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ABSTRACT

The main challenge in Wireless Mesh Networks (WMNs) is the deployment issue that
has a significant impact on the performance of such networks (coverage, connectivity,
load balancing, and throughput), cost, and the capacity to satisfy the Quality of service
requirements. In the context of mesh routers placement, the performance of the network is
influenced by the number and locations of mesh router, the transmission range of each mesh
router, the number of covered clients per mesh router, the size of the deployment area, and
the number and weights of mesh clients. The mesh routers placement problem is an NP-
hard optimization problem, successfully solved using meta-heuristic optimization approaches
with reasonable time execution. In this work, we propose three approaches for solving
the mesh routers placement problem. The first approach is an improved version of Moth
Flame Optimization (MFO), called ECLO-MFO, based on the integration of three strategies
including: the Lévy Flight Distribution (LFD) strategy, chaotic map, and the Opposition
Based-Learning (OBL) technique to enhance the optimization performance of MFO. The
second approach is a hybrid approach, called ASO-SA, based on the combination of global
search capability of an Adaptive Snake Optimizer (ASO) with the local search capability
of Simulated Annealing (SA). ASO is based on the integration of the Generalized OBL
(GOBL) mechanism into the exploration phase of SO. Finally a Binary Whale Optimization
Algorithm (BWOA) is suggested to solve the topology planning problem in WMNs. Eight
transfer functions divided into two families such as S-shaped and V-shaped are introduced
and analyzed to obtain a binary version of WOA.

Keywords: Wireless Mesh Networks WMNs, the mesh routers placement problem,
meta-heuristics, Moth Flame Optimization MFO, Snake Optimizer SO, Binary Whale
Optimization Algorithm BWOA.



RÉSUMÉ

Le principal défi des réseaux maillés sans fil (WMNs- Wireless Mesh Networks en anglais) est
le problème de déploiement qui a un impact significatif sur les performances de tels reseaux
(coverture, connectivité, equilibrage de charge, débit), le cout, et la capacité à satisfaire les
exigences de qualité de service. Dans le contexte du placement des routeurs maillés, les
performance du réseau sont influencées par le nombre et l’emplacement des routeurs maillés,
la transmission de chaque routeur maillé, la taille de la zone de déploiement, le nombre et
les poids des clients maillés. Le problème de placement des routeurs maillés est un problème
d’optimisation NP-difficile, résolu avec succès en utilisant des approches d’optimisation
méta-heuristiques avec un temps d’exécution raisonnable. Dans ce travail, nous proposons
trois approches pour résoudre le problème de placement des routeurs maillés. La première
approche est une version améliorée de optimiseur de la flamme papillon (MFO- Moth Flame
Optimization en anglais), appelée ECLO-MFO, basée sur l’intégration de trois stratégies
dont: la distribution du prelevement volant (LFD- Lévy Flight Distribution en anglais),
chaotic map, et la technique de l’apprentissage basé sur l’opposition (OBL- l’Opposition
Based-Learning en anglais) pour améliorer les performances d’optimisation de MFO. La
deuxième approche est une approche hybride, appelée ASO-SA, basée sur la combinaison de
la capacité de recherche globale de l’optimiseur du serpent adaptive (ASO) avec la capacité
de recherche locale du recuit simulé (SA). ASO repose sur l’intégration du mécanisme OBL
genéralisé (GOBL) dans la phase d’exploration de SO. Enfin, un algorithme d’optimisation
de baleine binaire (BWOA) est proposé pour résoudre le problème de planification de la
topologie dans les WMN. Huit fonctions de transfert divisées en deux familles telles que S-
shaped et V-shaped sont introduites et analysées pour obtenir une version binaire de WOA.

Mots clés: Réseaux radio maillées WMNs, le probléme de placement des routeurs
maillées, metaheuristiques, optimisation de la flame papillon MFO, optimiseur de serpent
SO, algorithme d’optimisation des baleines binaire BWOA
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GENERAL INTRODUCTION

The development of economical and effective wireless networks is currently an imperative
necessity due to the astounding success of wireless technologies and the expansion of Internet
services. To this end, Wireless Mesh Networks (WMNs) are promising networks for providing
high-speed internet access for both network providers and their customers. WMN technology
has received a lot of attention from the community of researchers and academics due to its
easy implementation, dynamic self-organization, self-configuration, and self-adaptive nature.
It is currently used in many applications such as broadband home networking, education,
healthcare, corporate networks, industrial automation, disaster management, military, and
rescue operations. It provides connectivity to various types of networks such as Wireless
Fidelity (Wi-Fi), Cellular, Worldwide Interoperability for Microwave Access (WiMAX), and
Sensor. In a WMN, a mobile client (MC) can access the Internet through a wireless backbone
formed by wireless Mesh Routers (MRs) which are interconnected in a multi-hop fashion
while some MRs known as Mesh Gateways (MGs) act as the communication bridges between
the wireless backbone and the Internet.

The design of the network architecture is a fundamental issue for a WMN and is critical
in determining the network performance and providing Quality of Service requirements. In
fact, the bad positioning of mesh nodes (MR and/or MG) causes many interferences and
congestion resulting in low throughput, considerable packet loss, and high delays. To cope
with these drawbacks, network operators must adopt efficient optimization methods for
WMNs nodes placement. WMNs nodes placement is known to be an NP-hard problem. So
approximate optimization algorithms (i.e. heuristic, meta-heuristic, and hybrid algorithms)
have been presented as successful optimization algorithms to solve them (obtain ideal
solutions) within reasonable time. More details about used approaches for the mesh nodes
placement problem can be found in [1]

This thesis is based on three major contributions. In the first contribution, we suggested
an improved version of Moth Flame Optimization (MFO), named ECLO-MFO, for solving
the mesh routers placement problem. ECLO-MFO is based on the integration of three
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GENERAL INTRODUCTION

strategies including: the Lévy Flight Distribution (LFD) strategy, chaotic map, and the
Opposition Based-Learning (OBL) technique to enhance the optimization performance of
MFO.

In the second contribution, we have proposed a hybrid approach called ASO-SA, based on
the combination of the global search capability of an Adaptive Snake Optimizer (ASO) with
the local search capability of Simulated Annealing (SA). ASO is based on the integration
of the Generalized OBL (GOBL) mechanism for improving the exploration phase of SO
algorithm.

In the last contribution, we have suggested a Binary Whale Optimization Algorithm
(BWOA) for solving the topology planning problem in WMNs.

Our thesis is organized into five chapters:
In the first chapter, we address wireless mesh networks, their components, architectures,

characteristics, advantages, and applications. In addition, we present some problems and
challenges in WMNs.

In the second chapter, we present optimization problem, the notions and concepts
related to optimization, the classification of optimization problems regarding several criteria:
complexity of the problems, the nature of the problems, the number of optima, the type of
the objective function and the number of constraints. Again, we present the optimization
methods where we describe the basic principle of some algorithms used for solving complex
problems.

In the third chapter, we describe the improved MFO approach for solving the mesh
router nodes placement problem in WMNs, and we evaluate their performance and compare
its characteristics with other optimization methods.

In the fourth chapter, we present the hybrid approach, called ASO-SA, based on the
combination of ASO and SA, and we evaluate the performance of the proposed approach
and compare its characteristics with SO and SA algorithms.

In the fifth chapter, we suggest a Binary WOA to solve the topology planning problem
in WMNs, and we introduce and analyze S-shaped and V-shaped to obtain a binary WOA.

Finally, we summarize our findings and discuss ideas on how to extend this research.
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CHAPTER 1

AN OVERVIEW OF WIRELESS MESH NETWORKS

1.1 Introduction

Wireless mesh networks (WMNs) represent a new generation of multi-hop wireless networks,
used to connect various wireless devices by building an unwired mesh [2, 3]. They seek to
offer mobile and fixed consumers high-speed internet access everywhere, anytime, and are
gaining more and more real interest from the Research and Development (RD) community,
network operators, and service providers [3, 4]. Self-configuration, self-organization, and
the capacity to autonomously create and sustain connectivity between nodes in locations
and surroundings devoid of the internet are all traits that WMNs display [3]. These traits
offer a number of benefits, including low implementation costs, simple network management,
robustness, etc.

This chapter addresses WMNs, their components, architectures, characteristics, and
advantages. In addition, the applications scenarios of WMNs are explored. Finally, we
give the problems and challenges in WMNs.

1.2 Wireless Mesh Networks

A wireless mesh network is a specific kind of a wireless network. It offers a possible solution
to problems that arise regularly in WLAN and cellular networks. Cellular and WLAN have
a small range of connectivity, which is their biggest drawback. These systems have a low
data transfer rate and are highly expensive. Wireless mesh networks, on the other hand, are
less expensive and offer quicker data transfer rates.

In WMN, communications between two nodes can be supported by several intermediate
nodes called mesh routers. There are three categories of wireless routers which together form
a relatively static infrastructure in the WMN, including Mesh Router (MR), Mesh Gateway
(MG), and Mesh Client (MC). MC connects to the internet through MRs, MRs relay traffic
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Figure 1.1: WMN architecture

to and from MGs which are connected to internet infrastructure. The typical architecture
of such networks is illustrated in Figure 1.1 [5].

1.3 Components of WMNs

As cited earlier, WMNs consists of three types of nodes such as: Mesh Client (MC), Mesh
Router (MR), and Mesh Gateway (MG).

Mesh clients are the end-user devices, such as laptops, Personal Digital Assistants
(PDAs), smart phones, etc., that can connect to the network and use services like Voice
over Internet Protocol (VoIP), games, location-based services, etc. We assume that these
devices are portable, have limited power, may perform routing, and may or may not always
be connected to the network.

Mesh routers have the capability of routing the traffic in the network. The routers’
mobility is restricted, but they offer reliable characteristics. For multi-hop strategy, the
power consumption of mesh routers is low. In order to provide scalability in a multi-hop
mesh environment, a mesh router’s Medium Access Control (MAC) protocol also supports
multiple channels and multiple interfaces.

Mesh gateways are mesh routers that have direct access to the Internet via wired
infrastructure. The mesh gateways in WMNs are expensive because they require several
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interfaces to connect to both wired and wireless networks. As a result, the network has a
limited number of WMN gateways. Additionally, the locations of mesh gateways significantly
affect network performance.

1.4 WMN classification

1.4.1 Classification according to the type of mesh

Based on the type of the mesh, WMNs are classified into two types:

• Full mesh

• Partial mesh

Full mesh

In this type of network, all nodes are within reach of all, where each node in the network
is connected with all other nodes, so if the network has N nodes, then each node contains
N−1 direct connections (one-hop neighbors) as illustrated in Figure 1.2 [6]. Communication
between nodes is done directly, which optimizes quality of service, throughput, latency, and
bandwidth. In other hand, in addition to the problem of interference, and exposed node,
the network coverage area cannot exceed the coverage area of a node.

Figure 1.2: Full mesh

Partial mesh

The nodes are connected to each other forming a connected graph as illustrated in Figure 1.3
[6], such that each node can communicate directly with its neighbors and indirectly with the

5



CHAPTER 1. AN OVERVIEW OF WIRELESS MESH NETWORKS

rest of the nodes. In this type o mesh, the coverage area can be extended and the interference
problem and exposed node can be reduced.

Figure 1.3: Partial mesh

1.4.2 Classification according to the architecture

Based on the function of the nodes in the network, WMNs are classified into three types:

• Infrastructure/Backbone WMNs

• Client WMNs

• Hybrid WMNs

Infrastructure/Backbone WMNs

The backbone network infrastructure is composed of MRs, which also have limited mobility
and no energy limitations. MRs can be configured with gateway or bridge capabilities,
enabling them to offer an infrastructure for customers to connect them to each other, the
Internet, or to other wireless networks. An illustration of this kind of architecture is provided
in Figure 1.4
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Figure 1.4: Infrastructure/Backbone WMNs

Client WMNs

MCs create a self-organized and self-configurable mesh network with this sort of architecture,
for providing point-to-point (peer-to-peer) connections between various users. In these
networks, an MR is not necessary; MCs are the only ones. Client WMNs is illustrated
in Figure 1.5

Figure 1.5: Client WMNs
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Hybrid WMNs

The hybrid architecture combines the Backbone and Client concepts as illustrated in Figure
1.6. The MCs can communicate directly with other MCs or use the MRs to access the wireless
mesh network. The functionality of the routing assigned to the MCs makes it possible to
reinforce the connectivity and to ensure a broad network coverage inside the WMN.

Figure 1.6: Hybrid architecture

1.5 Wireless Mesh Networks Characteristics

Mesh wireless networks have a number of features, including [2, 3, 7, 8, 9]:
Multi-hop Networks
Multi-hops are frequently used by WMNs to get around obstructions, consume less energy,

or connect to a node that is outside the communication range of the transmitter.
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Multiple radio transmission interfaces
Multiple radio transmission interfaces are built into MRs to enhance the network capacity

and the routing functionality.
Mobility
The mobility of nodes in wireless mesh networks varies depending on their kind; while

MCs might be immobile or have significant movement, MRs have less mobility.
Energy constraint
The energy constraint depends on the node type. Unlike MCs, MRs have no energy limit

because they are powered directly by energy resources.
Interoperability and compatibility WMNs based on IEEE 802.11 standards can

support conventional wifi clients and mesh clients. They are also interoperable with other
wireless technologies such as Zigbee and WiMax.

Several functionalities of MRs
Some MRs can serve as a gateway or a bridge in addition to their primary duty as a

routing device.

1.6 WMNs advantages

WMNs present several advantages such as [3, 4, 10, 7, 8, 9]
Total elimination of wiring
A WMN deployment does not require any wire, which makes it easier to set up, use, and

maintain.
Reduced deployment cost
WMNs are exempt from the cost of cabling, which is an additional expense for wired

networks. Additionally, the need for intervention is reduced by their independence.
Fault tolerance
If the route between two remote nodes fails during the communication, a connection is

created between these two nodes thanks to the multi-path aspect.
Self-configuration and self-organization
WMNs are characterized by self-configuration and self-reorganization, thus they are

capable to adapt to the frequent changes in topology and dynamically maintain the connectivity
in the event of a failure or outage.

Load balancing
The multi-path aspect, which results in many paths connecting the source nodes with

the destination nodes, allows the load balancing to be accomplished.
Scalability
In traditional wireless networks, the network performance degrades as the number of

nodes increases. However, with WMNs, adding mores nodes will boost transmission capacity,
allowing for better load balancing and alternative routes. In most cases, local packets
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generated from MCs move more quickly than neighboring packets. Some WMN configurations
and communication protocol management techniques are used to achieve this.

Interoperability
WMN are compatible with existing standards including WiMAX, Cellular, Wi-Fi, Zigbee,

Bluetooth, Sensor, MANET, Vehicular, etc. As a result, it makes incremental deployment
and the reuse of current infrastructures appealing. All of the aforementioned technologies
can currently be configured to connect with one another through a WMN or will be able
to do so soon. Most of the modifications required for any kind of networks to communicate
with one another can be added to the existing standards to keep the interoperability.

1.7 Academic Supporting and Industry Standards

In the context of home networking, business networking, or larger, community- or metro-scale
networking, wireless mesh networking is garnering a lot of interest as a low-cost networking
platform to offer ubiquitous internet access. Numerous universities are engaged in research
on numerous WMN-related topics, such as planning, protocols, applications, and services.
In addition, various industry standards groups have developed specifications and protocols
for WMNs, such as IEEE 802.11s Mesh WLAN, IEEE 802.15.1 Bluetooth, IEEE 802.15.4
Zigbee, and IEEE 802.16j WiMAX standards [11].

1.7.1 IEEE 802.11s Mesh WLAN

The IEEE 802.11 standards is the preferred solution for low cost data service, it specifies the
Medium Access Control (MAC) and physical layers (PHY) specification for wireless devices
in WLANs. The 2.4 and 5 GHz unlicensed bands are the main keys to its success. The
range (coverage) that WLANs can attain in these bands is constrained by the transmit
power restrictions imposed by regulatory constraints. In other hand, however, there is an
increasing need for "bigger" wireless infrastructure, which may be deployed anywhere from
office/university campuses to entire cities. Thus, data packets must travel over several
wireless hops in order to overcome the drawbacks of single-hop communication, necessitating
the use of wireless mesh networks. In order to solve the aforementioned need for multi-hop
communication, an update to the 802.11 standard called 802.11s has being developed since
2004. In reality, wireless frame forwarding and routing capabilities were introduced at the
MAC layer, enabling interworking and security. The default routing protocol for 802.11s is
a Hybrid Wireless Mesh Protocol (HWMP), which combines Ad hoc On Demand Distance
Vector (AODV) with tree-based routing. Additionally, 802.11s specifies a framework for
congestion control, a password-based authentication mechanism, and a key establishment
protocol.
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1.7.2 IEEE 802.15.1 Bluetooth

The IEEE 802.15.1 standard known commercially as Bluetooth, is focused on Wireless
Personal Area Networks (PANs). This standard identifies the necessary mechanisms that
must be supplied in the physical and MAC layers of Wireless PANs (WPANs) to enable mesh
networking. In WPAN mesh networks, there are two conceivable mesh topologies: full mesh
topology and partial mesh topology. Direct connection arrangements are used in full mesh
topology. Each wireless node is therefore immediately connected to every other node. In
other hand, in a partial mesh topology, certain wireless nodes are connected to every other
wireless node while others are only connected to wireless nodes that relay data.

1.7.3 IEEE 802.15.4 Zigbee

This standard is introduced by Motorola, a coordinator can be specified in Zigbee to support
mesh topology. In fact, the coordinator is charged of setting up the network topology in a
multi-hop manner. Wireless Sensor Mesh Networks (WSMNs) can benefit greatly from this
mechanism.

1.7.4 IEEE 802.16j WiMAX

The 802.16j standard was developed by IEEE 802.16 Relay Task Group with the intention of
enabling Mobile Multihop Relay (MMR) capabilities. In fact, as a result, a multihop mesh
topology is constructed using some WiMAX base stations as relay stations. By using this
mechanism, the network coverage can be increased without incurring additional costs for
installing fixed line connections.

1.8 Transmission techniques in WMNs

1.8.1 Orthogonal Frequency Division Multiplexing (OFDM)

The principle of OFDM is based on dividing the bandwidth into slices called sub-channels,
such that each sub-channel is used as a communication medium between two nodes. This
technique is implemented at mesh points of the mesh network. So a Mesh point is equipped
with several transmission sub-channels and has several logical interfaces, which decreases the
interference and increases the capacity of a mesh point, and consequently it increases the
capacity of the network. In addition, the use of the OFDM technique makes it possible to
create virtual sub-networks whose nodes use the same sub-channel (see figure 1.7 [6]), which
introduces flexibility at the level of the network architecture .
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Figure 1.7: Sub-networks created using OFDM technique

1.8.2 Multiple Input-Multiple Output (MIMO)

In general, wireless networks have been successfully deployed in various applications, consequently,
the consumption of its resources is increased. MIMO systems have appeared to be able to
provide capacities in the transmission side, they make it possible to offer high data rates
compared to the classic transmission mode, and proportional to the number of used antennas.
The principle of MIMO systems is to equip the nodes of the network with several antennas,
these antennas are used during the transmission and reception of data.

