
Registration Number:…..…../2020

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of

MASTER

In Control

Option: Control

Title:

Presented by:

- HALLEDJ Salah Eddine

- MAHMOUD BACHA Anis

Supervisor:

 Dr. OUADI Abderrahmane

Hardware-In-the-Loop Simulation

 for Product-driven Control of

a Cyber-Physical Manufacturing System

DEDICATION

Dedication

Above all, all the thanks and the praise be to our almighty god for his
infinite generosity.
I dedicate this work to

The strongest and gentlest soul, my mother HADJI S. who thought me to
trust in Allah, believe in hard work and that so much could be done with

little.
To my father Ahmed, for earning an honest living for us and for supporting

me to believe in myself.
This work is also dedicated to

My dear sisters Zakia, Samah and Amina and their husbands Moussa and
Ahmed respectively.

All HALLEDJ and HADJI Families and my closest friends Isahk and Malak.
Special thanks to my friend and partner in this work Mr. MAHMOUD

BACHA Anis.
We cannot express enough thanks to my educational family, teachers and

classmates for their advices, technical guidance.
HALLEDJ S.E.

At the very outset, all our prayers and thankfulness are to Allah the almighty
for facilitating this challenge.

I dedicate this work to my dear parents Mohamed and SLIMANI F. whose
efforts can never be fairly rewarded, I wish at least they can see a fruit of

their sacrifices in my success.
This work is also dedicated to my brother Samy, my sister Hiba, all

MAHMOUD BACHA and SLIMANI families, all closest and farthest friends
and those dear irreplaceable people no matter how far they are.

Special thanks to my amazing partner in this project Mr. HALLEDJ Salah
Eddine and his family.

No dedication would be complete without expressing my appreciation and
thankfulness to all teachers I had during all educational phases.

MAHMOUD BACHA A.

i

ACKNOLEDGEMENT

Acknowledgement

This project was proposed by Robotic Production Systems (SRP) division of the Cen­
ter for the Development of Advanced Technologies (CDTA) in Baba Hassen.

This work would not come to fruition without the support of several individuals and
organizations to which we will be grateful forever.

We wish to express our everlasting gratitude to our professor and supervisor,
Dr. OUADI Abderrahmane, for his enthusiasm, patient and helpful information that were
crucial through the study as well as the work.

We cannot express enough thanks to our co­supervisor and representative of the Cen­
ter for the Development of Advanced Technologies (CDTA), Mr. MIHOUBI Bachir who
gave us the golden opportunity to work on this wonderful project on the topic “Hardware in
the loop simulation for Product driven control of a cyber­physical manufacturing system”,
and also helped us with his experience and professional expertise in simulation, artificial
intelligent and manufacturing management.

We would like to thank the Institute of Electrical and Electronic Engineering (IGEE)
for amazing five years of study and all the facilities that we found inside the institute.

ii

ABSTRACT

Abstract

The Product driven system (PDS) is considered as distributed control system (DCS)
in which the product plays a major role in decision­making. This project focuses on
how to develop a cost­effective validation strategy of PDS applied to the highly auto­
mated flexible robotized assembly system based on hardware­in­the­loop simulation ap­
proach (HILS). An efficient Cyber­physical system (CPS) is developed for a discrete flex­
ible manufacturing system. Mainly, this proposed CPS employs a dynamic multi­agent
scheduling mechanism (MAS) based on priority dispatching rules to manage, control the
3D discrete event simulation (DES) and initiate PDS paradigm. In the other side, Radio
Frequency Identification (RFID) ­ as auto­identity ­ allows an effective real­time tracking
and progress monitoring of each product across its lifecycle in the shop floor, the con­
troller (PLC, Arduino) is the heart of HILS approach which synchronizes the cyber space
(decisional point) with the physical one.

Keywords: hardware­in­the­loop simulation (HILS), discrete event simulation (DES),
product­driven system (PDS), multi agent system (MAS), radio frequency identification
(RFID), cyber­physical system (CPS) , flexible manufacturing system (FMS).

N.B. This project was planned to be verified in an industrial scale environ­
ment using real Siemens PLCs and RFID systems as well as an indus­
trial turntable. Unfortunately, due to the pandemic and its repercussions,
the training was cancelled and the industrial hardware was not accessi­
ble. The resort to a simulated PLC was then unavoidable. The insertion
of small scale electronic components (hardware part) such as: Arduino
microcontroller and RC522 RFID module was in order to maintain HILS
as validation strategy. A small DC motorized turntable was implemented
too.

iii

CONTENTS

Contents

Dedication . i
Acknowledgement . ii
Abstract . iii
List of Abbreviations . vii
List of Figures . xi
List of Tables . xiii

General Introduction 1

1 Introduction to Simulation with FlexSim Software 3
Introduction . 3
1.1 Model and Simulation . 4
1.2 Application domain . 4
1.3 DES model . 4
1.4 FlexSim simulation software . 5

1.4.1 FlexSim . 5
1.4.2 History . 5
1.4.3 3D Object Library . 6
1.4.4 Emulation Tool . 8

1.4.4.1 OPC UA as an emulation tool in FlexSim 8
Conclusion . 9

2 Communication Solutions for Industrial Applications 10
Introduction . 10
2.1 JADE . 11

2.1.1 History of JADE . 11
2.1.2 Platform . 11

2.1.2.1 DF Agent . 11
2.1.2.2 AMS agent . 11

2.1.3 JADE agent . 12
2.1.4 Agents’ behaviour . 12
2.1.5 ACL messages . 13

2.2 Socket Communication . 13

iv

CONTENTS

2.2.1 Java Socket . 14
2.2.2 TCP/IP Layer of Socket Communication 15
2.2.3 Pseudocode of socket programming to link FlexSim and JADE . . . 16

