, 0ð Þ with different values of H.

Figure 4. Variation of S with different values of H.
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a= 2 5 mm. It should be noted that the length of the
elastic medium is very large than the radius of the base.
In the analysis, material properties are taken as
Young’s modulus of elasticity 21 3 104 Mpa,0:29 which
is the value of Poisson’s ratio. The boundary conditions
applied to correspond to the blockages in translation
along x and y of the rigid base, and to the imposed dis-
placement d= � 0:05 mm of the free vertical surface
of the layer in the y direction, Figure 5(a). The FEM
mesh is based on the CPS4R type, and of size

0:2 5 3 0:2 5ð Þmm, Figure 5(b). The refined mesh is
about of 800000 elements, and the time step is 0:05 s.
Our convergence analysis was conducted on the maxi-
mum normal stress and the vertical displacement. We
based ourselves on the calculation of the relative error
of these two quantities by using an increasingly refined
mesh. The value of the relative error is obtained com-
pared to the value of normal stress, and the vertical dis-
placement is calculated with the preceding mesh,
coarser. In both cases, the relative error decreases at
the end of the refinement of the model and remains
below 0, 2% for the vertical displacement and 2% for
the case of vertical stress, which affirms the conver-
gence of the two quantities.

The contour of normal stress distribution on the
layer thickness obtained from the numerical method is
plotted to the y-axis in Figures 6 and 7. It is obvious
from Figures 6 and 7 that the normal stress attains infi-
nite value at the edges of the rigid base. It is noted that
the results obtained are a good agreement with the ana-
lytical results. Figures 8 and 9, show the contour plot of
Von Mises stress distribution. We observe a very high
concentration of stresses around the edges of the rigid
base for the Von Mises stress and it is canceled while
moving away from the base. The simulation results
obtained of vertical displacement are given in Figures
10 and 11. The latter represents the displacement beha-
vior through the elastic medium. The value of vertical

Figure 6. Contour of normal stress distribution on the layer
thickness.

Figure 7. Normal stress of distribution along the rigid base
surface.

Figure 9. Von Mises stress distribution at the rigid base
surface.

Figure 5. Boundary condition applied (a) and mesh of model (b).

Figure 8. Contour of Von Mises stress distribution of a layer
thickness.
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displacement is maximum in the vicinity of the rigid
base, then it decreases while moving away from the ver-
tical axis, and that is due to the displacement applied.
We found good agreement between previously obtained
vertical displacement analysis results.

Conclusion

In the present work, the frictionless axisymmetric con-
tact problem for an elastic layer thickness partially
reposing on a rigid base is considered. The problem is
solved by using a boundary value, the theory of elasti-
city, and the integral transformation technique. The
finite element method FEM is performed for this prob-
lem. Following is a summary of some findings provided
from mathematical formulations and the results:

2 Using the Boussinesq stress functions and the
Hankel integral transformations, the studied
axisymmetric frictionless contact problem of an
elastic medium is reduced to a system of dual
integral equations.

2 Instead of the traditional Fredholm equation
approach, the latter equations are converted
into an infinite algebraic system of simultaneous
equations. Only the problem’s geometrical para-
meters are dependent on this system. This allows
numerical results of the infinite algebraic system
to be obtained for various values of the radius
of the rigid base and the thickness layer.

2 The thickness layer and the base radius effect on
the distribution of normal displacement, normal
stress, and stress singularity factor are clarified by
numerical computations and graphical results.

2 The methods of analysis and the result of this
work are consistent with the result obtained by
Shibuya et al.7

2 The computational approach based on the finite
element method is validated by the analysis
described.
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Appendix

Notations

r, u, zð Þ cylindrical coordinate system
u, v,wð Þ displacement

sr, su, sz stress
trz, tuz, tru shear stress
a radius
h layer thickness
n Poisson’s ratio
G shear modulus
d displacement
u0, u3 harmonic stress Boussinesq
x Kosolov’s constant
r2 Laplace’s operator
Hn Hankel operator of order n
Jn first kind of order n of the Bessel function
A,B, C, D arbitrary functions of l

Tn first kind of order n of Chebyshev’s
polynomials

dnm Kronecker’s delta function
an coefficients
H Heaviside unit step punch
S stress singularity factor

8 Advances in Mechanical Engineering