Figure 1.8: MIMO communication technique

As shown in Figure 1.8 [6], the transmitter simultaneously transmits multiple data
streams through its antennas (one stream per antenna). The receiver picks up through
its antennas transformed and independent versions of the same transmitted signal, then it
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combines these signals so that the signal results from a lower amplitude variation than the
signal picked up by an antenna. WMN used this new technology to meet the needs of its
customers under the best conditions (throughput and transmission time). Since the WMN
Wireless Backbone is used for providing communication between clients, and also connecting
clients to the Internet, MIMO systems are implemented at the physical layer of these Nodes
[12].

1.9 Medium access protocols

It is obvious that the performance of the mesh network decreases as the size of the network
becomes larger, as well as the traffic around the gateways becomes bulky, which limits the
capacity of the network. Therefore the use of medium access protocols is necessary.

1.9.1 Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA)

Each node of the network has a transmission zone and an interference zone, when a node
establishes a connection with one of its neighbors, the other nodes located in its interference
zone must cease all transmission activity under penalty to interfere with communication. If
node A wants to send packets to node B, B must be in the coverage area of A. All the nodes
located in the interference area of A must be silent, this principle can be achieved by the
following steps:

• If a node A wants to send packets, it first listens to the network.

• If a transmission is in progress in its coverage area, the transmission is delayed.

• Otherwise (the medium is free) node A draws a random DIFS (Distributed Inter Frame
Space) waiting time and waits for it to elapse. The nodes located in the coverage area
of A and which also wish to send packets will do the same task. The first node having
finished waiting has the right to transmit, the others suspend the flow of their respective
times.

• The selected node then sends an RTS (Ready To Send) message to its destination, this
message contains information on the data volume of the packet and its transmission
speed.

• If the destination is free (not jammed by other transmissions), it responds with a CTS
(Clear To Send) message meaning that it is ready to receive, so the sender begins the
data transfer.
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• At the end of the communication, the receiving station sends an acknowledgment of
receipt in the form of an ’ACK’ message (Acknowledgment) signifying that the data
has all been successfully transmitted. And the operation can start at the beginning.
During all this time (from RTS to ACK) the other nodes which successively hear these
messages must cease all communications.

1.9.2 Time Division Multiple Access (TDMA)

TDMA is a medium access technique which facilitates many users to share the same frequency
without interference. This technique consists of dividing the time available between the
different users into small intervals, called slots. Thus, each user transmits on different time
slots. It should be noted that in this technique we do not find the notion of listening to
the channel, a node transmits directly if its slot has arrived. To avoid collisions, strong
synchronization between users is mandatory.

1.9.3 Hybrid CSMA/TDMA Media Access Control (MAC) protocol

This protocol consists of combining the two techniques CSMA and TDMA in order to take
advantage of their advantages: the simplicity of CSMA and its efficiency in the case of low
traffic and the optimal use of the bandwidth of TDMA in the case of a heavy traffic.

In mesh networks the nodes are divided into two categories:

• Nodes located in the neighborhood of determined degree (k) of the gateway (where the
traffic is important): use the TDMA protocol.

• The rest of the nodes (where the traffic is low): use the CSMA/CA protocol [13]

1.10 Applications scenarios

Some applications cannot be fully supported and guided by other wireless technologies other
than WMNs. It was the motivation to create WMNs.

1.10.1 Broadband home networking

Most home networks use IEEE 802.11 technology, which has some limitations. Some examples
of these restrictions are communications that must go through Access Points (APs) and the
existence of uncovered (dead) regions throughout the home. A proposed approach that can
address these issues is the deployment of WMNs using MRs as the communication backbone
rather than APs as illustrated in Figure 1.9 [14].
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Figure 1.9: WMNs for broadband home networking

1.10.2 Enterprise networking

IEEE 802.11 standard is extensively used in many offices, enterprise networks remain expensive
since wired Ethernet connections are required to connect these networks. Ethernet lines can
be removed if MRs are used in place of access points, as shown in Figure 1.10 [15]. The
size of the business grows, WMNs can readily expand, this form of WMNs is called Wireless
Mesh Enterprise Network (WMEN). Many more public and commercial service networking
applications, such as airports, hotels, retail centers, convention centers, and sports arenas,
can be implemented using the service model of enterprise networking.

Figure 1.10: WMNs for Enterprise networking
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1.10.3 Metropolitan area networking

Communications between users in WMNs are not based on wired links. The use of wireless
links in metropolitan networks represents a economic alternative, particularly in remote
areas. As shown in Figure 1.11 [16], through the use of the multi-hop principle between
users, a service area larger than a house, building or business is offered. Scaling becomes an
important factor to take into account in these applications.

Figure 1.11: WMNs for metropolitan area network

1.10.4 Transportation systems

Despite being constructed on Ethernet cables, IEEE 802.11 and 802.16 have only been used
in public areas like stations and bus stops. WMNs may prove to be a much better choice.
Additionally, WMNs can assist with connectivity for in-vehicle security, remote control, and
passenger information systems. The basic idea underlying these systems is high-speed mobile
backhaul from a car to the internet and mobile mesh networks inside the vehicle.

1.10.5 Building automation

As shown in figure 1.12 [17], there are many different types of electrical equipment to be
found in an apartment or office building. As a result, this latter equipment needs to be
constantly monitored and supervised. In the past, wired networks were used to monitor
these devices. Due to the complexity and high cost of the wired network’s maintenance,
this method is expensive. To solve this issue, Wi-Fi-based networks have been established.
However, due to the fact that Wi-Fi-based networks also contain wired distribution systems,
they are frequently still expensive and have not produced adequate outcomes. We ought
to switch to network routers instead of Building Access Control (BAC) access points to
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solve these problems, which would greatly decrease the overall cost. Due to the wireless
connectivity between the network routers, the deployment process is frequently significantly
simpler

Figure 1.12: WMNs for building automation

1.10.6 Health and medical sciences

Today, in a medical facility, regular data monitoring and diagnostics are conducted using
standard wired network technology, which is worthless due to the constant device position
changes and massive amounts of data produced by periodic monitoring. As a result, wired
networks cannot be used to their full potential. Wi-Fi networks are reliant on Ethernet
connections, which might result in a high system cost and complexity. All of the aforementioned
problems can be solved by WMNs. An ideal application of WMN in hospital environment
is illustrated in Figure 1.13 [18].

1.10.7 Safety and surveillance systems

In today’s business environment, security and surveillance are crucial in the enterprise, malls,
stores, etc. WMNs perform better than wired networks at enhancing the security of these
systems. The capability and freedom that WMN offers are necessary because surveillance
systems, image streaming, and video streaming are still the main solutions. An example of
the application of WMN for surveillance systems is illustrated in Figure 1.14

Peer-to-peer communication and disaster systems both make use of WMNs. For instance,
in the case of emergency networks, firemen fighting fires frequently do not have access to
the necessary information. If WMNs are available where they are needed in such situations,
locating the areas that require care becomes clear. Similarly, peer-to-peer connection established
by wireless networking devices like laptops and PDAs creates a successful solution for
information sharing. Again, WMNs are intended to enable these.
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Figure 1.13: Ideal application of WMNs in hospital environment

Figure 1.14: WMNs for surveillance systems

1.11 Problems and challenges in WMNs

1.11.1 Physical layer

Single radio single channel, single radio multiple channels, multiple radio multiple channels,
and directional antennas are the most current used radio models.

In a single radio single channel, nodes operate in a half-duplex mode . It implies that
nodes cannot send and receive a signal at the same time. Thus, there is a huge decrease in
bandwidth usage. In a single radio multiple channel system, each node can adjust its single
radio to a number of non-overlapping channels to reduce interference and boost capacity. In
multiple radio multiple channel model, a node can utilize several non-overlapping channels
simultaneously. Furthermore, in directional antennas, multiplexing is employed to decrease
interference.
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1.11.2 Medium access layer

In comparison with traditional networks, WMNs are characterized by multi-hops. Therefore,
to enable communication, the MAC layer must handle multiple hops. In this sense, Multiple
Input and Multiple Output (MIMO) radios been proposed to boost WMNs capacity to
reduce unauthorized access and under utilization.

1.11.3 Transport layer

Data transfer from one location to another is the transport layer’s main function. But
current wireless mesh network architectures use conventional ad hoc network transport
protocols in the absence of a defined transport protocol. The Transmission Control Protocol
(TCP) is ineffective when there is a significant packet loss ratio. Therefore, the use of TCP
protocol over a wireless network causes more packet losses, congestion, connection failures,
an asymmetric network, and significant Round Trip Time (RTT) changes. Thus, the trend
of developing a transport protocol that offers effective data transfer based on present TCP
variations is welcomed. UDP is a viable and safer alternative approach as well, it can be
utilized with Real-Time Protocol (RTP) for supporting real-time applications. The Rate
Control Protocol (RCP), which regulates the quantity of packets sent over a certain path, is
capable of handling session control.

1.11.4 Network layer

In WMNs, designing and developing routing protocols is a challenging issue. The following
characteristics must be captured by an ideal routing protocol for WMNs [19]:

• Multiple performance metrics. Minimum hop-count, expected transmission count
(ETX), per-hop RTT, and per-hop packet pair are the most interesting metrics used
for selecting the rooting path.

• Scalability. In an extremely big wireless network, setting up or maintaining a routing
path could take a while. As a result, WMNs must have a scalable routing protocol.

• Robustness. WMNs must be robust to link failures or congestion in order to prevent
service interruption. Load balancing must be carried out via routing protocols as well.

• Efficient Routing with Mesh Infrastructure Assuming that mesh routers have
minimal mobility and there are no constraints on power consumption, the routing
protocol in mesh infrastructure should be much simpler than ad hoc network routing
protocols.
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1.11.5 Application layer

WMMs have been applied for various applications due to theirs simple implementation
at low cost, easy maintenance, faster capacity, internet connectivity, and so forth. In
other hand, Understanding the network’s application infrastructure is crucial for managing
network heterogeneity via the application layer protocol. In order to accomplish all of the
applications, novel techniques at the application layer must be coded.

1.11.6 Topological and Deployment

The design of WMN should be carefully considered in order to provide the high-speed internet
connectivity for the end mesh clients. This is a basic problem, and a WMN’s ability to
assess network performance and provide Quality of Service (QoS) for end users is essential.
Planning a WMN consists of determining the optimal placement of mesh routers, taking into
account various criterion such as:

• Cost: Cost optimization is a fundamental objective when deploying WMNs. This
criterion constitutes an objective to be minimized in almost all network optimization
problems. It can be represented by various computation costs including the deployment
cost, the number of deployed nodes, and the number of installed antennas in the
network.

• Coverage: Coverage is an important criterion guaranteeing access to users in the
desired area. A test point is said covered if it receives a signal power higher than the
minimum power threshold or it is within the coverage radius of a mesh router. As
an objective, it can be treated by maximizing the number of clients covered by the
network and minimizing the number of uncovered points. Also, it can be expressed by
maximizing the maximum powers received at service points.

• Connectivity: Connectivity is a vital metric ensuring communication within a network.
It often refers to the probability that nodes in a network can communicate with
each other at any given time. This property is strongly related to the coverage.
In fact, it depends on MRs, MGs, and MCs locations and channel conditions and
can be determined by using proper propagation prediction tools [20]. As an objective,
connectivity is expressed as the biggest sub-network among formed sub-networks regarding
the number of mesh nodes.

• Load-balancing: Load-balancing is an important parameter allowing the distribution
of traffic among different paths. It ensures that each node has equal traffic to forward
avoiding over-utilization of channels which is a source of congestion. This metric
contributes in network performance enhancement in terms of throughput and delay
optimization.
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• Throughput: Throughput is one of the most important metrics in WMNs. It is
defined as the rate of the total number of received packets during a time unit. Throughput
can be enhanced by minimizing traffic bottlenecks, minimizing the level of interference,
and using multiple channels instead of a single channel.

• Delay: Delay is one of the main requirements in WMNs design. It often refers to the
accumulated number of communication hops between the MRs and their MGs [21]. For
optimizing the network delay, the number of hops between any MR and MG should
be lower than a MR-MG hops threshold.

• Capacity: Capacity is a key parameter in WMNs Planning. It is measured by the
number of MCs per MRs, MR relay load, number of MRs per MGs, link capacity, and
radio access interface capacity. Capacity can be increased by minimizing the number
of hops and reducing the level of interference.

• Interference: Interference is a crucial issue in WMNs that degrades the network
performance substantially (considerable packet losses and higher delays). Due to
the nature of the transmission medium, nodes located in the same geographic area
can interfere with each other when transmitting on the same channel. To deal with
this issue, different models are used such as the Protocol Interference Model (PrIM),
Physical Interferences Model (PhIM), and Fixed Protocol Interferences Model (FPrIM).

Structured deployment and organic deployment are the two main types of deployment. At
a structured deployment, services will be offered in a new region, giving the flexibility of
choosing the topology, leading to an improved network performance. On the other hand, if a
mesh network is deployed organically, it will be built on top of already-existing infrastructure.
Thus, the network architecture has a small number of topology alternatives. Thus, the
network architect has a restricted number of topology possibilities.

1.12 Conclusion

In this chapter, we have introduced wireless mesh networks, their characteristics, limits, and
applications.

Despite the advantages of WMNs, such networks present many challenges for network
operator such as nodes placement problem. In fact, the poor positioning of mesh nodes
(MRs/MGs) causes many interference and congestion leading to significant packet loss, high
delay, and low throughput. This problem is shown to be NP-hard problem, It is impossible
to solve it using traditional exact methods. Approached methods prove to be the most
appropriate to solve it.

In the next chapter we will present the optimization problems and their classification,
as well as the exact and approached optimization methods. We’ll also go over some of
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the fundamental ideas behind some of the algorithms that are utilized to tackle challenging
issues.
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CHAPTER 2

OPTIMIZATION METHODS

2.1 Introduction

Optimization occupies a very important place in many fields, such as in operational research,
artificial intelligence, biology, mathematics and computer science. A large number of problems
can be defined and described as optimization problems. Generally these problems belong to
the category of NP-hard problems which do not have an optimal solution. The mesh nodes
placement problem is an optimization problem classified as NP-hard, it is impossible to solve
it by traditional exact methods. To solve this problem, studies are converging on the use of
approximate methods generally inspired by nature. Approximate optimization methods can
be classified into two categories, namely heuristics and meta-heuristics.

In this chapter, we will present optimization problem, the notions and concepts related to
optimization, the classification of optimization problems regarding several criteria: complexity
of the problems, nature of the problems, the number of optima, the type of the objective
function and the number of constraints. We then present the optimization methods where
we describe the basic principle of some algorithms used for solving complex problems.

2.2 Optimization problem

An optimization problem denoted by P (X, f), is defined as the search of the solution among
a set of feasible solutions X (also called decision space or search space), which minimizes or
maximizes the objective function f .

In the case of a minimization problem, solving the problem consists to find a solution x∗

such that f(x) ≥ f(x∗), for any element x in X.
In the case of a maximization problem, solving the problem consists to find a solution x∗

such that f(x) ≤ f(x∗), for any element x in X.
Let x = (x1, . . . , xd) represents a vector of decision variables, g(x) and h(x) are respectively
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the inequality and equality constraints, xI and xS are respectively the lower and upper
boundaries of the search space and f : D ⊂ Rd → R is the objective function and D is the
feasible domain. The mathematical representation of an optimization problem is given as
follows:

PO



Minimize/Maximize f(x) (function to be optimized)
subject to:
g(x) ≤ 0 (n inequality constraints)
h(x) = 0 (m quality constraints)
xI ≤ x ≤ xS

(2.1)

It is possible to go from a minimization problem to a maximization problem and vice
versa thanks to the following properties:

min
x∈D

f(x) = max
x∈D

(−f(x)) (2.2)

max
x∈D

f(x) = min
x∈D

(−f(x)) (2.3)

Every point x ∈Rd belonging to D is called feasible solution.

2.3 Notions and concepts relating to optimization

neighborhood
The neighborhood of x, denoted by V (x), is a subset of feasible solutions of X that can

be reached from a given transformation of x.
x∗ ∈ V (x) is said to be the neighborhood of x.
Optimum
The optimum is the point where the objective function reaches its minimum or its

maximum.
Local optimum
Let x∗ ̸= x et V (x∗) represents the set of neighboring solutions of x∗†. We say that a

solution x∗ is a local optimum of the objective function f on D ⊂ Rd if we have:

∀x ∈ V (x∗) ,
 f (x∗) ≤ f(x) minimization case
f (x∗) ≥ f(x) maximisation case

(2.4)

Global Optimum
We say that a solution x∗ is a global optimum of the objective function f on D ⊂ Rd if

we have:

∀x ∈ D,

 f (x∗) ≤ f(x) minimisation case
f (x∗) ≥ f(x) maximisation case

(2.5)
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The notion of local optimum and global optimum is illustrated in Figure 2.1

Figure 2.1: A visualisation of global and local optimum

Intensification and diversification
The search for the optimum of an objective function is generally carried out using two

fundamental search operators, namely: intensification and diversification.
Intensification
Intensification or exploitation makes it possible to refine and improve the value of a

solution found in a certain neighborhood by improving the precision of the optimum.
diversification
Diversification or exploration allows imprecise localization of the global optimum in a

larger search space such that the search is not concentrated on a particular area of the
search space.

Objective function
The objective function represents the goal to be achieved or reached (minimization or

maximization of the function). It defines a space of potential solutions to the problem [22].
Search domain
Search domain is the set of definition domains of the different variables of the optimization

problem [22].
Constraints
Represent conditions on the search space that variables must satisfy. These constraints

are often inequality or equality constraints, generally used to limit the search space.
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2.4 Classification of optimization problems

The classification of optimization problems is a crucial element for their resolution, these
problems can be classified according to different criteria (as shown in Figure 2.5): complexity
of the problems, nature of the problems, the number of optimums, the type of the objective
function and the number of constraints.

Figure 2.2: Classification of optimization problems

2.4.1 Classification according to the complexity of optimization
problems

According to the complexity of optimization problems, generally, four important classes can
be identified such as P, NP, NP-Complete, and NP-Hard classes. The relationship between
these classes is visualised in Figure 2.3

2.4.1.1 P class

P class includes all relatively simple problems, those for which effective methods are known.
Formally, these are the issues for which we can create a deterministic machine with polynomial
complexity execution time (the acronym P means "Polynomial time").
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2.4.1.2 NP class

NP class contains non-deterministic problems, solved using Turing machine whose execution
time is of polynomial complexity ( NP acronym means "Non-deterministic Polynomial time").
These problems can also be solved by a polynomial algorithm enumerating the set of possible
solutions.

2.4.1.3 NP-Complete

NP-Complete class is a subset within NP class, that contains the most difficult problems.
Any NP-Complete issue can be converted (reduced) to it in polynomial time. A problem
is NP-Complete when all the problems in NP are reducible to it. If we find a polynomial
algorithm for an NP-Complete problem, then we subsequently find a polynomial solution for
all the problems of the NP class.

2.4.1.4 NP-Hard class

A problem is said to be NP-Hard if it is more difficult than an NP-Complete problem.
More precisely, if there is an NP-complete problem that is reduced to this problem by the
Turing reduction. Among the hardest computer science problems we can find: Set Covering
Problem, Facility Location Problem, Traveling Salesman Problem, Clustering, and Graph
Coloring Problem.

Figure 2.3: Complexity of problems
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2.4.2 Classification according to the nature of the search domain

According to the nature of the spaces in which the decision variables take their values,
optimization problems can be divided into three classes such as : continuous optimization
problems, combinatorial (discrete) optimization problems, and mixed variable optimization
problems.

2.4.2.1 Continuous optimization problems

In continuous optimization, the variables in the model belong to continuous set, usually
real numbers. There are numerous polynomial algorithms for many of issues in this type of
optimization.