2.2.3.1 FlexSim part (server) . 16
2.2.3.2 JADE part (client): . 17

2.3 OPC standards . 18
2.3.1 Client­server approach for information exchanche 18
2.3.2 OPC specification groups . 19

2.3.2.1 OPC DA . 19
2.3.2.2 OPC A&E . 20
2.3.2.3 OPC HDA . 20
2.3.2.4 OPC interface standards 21
2.3.2.5 XML­DA . 21

2.3.3 OPC UA . 22
2.4 Modbus communication procotol . 23

2.4.1 Modbus Data Models . 23
2.4.2 Modbus Protocol Architecture . 24
2.4.3 Modbus Application layer . 24

2.4.3.1 Data Access Functions 25
2.4.3.2 Diagnostic Functions . 26
2.4.3.3 Error Handling . 27

2.4.4 Modbus Serial . 28
2.4.4.1 RTU mode frame . 28

2.4.5 Modbus TCP . 29
2.4.5.1 Modbus TCP frame . 29

Conclusion . 30

3 Hardware­In­the­Loop Simulation 31
Introduction . 31
3.1 HILS validation technique . 32

3.1.1 HILS vs SILS . 33
3.1.1.1 SILS validation technique 33

3.1.2 HILS advantages . 33
3.2 The Programmable logic controller (PLC) 34

3.2.1 PLC architecture and elements . 35
3.2.1.1 The Central processing unit (CPU) 35
3.2.1.2 Buses . 36
3.2.1.3 Memory . 36
3.2.1.4 Input/Output Unit . 36

v

CONTENTS

3.2.2 PLC programming . 37
3.2.3 Siemens ET 200SP PLC . 37

3.3 Arduino Uno microcontroller board . 39
3.3.1 Ethernet Shield W5100 . 40
3.3.2 ”Ethernet.h” Library . 41

3.4 Communication between Arduino Uno and ET 200SP PLC using Modbus
TCP protocol . 41
3.4.1 Server (Arduino Uno) part . 41

3.4.1.1 ”ModbusIP.h” Library . 41
3.4.2 Client (ET 200SP PLC) Part . 43

3.4.2.1 Description and specifications of ”MB_ CLIENT” func­
tion block . 44

3.5 Radio frequency identification (RFID) technology 45
3.5.1 RFID tags . 46

3.5.1.1 Active vs. Passive Tags 46
3.5.1.2 Read­only vs. read/write ”smart” tags 46

3.5.2 RFID Interrogator . 46
3.5.3 RFID Controller . 46
3.5.4 Frequency of operation . 47
3.5.5 RC 522 RFID module . 47

3.5.5.1 Arduino Uno ­ RC522 interface 48
3.5.5.2 MFRC522.h and SPI.h libraries 49

Conclusion . 50

4 Cyber­physical Product­driven System Implementation 51
Introduction . 51
4.1 Case study: AIP­PRIMECA FMS . 52

4.1.1 FSM data presentation . 52
4.1.2 The proposed Multi­agent system (MAS) 55
4.1.3 Communication protocol of the proposed MAS 56
4.1.4 Product­driven approach . 58
4.1.5 FMS scheduling problem . 58

4.2 Experimental set­up . 59
4.2.1 DES model development . 59
4.2.2 MAS development . 60
4.2.3 HILS validation strategy . 61
4.2.4 Test procedure . 62
4.2.5 Results and discussion . 64

Conclusion . 66

vi

CONTENTS

General Conclusion 67

Appendix A NetBeans IDE

Appendix B TIA Portal

Appendix C S7­PLCSIM Advanced

References

vii

LIST OF ABBREVIATIONS

List of Abbreviations

µC Microcontroller.

A&E Alarms and Events.

ACL Agent Communication Language.

AgM Machine agent.

AgP Product agent.

AgR Routing agent.

ALU Arithmetic and logic unit.

AMS Agent Management System.

APDU Application layer Protocol Data Unit.

ASCII American Standard Code for Information Interchange.

CPU Central processing unit.

DA Data Access.

DCOM/COM Distributed Component Object Model.

DCS Distributed Control System.

DES Discrete Event Simulation.

DF Directory Facilator.

EPROM Erasable and programmable read­only­memory.

FBD Functional Block Diagram.

FIFO First Input First Output.

viii

LIST OF ABBREVIATIONS

FMS Flexible manufacturing system.

HDA Historical Data Access.

HILS Hardware­In­the­Loop Simulation.

HTTP HyperText Transfer Protocol.

IEC International Electrotechnical Commission.

IL Instruction List.

IP Internet Protocol.

JADE Java Agent DEvelopment Framework.

LAN Local Area Network.

LD Ladder Diagram.

LIFO Last Input First Output.

MAC Media Access Control.

MAS Multi­agent system.

MISO Master In Slave Out.

MOSI Master Out Slave In.

OPC Open Platform Communication.

PDRs Priority dispatching rules.

PDS Product­driven system.

PLC Programmable logic controller.

RAM Random­access memory.

RF Radio frequency.

RFID Radio frequency identification.

RO Read­only.

ROM Read­only memory.

ix

LIST OF ABBREVIATIONS

RTU Remote Terminal Unit.

RW Read/write.

SCK Serial Clock.

SFC Sequential Function Chart.

SILS Software­In­the­Loop Simulation.

SOAP Simple Object Access Protocol.

SPI Serial Periferal Interface.

SS Slave Select.

TCP Transmission Control Protocol.

UA Unified Architecture.

XML eXtensible Markup Language.

x

LIST OF FIGURES

List of Figures

1.1 Discrete event simulation steps . 5
1.2 Emulation via OPC UA configuration 8
1.3 OPC UA variables tab . 9

2.1 JADE­GUI platform . 12
2.2 JAVA agent development framework (JADE) architecture 13
2.3 Connection between client and server on specific port 14
2.4 Overview of Java Sockets . 15
2.5 OSI layers (sockets, TCP/IP) . 15
2.6 OPC server communication . 19
2.7 Structure of a control system using OPC server 20
2.8 OPC standards tree . 22
2.9 Differences between OPC classic and OPC UA 23
2.10 Organization of Modbus protocols . 24
2.11 General format of APDU frames . 25
2.12 RTU frame transmission . 29
2.13 Modbus TCP frame . 30

3.1 A typical HILS setup . 32
3.2 System design till realization workflow 34
3.3 Siemens s7­1200 and s7­300 PLCs . 34
3.4 PLC bacic architecture . 35
3.5 Standard IEC 61131 languages associated with PLC programming 37
3.6 Siemens ET 200SP PLC . 38
3.7 OPC UA server activation on ET 200SP PLC 39
3.8 Arduino Uno board composition . 39
3.9 Ethernet shield W5100 . 40
3.10 Ethernet shield W5100 plugged in an Arduino Uno board 41
3.11 Modbus TCP client read a holding register function block 43
3.12 Modbus TCP client write to a holding register function block 44
3.13 Modbus function parameters from TIA Portal information system 45
3.14 RFID basic building block . 45
3.15 RF spectrum . 47

xi

LIST OF FIGURES

3.16 RC522 RFID module pinout . 47
3.17 Arduino Uno­RC522 pins connection . 48

4.1 The real AIP­PRIMECA FMS of the case study 52
4.2 AIP­PRIMECA FMS presentation diagram 53
4.3 Basic components and products . 54
4.4 FlexSim DES model of AIP PRIMECA FMS 59
4.5 Zoom­in the selected decisional point n4 62
4.6 HILS validation scenario . 64
4.7 Gantt chart of R2 and R3 machines opeations 65
4.8 Exchanged messages between MAS and DES 66

A.1 Windows platform of NetBeans software
A.2 New Project wizard, choose Project page
A.3 New Project wizard, name and location page
A.4 NetBeans IDE with the Aippffa project open
A.5 Java class creation in NetBeans IDE .

B.1 The structure of TIA Portal platform .
B.2 TIA Portal project view .
B.3 Tia Portal project creation: specifying name and path
B.4 Device & networks: add new device .
B.5 PLC device chosen .
B.6 Project tree, program blocks, Main (OB1)

C.1 PLCSIM Advanced control panel .

xii

LIST OF TABLES

List of Tables

1.1 Fixed source elements . 6
1.2 Task executor elements . 7
1.3 Conveyor types . 7

2.1 Memory Areas of the Modbus Data Model 23
2.2 Functions Used for Data Access . 26
2.3 Modbus Function Codes for Diagnostic Purposes 27
2.4 Modbus Exception Codes . 28

3.1 Some technical specifications of ET200SP PLC 38
3.2 Arduino uno specifications . 40
3.3 Main useful functions ”ModbusIP.h” library 42
3.4 RC522 pin configuration . 48

4.1 Transportation time between different nodes of the FMS 54
4.2 Elementary operations (processing time, possible affectation) 55
4.3 The sequence of fabrication for each product 55
4.4 Exchanged messages within MAS into DES model 57
4.5 Dispatching rules assigned to a product 58
4.6 Dispatching rules assigned to a machine 59

xiii

GENERAL INTRODUCTION

General Introduction

Industrial automation systems continuously get more complex and growing over time
due to the global competition that is characterized by diversification of production and
increasingly shorter innovation cycles in addition to the appearance of smart technologies
and instruments (next generation instruments). In recent decades, a new industrial era is
beginning to switch from classical automation systems to the smart automation factory,
opening up the so­called “Industry 4.0” or the fourth industrial generation[1, 2].

Accordingly, “modern manufacturing is experiencing a paradigm shift towards more
flexibility and reconfigurability (physically and logically) to respond quickly and effi­
ciently to changing production requirements andmarket demands” (ElMaraghy et al.,2011).
Physical reconfiguration means hardware changes e.g. plant layout or machinery. Log­
ical reconfigurations are software changes; especially major changes of control software
frequently caused by the hardware changes which so­called cyber­ physical systems CPS.
They are defined as an association between cyber computational space (information feed­
back) that represents the intelligent data management, analytics and computational capa­
bilities (artificial intelligent, machine learning, 3D simulation, communication protocols
as OPC UA, Modbus) and physical space that represents the manufacturing components
(next generation sensors (RFID), PLC, microcontroller, etc.) [3, 4].

The cyber­physical platform will include a dynamic multi­agent scheduling mech­
anism based on priority dispatching rules assigned to different products and machines.
Besides, realistic scheduling constraints and a finite capacity queue of machines are con­
sidered in the scheduling problem.

In addition, the integration of RFID technology with production scheduling can sig­
nificantly improve scheduling performance and productivity [5, 6].

Furthermore, HILS is used for real­time monitoring and controlling of products and
production lines [7]. Benefiting from communication technologies, real­time data syn­
chronization is possible now by real­time communication between the digital and the phys­
ical equipment.

1

GENERAL INTRODUCTION

The aim of this project is to develop and implement PDS (intelligent product)[8] within
CPS, to achieve the purpose; it needs to highlight the potential combination of RFID,
MAS, 3D discrete simulation and HILS approach to substantiate the practical feasibility
of the PDS paradigm within a realistic production environment. Providing a framework
for synchronizing the physical flow of products and the associated information flow.

All these approaches are employed to verify and validate routing decisions of man­
ufacturing control that enable real­time scheduling , furthermore, the proposed strategy
has the benefits of reduced hardware integration and test costs while maintaining the reli­
ability and maintainability of the proposed distributed control system (DCS) (see chapter
4).

Report Organization

This report is made up of four chapters, the first three chapters concern bibliographi­
cal study on various concepts in this work as well as the different devices and electronic
components used.

Thus, the first chapter includes generalities on simulation and some information about
Flexsim software.

The second chapter consists about all techniques and protocols used to link the cy­
berspace and hardware space.

In the third chapter, it describes the physical devices that are used to close the loop of
HILS model as RFID, PLC, Arduino uno and Ethernet shield.

Finally, the last chapter focuses on the implementation of the cyberspace (MAS, DES
model) and physical space as well as representing the main results.

2

CHAPTER 1. INTRODUCTION TO SIMULATION WITH FLEXSIM SOFTWARE

Chapter 1

Introduction to Simulation with
FlexSim Software

Introduction

Scientists, engineers, and practitioners of many professions have long relied on the
creation of models to understand the studied phenomena. Traditional mathematical meth­
ods (i.e. differential equations) have been used for centuries as the main tool for analysis,
comprehension, design, and prediction for complex systems in varied areas. However,
these methods appeared unsuitable for studying the complex human­made systems devel­
oped during the twentieth century.

The emergence of digital computers provided alternative methods of design and anal­
ysis for both natural and artificial systems. Since the early days of computing, users trans­
lated their analytical models into computer­based ones. This approach allowed solving
problems with a level of complexity unknown in earlier stages of scientific development.

Computer­simulatedmodels also have additional benefits. They can be executed safely,
experiments can be easily repeated in a cost effective and risk­free environment; thus, they
are well suited for training purposes.