2.4.2.2 Combinatorial optimization problems

In contrast to continuous optimization, the variables in a discrete optimization model can
be either binary (limited to the values 0 and 1), integer (only integer values are permitted),
or more abstract objects selected from sets with finitely many members. In this type of
optimization, the problems are often easy to define but generally difficult to solve. Indeed,
most combinatorial problems belong to the class of NP-complete problems.

2.4.2.3 Mixed variable optimization problems

Mixed-variable optimization problems involve both continuous and discrete decision variables.
The mixed variables definitely increase the complexity of the search space and improve the
difficulty of solving these optimization problems. The Mixed-variable optimization problem
is said to Mixed Linear Programming (MLP) if the constraints and objective of the problem
can be expressed more linearly as a function of its decision variables.

2.4.3 Classification according to the objective function type

2.4.3.1 Mono-objective optimization problems

Mono-optimization problem is defined by a set of variables, a set of constraints, and one
objective function. The solution to this problem is a single point.

2.4.3.2 Multi-objective optimization problems

A multi-objective optimization problem is defined by a set of variables, a set of constraints,
and a set of objective functions.

In contrast to mono-objective optimization problems, which have a single solution, mono-
objective optimization problems have a set of non-dominated solutions, which is known as
the Pareto front because of the Pareto dominance concept. A solution is said to be the
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Pareto-optimal (or non-dominated) if there is no other feasible solution that can improve one
objective without degrading at least one other. Figure 2.4 depicts the set of non-dominated
solutions (Pareto front) in the case of two objective functions [23].

Figure 2.4: Pareto-optimal solutions

Multi-objective optimization problem can be converted to mono-objective optimization
problem using sum weighted function [24, 25]. It consists in assigning a weight for each
objective for controlling its importance. If several solutions are required, the issue must be
resolved numerous times using various weight combinations [26].

2.4.4 Classification according to the constraints

According to the use or not of constraints on the domain space that the variables must satisfy,
optimization problems can be classified into two categories, namely constrained optimization
problems and unconstrained optimization problems.

2.4.4.1 Constrained optimization problems

Constrained optimization problem is a problem where the objective function is optimized
under constraints on the variables. In general, optimization problems are constrained optimization
problems, these constraints can have mathematical or symbolic forms.

2.4.4.2 Unconstrained optimization problems

Unconstrained optimization problem is a problem where the objective function is optimized
depending on real variables with no restrictions on their values.
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2.4.5 Classification regarding the number of optimums

2.4.5.1 Unimodal optimization problems

A unimodal optimization problem is a problem in which the search space contains only a
global optimum (a global minimum in the case of a minimization or a global maximum in
the case of a maximization).

2.4.5.2 Multimodal optimization problems

A multimodal optimization problem is a problem in which the search space contains several
optima (local and global). This problem avoids local optima and allows the localization of
several global optima at the same time.

2.5 Optimization methods

To solve optimization problems, several resolution methods have been developed in the
literature. In general, to find solutions, optimization methods follow four different approaches
such as: the construction approach, the relaxation approach, the neighborhood approach,
and the evolution approach. In the field of optimization, we have identified two main
categories of optimization methods ( Figure 2.5): exact methods that consider the completeness
of the solution and approached methods that lose completeness in order to reduce execution
time.

2.5.1 Exact methods

Exact optimization methods seek to find the optimal solution by enumerating all the solutions
in the search space. Generally, exact methods are used for solving problems of reasonable size.
However, the computation time required to find a solution can become very excessive and
increases exponentially with the size of the problem and the number of objective functions
to be optimized. In this class, we can find the following classical methods: Dynamic
Programming and Branch & Bound method.

2.5.1.1 Branch & Bound

Branch and Bound Method is an exact resolution method used for solving combinatorial
optimization problems [27]. This method is based on the tree search of an optimal solution
by separation and evaluation. First, the set of solutions is separated into smaller subsets.
Then, an optimistic evaluation is applied to bound the subsets and choose a solution that
is potentially good and better than the current solution. The Branch and Bound method is
generally computationally expensive and therefore can only be applied to specific problems.
Thus, several improved versions of Branch and Bound algorithm have been proposed. For
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example, in addition to the method of separation and evaluation, Branch & Cut which
uses the secant planes method [28]. The objective of the secant planes method is to add
constraints to the linear program to refine it and bring it closer to integral solutions. When
solving the relaxed problem gives a fractional solution, the secant planes method is applied
at each node of the search tree.

2.5.1.2 Dynamic Programming

Dynamic programming is a recursive method, used to solve a large number of optimization
problems. This method is based on the recursive division of a problem into several simpler
problems. It is based on Bellman’s principle of optimality which says that a sub-problem
belonging to an optimal problem is itself optimal. Dynamic programming avoids total
enumeration of the search space by eliminating partial decisions that do not lead to the
optimal solution [29].

2.5.2 Approached methods

Approached optimization methods have been presented as an interesting alternative for
solving large optimization problems if optimality is not paramount. These methods are often
inspired by the optimization mechanisms encountered in nature which make it possible to
find approached solutions to the problem. They are used to solve problems where we do not
know polynomial time resolution algorithms and for which we seek to find an approximate
solution to the global optimum. Approximate optimization methods can be divided into two
broad categories, namely heuristics and meta-heuristics.

2.5.2.1 Heuristics

Heuristics introduced by Polya in 1945 [30] are designed for NP-hard problems. A heuristic
is approximate in the sense that it provides a good solution for relatively little effort, but it
does not guarantee the optimality. Heuristics have been proposed, to determine not perfect
precision but a satisfactory quality of approximations of exact solutions. These methods
were initially based on the knowledge and experience of experts and aimed to explore the
search space in a particularly practical way. The most well-known heuristics are greedy
algorithms.

a. Greedy algorithms

Greedy algorithms are a much simpler alternative to program, but the result is not
always optimal (except in certain so-called canonical situations). Greedy algorithms
build a solution starting from an empty solution and at each iteration a part of solution
is constructed. The quality of the constructed solution depends on the heuristic.
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2.5.2.2 Meta-Heuristics

Meta-heuristics represent a new generation of powerful approached optimization methods,
adaptable and applicable to a large class of problems. They are iterative stochastic methods,
which escape local minima and progress towards a global optimum of a function. They allow
us to provide good quality of feasible solutions in a reasonable time. We distinguish two
classes of meta-heuristics: those based on a single solution and those based on a population
of solutions.

a. Single-based meta-heuristics

Single-based meta-heuristics (or trajectory methods) start with a single initial solution
and gradually move away from it, building a trajectory in the search space. Essentially,
they include the Descent Method (DM), Simulated Annealing (SA), Taboo Search
(TS), the Variable Neighborhood Search (VNS), Iterated Local Search (ILS), and their
variants.

a.1. Descent Method (DM)
The Descent method is very old enhancement algorithm, it starts from an initial
solution x, then chooses a neighbor solution x′ that improves the objective function
(generally such as f(x′) < f(x)) at each iteration. DM is formalized as illustrated
in Algorithm 1:

Algorithm 1 The pseudo-code of Descent Method
1: Generate initial solution x
2: Initialize t
3: while Stop criterion is not satisfied do
4: Select x′

5: if The current solution is better than the previous one then
6: The previous solution is replaced by the current one
7: end if
8: t=t+1
9: end while

a.2. Simulated Annealing (SA)
Simulated Annealing (SA) was developed by Kirkpatrick et al. [31] in 1983. The
main concept of SA is based on the annealing theory which simulates the cooling
process of metal atoms. Numerous optimization problems, such as the issue of
node placement [32, 33, 34], have been addressed using SA. In the SA algorithm,
intensification and diversification mechanisms are controlled by the temperature.
SA procedure is described in Algorithm 2.

a.3. Tabu Search (TS)
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Algorithm 2 The pseudo-code of Simulated Annealing algorithm
1: Initialize the temperature
2: Generate initial solution
3: t=1
4: while Stop criterion is not satisfied do Calculate the temperature
5: while The temperature is greater than 0 do
6: Update the current solution
7: if The current solution is better than the previous one then
8: The previous solution is replaced by the current one
9: else

10: Decrease the temperature
11: end if
12: end while
13: t=t+1
14: end while
15: Return The best solution

Tabu Search (TS) algorithm proposed by Fred Glover in 1986 [35], is advanced
local search, based on two tricks such as: the use of the notion of neighborhood
and the use of human memory concepts. A memory called a tabu list is used to
keep track of the path taken and avoid backtracking. The pseudo-code of TS is
illustrated in Algorithm 3.

Algorithm 3 The pseudo-code of Tabu Search
1: Building initial solution x0
2: Calculate the fitness of x0
3: Initialize an empty tabu list
4: Initialize the best solution xbest=x0
5: initialize t
6: while Stop criterion is not satisfied do
7: Choose xt+1 in the neighboring of xt configuration taking into account the taboo list
8: Calculate fitness of xt+1
9: if fitness of xt+1 is better than fitness of xbest then

10: xbest=xt+1
11: end if
12: Update tabu list
13: t=t+1
14: end while

a.4. Variable Neighborhood Search (VNS)
Variable neighborhood search (VNS) is a local search, introduced in 1997 by
Mladenovic and Hansen [36]. It is characterized by a simple search principle based
on the systematic change of the neighborhood. In contrast to other local search
methods that use a single neighborhood to exploit the current solution, VNS
uses several neighborhoods in a predefined order. VNS starts the search from an
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initial solution x. Then, it generates a solution x′ of the first neighborhood of the
solution x. If x′ is better than x based on the objective function, x is replaced by
x

′ and it continues to improve the current solution by generating other solutions
of the same neighborhood. Otherwise, the algorithm continues the search with
the second neighborhood until the stopping criterion is satisfied. The pseudo-code
of VNS is illustrated in Algorithm 4.

Algorithm 4 The pseudo-code of Variable Neighborhood Search
1: Select the set of neighborhood structures Nk, where k ∈ {1, 2, . . . , kmax}
2: Building initial solution x
3: Calculate the fitness of x
4: t=1
5: while Stop criterion is not satisfied do
6: k=1
7: while k ≤ kmax do
8: Generate x′ in the neighboring of x
9: Calculate fitness of x′

10: if fitness of x′ is better than fitness of x then
11: x=x′

12: K=1
13: else
14: k=k+1
15: end if
16: end while
17: t=t+1
18: end while

b. Population-based meta-heuristics

Population-based meta-heuristics are iterative methods which improve a population
of solutions over the iterations. More precisely, they start from an initial population
of solutions, then a new one is generated. This new population is integrated into
the current population using a few selection procedures. The iterative process stops
when a stopping criterion is achieved. Meta-heuristics with a population of solutions
include evolutionary algorithms and swarm intelligence algorithms. The pseudo-code
of population-based meta-heuristics is described in Algorithm 5.

b.1. Evolutionary Algorithms (EA)
Evolutionary algorithms (EA) class includes optimization algorithms inspired by
biological evolution [37]. They are mainly based of three fundamental elements:

• A generation, or a population includes several individuals, where each individual
represents potential solution to concerned problem.

• The best individuals are selected using natural selection and evaluation mechanisms.
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Algorithm 5 The pseudo-code of population-based meta-heuristics
1: Generate the population of solutions P
2: Initialize t
3: Calculate the fitness of x0
4: while Stop criterion is not satisfied do
5: Generate the new population P ′

t

6: Select Pt+1 population (Pt ∪ P ′
t)

7: t=t+1
8: end while
9: Return the best solution

• A population evolution mechanism uses genetic variation operators (crossover
and/or mutation) to generate a new descendant individuals called children.

Several evolutionary algorithms have been proposed including Genetic Algorithms
(GAs), Evolutionary Strategies (ES), Genetic Programming (GP), Evolutionary
Programming (EP), and Differential Evolution (DF). The pseudo-code of evolutionary
algorithms is given in Algorithm 6.

Algorithm 6 The pseudo-code of evolutionary algorithms
1: Generate the initial population of solutions P
2: Initialize t
3: while Stop criterion is not satisfied do
4: Evaluate the population
5: Rank the population
6: Generate the new population using selection, crossover, and mutation operators
7: t=t+1
8: end while
9: Return the best solution

b.1.1. Genetic Algorithms (GAs)
Genetic Algorithm (GA) developed by Holland et al. in 1970 [38], is the
most popular type of EA. GA is inspired from the natural evolution process,
so it uses recombination and mutation operators to seek the solution of a
problem. The solution is in the form of strings of numbers (traditionally
binary). GA was used for solving several problems such as facility layout
problem, scheduling, inventory control, forecasting and network design, and
others problems (more details about applications of GA can be found in [39]).

b.1.2. Evolutionary Strategies (ES)
The Evolution Strategy is an evolutionary method proposed by Rechenberg
in 1973 to solve practical optimization problems. In ES, the solutions are
represented using vectors of real numbers and it uses self-adaptive mutation
rates. The first version of ES method manipulates a single individual, a
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Figure 2.5: Classification of population-based meta-heuristics

child individual is generated by mutation from the parent individual. With
the introduction of the recombination variation operator (similar to crossover
in GAs), the creation of a new population consists in generating m child
individuals from n parent individuals. Routing and networking, biochemistry,
optics, and engineering design are some well-known applications of evolution
strategies.

b.1.3. Genetic Programming (GP)
Genetic Programming (GP) is an evolutionary method developed by Koza
in 1993 [40]. In GP, attributes are represented by programs or instruction
sets. Thus, GP generates the solutions in the form of computer programs,
and its ability to solve a computational problem is determined by their fitness
function. The solution is obtained by using genetic variation operators on the
candidate programs with tree encoding.

b.1.4. Evolutionary Programming (EP)
Evolutionary Programming (EP) is an evolutionary method of artificial
intelligence, presented and developed by Fogel [41] in 1966 to solve learning
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problems. EP has no restriction regarding the use of data types of attributes
and uses the mutation and replacement operators without taking into account
the crossover operator. some suitable areas of application of EP are
forecasting, generalization, games, and automatic control.

b.2. Swarm-based Algorithms
Swarm Intelligence Algorithms (SIA) mimics the behavior of swarms of animals
that exist in nature such as swarms of fish, insects or birds. Ant Colony
Optimization (ACO) [42] and particle swarm optimization (PSO) [43] are
the first swarm intelligence algorithms. Other optimization algorithms that
come from analogies with natural biological phenomena have been proposed.
Among the most significant we cite the Firefly Algorithm (FA) [44], Cuckoo
Search [45], Ant Bee Colony (ABC) [46], Bat Algorithm (BA) [47], Grey
Wolf Optimization (GWO) [48], Moth Flame Optimization (MFO) [49], Whale
Optimization Algorithm (WOA) [50], Dragonfly Algorithm (DA) [51], Coyote
Optimization Algorithm (COA) [52], Honey Badger Algorithm (HBA) [53], White
Shark Optimization [54], Snake Optimizer (SO) [55], Aquila Optimizer (AO) [56],
African Vultures Optimization (AVO) [57], and Salp Swarm Algorithm (SSA).
We will present the first developed swarm intelligent algorithms (PSO and ACO).

b.2.1. Particle Swarm Optimization (PSO)
Particle Swarm Optimization (PSO) introduced and developed by Russel
Eberhart and James Kennedy in 1995 [43], is a simple, effective and global
optimization algorithm used to solve various complex problems. It is inspired
by the social behavior of animals evolving in swarms such as schools of fish,
flocks of migratory birds, or swarms of insects. Each particle is considered as
a solution of the problem, and characterized by a velocity Vi and a position
Xi. Particle motion is influenced by the following three components:
• A physical component (of inertia): the particle tends to follow its current

direction of movement.
• A cognitive component: the particle tends to move towards the best

location through which it has already passed.
• A social component: the particle tends to move towards the best site

through which its neighbors have already passed.
An example movement of a single particle (index=i), at iteration t, is
illustrated in a two-dimensional search space in Figure 2.6. Each particle
adjusts its position and moves taking into account its best position Pi and
the global best position Pg. Position and velocity are updated according to
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Equations 2.6 and 2.7, respectively.

Vi(t+ 1) = wVi(t) + c1r1(Pi(t)−Xi(t)) + c2r2(Pg(t)−Xi(t)) (2.6)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (2.7)

where w is the inertia weight parameter. r1 and r2 are random numbers in
the range of [0,1]. c1 and c2 are acceleration coefficients.

Figure 2.6: Movement strategy of a particle

The pseudo-code of PSO is given in Algorithm 7

Algorithm 7 The pseudo-code of Particle Swarm Optimization
1: Initialize the population of N particles: positions and velocities
2: Evaluate the population and determine Pg t=1
3: while St the best soopping criterion is not satisfied do
4: for i= 1 to N do
5: Update particle velocity using Equation 2.7
6: Update particle position using Equation 2.6
7: Calculate the new fitness value
8: Do adaptation
9: end for

10: t=t+1
11: end while
12: Return the Pg particle and its fitness value

b.2.2. Ant Colony Optimization (ACO)
Ant Colony Optimization (ACO), introduced by Dorigo in 1990 [42], is a
meta-heuristic inspired by nature for solving relatively complex problems.
This method was designed to solve the Traveling Salesman Problem (TSP).
It is inspired by the behavior of real ants in the search for food . Indeed,
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the ants manage to find the shortest path between the nest and a source of
food by using volatile chemicals called pheromones which they deposit on the
ground to mark paths and favorable paths. After some time, the shortest
path between the nest and the source presents a greater concentration of
pheromone. Consequently, this path will have a greater probability of being
chosen and taken by the majority of ants. The general ACO algorithm is
decomposed mainly, for each iteration, into three main steps:
• Solution construction

In this step, a colony of artificial ants iteratively generates solutions from
the set of possible solutions S =

{
sj

i

}
(i = 1, 2, . . . , n; j = 1, 2, . . . |Di|).

First, we start with an empty partial solution sp = ∅, then, at each
construction step, sp is extended by adding to it a solution component sj

i

among the set of feasible neighbors N (sp) ⊆ S. The choice of sj
i in N(sp)

is done in a probabilistic way. Each component sj
i ⊆ N (sp) having the

probability P
(
sj

i | sp

)
will be chosen.

• Daemon actions
Daemon actions represent specific actions for a given problem. These
actions cannot be performed by each ant separately. Generally, these
actions consist of a local search among the built solutions, where only the
locally optimized solutions are used to update the pheromone trails.

• Pheromone update
The update of the pheromone traces is carried out in two steps: the step
of reducing the pheromone values by a process called evaporation and
the step of increasing the pheromone values, associated with a set of best
solutions chosen BSol, by a process called pheromone deposition. The
update of the pheromone traces differs according to the ACO algorithm
used. It is usually given by equation 2.8.

τij = (1− ρ)τij +
∑

s∈BSol|sj
i ∈S

g(s) (2.8)

Where ρ represents the randomly generated pheromone evaporation rate
in the interval [0, 1] and g is the quality function.

b.2.3. Firefly Algorithm (FA)
Firefly algorithm (FA) [44] is population-based meta-heuristic inspired by the
blinking behaviour of fireflies. Its concept is based on the bio-luminescence
process. FA assumes the following idealized rules:
• All fireflies are unisexual.
• The attractiveness of firefly is proportional to its brightness.
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• The brightness decreases as the distance increases.
• If there is no more attractive firefly than a particular one, it will move

randomly.
Based on the mentioned rules, the basic steps of FA are described below:
A. A set of initial solutions are randomly generated.
B. Let i and j be two fireflies and their positions be Xi(xi, yi) and Xj(xj, yj),

respectively. The distance rij between fireflies i and j is calculated as
follows:

rij = ∥Xj −Xi∥ =
√

(yj − yi)2 − (xj − xi)2 (2.9)

C. As mentioned earlier, the attractiveness of a firefly is proportional to its
brightness and inversely proportional to the distance between two fireflies.
It is calculated as follows:

B(r) = β0e
−γr2 (2.10)

where β0(r) is the attractiveness of firefly at distance r. β0 is the
attractiveness of firefly at distance 0. γ is the light absorption coefficient.