This chapter focuses on the concept of modeling and simulation theories especially on
Discrete Event Simulation (DES) designed via FlexSim software.

3

CHAPTER 1. INTRODUCTION TO SIMULATION WITH FLEXSIM SOFTWARE

1.1 Model and Simulation

A model is an entity that is used to represent some other entity for some defined pur­
pose. In general, models are simplified abstractions, which embrace only the scope and
level of detail needed to satisfy specific study objectives. Models are employed when in­
vestigation of the actual system is impractical or prohibitive. Indeed, models can be used
to study systems that exist only in concept.

Simulation is a particular approach to studying models, which is fundamentally expe­
riential or experimental. In principle, simulation is much like running field tests, except
that the system of interest is replaced by a physical or computational model.In many appli­
cations, simulation also involves testing and comparing alternative designs and validating,
explaining, and supporting simulation outcomes and study recommendations.[9]

1.2 Application domain

We might divide applications of simulation broadly into two categories. The first
includes so­called man­in­the­loop simulations used for training and/or entertainment.
Many professionals hone their skills and learn emergency procedures in simulated en­
vironments, which are safe from the consequences of inexperience and failure. Pilots
train in flight simulators in order to experience the cockpit of a particular aircraft, nuclear
power­plant operators routinely recertify in control­room simulators and physicians learn
new procedures employing simulated patients.

The second category includes the analysis and design of artifacts and processes. This
is the technical domain, which engineers and operations researchers most commonly as­
sociate with simulation. Consider for example the design of a new aircraft or managing
manufacturing systems.

1.3 DES model

DES is a computer modeling where the state of a system is represented by a chrono­
logical sequence of events.(i.e. it models the operation of a system as discrete of events in
time) . Each event occurs at a particular instant in time and marks a change of state in the
system. Between consecutive events, no change in the system is assumed to occur; thus,
the simulation time can directly jump to the occurrence time of the next event, which is
called next­event time progression [10], as shown in Figure 1.1 .

4

CHAPTER 1. INTRODUCTION TO SIMULATION WITH FLEXSIM SOFTWARE

Figure 1.1: Discrete event simulation steps

1.4 FlexSim simulation software

1.4.1 FlexSim

It is a powerful and easy­to­use modeling and simulation software tool that allows the
user to construct 3D computer simulation model of a real­life system and run experiments
on the model. FlexSim is a discrete­event simulation software tool that provides realistic
graphical animation and extensive performance reports that enables the user to identify
problems and evaluate alternative solutions in a short amount of time [9]. This is why we
used in this project for its flexibility and abundance of its library, which made it easy for
us to create important communication networks via sockets. [11]

1.4.2 History

FlexSim was founded in 1993 by Bill Nordgren (Co­Founder Promodel Corporation,
1988), Roger Hullinger, and Cliff King, originally under the name F&H Simulations, Inc.
F&H Simulations sold, supported, and conducted training courses for Taylor II simulation
software owned and developed by Holland’s FH Simulation B.V (F&H Holland).

In 1998, F&H Holland developed the first generation 3D object oriented simulation
engine Taylor ED (Enterprise Dynamics). F&H Simulations assisted with the develop­
ment of robust objects for use in Taylor ED.

In 2000, F&H Holland was acquired, F&H Simulations became independent, and a
new simulation product started development under the guidance of Dr.Eamonn Lavery
and lead programmer Anthony Johnson. This new 3D simulation product, known now as
FlexSim, coincided with F&H Simulations.[12]

5

CHAPTER 1. INTRODUCTION TO SIMULATION WITH FLEXSIM SOFTWARE

1.4.3 3D Object Library

The 3D objects in the FlexSim Library are the basic building blocks that uses to build a
3D model. Each object has built­in logic that is commonly used in a variety of simulation
models. We can also easily edit the properties and customize the logic on these objects to
adapt any of them to the unique needs of the simulation project.[13]
Hence, the common objects and categories are represented in the same order as they appear
in the library:

(a) Fixed resource:
Fixed resources are objects that remain fixed or stationary in the model. They in­
teract with flow items in the simulation, such as storing or modifying flow items,
which are shown in Table 1.1

Name Icon Description
Source The source creates flow items and releases them to a downstream

object. We can control the rate at which the source creates flow
items so that they arrive on a fixed schedule, a regular continuous
rate, or a random statistical distribution.

Queue The queue stores flow items until a downstream object is ready to
take them. By default, the queue releases flow items on a first­in­
first­out basis, but other options are available.

Processor Processors simulate flow items getting processed at a station. Pro­
cessors simulate a time delay, beginning with a setup time fol­
lowed by the process time.

Combiner The combiner groups multiple flow items together. It can either
join the flow items together permanently, or it can pack them into
a container flow item so that they can be separated at a later point
in time.

Separator It separates a flow item into multiple parts, either by unpacking
a container flow item that has been packed by a combiner or by
making multiple copies of the original flow item

Multiprocessor The multiprocessor is similar to the processor object, but it can
simulate flow items going through a sequence of two or more pro­
cesses. You can require the multiprocessor to use an operator in
any or all of these processes.

Table 1.1: Fixed source elements

6

CHAPTER 1. INTRODUCTION TO SIMULATION WITH FLEXSIM SOFTWARE

(b) Task executers:
Task executers are objects that can move throughout the model and interact with
fixed resources and flow items. These objects can travel, load flow items, unload
flow items, act as shared resources for processing stations, and perform many other
simulation tasks. All task executers have the same basic functionality; the main
difference between them is the way they move (see Table 1.2).

Name Icon Description
Operator Operators represent employees that can transport flow items, op­

erate fixed resources, and perform a variety of other tasks that
require an employee in a simulation model

Robot The robot is special transport that lifts flow items from their start­
ing locations and places them at their ending locations.

Dispatcher The dispatcher is used to control a group of transporters or oper­
ators. Fixed resources can send task sequences to the dispatcher,
which then delegates the tasks to the transports or operators that
are connected to it once they become available.

Elevator The elevator is a special type of transport that moves flow items
up and down. It will automatically travel to the level where flow
items need to be picked up or dropped off.

Table 1.2: Task executor elements

(c) Conveyors:
Table 1.3 will provide a high­level overview of these objects:

Name Icon Description
Straight Conveyor The straight conveyor can simulate conveyor belts or roller con­

veyors.
Curved Conveyor This conveyor has a curved shape with varying radius settings.

Join Conveyors Join conveyors acts more like a tool than an object. Use it to create
a curved conveyor connecting two conveyor sections.

Table 1.3: Conveyor types

7

CHAPTER 1. INTRODUCTION TO SIMULATION WITH FLEXSIM SOFTWARE

(d) Programming language
Flexsim is developed in C++ programming language using Open GL technology
allowing users greater flexibility to develop models to match their own processes.
Each Flexsim license includes a copy of Visual C++.net and ExpertFit distribution
module.[11]

1.4.4 Emulation Tool

TheEmulation tool creates a link between FlexSim and external PLCs or clients/servers
that communicate with PLCs. This tool can create multiple connections and define vari­
ables for each of those connections. This tool supports three protocols: OPC UA, OPC
DA and Modbus [14].

OPC UA protocol was recently adopted by Flexsim in his 2020 version, and it is the
one we are going to use in this study to link Flexsim to a PLC; hence, it is the method we
should focus on in this description.

1.4.4.1 OPC UA as an emulation tool in FlexSim

Figure 1.2 is the emulation properties window and comprises two tabs: connections
and variables.

Figure 1.2: Emulation via OPC UA configuration

Connection tab contains data and parameters to establish a connection to an OPC UA
server.

• Name: The name of the connection. Used for identifying the connection in FlexSim.

8

CHAPTER 1. INTRODUCTION TO SIMULATION WITH FLEXSIM SOFTWARE

• Active: If checked, a connection will be created to connect FlexSim to an OPC
server. This occurs when the model starts running.

• Discovery Server: The ip address of the discovery server.

• End Point URL: The specific URL defining the server and protocol to connect to.
We can auto­fill this field using the Browse button.

• Security Policy: Defines the set of security algorithms and key length to use when
communicating with the server. [14]

Variables tab (Figure 1.3) contains imported tags from OPC UA server and their infor­
mation. OPC UA variable in Flexsim can be either a Sensor or a Control. Sensors write
values to the tag once a preselected event occurs; whereas, controls read tag values and
execute a predefined action depending on those values.

Figure 1.3: OPC UA variables tab

Conclusion

This chapter contains general information on the simulation, the type of simulation
used, and a global view on the Flexsim software as well as the different 3D objects that
make up its library.

9

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

Chapter 2

Communication Solutions for Industrial
Applications

Introduction

This chapter presents theories of techniques we use to link Jade multi agent system
with the hardware (PLC, DCS, HMI and Arduino) indirectly to comprise into a distributed
industrial control system based on agents, using several communication protocols.

Industrial applications of MAS are limited, among others, especially due to the diffi­
culties of communication between agents’ development environments and heterogeneous
set of control devices, sensors and actuators that can be found in an industrial process.

The solution involved the use of TCP/IP socket between MAS written in Java and the
virtual devices in the simulator created in FlexSim. Utilizing OPCUAwhich allow access
to process variable between the emulator and hardware, what makes a synchronization be­
tween the physical world (controller as PLC, Arduino) and the cyber world (emulator).

This chapter focuses on the theories and concepts of developing MAS as well as the
communication solution protocols as OPC standard, TCP/IP socket network and MOD­
BUS protocol.

10

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

2.1 JADE

It is a software framework for developing MAS interoperable, used by a very hetero­
geneous community of users as a tool both for research and for development of industrial
and commercial applications.[15, 16]

2.1.1 History of JADE

JADEwas initially developed by Telecom Italia Lab. This sector is the R&D branch of
Telecom Italia Group, which is responsible for promoting technological innovation. Tele­
com Italia conceived and promoted JADE by basing it in 2000. In March 2003, Motorola
and Telecom Italia created the JADEGoverning Board with the objective of promoting the
development and adoption of JADE in the mobile telecommunications industry as mid­
dleware based. The JADE Governing Board accepts to any company and/or organization
interested in the commercial use and exploitation of JADE to commit to its development
and promotion.[17]

2.1.2 Platform

JADE is a distributed agents platform, which has a container for each host where we
are running the agents (see Figure 2.1). Additionally, the platform has various debugging
tools, mobility of code and content agents, the possibility of parallel execution of the
behavior of agents, as well as support for the definition of languages. Each platform must
have a parent container that has two special agents called AMS and DF.

2.1.2.1 DF Agent

The DF (Directory Facilitator) provides a directory, which announces which agents
are available on the platform.

2.1.2.2 AMS agent

The AMS (Agent Management System) controls the platform. It is the only one who
can create and destroy other agents, destroy containers and stop the platform.

11

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

Figure 2.1: JADE­GUI platform

2.1.3 JADE agent

The cycle of life of a JADE agent follows the cycle proposed by FIPA. These agents
go through different states defined as:

1. Initiated: The agent has been created but has not registered yet the AMS.

2. Active: The agent has been registered and has a name. In this state, it can commu­
nicate with other agents.

3. Suspended: The agent is stopped because its thread is suspended.

4. Waiting: The agent is blocked waiting for an event.

5. Deleted: The agent has finished and his thread ended his execute and there is not
any more in the AMS.

6. Transit: The agent is moving to a new location.

2.1.4 Agents’ behaviour

The behavior defines the actions under a given event. This behavior of the agent is
defined in the method setup using the method addBehaviour. The different behaviors that
the agent will adopt are defined from the abstract class Behaviour. The class Behaviour
contains the abstract methods:

• action(): Is executed when the action takes place.

12

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

• done(): Is executed at the end of the performance.

We can override the methods onStart() and OnEnd() property. Additionally, there are
other methods such as block() and restart() used for modifying the agent’s behavior.
When an agent is locked it can be unlocked in different ways. Otherwise we user can
override the methods onStart() and onEnd() the agent possess.

2.1.5 ACL messages

Agent Communication Language is the base of communication between agents. Send­
ing messages is done by the method send of the class Agent. In this method, we have to
pass an object of type ACLMessage that contains the recipient information, language, cod­
ing and content of the message. These messages are sent asynchronously, while messages
are received they will be stored in a message queue as shown in figure 2.2. There are two
types of receiving ACL messages, blocking or non­blocking. For this provide methods
blockingReceive() and receive() respectively. In both methods, we can make filtering
messages to be retrieved from the queue by setting different templates.[18]

Figure 2.2: JAVA agent development framework (JADE) architecture [19]

2.2 Socket Communication

A socket is a one end­point that makes communication between two programs which
are running on the same machine or over network. Socket are used to represent the con­
nectivity between client and server. Socket is bound to an IP address and port number so
that the TCP layer can identify the application.