D. In this step, FA performs the exploration of search space. More precisely,
fireflies move according to theirs attractiveness and the attractiveness of
other fireflies. When a firefly i is attracted by another firefly j, it moves
according to the following equation:

Xi = Xi + β0e
−γr2

ij (Xj −Xi) + α(rand− 1
2) (2.11)

where rand is a random number in [0,1]. α is the randomized parameter.
The pseudo-code of FA is given in Algorithm 8
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Algorithm 8 The pseudo-code of Firefly Algorithm (FA)
1: Set algorithm parameters
2: Initialize the population of N fireflies
3: Calculate the fitness of each firefly
4: t=1
5: while stopping criterion is not achieved do
6: for i= 1 to N-1 do
7: for j= i+1 to N do
8: if Ij > Ii then
9: Move firefly i toward firefly j using Equation 2.11

10: end if
11: end for
12: end for
13: Evaluate the solutions and determine the best solution
14: t=t+1
15: end while
16: Return the best firefly and its fitness value

b.3. Physical-based Algorithms
Physics-based Algorithms (PA) mimic the physical rules in the universe. Some
of the most popular algorithms are: Central Force Optimization (CFO) [58],
Gravitational Search Algorithm (GSA) [59], and Big-Bang Big-Crunch (BBBC)
[60]. Other recently developed physics-based algorithms are: Magnetic Charged
System Search (MCSS) [61], Electromagnetic Field Optimization (EFO) [62],
Water Evaporation Optimization (WEO) [63], Optics Inspired Optimization
(OIO) [64], Multi-Verse Optimizer (MVO) [65], Thermal Exchange Optimization
(TEO) [66], Sonar Inspired Optimization (SIO) [67], Vibrating Particles System
Algorithm (VPSA) [68], and Henry Gas Solubility Optimization (HGSO) [69].

b.4. Maths-based Algorithms (MA)
Maths-based Algorithms (MA) imitate mathematical rules. Some of the most
well-known maths-based algorithms are: Hyper-Spherical Search (HSS) algorithm
[70], Radial Movement Optimization (RMO) [71], Stochastic Fractal Search
(SFS) [72], Golden Ratio Optimization Method (GROM) [73], and Sine Cosine
Algorithm (SCA) [74].

b.5. Human-based Algorithms (HA)
Human-based algorithms (HM) are inspired from the human-made events. Some
of the most well-regarded human-based algorithms are: Harmony Search (HS)
[75], Imperialist Competitive Algorithm (ICA) [76], Fire Work Algorithm (FWA)
[77], Teaching Learning-Based Algorithm (TLBA) [78], and Football Game
Inspired Algorithm (FGIA) [79].

b.6. Biological-based Algorithms (BA)
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Biological-based Algorithms (BA) are developed based on the principles and the
inspiration of biological activities. Some of the most well-regarded human-based
algorithms are: Artificial Immune Systems (AIS) [80, 81, 82, 83, 84], Bacterial
Foraging Optimization (BFO) [85], Dendritic Cell Algorithm (DCA) [86], Krill
Herd Algorithm (KHA) [87], and Coronavirus Herd Immunity Optimizer (CHIO)
[88].

b.7. Plant-based Algorithms (PA) Some of well-known Plant-based Algorithms (PA)
inspired by plant intelligence are: Flower Pollination Algorithm (FPA) [89], Root
Mass Optimization (RMO) [90], Artificial Plant Optimization Algorithm (APOA)
[91], and Sapling Growing up Algorithm (SGuA)[92].

2.6 Conclusion

In this chapter, we have presented the optimization problem, the notions and concepts related
to optimization, the classification of optimization problems according to several criteria. We
also presented the optimization methods where we described the basic principle of some
algorithms used for solving complex problems.

In the next chapter, we will present in detail an improved version of Moth Flame
Optimization for solving the mesh routers placement problem in Wireless Mesh Networks.
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CHAPTER 3

THE MESH ROUTERS PLACEMENT PROBLEM IN WMNS
BASED ON SWARM INTELLIGENCE METHA-HEURISTICS

3.1 Introduction

This chapter suggests an enhanced version of Moth Flame Optimization (MFO), called
ECLO-MFO, based on the integration of three strategies including the chaotic map concept,
the Lévy flight strategy (LFD), and the Opposition-Based Learning (OBL) technique to
enhance the optimization performance of MFO.

In this chapter, we present a reminder of the methods and approaches proposed in the
literature to solve the mesh router nodes placement problem in WMNs, we then describe
the formulation of the mesh router nodes placement problem, we also describe ECLO-MFO
approach applied to solve the mesh router nodes placement problem in WMNs, and finally we
evaluate their performance and compare its characteristics with other optimization methods.

3.2 Related works

WMN nodes placement is known to be an NP-hard problem [93]. So meta-heuristics have
been presented as successful optimization algorithms to solve it providing acceptable solutions
in a reasonable execution time.

Several works based on meta-heuristics have been proposed in the literature to solve the
nodes placement problem in WMNs. Most of the proposed works considered stationary
topology [94, 95, 96, 97, 98, 99, 100, 101, 102] while others investigated the dynamic
placement of mesh nodes subject to client mobility [103, 104, 105, 106].

To deal with the static variant of the WMNs nodes placement problem, three algorithms
have been proposed by Xhafa et al., including Simulated annealing (SA) [94], Hill Climbing
(HC) [95], and Tabu Search (TS) [96]. The three algorithms were evaluated in terms of user
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coverage and network connectivity. The evaluation is done based on 48 benchmark instances
using different mesh clients distributions with different grid sizes.

In the work of Nouri et al.[97], an accelerated PSO algorithm (APSO) was also proposed
to tackle the mesh routers placement problem in a static environment. APSO was validated
in terms of coverage and connectivity and results confirmed its effectiveness when compared
with the linearly decreasing weight PSO algorithm.

In the same context, Sayad et al. proposed three new algorithms based on Chemical
Reaction Optimization (CRO) algorithm [98], Firefly optimization (FA) algorithm [99],
and Electromagnetism-like Mechanism (EM) meta-heuristic [100]. These algorithms were
validated using many generated instances with various number of mesh clients and mesh
routers, taking into account the coverage and connectivity metrics. Obtained results
confirmed the superiority and effectiveness of these algorithms in terms of user coverage
and connectivity.

Evolutionary algorithms (e.g. Genetic Algorithm (GA)) have been popular optimization
algorithms in this area too [101, 102]. For instance, the mesh router nodes placement problem
was solved by Xhafa et al. [101] as a facility location problem using GA. It took into
account user coverage and network connectivity metrics. In [102], an improved GA based
on coupling GA with Minimum Spanning Tree (MST) was proposed to optimize cost and
coverage metrics.

In [103, 104, 105, 106], several methods have been proposed to tackle the dynamic variant
of the mesh nodes placement issue. An improved PSO algorithm based on the integration of
restriction coefficient into PSO was proposed in [103] to deal with this problem. In another
similar work, Lin et al. [104] proposed an improved BA based on the incorporation of the
dynamic search scheme into the original BA. The improved BA was validated based on 10
instances, taking into account the coverage and connectivity parameters. In [105], authors
focused on the so-called social-aware dynamic router nodes placement in WMNs. They
solved this problem using an enhanced PSO including a social-supporting vector, called a
social-based-PSO. SA approach was applied in [106] to find the dynamic placement of mesh
routers. In addition to user coverage and network connectivity, this approach reduces the
average distance traveled by routers. Table 3.1 summarizes some representative works using
meta-heuristics for solving the WMNs nodes placement problem.

3.3 Mesh router nodes placement problem formulation

In this section, we describe the system model and the formulation of the mesh router nodes
placement problem.
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Table 3.1: Summary of some existing WMNs nodes placement representative works

Algorithms References Environment Location Metrics
Cost Coverage Connectivity

SA Xhafa et al.[94] Static Discrete x x
HC Xhafa et al.[95] Static Discrete x x
TS Xhafa et al.[96] Static Discrete x x
APSO Nouri et al. [97] Static Continuous x x
RCO Sayad et al. [98] Static Discrete x x
FA Sayad et al. [99] Static Continuous x x
EM Sayad et al. [100] Static Continuous x x
GA Xhafa et al. [101] Static Discrete x x
Improved GA Tang et al.[102] Static Discrete x x x
MOGAMESH De marco [107] Static Discrete x x x
MOGA and NSGAII Bello et al. [108] Static Discrete x x x
Enhanced PSO Lin [103] Dynamic Continuous x x
Improved BA Lin et al. [104] Dynamic Continuous x x
Social based-PSO Lin et al. [105] Dynamic Continuous x x
SA Sayad et al. [106] Dynamic Continuous x x
COA Proposed method Static Continuous x x
ECLO-MFO Proposed method Static Continuous x x

3.3.1 System model

WMN can be described mathematically as an undirected graph G = (V,E) where V is the
set of network vertices (nodes) and E is the set of edges (links) between these vertices. The
network G is formed by a set of disjoint sub-networks. In this chapter, we consider the WMN
with two types of nodes such as mesh clients and mesh routers. Thus V = MRS ∪MCS

where :

• MR is the set of m mesh routers: MRS = {mr1,mr2, ....,mrm}, Each mesh router is
equipped with radio interface with the same coverage radius CR1 = CR2 = ... = CRm.
Two mesh routers mri and mrj can be connected if and only if the distance between
them does not exceed two time the coverage radius CR i.e. d(mri,mrj) ≤ 2CR.

• MC is the set of n mesh clients MCS = {mc1,mc2, ....,mcn}, we assume that mesh
clients are randomly distributed in 2D rectangle area of dimension WxH. A mesh
client mci is said covered by a mesh router mrj if it is within the coverage radius of
this router: d(mci,mrj) ≤ CR. It can be associated at most to one router. It can be
within coverage radius of various routers but it is associated with the closest router.

3.3.2 Problem Formulation

As per the nature of studied environments (static or dynamic) and the nature of deployment
spaces (discrete or continuous), several variants of the WMN router nodes placement problem
can be found. In this paper, the static continuous mesh routers nodes placement problem
was considered. Therefore, the main goal is to find the optimal placement of m mesh routers
in a 2D area of dimensions WxH, depending on the location of n mesh clients.

The problem studied in this chapter considers two main objectives that need to be
optimized:

45



CHAPTER 3. THE MESH ROUTERS PLACEMENT PROBLEM IN WMNS
BASED ON SWARM INTELLIGENCE METHA-HEURISTICS

• User coverage: It represents the number of covered users by at least one mesh router
according to the following equation:

Ψ(G) =
n∑

i=1
(maxj∈{1,...m}σij

) (3.1)

where σij defines the coverage variable represented as follows:

σij =
 1 if mesh client ci is covered by mesh router rj,

0 Otherwise.
(3.2)

• Network connectivity: It is defined as the geant sub-network among k formed sub-
networks with regard to the number of mesh nodes (mesh routers and mesh clients). It
is calculated as follows:

Φ(G) = Maxi∈{1,...k}|Gi| (3.3)

where |Gi|, i ∈ {1, k} is the size of ith sub-network and G = G1 ∪G2 ∪ ... ∪Gk.

Figure 5.8 illustrates WMN instance G with 6 MRs and 20 MCs randomly dispersed in
rectangle deployment area of 2000m × 2000m. MRs and MCs are presented by blue and
green points, respectively, while the connection between mesh nodes is presented by a solid
line. It can be seen that the network G is composed of 11 sub-nets G = G1, G2, ....Gt,
t ∈ {1, 11}. S is the set of values = {10, 1, 1, 4, 1, 1, 1, 3, 2, 1, 1} that refers to the sizes of
sub-nets G1, G2, ....Gt, respectively. It is clearly seen that the network connectivity of the
biggest sub-net is equal to 10 which refers to the size G1 sub-net. G1 is composed of 3 mesh
routers and 7 mesh clients.

In this chapter, we aim to determine the best locations for a given number of MRs in
order to maximize simultaneously both client coverage and network connectivity metrics.
The multi-objective problem was turned into a mono-objective problem, using the weighted
sum function [24, 25]. It consists in assigning a weight for each objective for controlling its
importance. In this sense, Client coverage and network connectivity are combined to specify
the weighted sum fitness function f , which is used to evaluate the quality of solutions. The
objective function is given as follows:

f(Pmoi)) = λ.
Ψ(G)
n

+ (1− λ). Φ(G)
m+ n

(3.4)

Where G is the graph associated with the solution Pmoi and λ is a floating parameter with
a value in the range [0, 1] that controls the relevance of metrics.

The problem to be solved is viewed as a maximization problem in accordance with this
definition of the objective function. However, most of optimization techniques were designed
to solve a minimization problem. As a result, we must convert our objective function to a
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Figure 3.1: An example of WMN instance

minimization function. As result, we have created a new function g, which is as follows:

g = 1− f(Pmoi) (3.5)

In this work, the solution of the mesh router nodes placement problem is represented by
an array Pmop = {xp

mo−1, y
p
mo−1, x

p
mo−2, y

p
mo−2, .....x

p
mo−m, y

p
mo−m}, where (xp

mo−k, y
p
mo−k) are

the (x, y) coordinates of the mesh router mo− k, with 0 ≤ xp
mo−k ≤ W and 0 ≤ yp

mo−k ≤ L;
∀ m ∈ {1, 2, ...m}. The solution of setting up eight mesh routers in a 2000m × 2000m
deployment area is represented by the array in Table 3.2.

Table 3.2: Representation of the solution of deploying eight mesh routers

mr1 mr2 mr3 mr4 mr5 mr6 mr7 mr8
(200, 20) (15, 450) (400, 700) (140, 900) (1000, 1400 (1500, 1100) (300, 1800) (400, 1900)

3.4 Enhanced Moth Flame Optimization

This section aims to describe MFO, chaotic maps, Lévy distribution, and OBL concepts.
Then, we will describe the structure of the enhanced version of MFO.
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3.4.1 Moth–Flame Optimization Algorithm

The main inspiration of MFO algorithm [49] is the navigation strategy (movement) of
moths at night around flames [49]. This strategy is called transverse orientation. In the
mathematical model of MFO algorithm, moths positions are the problem variables, and
flames are the best solutions obtained so far [49].

Moths positions are represented by the following matrix:

Pmo =



Pmo1,1 Pmo1,2 ... ... Pmo1,d

Pmo2,1 Pmo2,2 ... ... Pmo2,d

. . . . .

. . . . .

Pmonm,1 Pmonm,2 ... ... Pmonm,d


where nm represents the number of moths and d refers to the search space dimension. The
fitness values of moths are stored in an array as follows:

OPmo =



OPmo1

OPmo2

.

.

OPmonm


Note that the fitness value of each moth is calculated using the following objective function:

OPmo(i) = objectivefunction(Pmo(i, 1 : d)) (3.6)

On the other hand, flames positions are given by the following matrix:

Pfl =



Pfl1,1 Pfl1,2 ... ... Pfl1,d

Pfl2,1 Pfl2,2 ... ... Pfl2,d

. . . . .

. . . . .

Pflnm,1 Pflnm,2 ... ... Pflnm,d


where nm is the number of flames and d represents the search space dimension.
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The fitness values of flames are stored in an array as follows:

OPfl =



OPfl

OPfl

.

.

OPfl


The position of the moth is updated around the corresponding flame using the following
equation:

Pmoi = S(Pmoi, Pflj) (3.7)

where Pmoi represents the i-th moth, Pflj refers to the j-th flame, and S is the spiral
function.

The logarithmic spiral function is chosen for updating the mechanism of MFO algorithm,
which is given as follows:

S(Pmoi, Pflj) = Di,j ∗ ebt ∗ Cos(2Πt) + Pflj (3.8)

where b is a constant that defines the shape of the logarithm spiral, t is a random number
in the range of [−1, 1], and Di,j indicates the distance between the i-th moth and the j-th
flame. Di,j can be represented as:

Di,j = |Pflj − Pmoi| (3.9)

To obtain a good balance between intensification and diversification, an adaptive scheme
is employed to update the number of flames as follows:

numbflames = round(R− k ∗ R− 1
itmax

) (3.10)

where R denotes the maximum number of flames, k is the current iteration number, and
itmax represents the total number of iterations. The pseudo-code of the MFO is given in
Algorithm 9 [49] and its flowchart is given in Figure 3.5.(a).
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Algorithm 9 The pseudo-code of MFO Algorithm
Input:
nm: Number of moths
d: Dimension of the problem
lb: Lower bound
ub: Upper Bound
itmax: Maximum number of iterations
Output:
Pmobest the best solution

1: for i=1 to nm do
2: Initialize randomly the position of i-th moth in the search space
3: OPmo(i) = Objective function(Pmo(i, 1 : d))
4: end for
5: for k=1 to tmax do
6: Update number flames (Eq.3.10)
7: if k == 1 then
8: Pfl = sort(Pmo)
9: OPfl = sort(OPmo)

10: else
11: Pfl = sort(Pmok−1, Pmot)
12: OPfl = sort(OPmok−1, OPmot)
13: end if
14: for i= 1 to nm do
15: for j= 1 to d do
16: Calculate Di,j with respect to its corresponding moth (Eq.3.9)
17: Update Pmo(i, j) with respect to its corresponding moth (Eq.3.7)
18: end for
19: end for
20: for i= 1 to nm do
21: OPmo(i) = Objective function(Pmo(i, 1 : d))
22: end for
23: end for
24: Return the best solution

MFO has a number of features such as simplicity and easy implementation. However,
MFO suffers from stagnation in local optima because it focuses on exploitation rather than
exploration. Consequently, MFO requires an enhancement to deal with the mesh routers
placement problem. The optimization discipline proposes various strategies to enhance
the performance of meta-heuristics such as OBL, chaos maps, Lévy distribution, Cauchy
mutation, selection schemes, and others. In the rest of this section, we describe the three
strategies used to enhance the MFO performance.
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3.4.2 Lévy Flight Distribution

The Lévy-flight [109] originally proposed by the French mathematician Paul Pierre Lévy in
1926 is considered as a non-Gaussian random process with random walks derived from the
Lévy stable distribution as shown in Figure 3.2. It has been incorporated favorably into
several meta-heuristic search algorithms to provide faster convergence, improve the diversity
of the population, exploit the search space in a much better way, and avoid premature
convergence. The formula for the Lévy distribution is a simple power-law expression L(s) ∼
s−1−a where 0 < a < 2. Lévy flight distribution can be stated mathematically as follows:

L(s, γ, µ)

=


√

γ
2π

exp
(
− γ

2(s−µ)

)
1

(s−µ)3/2 , 0 < µ < s <∞

0 otherwise

(3.11)

where µ, s, and γ represent the minimum step size, sample size, and control parameters
of Lévy distribution, respectively.

Figure 3.2: Plot of the two dimensional variables from Lévy flights distribution started from
the origin (marked with a bold point) and plotted 200 points with a=1.4

3.4.3 Chaotic map

Chaos is a deterministic method used to analyze the behavior of nonlinear and dynamic
systems. It has many important characteristics such as ergodicity, regularity, non-converging,
non-periodic, bounded, unpredictable, non-repetitive, and stochastic. These characteristics
have been transformed into various mathematical equations called chaotic maps used to
generate random parameters in meta-heuristics. Integrating chaotic maps with meta-heuristics
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improves searching capability, increases the convergence rate, and avoids being trapped into
local optima. Several chaotic maps have been presented in the literature such as Logistic map,
Tent map, Sine map, Gauss map, Sinusoidal map, Chebyshev map, Piecewise map, Iterative
map, and Circle map [110, 111]. Sine map is one of the most representative commonly used
chaotic maps with simple operations and well dynamic randomness. The equation of Sine
map is described as follows:

SMk+1 = ac

4 sin (πSMk) , 0 ≤ SMO ≤ 1 (3.12)

Where SMk is the chaotic map value at the k-th iteration, it is in rage of [0, 1]. Here ac is
a control parameter and 0 < ac ≤ 4.

According to [112], the sine map seems to be a chaotic logistic map when the factor ac is
equal to 4. Again, the sine map exhibits chaotic behavior when ac is near to 4. Specifically,
when ac falls within the range of [3.48, 4]. Figure 3.3 shows the chaotic dynamics of Sine
map SM .

Figure 3.3: The chaotic dynamics of Sine map

3.4.4 Opposition-based learning

The opposition-based learning (OBL) strategy introduced originally by Tizhoosh [113] in
2005 is a well-regarded scheme in the field of machine and computational intelligence. It has
been successfully combined with many meta-heuristic optimization algorithms to enhance
their convergence speeds and explore the search space effectively. The main concept of OBL
strategy is based on opposite numbers to approach the solutions. The opposite of the real
number Pmo ∈ [lb, ub] can be mathematically defined by the following equation:

¯Pmo = ub+ lb− Pmo (3.13)
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The opposite point, on the other hand, is computed in the same way as a reflected point
when calculated through the center point ((lb+ ub)/2) for one dimension space

This definition can be extended to multidimensional search space as follows:

¯Pmoi = ubi + lbi − Pmoi, i = 1, 2, . . . , d (3.14)

where ¯Pmo ∈ Rd is the opposite vector from the real vector P ∈ Rd.

3.4.5 The proposed ECLO-MFO for solving the mesh router nodes
placement problem

The structure of the suggested ECLO-MFO is described in this section. In order to improve
the optimization performance of MFO, three strategies are incorporated including Lévy
flight distribution, chaotic map, and opposition-based learning. The integration of Lévy
flight distribution with the original MFO enriches searching behavior and avoids stagnation
in local optimum. The chaotic sequence is used to increase the chaotic stochastic behavior
of the MFO algorithm. Thus, the combination of chaotic sequence and Lévy distribution
may yield better results as shown in Figure 3.4. In this sense, the i-th moth performs both
Lévy distribution and chaotic sequence after the position updating, which is formulated as
follows:

Pmok
i = Pmok

i + (SMk − 0.5) ∗ LFD (3.15)

Where LFD is randomly generated by the Lévy flight distribution. SMk is the chaotic
sequence generated by the sine chaotic map.

Figure 3.4: The effect of combining sine map with lévy flight

The OBL technique receives the solutions modified using Lévy distribution and chaotic
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map and selects 50% of them and calculates the opposite solutions. The opposite solution
was compared with the current corresponding solution based on the fitness function, and the
best of these solutions is selected as the next-generation individual.

Its flowchart is given in Figure 3.5.(b).

Figure 3.5: The flowchart of: (a) MFO, (b) ECLO-MFO
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Algorithm 10 The pseudo-code of the proposed ECLO-MFO for the WMN-MRNP problem
Input:
m: Number of MRs
n: Number of MCs
CR: Coverage radius
nm: Population size (number of moths)
lb: Lower bound
ub: Upper Bound
itmax: Maximum number of iterations
Output:
Pmobest the best solution

1: for j= 1 to m do
2: Randomly place the j-th mesh client in the deployment area
3: end for
4: for i= 1 to nm do
5: Randomly place all mesh routers of the i-th solution in the deployment area
6: OPmo(i) = g(Pmo(i, 1 : d))
7: end for
8: for k=1 to itmax do
9: Update number flames (Eq.3.10)

10: if k == 1 then
11: Pfl = sort(Pmo)
12: OPfl = sort(OPmo)
13: else
14: Pfl = sort(Pmok−1, Pmot)
15: OPfl = sort(OPmok−1, OPmot)
16: end if
17: for i=1 to nm do
18: for j=1 to n do
19: Calculate Di,j with respect to its corresponding moth (Eq.3.9)
20: Update Pmo(i, j) with respect to its corresponding moth (Eq.3.7)
21: end for
22: Update Pmo(i, 1 : d) using Lévy distribution and chaotic map (Eq.3.15)
23: end for
24: for i=1 to nm do
25: OPmo(i) = g(Pmo(i, 1 : d))
26: if mod(i, 2) == 0 then
27: Calculate the opposite solution of OPmo(i)
28: Evaluate the opposite solution of OPmo(i) (Eq.3.5)
29: Do the acceptance criterion
30: end if
31: end for
32: end for
33: Return the best solution

The pseudo-code of ECLO-MFO is shown in Algorithm 10. The integration of the
three schemes makes MFO able to improve the random initial solutions and converge to
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the global optimum. In the other hand, the integration of OBL in MFO results in increasing
the computation complexity of MFO because the evaluation is done for both the current
population and the population produced using the OBL technique. This helps to explain
why we applied OBL only for the half of the solutions.

3.5 Simulation results and analysis

In this section, we evaluate and analyze the effectiveness of ECLO-MFO algorithm in solving
the mesh router nodes placement problem in WMNs. The evaluation is done considering
three metrics such as client coverage Ψ, network connectivity Φ, and fitness value f . Thus,
ECLO-MFO is compared with the original MFO and ten well-known meta-heuristics such
as GA [114], SA [94], HS [75] , PSO [105], ABC [46], BA [104], CS [45], FA [99], GWO [48],
and WOA [50]. All the algorithms are implemented in MATLAB environment version 2020a
and executed on a PC with an Intel Core i7-6500U 2.5 GHz-CPU and 8 GB RAM platform
running 64-bit windows 10. MRs are deployed in different amounts during simulation to
cover 20 to 200 MCs distributed randomly over an area of 4km2. The total number of
iterations is 2000. The results presented in this section were attained following an average
of 30 runs. Table 3.3 describes the common parameters used in simulation.

Table 3.3: Parameters values considered in our simulations

Parameter Value Default value
n [20 200] 100
m [5 40] 20
CR [50 400] 200 m
W 2000 2000 m
H 2000 2000 m
λ [0 1] 0.5
Population size 50 50
Number of run 50 50
Number of iteration 2000 2000

3.5.1 Effect of varying the λ value

In this scenario, we will evaluate fitness under different λ values (0, 0.25, 0.5, 0.75, 1).
Results are summarized in Table 3.4 and Figure 3.6. These findings show that the algorithms
under consideration are either not sensitive to changes in the value or only slightly sensitive.
Therefore, a value of 0.5 has been used in the remaining simulations to give the same
importance to both coverage and connectivity metrics.
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Table 3.4: Fitness f for varied λ values

λ 0 0.25 0.5 0.75 1
ECLO-MFO 0.79 0.76 0.81 0.77 0.85
MFO 0.69 0.72 0.76 0.73 0.86
GA 0.76 0.78 0.73 0.69 0.81
SA 0.71 0.72 0.72 0.72 0.82
HS 0.53 0.61 0.51 0.51 0.60
PSO 0.69 0.64 0.7 0.69 0.76
ABC 0.54 0.54 0.46 0.55 0.61
BA 0.71 0.72 0.72 0.80 0.82
CS 0.74 0.72 0.71 0.73 0.86
FA 0.72 0.68 0.73 0.75 0.83
GWO 0.62 0.57 0.60 0.67 0.75
WOA 0.60 0.59 0.60 0.60 0.68

Figure 3.6: Effect of varying λ values on Fitness f .

3.5.2 Effect of varying the number of MCs

In this scenario, we measure the effect of varying the number of MCs on client coverage,
network connectivity, and fitness, respectively. The obtained results are shown in Table 5.4
and Figure

Figure 3.7(a) depicts the change in client coverage as the number of MCs changes (from
20 to 200). It is observed that when increasing the number of MCs, the users coverage
increases too. It is also shown the effectiveness of our approach in terms of coverage when
compared to other algorithms. More precisely, ECLO-MFO covers up to 6.2%, 13%, 31%,
12%, 37%, 41.42%, 9.45%, 8.55%, 17.91%, and 26.32% more users than MFO, GA, SA, HS,
PSO, ABC, BA, CS, FA, GWO, and WOA, respectively.

Figure 3.7(b) shows the effect of rising the number of MCs on network connectivity.
It can be noticed that the network connectivity rises as the number of MCs rises. It
is also demonstrated that when ECLO-MFO is used, the network connectivity achieves
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improvements up to 5.8%, 5.9%, 9.32%, 27.8%, 11%, 33.46%, 41.3%, 9.8%, 6.4%, 17.32%,
and 26.33% than MFO, GA, SA, HS, PSO, ABC, BA, CS, FA, GWO, and WOA, respectively.

In terms of fitness, Figure 3.7(c) illustrates that the fitness decreases as the number of
MCs rises. In fact, to cover the extra MCs, additional MRs are actually required. However,
the number of MRs is fixed. As a result, the newly introduced MCs may not be covered by
the provisioned routers, resulting in a reduction in coverage and connectivity metrics that
are integrated in the definition of the fitness function. The obtained results revealed the
effectiveness and superiority of ECLO-MFO in comparison with MFO, GA, SA, HS, PSO,

Table 3.5: Coverage Ψ, connectivity ϕ, and fitness f for varied number of mesh clients

n 20 40 60 80 100 120 140 160 180 200

C
ov

er
ag

e

ECLO-MFO 19.9 38.3 55.6 73.5 87.4 101.9 114.8 135.9 144.1 162.4
MFO 19.9 38.7 55.7 68.5 83.4 96.76 112.8 133 144.3 155.1
GA 17.3 35.2 51.1 64.3 84.4 98.5 117.9 126.1 140.5 163.7
SA 19.6 37.5 53.7 67.2 87.3 99.5 114.9 120.7 140.5 161.2
HS 14.8 27.9 36.9 50.5 65.1 69.5 80.2 91.2 101.5 111.9
PSO 18.4 33.5 51.3 61.5 77.2 90.9 106.4 121.5 136.7 146.7
ABC 14.2 24.5 33.1 47.1 56.7 63.9 74.6 86.3 93.1 104.5
BA 11.8 21.8 31.1 48.2 48.4 58 73.9 80.7 85.8 92.1
CS 19.2 37.9 51.6 65.9 84.7 94.5 108 120.3 139.4 146.2
FA 19.6 36 50.5 69 83.7 98.8 109.9 124.7 137.5 153.9
GWO 17 33.8 50.3 59.1 73.9 86.9 102 117.3 129.1 139.2
WOA 17.2 28.7 43 52.4 64.7 80.8 84.6 95.4 111.5 121.8

C
on

ne
ct

iv
it

y

ECLO-MFO 39.5 57.3 72.5 91.7 106.9 120.5 134 155.6 163 180.5
MFO 39.9 56.8 73.3 86.1 101.1 116.2 129.8 151.7 161.8 171.1
GA 37.2 55.2 71.1 84.3 104.4 118.3 137.5 146.1 160.5 183.7
SA 35.8 56 70.7 86.4 105.8 117.9 131.4 139.1 159 181.2
HS 31.6 45.4 51.5 65 80.2 82.7 93.5 105.5 113.8 123.3
PSO 38.5 53.5 71.3 80.6 97.2 110.9 126.1 141.3 156.3 165.5
ABC 27.9 37.7 45.7 58.8 67.7 74.2 87.5 95.1 101.6 114.3
BA 27.6 32.5 39.5 53.7 58.5 67.9 76.6 86.6 90 104.8
CS 37.5 57.1 70.2 84.8 102.1 110.4 127.7 137.9 157.9 165.4
FA 38.5 54.1 69 87 103.3 118.1 129 144 157.3 173.7
GWO 32.6 53.7 69.9 77.3 92.6 106.8 120.9 136.8 147.6 157.7
WOA 34.8 46.7 57.9 67.7 79.9 78.8 91.2 108.2 131 141.4

F
it

ne
ss

ECLO-MFO 0.99 0.95 0.91 0.91 0.88 0.85 0.82 0.85 0.80 0.81
MFO 0.99 0.95 0.92 0.85 0.83 0.81 0.80 0.83 0.80 0.77
GA 0.9 0.9 0.87 0.82 0.85 0.83 0.85 0.79 0.79 0.82
SA 0.93 0.93 0.88 0.85 0.87 0.83 0.82 0.76 0.78 0.80
HS 0.76 0.72 0.62 0.64 0.65 0.58 0.57 0.57 0.56 0.55
PSO 0.94 0.86 0.87 0.78 0.79 0.77 0.77 0.77 0.77 0.74
ABC 0.70 0.62 0.56 0.58 0.56 0.53 0.53 0.53 0.51 0.52
BA 0.64 0.54 0.50 0.57 0.48 0.48 0.50 0.49 0.46 0.46
CS 0.94 0.94 0.86 0.83 0.84 0.78 0.78 0.75 0.78 0.74
FA 0.96 0.9 0.85 0.86 0.84 0.83 0.79 0.78 0.77 0.77
GWO 0.83 0.87 0.85 0.75 0.75 0.74 0.74 0.74 0.72 0.7
WOA 0.86 0.74 0.72 0.66 0.65 0.61 0.58 0.59 0.63 0.62
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Figure 3.7: Effect of varying the number of MCs on: (a) Coverage Ψ (b) Connectivity Φ (c)
Fitness f .

ABC, BA, CS, FA, GWO, and WOA for most of the cases.
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3.5.3 Effect of varying the number of MRs

During this scenario, we increased the number of MRs starting from 4 to 40 for covering
100 MCs. Table 3.6 and Figure 3.8 illustrate the effect of varying the number of MRs on
coverage, network, and fitness, respectively.

Figure 3.8(a) shows the effect of varying the number of MRs on users coverage. It is
demonstrated that as the number of MRs rises, the users coverage rises too. In fact, when
adding more MRs in the network, MCs have more chances to be covered by the deployed

Table 3.6: Coverage ψ, connectivity Φ, fitness f under various number of mesh routers

m 4 8 12 16 20 24 28 32 36 40

C
ov

er
ag

e

ECLO-MFO 29 51 64.1 82.4 87.4 94.6 99.5 100 100 100
MFO 27.1 46.1 62.4 76.5 78.6 90.4 97 98.2 100 99.9
GA 23.9 39.5 60.1 71.2 84.4 89.9 95.8 98.4 99.3 99.5
SA 28.5 43.3 55.7 71.1 84.1 95 98.4 98.73 99.9 100
HS 25 37.4 45.6 50.8 60.8 66.9 70.5 79.3 80.5 84.1
PSO 26.4 41.03 54.2 68.2 76.9 85.2 88.2 93.1 98 97.7
ABC 25 33.4 43.9 46.6 51.5 58.1 68.7 75.2 76.2 81.2
BA 15.8 25.8 38.4 47.7 48.4 55.4 65.6 73.5 76.9 81.1
CS 27.6 46.6 56.9 70.3 81.4 89.7 94.6 98 99.8 100
FA 24.9 41.8 57.3 71.6 80.3 87.4 92.2 96.2 98.2 97.5
GWO 22.2 39.4 56.9 61 73.9 81.7 89.2 91.2 98.2 97.6
WOA 23.6 32.3 48.5 58 64.7 70.3 76.4 85 82.5 89.9

C
on

ne
ct

iv
it

y

ECLO-MFO 33 48.8 63.2 93.1 106.9 118.2 127.5 132 136 140
MFO 22.1 53.4 61.5 87.6 94.6 112.8 124.6 130.2 136 139.9
GA 24.6 47 70.1 87.2 104.4 113.9 123.8 130.4 135.3 139.5
SA 24.9 43.3 60.4 84.9 103.8 118.9 126.4 130.5 134.9 140
HS 26.7 41.5 49.9 60 75.1 87.8 94 107.8 114.9 123.1
PSO 28 46.8 64.9 83.6 96.6 109.2 115.6 125.1 134 137.7
ABC 24.5 36 51.4 55 61.9 74.3 89.9 98.5 106.1 121
BA 15.3 24 35.4 44.4 58.5 69.5 90.8 102.6 101.7 121.1
CS 31.6 49.1 59.9 85 98.6 113.5 122.4 130 135.8 140
FA 27.7 46.5 66 86.3 99.7 111 120 128.1 135 139.5
GWO 24.9 35.8 64.8 76.2 92.6 104.9 117.1 123.2 134.1 137.4
WOA 25.7 35.1 56.3 72.2 79.9 90.3 102.7 114.6 117.7 128.7

F
it

ne
ss

ECLO-MFO 0.30 0.48 0.60 0.81 0.88 0.94 0.99 1 1 1
MFO 0.24 0.47 0.58 0.76 0.78 0.90 0.97 0.98 1 0.99
GA 0.23 0.41 0.61 0.73 0.85 0.9 0.96 0.98 0.99 0.99
SA 0.24 0.41 0.54 0.72 0.85 0.95 0.98 0.98 0.99 1
HS 0.25 0.37 0.45 0.51 0.61 0.68 0.71 0.80 0.82 0.86
PSO 0.26 0.42 0.56 0.7 0.79 0.86 0.89 0.93 0.98 0.98
ABC 0.24 0.33 0.44 0.46 0.51 0.59 0.69 0.74 0.77 0.83
BA 0.15 0.23 0.35 0.42 0.48 0.67 0.68 0.75 0.75 0.83
CS 0.28 0.46 0.54 0.71 0.81 0.9 0.95 0.98 0.99 1
FA 0.25 0.42 0.58 0.73 0.81 0.88 0.92 0.96 0.99 0.99
GWO 0.24 0.32 0.49 0.60 0.75 0.83 0.9 0.92 0.98 0.97
WOA 0.24 0.32 0.49 0.60 0.65 0.71 0.78 0.85 0.84 0.9
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Figure 3.8: Effect of varying the number of MRs on: (a) Coverage ψ (b) Connectivity Φ (c)
Fitness f .

MRs, resulting in increasing the users coverage metric. It is also confirmed the efficiency of
our approach in terms of coverage for all cases. More specifically, the coverage is expanded
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by our approach up to 8.76%, 11.43%, 11.23%, 31.56%, 14.2%, 35.86%, 39.16%, 12.06%,
10.73%, 21.36%, and 24.4% when compared to MFO, GA, SA, HS, PSO, ABC, BA, CS, FA,
GWO, and WOA, respectively.

It can be seen from Figure 3.8(b) that the connectivity of the network increases with
the number of MRs. In fact, when more routers are added, some sub-networks will be
connected forming largest sub-nets, the largest sub-net will be expanded until all mesh
nodes are included. It is also demonstrated the effectiveness of ECLO-MFO in forming the
biggest sub-net for most of the cases. More precisely, when ECLO-MFO is used, the network
connectivity is increased up to 8.76%, 10.5%, 8.1%, 7.8%, 28.53%, 8.1%, 37.55%, 42%, 7%,
5.9%, 14.59%, and 22.5% when compared to MFO, GA, SA, HS, PSO, ABC, BA, CS, FA,
GWO, and WOA, respectively.