Normally, a server runs on a specific computer and has socket which is bound to spe­
cific port number. The server waits the client to listen to the socket andmakes a connection
request. On the client end the client knows the hostname or IP address of the server and the
port number of the server listening. Making a connection request the client program tries

13

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

to negotiate with the server program on the hostname IP address and port number. When
connection is establish between server and client, Client used that socket to communicate
with server (read/write).[20]

Figure 2.3 describes how the server and client negotiates with each other on TCP layer
over (specific IP address) port number.

Figure 2.3: Connection between client and server on specific port

2.2.1 Java Socket

Network process in java uses sockets for two­way communications running on two
different machines under the same underline IP address. A socket is an end point of two
way communication between two different proxies running on two different networks.

Client actually initiates the process with the server process. Server process will bind
to particular port number and wait for incoming client connections.

In Java, it is implemented with the socket end point for the server process using a class
called ”serversocket” which is from ”java.net” package. In the client process, the class
called ”socket” also from the ”java.net” package.

Once server socket is created, the server process can call ”accept” method to wait
for incoming connections. To connect the client process, simply create a new socket and
specify what IP address and port, the server socket is blocked down to accept for. Once we
create that client socket, the server unblock the client process and communicate together
(read/write). Blocking ”accept” for client side to make its socket instance, then we have
the synchronization point on both. After that either one or both process close the socket
(Figure 2.4).

14

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

Figure 2.4: Overview of Java Sockets

2.2.2 TCP/IP Layer of Socket Communication

Transmission control protocol is a connection­oriented protocol. In this protocol, the
connection between the sockets must be established. All data should be read immediately,
as received. One listening zone called Server and other socket that asks to establish the
connection called client. Server socket used to accept command of the client to use the
open command. If the connection is established between them, then they communicate
with each other. Socket creates new connection with its endpoint. It use listen/read for
willing to accept the connection, send/write is send or write over the connection after the
connection established and end used for release the connection.

Figure 2.5 shows the socket process on layers. After writing the code for Socket, which
code works on presentation layer, the application layer does not know anything how socket
works. Sockets reside on the Session Layer. The Session Layer is sandwiched between
the application­oriented upper layers and the real­time data communication lower layers.
TCP/IP maps the two layers. Computer transmits the data in the form of 0s and 1s.[21]

Figure 2.5: OSI layers (sockets, TCP/IP) [22]

15

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

2.2.3 Pseudocode of socket programming to link FlexSim and JADE

2.2.3.1 FlexSim part (server)

1. Initialization of the socket:
Initialize the socket before trying to create a connection. It returns TRUE, if the
initialization is successful and returns FALSE if it is not successful.

s o c k e t i n i t () ;

Or,

i f (s o c k e t i n i t ()) { // statement
}

2. Creation of server socket:
Create a server socket using given port that will listen for a connection:

s e rve r c r ea t ema in (port_number) ;

3. Accept the connection:
Accept command are used for accept the TCP connection from other system. The
server application used the accept command to accept connection.

c l i e n t = se rv e r a c c ep t (0) ;
//where index zero i s the command b locks un t i l a
// connect ion i s made . I t r e tu rn s an index used to
// r e f e r e n c e the connect ion made .

4. Read from client :
Read the socket is used for get the data from another application on same system or
another system using TCP Socket.

input = s e r v e r r e c e i v e (i n t connect ion , char * bu f f e r , i n t
bu f s i z e , i n t noblock ing) ;

5. Close the socket :
Close socket are used to release the connection after completing all receiving a send­
ing data.

s e r v e r c l o s e c onn e c t i o n (getnodenum (c l i e n t)) ;
// Close the connect ion to the c l i e n t .
socketend () ; //Stop us ing Windows so cke t s .
setnodenum (c l i e n t , 0) ; // Set the c l i e n t in fo rmat ion to 0 to

// i nd i c a t e the re i s no longe r a connect ion to the c l i e n t .
r e turn 1 ; //Return a 1 to i nd i c a t e the connect ion was c l o s ed .

16

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

2.2.3.2 JADE part (client):

There are some operations to be performed by a socket: open, accept connection, send
data, receive data and close connection. ”java.net” package provides two classes, one is
”socket”which implement the client side of connection and the other one is ”serversocket”,
which implements the server side of connection:

import java . i o . BufferedReader ;
import java . i o . IOException ;
import java . i o . InputStream ;
import java . i o . InputStreamReader ;
import java . i o . Pr intWriter ;
import java . net . InetAddress ;
import java . net . Socket ;

Socket socket ;
BufferedReader in ;
Pr intWriter out ;

The operations are:

1. Open Socket:
On client side create an object of Socket class. machine name/IP address and Port
Number on which the server want to connect.

socke t = new Socket (InetAddress . getByName(” address ”) , port
number) ;

2. Create Input Stream:
On client side ”DataInputStream” class are use for receive the response for the
server side. This class ”DataInputStream” allows to read the lines of texts. It has
many methods read, readChar, readInt, readDouble, and readLine:

in = new BufferedReader (new InputStreamReader (
sock . getInputStream ())) ;

3. Close the socket:
On Client side:

// c l o s e Input and Output Stream be fo r e c l o s i n g the socke t
socke t . c l o s e () ;

17

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

2.3 OPC standards

Open Platform Communication (OPC) is a series of standards and specifications for
industrial telecommunication that specifies an interface between client applications for
data processing and the servers that connect the physical industrial devices for control as
PLCs, sensors and actuators (OPC Data Access/DA).