Figure 3.8(c) shows that the fitness increases as more routers are added. Again, ECLO-
MFO outperforms when compared to MFO, GA, SA, HS, PSO, ABC, BA, CS, FA, GWO,
and WOA for most of the cases. It requires less routers to achieve full coverage and full
connectivity when compared with other algorithms.

3.5.4 Effect of varying coverage radius values

In this scenario, we varied the coverage values from 50 to 500 for covering 100 MCs, using
20 MRs. Table 3.7 and 3.9 illustrate coverage, connectivity, and fitness for a varied coverage
radius values.

Figure 3.9(a) shows the impact of expanding the router coverage radius on the users’
coverage. It can be seen that the users coverage increases while increasing the router coverage
radius. In fact, when the coverage radius is increased, the mesh routers are better equipped
to cover vast area until including nearly all MCs (when the coverage radius is greater than
300 m for most algorithms). It is also shown the efficiency of our approach in terms of
users coverage for most of the cases. More precisely, when the coverage radius exceeds 100,
ECLO-MFO covers up to 7.34%, 12.04%, 9.06%, 27.16%, 27.16%, 24.97%, 35.07%, 34.2%,
13%, 9.63%, and 22.6% more users than MFO, GA, SA, HS, PSO, ABC, BA, CS, FA, GWO,
and WOA, respectively. Results presented in Figure 3.9(b) display the effect of increasing the
MR coverage radius on network connectivity. It can be seen that the network connectivity
increases proportionally with MR coverage radius. In fact, each mesh router may cover
more mesh clients and connect to other MRs when the radius of coverage is increased. As
a result, the largest sub-net will grow in size until connecting all of the mesh nodes. When
the coverage radius is more than 150 m, ECLO-MFO outperforms other algorithms. More
specifically, it increases the network connectivity up to 9.4%, 1.9%, 9.7%, 26.14%, 9.8%,
32.66%, 36.27%, 7%, 8.66%, 10.77%, and 22.77% than MFO, GA, SA, HS, PSO, ABC, BA,
CS, FA, GWO, and WOA, respectively.

The effect of increasing the router coverage radius on fitness is described in Figure 3.9(c).
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It is demonstrated that the fitness is inversely correlated with covering radius. When the

Figure 3.9: Effect of varying coverage radius values on: (a) Coverage Ψ (b) Connectivity Φ
(c) Fitness f .
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Table 3.7: Coverage Ψ, connectivity Φ, and fitness f for varied coverage radius values

CR 50 100 150 200 250 300 350 400 450 500
C

ov
er

ag
e

ECLO-MFO 31.4 47.8 69.7 87.4 99.6 100 100 100 100 100
MFO 33.6 50.6 62.4 86.4 99.2 100 100 100 100 100
GA 25.5 38.6 57.7 86.5 97.2 99.8 99.9 100 100 100
SA 29.7 47.6 69.1 82.3 98 100 100 100 100 100
HS 24.5 38.3 44.3 60.2 80.5 90.8 97 99.9 100 100
PSO 25.1 33.4 44.7 75.7 93.9 98.5 100 100 100 100
ABC 10.4 21.2 34.6 56.7 73.9 87.7 95.9 99.8 100 100
BA 9 23.5 35.5 57.1 72.3 82.9 94.5 97.4 100 100
CS 26.1 41.2 56.6 81.8 98.6 100 100 100 100 100
FA 27.7 46.3 62.2 77.7 95.5 99.8 100 100 100 100
GWO 21.2 24.6 48.1 74.4 94 99 99.9 100 100 100
WOA 6.9 25.2 48.6 66.4 78 94.6 99.3 100 100 100

C
on

ne
ct

iv
it

y

ECLO-MFO 6.7 32.83 69.1 106.9 119.5 120 120 120 120 120
MFO 7.1 25.4 57.8 103.9 119.1 120 120 120 120 120
GA 21.9 49.9 76.1 106.5 117.2 119.8 119.9 120 120 120
SA 7.1 27.4 57.5 101.5 118 120 120 120 120 120
HS 6.7 31.3 52.9 75.6 99.9 110.5 117 119.9 120 120
PSO 8.9 35.9 60.7 95.1 113.9 118.5 120 120 120 120
ABC 5 13.4 39 67.7 91.3 106.6 114.5 119.9 120 120
BA 3.8 11.2 30 63.4 92.2 102.9 114.5 117.4 120 120
CS 6.6 24.3 65.7 101.3 118.6 120 120 120 120 120
FA 7.5 46.9 62.5 96.5 115.5 119.8 120 120 120 120
GWO 12.8 38.6 67 94 114 119 119.9 120 120 120
WOA 23.4 24.1 43.3 79.6 97.1 114.6 119.3 120 120 120

F
it

ne
ss

ECLO-MFO 0.18 0.37 0.63 0.88 0.99 1 1 1 1 1
MFO 0.19 0.35 0.55 0.86 0.99 1 1 1 1 1
GA 0.21 0.40 0.60 0.87 0.97 0.99 0.99 1 1 1
SA 0.17 0.35 0.58 0.83 0.98 1 1 1 1 1
HS 0.15 0.32 0.44 0.61 0.81 0.91 0.97 0.99 1 1
PSO 0.16 0.31 0.47 0.77 0.94 0.98 1 1 1 1
ABC 0.07 0.16 0.33 0.56 0.74 0.88 0.95 0.99 1 1
BA 0.06 0.16 0.30 0.54 0.74 0.84 0.94 0.97 1 1
CS 0.15 0.30 0.55 0.82 0.98 1 1 1 1 1
FA 0.16 0.42 0.57 0.79 0.95 0.99 1 1 1 1
GWO 0.15 0.28 0.51 0.76 0.94 0.99 0.99 1 1 1
WOA 0.13 0.22 0.42 0.66 0.79 0.95 0.99 1 1 1

coverage radius value of every MR is increased, mesh routers have more capability of covering
more MCs and connecting to other MRs, resulting in increasing the metrics of coverage and
connectivity that are involved in fitness. Again, when the router coverage radius is more
than 100m, ECLO-MFO outperforms better than MFO, GA, SA, HS, PSO, ABC, BA, CS,
FA, GWO, and WOA.
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3.5.5 Convergence Analysis

In this section, we analyze the convergence of ECLO-MFO compared to other algorithms.
Table 3.9 shows the convergence analysis of ECLO-MFO, MFO, GA, SA, HS, PSO, ABC,
BA, CS, FA, GWO, and WOA algorithms. Convergence analysis process is done using five
network instances of different sizes (i.e. (a) Instance1, (b) Instance2, (c) Instance3, (d)
Instance4, and (e) Instance5) as illustrated in Table 3.8. The convergence analysis process
is based on convergence efficiency (fitness value) and convergence speed. An average of 30
experiments are performed for each result.

Table 3.8: Network instances taken into account in the convergence analysis

Instance WxH n m CR
Instance1 1000m× 1000m 5 50 200m
Instance2 1500m× 1500m 10 100 200m
Instance3 2000m× 2000m 15 150 200m
Instance4 2500m× 2500m 20 200 200m
Instance5 3000m× 3000m 25 250 200m

Figures 3.10a, 3.10b, 3.10c, 3.10d, and 3.10e report an example of the algorithms convergence
using Instance1,Instance2, Instance3, Instance4, and Instance5.

Based on the fitness values of ECLO-MFO in comparison with other algorithms as
illustrated in Table 3.9, it can be observed that ECLO-MFO gives better results for four
instances in both large and small networks. In terms of convergence speed, the results

Table 3.9: Convergence analysis between ECLO-MFO, MFO, GA, SA, HS, PSO, ABC, BA,
CS, FA, GWO, and WOA algorithms

Instance Instance1 Instance2 Instance3 Instance4 Instance5
Fitness Iteration Fitness Iteration Fitness Iteration Fitness Iteration Fitness Iteration

ECLO-MFO 0.89 638 0.81 1185 0.66 1670 0.60 1694 0.53 1727
MFO 0.84 399 0.75 964 0.61 1197 0.57 1616 0.44 1603
GA 0.85 539 0.70 1044 0.65 1285 0.59 1466 0.54 1538
SA 0.75 1142 0.81 1484 0.65 1782 0.58 1862 0.49 1915
HS 0.81 1576 0.59 1450 0.44 1192 0.41 1604 0.33 1676
PSO 0.74 142 0.74 528 0.66 737 0.55 758 0.48 1043
ABC 0.79 713 0.58 845 0.44 921 0.37 972 0.27 943
BA 0.62 30 0.48 349 0.44 269 0.32 446 0.26 383
CS 0.85 1235 0.74 1606 0.66 1771 0.53 1826 0.47 1839
FA 0.79 11 0.76 27 0.66 47 0.57 65 0.52 80
GWO 0.88 1144 0.67 1970 0.61 1903 0.47 1834 0.42 1898
WOA 0.82 371 0.62 518 0.54 408 0.42 618 0.36 71

described in Table 3.9 and Figures 3.10a, 3.10b, 3.10c, 3.10d, and 3.10e showed that ECLO-
MFO is among algorithms that needs more iterations to achieve the global optimum. However,
the fitness reached by ECLO-MFO is the best for most of the cases. The reasons behind
this improvement are given below:
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(a) (b)

(c) (d)

(e)

Figure 3.10: Example of algorithms convergence using: (a) Instance1 (b) Instance2 (c)
Instance3 (d) Instance4 (e) Instance5
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• The adaptive scheme employed in MFO for updating the number of flames leads to a
good balance between intensification and diversification.

• The integration of OBL improves the population diversity in the search process.

• The Lévy flight mechanism is helpful for avoiding to trap in a local optimum.

• The integration of sine map with Lévy flight mechanism results in reducing the walk of
Lévy distribution. Consequently, better solutions are achieved.

3.6 Conclusion

In this chapter, we have proposed an enhanced version of MFO, called ECLO-MFO to tackle
the mesh router nodes placement problem in WMNs. ECLO-MFO is based on the integration
of three strategies including: the chaotic map concept, the Lévy flight strategy (LFD), and
the Opposition-Based Learning (OBL) technique to enhance the optimization performance of
MFO. Its performance was analyzed and evaluated by investigating the impact of varying the
number of mesh clients, the number of mesh routers, and coverage radius values. Obtained
results revealed the superiority and the effectiveness of ECLO-MFO when compared to other
optimization algorithms such as MFO, GA, SA, HS, PSO, ABC, BA, CS, FA, GWO, and
WOA in terms of network connectivity and user coverage. In the next chapter, we will
propose a hybrid approach for solving the mesh routers placement problem with service
priority.
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CHAPTER 4

A HYBRID APPROACH FOR THE MESH ROUTERS
PLACEMENT PROBLEM WITH SERVICE PRIORITY

4.1 Introduction

This chapter aims to present a hybrid approach, called ASO-SA, based on the combination
of an Adaptive Snake Optimizer (ASO) with Simulated Annealing (SA) for solving the mesh
routers placement problem with service priority. ASO is based on incorporation of the
Generalized Opposition Based-Learning (GOBL) mechanism in the exploration phase of SO
for enhancing its performance. ASO-SA combines the global search capability of ASO and
the local search capability of SA.

In this chapter, we present a reminder of the hybrid approaches proposed in the literature
to solve the mesh nodes placement problem in WMNs, we then describe the formulation of
the mesh routers placement problem with service priority, we also present Snake Optimizer
algorithm, Simulated Annealing algorithm, Generalized Opposition Based-Learning, and
the hybrid approach. Finally, we evaluate the performance of the proposed approach and
compare its characteristics with SO-SA, ASO, SO, and SA algorithms.

4.2 Related works

Various hybrid approaches were proposed in the literature to solve the mesh routers placement
problem in WMNs. Sakamoto et al. [115, 116] suggested a hybrid approach, called PSO-
HC, based on the combination of PSO with Hill-Climbing algorithm, for solving the mesh
routers placement problem in WMNs. User coverage, network connectivity, and convergence
were considered as metrics to be optimized and results demonstrated the effectiveness of
PSOHC in finding the optimal placement of mesh routers. Barolli et al. [117] suggested
a hybrid algorithm, called PSO-DGA, based of the hybridization of PSO with distributed
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GA (DGA), for addressing the mesh routers placement problem in WMNs. PSO-DGA
algorithm was validated under 4 factors including the number of router nodes, number of
mesh client nodes, coverage radius, and size of the deployment area. Results of simulated
demonstrated the good performance of PSO-DGA. Sakamoto et al [118] suggested a hybrid
algorithm, called PSO-HC-DGA, based on hybridizing PSO algorithm with Hill-Climbing
and DGA, for solving the mesh routers placement problem in WMNs. PSO-HC-DGA was
validated in terms of user coverage and network connectivity metrics. Results of simulation
demonstrated the effectiveness of PSO-HC-DGA when compared with PSO-DGA model. A
hybrid approach called PSO-SA, based on the combination of PSO and SA, was suggested
in the work of Sakamoto et al. [119] for solving the mesh routers placement problem
in WMNs. Four replacement methods which are: Constriction Method (CM), Random
Inertia Weight Method (RIWM), Linear Decreasing Inertia Weight Method (LDIWM),
and Rational of Decrement of Vmax Method (RDVM) were considered to evaluate the
performance of PSO-SA. Simulation results showed that PSO-SA converges faster and has
better performance using LDIWM and RDVM methods. Taleb et al. [120] applied a hybrid
algorithm, called HFPSO, based on the combination of PSO and FA, for solving the mesh
routers placement problem in WMNs. HFPSO was validated in terms of users coverage
and network connectivity, taking into account the effect of varying the number of mesh
routers, the number of mesh clients, and coverage radius values. Simulations results proved
the good performance of HFPSO when compared with PSO and FA algorithms. Barolli et.
al.[121] suggested a hybrid algorithm, called PSOSA-DGA, based on the combination PSO,
SA, and DGA algorithms, for solving the WMN router nodes placement problem. PSO-
SA-DGA was validated considering chi-square distribution of mesh clients and two router
replacement methods (CM and RIWM). Simulation results showed that PSO-SA-DGA has
better performance for CM compared with the case of RIWM. Table 4.1 summarizes some
representative works using hybrid approaches for solving the mesh routers placement problem
in WMNs.

Table 4.1: Summary of hybrid approaches employed to solve the mesh routers placement
problem in WMNs

Algorithms References Environment Location Metrics
Coverage Connectivity Load balancing

PSO-HC Sakamoto et al. [115, 116] Static Discrete x x
PSO-HC-DGA Sakamoto et al [118] Static Discrete x x
PSO-SA Sakamoto et al.[119] Static Discrete x x
PSO-SA-DGA Barolli et al.[121] Static Discrete x x
PSO-DGA Barolli et al.[117] Static Discrete x x x
HFPSO Taleb et al. [120] Static Continuous x x
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4.3 The mesh routers placement problem formulation

A fully connected graph G = (V, L) can be used to mathematically represent WMN, where
V represents the set of MRs and L represents the set of links connecting these MRs. Two
sets of mesh nodes where considered as described bellow:

• MRS is the set of n of MRs: MRS = {mr1,mr2.....mrm}. Each mesh router mri

is equipped with one radio interface having transmission range CRi. A connection
between two mesh routers mri and mrj is possible only if the distance between them
does not exceed the sum of their transmission ranges. Each installed MR must covers
at least one MC.

• MCS is the set of m MCs: MCS = {mc1,mc2.....mcn}. MCs are randomly dispersed
in the deployment area. We assume that MCs are not equal, a priority is associated
with each mesh client mcj. The priority of the jth client is denoted by wcj. A mesh
client mcj is said covered by a mesh router mri if it is within the transmission range of
this router. It can be linked at most with one router. It can be within the transmission
range of several MRs but it is associated with the nearest one.

The coverage variable aij and given as follows:

aij =

1 if mci is covered by mrj

0 otherwise
(4.1)

Let j and l ∈ MRS, j ̸= l, the connectivity variable Ajl (adjacency matrix) is specified
as follows:

Ajl =

1 if mrj and mcl can be connected

0 otherwise
(4.2)

Our work’s main goal is to determine where n MRs should be placed in a 2D space with
dimensions W × L, taking into account the positions of m mesh clients and their priorities,
maximizing the coverage metric. The problem can be described mathematically as follows:

f = Max
∑n

i=1(maxj∈{1,...m}aij
) ∗ wci∑n

i=1 wci

(4.3)

Subject to: ∑
j∈MRS

xij <= 1 ∀i ∈MCS (4.4)

n−1∑
k=1

Ak ̸= 0 (4.5)

The objective function in (4.3) maximizes the weighted coverage. Equation 4.4 ensures
that each MC can be assigned to at most one mesh router. The equation 4.5 imposes to have
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at least one path between each pair of MRs. Consequently, the graph G is fully connected.

4.4 Preliminaries

4.4.1 Snake Optimizer

Snake Optimizer (SO) is a swarm intelligence meta-heuristic proposed by Hashim and
Hussein [55] in 2022. The main concept of SO is based on the mating behavior of snakes
when the temperature is low and food is available. The main phases of SO are explained as
following:

4.4.1.1 Initialization

SO process begins by initializing adjusting parameters including:

• ns: The number of snakes in the population.

• d: The search space dimension.

• LB, UB: Lower and upper boundaries of the search space.

• itmax: The total number of iterations.

• Threshold1, Threshold2, c1, c2, c3: Constants equal to 0.25, 0.6, 0.5, 0.05, and 2,
respectively.

The population of ns snakes denoted by Pso is initialized, Pso is presented by the
following 2D matrix:

Pso =



Pso1,1 Pso1,2 ... ... Pso1,d

Pso2,1 Pso2,2 ... ... Pso2,d

. . . . .

. . . . .

Pson,1 Pson,2 ... ... Psons,d


4.4.1.2 Swarm dividing

Using Equation 4.6, SO splites the swarm into equal male and female groups

nsm ≈
ns

2
nsf = ns− nsm

(4.6)

where nsm represents the number of male individuals and nsf represents the number of
female individuals.
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4.4.1.3 Definition of the temperature and food quality

For each iteration t, the temperature (Temp) and food quantity (FQ) are defined according
to Equations 4.7 and 4.8, respectively.

Temp = exp
( −t
itmax

)
(4.7)

FQ = c1 exp
(
t− itmax
itmax

)
(4.8)

4.4.1.4 Exploration (no food)

The exploration phase is simulated when FQ < Threshold1. The exploration behavior of
males and females can be described mathematically as follows:

• For male snakes
The position of the new ith male snake at t + 1 is represented by new − Psomi and
represented as follows:

new − Psomi(t+ 1) = Psomrand(t)± c2 × Am ((UB − LB)× r1 +LB) (4.9)

where Psomrand is the position of a random male snake, r1 is a random number in range
[0 1], fitnessmrand is the fitness of the earlier selected random male snake, fitnessmi

is the fitness of ith male in the group, and Am is the ability to find the food by the
male, calculated as illustrated in Equation 4.10.

Am = exp
(
−fitnessmrand

fitnessmi

)
(4.10)

• For female snakes
The position of the new ith female snake at t + 1 is represented by new − Psofi and
determined as follows:

new − Psofi(t+ 1) = Psofrand(t)± c2 × Af ((UB − LB)× r2 +LB) (4.11)

where Psofrand is the position of a random female snake, r2 is a random number in
range [0 1], fitnessfrand is the fitness of the earlier selected random female snake,
fitnessfi is the fitness of ith male in the group, and Af is the ability to find the food
by the female, determined as illustrated in Equation 4.12.

Af = exp
(
−fitnessfrand

fitnessfi

)
(4.12)
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4.4.1.5 Exploitation

Based on quality of solution FQ and temperature Temp conditions, the exploitation procedure
is simulated as follows:

• If (FQ > Threshold1) and (Temp > Threshold2), the snakes move to find the food. At
t+ 1 iteration, the positions of the ith male snake and ith female snake are determined
as illustrated in Equations 4.13 and 4.14.

new − Psomi(t+ 1) = Psombest ± c3 × Temp× r3 × (Psobest − Psomi(t)) (4.13)

new − Psofi(t+ 1) = Psofbest ± c3 × Temp× r4 × (Psobest − Psofi(t))

(4.14)

where r3 and r4 are a random numbers in range [0].

• If (FQ > Threshold1) and (Temp < Threshold2), the snakes will then be in one of
two modes: fighting or mating. If a random number r5 in range [0 1] is less than 0.6,
the fighting model is simulated, otherwise, the mating model is simulated. The fighting
and mating models are illustrated as follows:

– Fighting mode
The position of the new ith male is updated as described in Equation 4.15:

new− Psomi(t+ 1) = Psomi(t)± c3× FM × r6× (Psofbest − Psomi(t)) (4.15)

Where Psombest refers to the best male snake r6 is random number in range [0 1]
and FM is fighting ability of male snake. Let calculated fitnessfbest is the fitness
value of the best female snake, FM is calculated as specified in Equation 4.16.

FM = exp
(
−fitnessfbest

fitnessmi

)
(4.16)

The position of the new ith female snake is updated as described in Equation 4.17:

new − Psofi(t+ 1) = Psofi(t)± c3 × FF × r7× (Psombest − Psofi(t)) (4.17)

where r7 is random number in range [0 1] and FF is fighting ability of female
snake. Let fitnessmbest represents the fitness value of the best male snake, FF is
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determined as specified in Equation 4.18.

FF = exp
(
−fitnessmbest

fitnessfi

)
(4.18)

– Mating mode
In this mode, the position of the ith male is determined as follows:

Psomi(t+ 1) = Psomi(t)± c3 ×Mm× r8× (Q× Psofi − Psomi(t)) (4.19)

where r8 is random number in range [0 1] and Mm refers to the mating ability of
male snake, calculated as described in Equation 4.20.

Mm = exp
(
−fitnessfi

fitnessmi

)
(4.20)

In other hand, the position of the new ith female snake is given as follows:

new − Psofi(t+ 1) = Psoft(t)± c3 ×Mf × r9 × (Q× Psomi − Psomi(t+ 1))
(4.21)

where r9 is random number in range [0 1] and Mm refers to the mating ability of
female snake, calculated as described in Equation 4.22.

Mf = exp
(
−fitnessmi

fitnessfi

)
(4.22)

4.4.1.6 Evaluate each group and do the new snake acceptance criteria

The i-th new male snake (or female snake) is accepted in the male group (or female group)
if its fitness value better than the i-th male snake (or female snake).

By examining each group for individual best male Psombest and best female Psofbest,
the best individual candidate solution Psobest is identified for each iteration.

The pseudo-code of SO is illustrated in Algorithm 11
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Algorithm 11 The pseudo-code of SO algorithm
1: Initialize the adjustable parameters of SO
2: Generate the initial positions of SO
3: Divide the population in male and female groups using Equation 4.6
4: Evaluate male and female groups and identify Psombest, Psofbest, Psofood

5:
6: while t < itmax do
7: Define the temperature and food quality according to Equations 4.7 and 4.8
8: if FQ < Threshold1 then
9: for i← 1 nsm do

10: Update Psomt+1 using Equation 4.9
11: end for
12: for i← 1 nsf do
13: Update Psoft+1 using Equation 4.11
14: end for
15: if Temp > Threshold2 then
16: for i← 1 nsm do
17: Update Psomt+1 using Equation 4.13
18: end for
19: for i← 1 nsf do
20: Update Psoft+1 using Equation 4.14
21: end for
22: else
23: if r5 < 0.6 then
24: for i← 1 nsm do
25: Update Psomt+1 using Equation 4.15
26: end for
27: for i← 1 nsf do
28: Update Psoft+1 using Equation 4.17
29: end for
30: else
31: for i← 1 nsm do
32: Update Psomt+1 using Equation 4.19
33: end for
34: for i← 1 nsf do
35: Update Psoft+1 using Equation 4.21
36: end for
37: end if
38: end if
39: end if
40: evaluate male and female snake groups and identify Psombest, Psofbest, and Psobest

t = t+ 1
41:
42: end while
43: Return the best solution Psobest
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4.4.2 Generalized opposition based-learning

The opposition-based learning (OBL) technique, proposed by Tizhoosh in 2005, is a well-
respected machine and computational intelligence scheme. It has been successfully integrated
into many meta-heuristic optimization methods to improve their convergence speed and
effectively explore the search space. OBL strategy is based on opposite numbers to approach
the solutions. The opposite of real number S ∈ [lb, ub] can be mathematically defined by
the following equation:

Sobl = ub+ lb− S (11)

The following definition can be used for a multidimensional search space:

Si_obl = ubi + lbi − Si, i = 1, 2, . . . , d (12)

where Sobl ∈ Rd is the opposite vector from the real vector S ∈ Rd

Wang et al. [122] introduced an extended version of the OBL strategy called Generalized
OBL (GOBL). GOBL was integrated into many evolutionary algorithms [123, 124] and
revealed its efficiency when compared with the OBL strategy. Sgobl is the corresponding
generalized opposition-based learning of Pmo, it is calculated as follows:

Sgobl = k ∗ (ub+ lb)− S (13)

This definition can be extended to multidimensional search space as follows:

Si_gobl = k ∗ (ubi + lbi)− Si, i = 1, 2, . . . , d (14)

where k is a random number in the range of [0 1].

4.4.3 Simulated Annealing (SA)

In 1983, Kirkpatrick et al. [31] developed the single-based meta-heuristic known as Simulated
Annealing (SA). The main concept of SA is based on the annealing theory which simulates
the cooling process of metal atoms. Numerous optimization problems, such as the issue of
node placement [32, 33, 34], have been addressed using SA.

SA begins with an initial solution X and Temperature Tmp. For each iteration t in
[1tmax], SA searches for X ′ the neighbor of the current solution X. Only two scenarios are
acceptable for the solution X ′: Firstly, if δ ≤ 0, where δ = f(X ′)− f(X), f(X ′) and f(X)
are fitness values of the neighbor and current solution, respectively. Secondly, if δ > 0 and
the Boltzmann probability P = e∆/T mp is greater then a random value r. The temperature
Tmp drops with a cooling factor Cf at the end of the iteration. Up until the maximum
number of iterations is reached, this process is repeated. Algorithm 12 illustrates the SA
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algorithm’s pseudo-code.

Algorithm 12 The pseudo-code of Simulated Annealing algorithm
1: Initialize SA parameters: Initial Temperature Tmp0, cooling factor Cf , and number of

the neighborhoods ns in the search space.
2: Generate initial solution X
3: while (t < tmax) do
4: while (it < n) do
5: Generate X ′ using equation
6: Calculate ∆ = f(X ′)− f(X)
7: Generate a random uniform variable r
8: if (∆ < 0) then
9: Determine X ′ the neighbor of X

10: else
11: if (exp−∆/T mp > r) then
12: X = X ′

13: end if
14: end if
15: it = it+ 1
16: end while
17:
18: t = t+ 1
19: end while
20: Return The best solution Xbest

4.5 Hybrid Adaptive Snake Optimizer with Simulated
Annealing (ASO-SA) for the mesh routers placement
problem

SO is a new swarm intelligence meta-heuristic proposed by Hashim and Hussein [55] for
solving various tasks of optimization. The performance of SO was assessed under 29
unconstrained Congress on Evolutionary Computation (CEC) 2017 benchmark functions
and four constrained real-world engineering problems. SO is compared with other 9
well-known and newly developed algorithms such as Linear population size reduction-
Success-History Adaptation for Differential Evolution (L-SHADE), Ensemble Sinusoidal
incorporated with L-SHADE (LSHADE-EpSin), Covariance matrix adaptation evolution
strategy (CMAES), Coyote Optimization Algorithm (COA), Moth-flame Optimization,
Harris Hawks Optimizer, Thermal Exchange optimization, Grasshopper Optimization
Algorithm, and Whale Optimization Algorithm. Simulation results demonstrated the
effectiveness of SO with respect exploration-exploitation balance and convergence curve
speed. In other hand, like most algorithms, SO may stuck in local optima and is unable
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to identify the global optimum solution. To overcome these drawbacks, it is advised that
researchers adapt it and integrate it with other strategies or meta-heuristics to improve the
exploitation and exploration phases. In this chapter, SO is improved as follows:

• The Generalized Opposition Based Learning (GOBL) was integrated in the original
SO to improve its performance in terms of exploration (if FQ < Threshold1). More
precisely, if a male snake or female snake has no improvement in its fitness value in
the last iteration, GOBL was used to update the new position of the male snake or the
female snake, otherwise, the standard exploration strategy is used. SO based only on
the integration of GOBL mechanism is denoted by ASO.

• SA algorithm was used to improve the exploitation phase (if FQ > Threshold1). In
fact, if a male snake or female snake has an improvement in its fitness value in the
last iteration, SA was used to update the new position of the male snake or the female
snake, otherwise, the exploitation strategy of SO is used. The hybridization of SO with
SA is denoted by SO-SA.

The proposed Hybrid approach based on the integration of GOBl and SA into the original
SO is denoted by ASO-SA.

4.6 Simulation results

Table 4.2: Parameters values considered in our simulations

Parameter Value Default value
n [20 160] 140
m [5 40] 20
CR [100m 500m] 200m
W [1000m 2500m] 2000m
H [1000 2500m] 2000m
Population size 30 30
Number of runs 15 15
Number of iterations 2000 2000

In this section, we will evaluate the performance of ASO-SA hybrid approach in comparison
with SO-SA, ASO, SO [55], and SA [94] algorithms. All of the algorithms were coded in
Matlab. A Core i7 2.5 GHz computer is used to run the simulations. The total number of
iterations is set to 2000. All simulations took into account a population of 30 solutions. The
results displayed here are an average of 15 trials. Tables 4.2 and 4.3 summarize the common
parameters used in simulation and algorithms parameters, respectively.

The performance of ASO-SA approach was analysed in terms of fitness value f considering
the effect of varying three key parameters such as: (1) number of mesh routers (2) number of
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Table 4.3: Algorithms parameters

Parameter Value
ASO-SA \ASO \SO

Constants Threshold1 0.25
Constant Threshold2 0.6
Constant c1 0.5
Constant c2 0.05
Constant c3 2

SA
Initial temperature Ti 1
Final temperature Tf 0

mesh clients (3) coverage radius values. A weighted mesh clients were dispersed randomly in
the deployment area. Weights are integer numbers in range [1 5]. Initial solutions are chosen
from a set of randomly generated solution, taking into account the connectivity requirement.
So, to simplify the generation process and get initial solutions in reasonable time execution,
mesh routers are positioned in square of 500m× 500m.

Figures 4.1(a), 4.1(b), 4.1(c), 4.1(d) and 5.3(e) report examples of a planned network
using ASO-SA, SO-SA, ASO, SO, and SA, respectively. The planned network is a solution
of network instance with 10 MRs and 100 MCs. Light blue points represent MCS having
priority equal to 1 (there are 50 MCS distributed in the left half part of the deployment
space). Dark blue points represent MCS having priority equal to 5 (there are 50 MCS
distributed in the right half part of the deployment space). Each installed MR is represented
by orange plus sign. It is clearly seen from this figures that MCs with greater priorities are
the first served using ASO-SA, SO-SA, ASO, and SO. Again, ASO-SA, SO-SA, and ASO
are more appropriate for solving the mesh routers placement problem with service priority,
because the use of this algorithms results in positioning mesh routers in the part where MCs
having the higher priority are distributed.

4.6.1 Effect of varying the number of MRs

In the first case of simulation, we will evaluate the performance of the proposed hybrid
approach under various number of MRs.

Figure 4.2 and Table 4.4 describe the impact of varying the number of MRs (5 to 40) on
fitness value. The presented results showed that the fitness value increases as the number of
MRs increases. Again, in comparison with SO-SA, ASO, SO, and SA, the effectiveness of
ASO-SA is demonstrated.
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Figure 4.1: Placement obtained using: (a) ASO-SA (b) SO-SA (c) ASO (d) SO (e) SA
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Figure 4.2: Fitness under various number of mesh routers

Table 4.4: Fitness under various number of mesh routers

m 5 10 15 20 25 30 35 40
ASO-SA 0.32 0.55 0.72 0.85 0.95 0.99 1 1
SO-SA 0.33 0.49 0.62 0.73 0.80 0.88 0.92 0.95
ASO 0.32 0.52 0.68 0.80 0.89 0.96 0.98 0.99
SO 0.32 0.44 0.43 0.48 0.52 0.54 0.56 0.6
SA 0.16 0.17 0.12 0.11 0.11 0.11 0.11 0.12

Table 4.5: Fitness under various number of mesh clients

n 20 40 60 80 100 120 140 160
ASO-SA 0.88 0.90 0.92 0.90 0.88 0.87 0.85 0.71
SO-SA 0.78 0.72 0.76 0.77 0.79 0.76 0.73 0.70
ASO 0.83 0.83 0.84 0.84 0.85 0.81 0.80 0.79
SO 0.64 0.59 0.59 0.58 0.52 0.48 0.48 0.43
SA 0.13 0.14 0.15 0.14 0.12 0.10 0.11 0.11

4.6.2 Effect of varying the number of MCs

The effect of varying the number of MCs is studied in the second case of simulation. The
impact of increasing the number of MCs (20 to 160) on fitness value is depicted in Figure
4.3 and Table 4.5. It is clearly seen that the fitness value slightly decreases when increasing
the number of MCs. Once more, ASO-SA performs better than SO-SA, ASO, SO, and SA
algorithms for the most of cases.

4.6.3 Effect of varying the coverage radius values

In this scenario, we explored the impact of changing the coverage values from 100 to 500,
when trying to cover 140 MCs using 20 MRs. The results of this exploration are shown
in Figure 4.4 and Table 4.6. The presented results show that the fitness value increases
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Figure 4.3: Fitness under various number of mesh clients

as the coverage radius of each MR increases. In addition, the effectiveness of ASO-SA is
demonstrated in comparison with SO-SA, ASO, SO,and SA algorithms for all cases.

Table 4.6: Fitness under various coverage radius values

CR 100 200 300 400 500
ASO-SA 0.28 0.85 1 1 1
SO-SA 0.23 0.73 1 1 1
ASO 0.21 0.80 1 1 1
SO 0.18 0.48 0.80 0.97 1
SA 0.10 0.11 1 1 1
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Figure 4.4: Fitness under various coverage radius values
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4.6.4 Convergence analysis

In this section, we analyze the convergence of ASO-SA compared to ASO-SA, ASO, SO, and
SA algorithms. Table 4.8 shows the convergence analysis of ASO-SA, SO-SA, ASO, SO, SA
algorithms. Convergence analysis process is done using four network instances of different
sizes (i.e. (a) Instance1, (b) Instance2, (c) Instance3, and (d) Instance4 ) as illustrated
in Table 4.7. The convergence analysis process is based on convergence efficiency (fitness
value) and convergence speed. An average of 15 experiments are performed for each result.

(a) (b)

(c) (d)

Figure 4.5: Example of algorithms convergence using: (a) Instance1 (b) Instance2 (c)
Instance3 (d) Instance4

Table 4.7: Network instances considered in convergence analysis

Instance WxH m n CR
Instance1 1000x1000 5 50 200
Instance1 1500x1500 10 100 200
Instance3 2000x2000 15 150 200
Instance4 2500x2500 20 200 200
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Table 4.8: Convergence analysis between ASO-SA, SO-SA, ASO, SO, and SA algorithms

Instance Instance1 Instance2 Instance3 Instance4
Fitness Iteration Fitness Iteration Fitness Iteration Fitness Iteration

ASO-SA 0.89 914 0.83 1357 0.69 1326 0.52 1478
SO-SA 0.87 1031 0.80 964 0.60 1726 0.50 1477
ASO 0.89 340 0.81 636 0.63 681 0.46 737
SO 0.86 788 0.78 615 0.43 791 0.32 699
SA 0.88 864.6 0.33 386 0.10 1 0.10 1

Figures 4.5a, 4.5b, 4.5c, and 4.5d, report an example of the algorithms convergence using
Instance1,Instance2, Instance3, and Instance4.

Based on the fitness values of ASO-SA in comparison with other algorithms as illustrated
in Table 4.8, it can be observed that ASO-SA gives better results for four instances in both
large and small networks.

In terms of convergence speed, the results described in Table 4.8 and Figures 4.5a, 4.5b,
4.5c, and 4.5d showed that ASO-SA is among algorithms that needs more iterations to
achieve the global optimum. However, the fitness reached by ASO-SA is the best for most
of the cases. The reasons behind this improvement are given below:

• The movement of the snakes is guided by a combination of attraction forces, repulsion
forces, and randomization. This combination of forces allows the Snake optimization
algorithm to effectively balance exploration and exploitation, leading to a more efficient
search of the search space.

• The integration of GOBL helps to increase the exploration of the search space, while
still allowing the algorithm to refine and improve the current best solution.

• The use of SA in the exploitation phase of Snake optimization can help to improve the
efficiency of the algorithm and find high-quality solutions.

4.7 Conclusion

In this chapter, we have presented a hybrid approach ASO-SA, based on the combination of
ASO and SA for solving the mesh routers placement problem in WMNs with service priority.
ASO is based on the integration of GOBL technique for enhancing the exploration phase
of SO. Simulation results demonstrated the effectivness of the proposed hybrid approach in
comparison with ASO, SO-SA, SO, and SA algorithms.

In the next chapter, we will present a binary approach for solving the topology planning
problem in WMNs
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CHAPTER 5

BINARY WHALE OPTIMIZATION ALGORITHM FOR
TOPOLOGY PLANNING PROBLEM IN WMNS

5.1 Introduction

The topology planning problem in WMN with cost minimization must be solved in discrete
space, thus a binary approach is required to solve this issue. In this sense, a Binary
Whale Optimization Algorithm (BWOA) is presented in this chapter to solve the concerned
problem. Height transfer functions divided into two families such as S-shaped and V-shaped
are introduced and analyzed in this study to obtain a binary version of WOA.

In this chapter, we present a reminder of the approaches proposed in the literature to
solve the topology planning problem in WMNs with cost minimisation, we then describe the
formulation of the topology planning problem in WMNs, we also present Whale Optimization
Algorithm (WOA) and the binary version of WOA. Finally, the performance of the BWOA
with s-shaped and v-shaped transfer functions is evaluated.

5.2 Related works

The topology planning problem in WMN with cost minimization is combinatorial problem,
solved successfully using meta-heuristic approaches SA [125], TS [126], Quantum-Inspired
Evolutionary Algorithm (QIEA), GA [127, 128, 129, 130], and PSO [131].

SA was used in the work of Nawaf et al. [125] for solving the gateway placement problem
in WMNs. SA algorithm was validated based on 23 instances taking into account 3 metrics
such as cost, coverage, and throughput. Simulation results showed that SA algorithm
produces a set of effective optimization solutions.