After the initial release in 1996, the OPC foundation was created to maintain the stan­
dard. As OPC has been adopted beyond the field of process control, the OPC foundation
changed the name to Open Platform Communications in 2011. The change in name re­
flects the applications of OPC technology for applications in building automation, discrete
manufacturing, process control and many others.[23, 24]

2.3.1 Client­server approach for information exchanche

AnOPC server encapsulates the source of process information like a device and makes
the information available via its interface. An OPC client connects to the OPC server and
can access and consume the offered data. Applications consuming and providing data can
be both client and server. The following figure shows a typical use case of OPC clients
and servers. Classic OPC interfaces are based on the COM and DCOM technology from
Microsoft (see Figure 2.6). Whereas, OPC UA (Unified Architecture) is an entirely new
set of standards that incorporates all of the functionality of the classic standard (and more),
but does so using cross platform web services and other modern technologies.

18

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

Figure 2.6: OPC server communication [25]

2.3.2 OPC specification groups

2.3.2.1 OPC DA

The OPC Data Access interface enables reading, writing, and monitoring of variables
containing current process data. The main use case is to move real­time data from PLCs,
DCSs, and other control devices to HMIs and other display clients. OPC DA is the most
important OPC interface. It is implemented in 90 of the products using OPC technology
today. Other OPC interfaces are mostly implemented in addition to DA.

OPC DA clients explicitly select the variables (OPC items) they want to read, write,
or monitor in the server. The OPC client establishes a connection to the server by creating
an OPCServer object. The server object offers methods to navigate through the address
space hierarchy to find items and their properties like data type and access rights. For
accessing the data, the client groups the OPC items with identical settings such as update
time in an OPCGroup object. Figure 2.7 shows the different objects the OPC client creates
in the server.

When added to a group, items can be read or written by the client. However, the
preferred way for the cyclic reading of data by the client is monitoring the value changes
in the server. The client defines an update rate on the group containing the items of interest.
The update rate is used in the server to cyclic check the values for changes. After each

19

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

cycle, the server sends only the changed values to the client. OPC provides real­time data
that may not permanently be accessible, for example, when the communication to a device
gets temporarily interrupted. The Classic OPC technology handles this issue by providing
timestamp and quality for the delivered data. The quality specifies if the data is accurate
(good), not available (bad), or unknown (uncertain).

Figure 2.7: Structure of a control system using OPC server [26]

2.3.2.2 OPC A&E

The OPC A&E interface enables the reception of event notifications and alarm noti­
fications. Events are single notifications informing the client about the occurrence of an
event. Alarms are notifications that inform the client about the change of a condition in
the process. Such a condition can be the level of a tank. In this example, a condition
change can occur when a maximum level is exceeded or is fallen below a minimum level.
Many alarms include the requirement that the alarm has to be acknowledged. This ac­
knowledgement is also possible via the OPC A&E interface.

To receive notifications, the OPC A&E client connects to the server, subscribes for
notifications, and than receives all notifications triggered in the server. To limit the num­
ber of notifications, the OPC client can specify certain filter criteria.

2.3.2.3 OPC HDA

Where OPC Data Access gives access to real­time, continually changing data, OPC
Historical Data Access provides access to data already stored. From a simple serial data
logging system to a complex SCADA system, historical archives can be retrieved in a
uniform manner.

20

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

The OPC client connects by creating an OPCHDA Server object in the HDA server.
This object offers all interfaces and methods to read and update historical data. A second
object OPCHDA Browser is defined for browsing the address space of the HDA server.

In addition to the read methods, OPC HDA also defines methods for inserting, replac­
ing, and deleting data in the history database.

2.3.2.4 OPC interface standards

OPC specified several additional standards as base specifications or for specialized
needs. Base specifications are OPC Overview and OPC Common defining interfaces
and behavior that is common to all COM­based OPC specifications. Figure 2.8 gives
an overview for all Classic OPC specifications.

OPC Security specifies how to control client access to servers to protect sensitive in­
formation and to guard against unauthorized modification of process parameters.

OPCComplexData, OPCBatch, andOPCData eXchange (DX) are extensions toOPC
DA. Complex Data defines how to describe and transport values with complex structured
data types. OPC DX specifies the data exchange between Data Access servers by defining
the client behavior and the configuration interfaces for the client inside a server. OPC
Batch extends DA for the specialized needs of batch processes.

2.3.2.5 XML­DA

OPCXML­DAwas the first platform­independent OPC specification replacingCOM/D­
COM with HTTP/SOAP and Web Service technologies. Thus a vendor and platform­
neutral communication infrastructure was introduced and widely accepted functionality
of OPC Data Access was retained.

Since typicalWeb Services are stateless, the functionality was reduced to theminimum
set of methods to exchange OPC Data Access information, without the need for methods
to create and modify a context for communication.[27]

21

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

Figure 2.8: OPC standards tree [28]

2.3.3 OPC UA

OPC UA (the next generation OPC) is a new communication technology standard that
was first released by the OPC Foundation in 2006 as an improvement on its predecessor,
OPC Classic. OPC UA includes all the functionality found in OPC Classic. This is done
by bringing together the different specifications of OPC Classic into a single entry point
to a system offering current DA and A&E, combined with the history of both.

Furthermore, OPCUA is based on a cross­platform, business­optimized Service­Oriented
Architecture (SOA), which expands on the security and functionality found in OPC Clas­
sic instead of the Microsoft­based COM/DCOM technology. OPC UA supports two pro­
tocols: a binary protocol that employs minimal resources, allowing for easy enablement
through a firewall, and a web service protocol (SOAP) that uses standard HTTP/HTTPS
ports.[29]

The most important benefits of using OPC UA:

• Expand security features.

• Limit configuration costs.

• Used for supervisory control.

• Easy to integrate into pre­existing IT networks.

Figure 2.9 describes the main differences between the classic OPC and next generation
OPC.

22

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

Figure 2.9: Differences between OPC classic and OPC UA

2.4 Modbus communication procotol

The Modbus protocol was created in 1979 by Modicon as a means of sharing data be­
tween their PLCs. Although initially a proprietary protocol controlled only by Modicon,
it is since 2004 controlled by a community of users and suppliers of automation equip­
ment, known as Modbus­IDA.This nonprofit organization oversees the evolution of the
protocol and seeks to drive its adoption by continuing to openly distribute the protocol
specifications and providing an infrastructure for device compatibility certification. [30]

2.4.1 Modbus Data Models

The organization of the memory areas on the server to which the client may write to
or read from is defined by the Modbus protocol itself. There are four distinct memory
areas; two of them are organized as 16­bit registers, whereas the other two are composed
of arrays of single bits. Likewise, two of the memory areas provide read and write access
permissions, while the other two may only be read from.