An improved TS was proposed in the work of Wang et al. [126] for optimizing the
deployment of mesh-routers in WMNs. The improved TS was validated for the 3D mountain
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environment in the Wanglang national nature reserve of Sichuan province, taking into
account the cost, coverage, and connectivity metrics. Simulation results showed that the
mountain is almost completely covered (more than 90%) with only a small part of the not-
covered region.

Evolutionary algorithms (e.g. Genetic Algorithm (GA)) have been popular optimization
algorithms in this area too . For instance, Ahmed et al. [127] applied GA approach for
solving the gateways placement problem in WMNs. GA approach was validated using many
generated instances under different conditions (population size, tournament size, crossover
type, and mutation type). Experimental results showed the robustness of the GA approach
in terms of deployment cost, convergence rate, and scalability. A modified GA, called
MTMG was proposed in [132], for solving the gateways deployment problem in WMNs.
MTMG was validated based on 6 instances with different gateway deployment locations
taking into account the cost and throughput metrics. Simulation results demonstrated the
effectiveness of MTMG when compared with ICLB-GPS algorithm and weighted recursive
algorithm. Authors in [128] proposed a multi-objective GA approach, called EGA-GP, for
solving the gateways placement problem in WMNs. EGA-GP was assessed taking into
account the deployment cost and delay metrics. Simulation results proved the performance
of EGA-GP when compared with greedy algorithm and GA. Again, a modified GA was
proposed in the work of Tang and Chen [129], called Repairing GA (RGA), for solving the
gateways placement problem in WMNs. RGA was validated in terms of number of gateways
and computational time using 10 test problems of different sizes. Experimental results
demonstrated the satisfactory performance of RGA when compared with the incremental
clustering algorithm.

Le et al. [131] applied PSO algorithm for solving the gateway placement problem in
WMNs. PSO algorithm was validated based on two experiments taking into account the
deployment cost and throughput metrics. Simulation results showed the superiority of PSO
algorithm compared to other WMNs planning studies found in the literature.

5.3 The system model and problem formulation

WMN considered in this work is represented by a graph G = (V,E) where V is the set of
MRs and E describes the set of links between these MRs. Each MR is equipped with a radio
interface with the same coverage radius CR. Let MCS = {MC1, ...,MCn} be the set of
MCs and CS = {CS1, ..., CSs} be the set of Candidate Sites to host a MR. Each MC is said
to be covered by various installed MRs if it is within its transmission range. It is assigned to
the closest one. A link can be established between two installed MRs if the distance between
them is less than the sum of the transmission ranges of the two MRs.
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The coverage variable aij is given as follows:

aij =

1 if MCi is covered by CSj

0 otherwise
(5.1)

Let i ∈MCS, j ∈ CS, the assignment variable xij is described as follows:

xij =

1 if MCi is assigned to CSj

0 otherwise
(5.2)

The installation variables rj is given as follows:

rj =

1 if MR is installed in CSj,

0 otherwise
(5.3)

Let j and l ∈ CS, j ̸= l, the connectivity variable Ajl (adjacency matrix) is specified as
follows:

Ajl =

1 if CSj and CSl can be connected

0 otherwise
(5.4)

The objective of our planning problem is to select the set of candidate sites where MRs
can be installed to meet the full coverage and full connectivity requirements. The problem
can be formulated as follows:

m = Min
∑

j∈CS

rj (5.5)

Subject to: ∑
j∈CS

xij = 1 ∀i ∈MCS (5.6)

xij ⩽ rjaij ∀i ∈MCS ∀j ∈ CS, (5.7)

m−1∑
k=1

Ak ̸= 0 (5.8)

The objective function in (5.5) reduces the overall number of installed MRs m in the
network. Equation 5.6 ensures the full coverage of all MCs. Inequality 5.7 implies that a
MCi is affected and covered by an installed MR in CSj. The equation 5.8 imposes to have
at least one path between each pair of MRs. Consequently, the graph G is fully connected.
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5.4 Whale Optimization Algorithm (WOA)

Whale Optimization Algorithm (WOA) is a new swarm intelligence method introduced by
Mirjalili and Lewis [50] in 2016. The humpback whales’ hunting strategies form the basic
concept of WOA. The exploitation and exploration phases of WOA are simulated based on
the encircling prey mechanism and spiral updating position approach. The description is
given as follows:

• Encircling prey: if (P < 0.5 and |A| < 1) The position of the solution X(t + 1)
is updated using equations (5.9) and (5.10):

−→
D′ = |C−→X best(t)−

−→
X (t)| (5.9)

−→
X (t+ 1) = −→X best(t)−

−→
A.
−→
D′ (5.10)

where t denotes the current iteration, −−→Xbest and −→X represent the best and the current
solutions, respectively. The vectors of coefficients −→A and −→C are calculated as in
equations (5.11) and (5.12).

−→
A = 2−→a .−→r1 −−→a (5.11)
−→
A = 2−→r (5.12)

where −→a drops linearly from 2 to 0 over iterations (simulating the shrinking encircling
behavior as in equation (5.11)) and −→r1 is a random vector in the range [0, 1]. The
formula for a is given below.

a = 2(1− t/tmax) (5.13)

where tmax is the total number of iterations.

• Spiral updating position: if P < 0.5
The spiral-shaped path followed by the whales is modeled using the spiral rule in
equation (5.14)

−→
X (t+ 1) = −→D.ebl.cos(2πl) +−→X best(t) (5.14)

−→
D = |−→A. −→X best(t)−

−→
X (t)| (5.15)

where b is a constant, l is a random number in the interval [-1,1], −→D indicates the
distance between the current solution and −−→Xbest at iteration t.

To update the location of the whale as shown in equation (5.16), a search agent is chosen
randomly from the population.

−→
D = |−→C−→X rand(t)−−→X (t)| (5.16)
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−→
X (t+ 1) = −→X rand(t)−−→A.−→D (5.17)

where −→X rand is a randomly selected search agent from the current population, −→A is a vector
with random values in range [−1, 1].

The main steps of WOA are given in algorithm 13.

Algorithm 13 The WOA Algorithm
1: Initialize WOA parameters
2: Randomly initialize the population of solutions
3: Evaluate the population and determine Xbest

4: for t=1 to tmax do
5: for i=1 to N do
6: Update a, A, C, l and P
7: if P < 0.5 then
8: if |A| < 1 then
9: Calculate Xi(t+ 1) using equation 5.10

10: else
11: Calculate Xi(t+ 1) using equation 5.14
12: end if
13: else
14: Calculate Xi(t+ 1) using equation 5.17
15: end if
16: end for
17: Evaluate the population and determine Xbest

18: end for
19: Return the best solution
20:

5.5 Binary Whale Optimization Algorithm (BWOA)

The topology planning problem belongs to the family of NP-hard problems. For this
reason, meta-heuristic algorithms can be a suitable alternative to solve this problem with
reasonable time execution. In this chapter, we use a similar notion by applying a meta-
heuristic algorithm to solve the considered algorithm. The proposed approach is the new
bio-inspired optimization algorithm called Whale Optimization Algorithm (WOA), inspired
by the hunting behavior of humpback behavior. WOA was used to solve a variety of problems
such as classification [133, 134, 135], path planning [136, 137, 138, 139, 140], clustering
[141, 142, 143], placement problems [144, 145, 146, 147]. The good performance of WOA
motivates our attempt to apply WOA for solving the topology planning problem. WOA may
result in premature convergence leading the search space to be trapped in local optimum
[148]. The design problem tackled in this paper must solve in discrete space, thus we have
to implement a binary version of WOA to deal with this problem.

The binarization of WOA requires the use of transfer functions in order to obtain ’0’ or
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Figure 5.1: S-shaped family of transfer functions.

’1’ values. In this chapter, we use eight transfer functions divided into two families including
S-shaped and V-shaped. The four transfer functions belonging to the S-shaped family are
denoted by S1, S2, S3, and S4, respectively. The binary versions of WOA based on these
functions are denoted by BWOAS1, BWOAS2, BWOAS3, and BWOAS4, respectively. S-
shaped transfer functions are described in Table 5.1 [149] and Figure 5.1.

Table 5.1: S-shaped family of transfer functions

Experiment name Name Transfer function
BWOAS1 S1 S(x) = 1

1+e−2x

BWOAS2 S2 S(x) = 1
1+e−2x

BWOAS3 S3 S(x) = 1
1+e(−x/2)

BWOAS4 S4 S(x) = 1
1+e(−x/3)

V1, V2, V3, and V4 represent the transfer functions belonging to the V-shaped family.
BWOAV1, BWOAV2, BWOAV3, and BWOAV4 are the binary versions of WOA based on
V1, V2, V3, and V4, respectively. V-shaped transfer functions are described in Table 5.2
[149] and Figure 5.2. Based on the S-shaped function, the binarization method is specified
as follows:

Xj
i (t+ 1) =

1, if rand() < S
(
Xj

i (t+ 1)
)

0, if rand() ≥ S
(
Xj

i (t+ 1)
) (5.18)

90



CHAPTER 5. BINARY WHALE OPTIMIZATION ALGORITHM FOR
TOPOLOGY PLANNING PROBLEM IN WMNS

Figure 5.2: V-shaped family of transfer functions.

Table 5.2: V-shaped family of transfer functions

Exprement name Name Transfer function
BWOAV1 V1 V (x) =

∣∣∣erf
(√

π
2 x

)∣∣∣ =
∣∣∣√π

2
∫ (

√
π/2)x

0 e−t2
dt
∣∣∣

BWOAV2 V2 V (x) = | tanh(x)|
BWOAV3 V3 V (x) =

∣∣∣(x)/
√

1 + x2
∣∣∣

BWOAV4 V4 V (x) =
∣∣∣ 2

π
arctan

(
π
2x
)∣∣∣

On the other hand, based on V-shaped functions, the binarization method is specified as
follows:

Xj
i (t+ 1) =

∼ Xj
i (t) if rand < V

(
Xj

i (t+ 1)
)

Xd
i (t) else

(5.19)

5.6 Simulation results

In this section, we will evaluate the performance of the eight binary versions of WOA. All
binary versions of WOA are coded in Matlab. All simulations are carried out on a Core i7
machine. A population of 20 solutions was considered in all simulations. The total number
of iterations is set to 1000. Each result presented in this section is an average of 10 runs.
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Figure 5.3: Obtained placements using: (a) BWOAS1 (b) BWOAS2 (c) BWOAS3 (d)
BWOAS4 (e) BWOAV1 (f) BWOAV2 (g) BWOAV3 (h) BWOAV4
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The evaluation process is done in terms of three metrics including minimum, maximum,
and average number of MRs, taking into account various numbers of MCs (from 20 to 100)
and different transmission ranges (from 250m to 500m). A grid topology of 10 × 10 was
considered for the candidate sites. Figures 5.3.a, 5.3.b, 5.3.c, 5.3.d, 5.3.e, 5.3.f, 5.3.g, 5.3.h

Table 5.3: Parameters values considered in our simulations

Parameter Value Default value
n [20 100] 100
CR [250m 500m] 250m
Grid 10x10 10x10
Population size 20 20
Number of runs 10 10
Number of iterations 1000 1000

report an example of planned network using BWOAS1, BWOAS2, BWOAS3, BWOAS4,
BWOAV1, BWOAV2, BWOAV3, and BWOAV4, respectively. The planned network is a
solution of network instance with 100 MCs randomly distributed in a deployment area of
1000m×1000m (grid 10×10), represented by blue points. Each installed MR is represented
by the Bold black point. It is clearly seen that binary versions of WOA based V-shaped
functions are more appropriate for solving the topology planning problem in WMNs.
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Figure 5.4: Mean number of mesh routers under various number of mesh clients

5.6.1 Effect of varying the number of MCs

In the first case of simulation, we will evaluate the performance of the binary versions of
WOA under various numbers of mesh clients. The results are presented in Table 5.4 and
Figure 5.4. It’s clearly seen that the number of mesh routers increases while increasing
the number of mesh clients. In fact, more routers are needed for covering the newly added
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mesh clients. Again, it can be stated that binary versions of WOA employing the V-shaped
transfer functions are capable of finding global solutions better when compared with those
utilizing S-shaped functions. The best results of the BWOA algorithms with V-shaped
transfer function are those obtained by BWOAV4. On the other hand, among BWOA
algorithms with S-shaped transfer functions, BWOAS1, which uses S1, gets better results
when compared with BWOAS2, BWOAS3, and BWOAS4 algorithms.

Figures 5.5a, 5.5b, 5.5c, 5.5d, and 5.5e depict the convergence of the proposed algorithms
under various numbers of mesh clients (20, 40, 60, 80, and 100, respectively). Its clearly
seen that BWOA with V-shaped family of transfer functions are capable of determining the
global solution with few needed iterations.

Table 5.4: Maximum, minimum, and mean number of mesh routers under various number
of mesh clients

S-shaped V-shaped
n 20 40 60 80 100 n 20 40 60 80 100

BWOAS1 BWOAV1
Maximum 16 18 19 20 21 Maximum 8 9 10 10 10
Mean 14.8 15.7 18 17.3 17.9 Mean 6.8 7.6 8.6 9.3 9.2
Minimum 12 13 17 14 16 Minimum 6 7 8 8 7

BWOAS2 BWOAV2
Maximum 24 24 25 25 26 Maximum 8 9 10 10 10
Mean 20.8 21.5 21.8 22.1 22.5 Mean 6.8 7.9 8.4 9 9.1
Minimum 17 16 19 18 19 Minimum 6 7 7 8 8

BWOAS3 BWOAV3
Maximum 30 28 31 31 30 Maximum 8 9 9 11 10
Mean 27.5 26.7 27.6 28.2 27.6 Mean 6.7 8.1 8.6 9.7 9
Minimum 24 23 24 24 25 Minimum 6 6 8 8 8

BWOAS4 BWOAV4
Maximum 32 32 33 33 31 Maximum 8 8 9 11 11
Mean 29 28.2 29.9 30.2 29 Mean 6.5 7.5 7.9 8.7 9.7
Minimum 24 24 24 27 26 Minimum 6 7 7 8 8

5.6.2 Effect of varying the coverage radius values

In the second case of simulation, the performance of the binary versions of WOA is evaluated
under various coverage radius values. The results are presented in Table 5.5 and Figure 5.6.
It’s clearly seen that the number of mesh routers decreases as the coverage radius value of
each router increases. In fact, increasing the coverage radius of a mesh router effectively
increases the area that a single router can cover. This means that with a larger coverage
radius, fewer mesh routers are needed to cover the same number of mesh clients as before,
since each router can cover a larger area. It can be stated that binary implementations
of WOA that utilize V-shaped transfer functions have an improved ability to locate global
solutions when compared to those that employ S-shaped functions. The most favorable
outcomes of the BWOA algorithms with a V-shaped transfer function were achieved by
BWOAV2. Conversely, among the BWOA algorithms that use an S-shaped transfer function,
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(a) (b)

(c) (d)

(e)

Figure 5.5: Example of algorithms convergence using: (a) 20 MCs (b) 40MCs (c) 60 MCs
(d) 80 MCs (e) 100 MCs
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BWOAS1, utilizing S1, produced better results compared to the BWOAS2, BWOAS3, and
BWOAS4 algorithms.

Table 5.5: Maximum, minimum, and mean number of mesh routers under various coverage
radius values

S-shaped V-shaped
CR 250 300 350 400 450 500 CR 250 300 350 400 450 500

BWOAS1 BWOAV1
Maximum 21 16 16 16 16 16 Maximum 8 8 6 5 5 4
Mean 17.9 15.1 13 13.6 12.4 13.1 Mean 9.2 7.3 5.4 4.4 3.9 3.1
Minimum 16 14 10 9 8 10 Minimum 7 4 4 3 3 7

BWOAS2 BWOAV2
Maximum 26 24 23 23 23 21 Maximum 10 8 6 4 5 4
Mean 22.5 21.4 21.1 19.8 20.1 18.6 Mean 9.1 7 5.1 4 4 3.3
Minimum 19 19 18 16 16 14 Minimum 8 6 4 4 3 3

BWOAS3 BWOAV3
Maximum 30 29 30 30 30 29 Maximum 10 9 6 5 4 3
Mean 27.6 26.7 27.8 27 27.2 27.5 Mean 9 7.2 5.7 4.5 3.5 3
Minimum 25 23 23 25 25 26 Minimum 8 6 5 4 3 3

BWOAS4 BWOAV4
Maximum 31 32 32 32 33 31 Maximum 11 9 7 6 5 4
Mean 29 29.2 28.9 29.7 29.4 28.6 Mean 9.7 7.2 5.7 4.4 3.7 3.1
Minimum 26 27 27 28 27 26 Minimum 8 6 4 4 3 2
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Figure 5.6: Mean number of mesh routers under various coverage radius values

Figures 5.7a, 5.7b, 5.7c, 5.7d, and 5.7e illustrate the convergence of the proposed algorithms
with various coverage radius values (300m, 350m, 400m, 450m, and 500m, respectively). It
is evident that BWOA using the V-shaped family of transfer functions is able to find the
global solution with a minimal number of iterations.

5.7 Conclusion

Height binary versions of WOA were suggested in this chapter. S-shaped and V-shaped
transfer functions are used to transform the original version of WOA into a binary version.
Our primary objective is to reduce the number of MRs required to provide full coverage
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Figure 5.7: Example of algorithms convergence using various coverage radius values: (a)
300m (b) 350m (c) 400m (d) 450m (e) 500m
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and full connectivity. The evaluation is conducted in terms of three metrics, including
minimum, maximum, and average number of mesh routers, using different scenarios with
various number of mesh clients and various coverage radius values. The results of the
simulations demonstrated that BWOA based on V-shaped transfer functions gives better
results when compared with those based on S-shaped transfer functions.
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GENERAL CONCLUSION

WMNs play a key role in new generation wireless networks. This is due both to their easy
implementation, their low deployment cost as well as to the many fields of application.
However, one of the constraints of these networks is the problem of positioning mesh routers
in manner to optimize performance metrics and satisfying quality of service requirements.
The objective of this thesis is to solve the mesh routers placement problem considering
different formulations and different approaches. We offered three major contributions:

In our first contribution, we presented an improved version of MFO, called ECLO-MFO,
based on the incorporation of three strategies including: the chaotic map, LFD strategy, and
OBL technique. The experimental results demonstrated the superiority and efficiency of the
proposed algorithm in comparison with other well known algorithms in the literature.

In the second contribution, to solve the mesh routers placement problem with service
priority, we have proposed a hybrid approach, called ASO-SA, based on the global search of
an Adaptive SO (ASO) an the local search of SA. ASO is based on the incorporation of GOBL
technique to improve the exploration phase of SO. Simulation results demonstrated the good
performance of ASO-SA in comparison with SO, ASO-SA, ASO, and SA algorithms.

In the last contribution, a binary WOA was proposed for solving the topology planning
problem in WMNs. Eight transfer functions divided into two families such as S-shaped and
V-shaped are introduced and analyzed to obtain a binary version of WOA. The results of
the simulations demonstrated that BWOA based on V-shaped transfer functions gives better
results when compared with those based on S-shaped transfer functions.

In perspective, we aim to apply multi-objective approaches for optimizing multiple metrics
simultaneously while satisfying the quality of service requirements. Furthermore, we propose
to investigate joint design, including mesh router placement, gateway selection, antenna
placement, frequency assignment, and routing. Additionally, we aim to utilize Machine
Learning (ML) techniques for solving the design problem in Wireless Mesh Networks (WMNs).
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