Memory Area Name Address Range Register Size (Bits) Access Permission
Input Registers 1 – 65,536 16 Read
Holding registers 1 – 65,536 16 Read/write
Discrete inputs 1 – 65,536 1 Read

Coils 1 – 65,536 1 Read/write

Table 2.1: Memory Areas of the Modbus Data Model [30]

23

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

2.4.2 Modbus Protocol Architecture

The Modbus protocol is organized as a two­layer protocol (Figure 2.10).

Figure 2.10: Organization of Modbus protocols [30]

The upper layer, called the “Modbus application layer”, defines the functions or ser­
vices that a Modbus client may request of a Modbus server, and how these requests are
encoded onto a message or APDU (application layer protocol data unit). It also defines
how the servers have to reply to each function, and the actions they should take on behalf
of the client.

The lower layer defines how the upper layer APDUs are encapsulated and encoded
onto frames to be sent over the wire by the underlying physical layer, and how the server
devices are addressed. There are three distinct versions of this lower layer. The ASCII
(American Standard Code for Information Interchange) version encodes the upper layer
APDU as ASCII characters, whereas the RTU and TCP versions use direct byte repre­
sentation. The RTU and ASCII versions are expected to be sent over EIA/TIA­232 or
EIA/TIA­485 (commonly known as RS232 and RS485). The TCP version, as the name
implies, is sent over TCP connections established over the IP protocol. Although it is
common that the IP protocol frames are then sent over an Ethernet LAN (local area net­
work), there is no reason that they may not use any other underlying network, including
the global Internet.

2.4.3 Modbus Application layer

The Modbus protocol defines three distinct APDUs (Figure 2.11) used in the Modbus
application layer. All three APDUs start with a single­byte value indicating the Modbus

24

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

function being requested or to which a reply is being made. Following the “function”
byte value come all data and parameters of that specific function. Data and parameters
have a variable number of bytes, depending on the function in question, and the number
of memory registers that are being accessed. All APDUs are, however, limited in size to a
maximum of 253 bytes, due to limitations imposed by the underlying EIA/TIA­485 layer.
[30]

Figure 2.11: General format of APDU frames [30]

2.4.3.1 Data Access Functions

The Modbus protocol defines a large list of functions. The most often used functions
are those associated with accessing the memory areas.

All functions listed in Table 2.2, with the exception of functions 0x14, 0x15, 0x16, and
0x18,simply request that some data be read or written to a specific memory area. Func­
tion codes 0x05 and 0x06 are used to write to a single element (coil or holding register,
respectively). The remaining functions allow the client to read from or write to multiple
contiguous elements of the same memory area.

Note that the maximum number of addressable elements is limited by the maximum
size of the APDU.

Function 0x16 (MaskWrite Register) changes the value stored in a single holding reg­
ister. The new value is obtained by applying a logical operation using the current value of
the holding register.

Function 0x18 (Read FIFO Queue) allows the client to request reading a FIFO queue
from the server. The FIFO queue must be stored within the holding registers memory
area in the server and consists of a first register containing the number of elements in the
queue (queue count register), followed by the values of each element in the queue in the
following registers (queue data registers).

The Modbus protocol includes two additional functions for data access. These func­
tions (0x14 for reading and 0x15 for writing) are referred to in the base Modbus specifi­

25

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

cation documents as “Read File Record” and “Write File Record”. Note that the memory
referenced by these files is independent from the memory areas defined in Table 2.1.

Memory Area Function Name
Function
Code(Hex)

Addressable
Elements

Possible
Response
Error Codes

Discrete Inputs
Read discrete
inputs

0x02 1 – 2000 01, 02, 03, 04

Coils Read coils 0x01 1 – 2000 01, 02, 03, 04
Coils Write single coil 0x05 1 01, 02, 03, 04
Coils Write multiple coils 0x0F 1 – 1976 01, 02, 03, 04

Input registers
Read input
registers

0x04 1 – 125 01, 02, 03, 04

Holding registers
Read holding
registers

0x03 1 – 125 01, 02, 03, 04

Holding registers
Write single
register

0x06 1 01, 02, 03, 04

Holding registers
Write multiple
registers

0x10 1 – 123 01, 02, 03, 04

Holding registers
Read/write
multiple registers

0x17
1– 121 (write)
1 – 125 (read)

01, 02, 03, 04

Holding registers Mask write register 0x16 1 01, 02, 03, 04
Holding registers Read FIFO queue 0x18 1 – 32 01, 02, 03, 04
Files Read file record 0x14 01, 02, 03, 04, 08
Files Write file record 0x15 01, 02, 03, 04, 08

Table 2.2: Functions Used for Data Access [30]

2.4.3.2 Diagnostic Functions

The second large group of Modbus functions allows the client to obtain diagnostic in­
formation from the server (Table 2.3).

With function 0x07 (Read Exception Status) the client may read 8 bits of device­
specific exception status information. Function 0x08 (Diagnostic) is used to obtain diag­
nostic information from the server.The function is followed by a subfunction code indicat­
ing which diagnostic information is being requested (bus message count, communication
error count, etc.), or which diagnostic routine should be executed (restart communication,
force listen only mode, etc.).

26

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

With function 0x0B (Get Communication Event Counter) the client can obtain a sta­
tus word as well as an event count of the server’s communication event counter. Function
0x0C (Get Communication Event Log) returns the same data as function 0x0B, plus the
message count (number of messages processed since last restart) and a field of 64 event
bytes.

With function 0x11 (Report Slave ID), a client may obtain the run status of the server
device (run/ stop), a device­specific identification byte, and some additional device­specific
249 bytes of data.[30]

Function Name
Function Code
(Hex)

Possible
Response
Error Codes

Read exception status 0x07 01, 04
Diagnostic 0x08 01, 03, 04
Get communication event counter 0x0B 01, 04
Get communication event log 0x0C 01, 04
Report slave ID 0x11 01, 04

Table 2.3: Modbus Function Codes for Diagnostic Purposes [30]

2.4.3.3 Error Handling

Error checking starts as soon as the server receives a request APDU. At this time it
will start off by verifying the validity of the function code, address values, and data values
(in this order) and, upon the first error encountered, will reply with an exception response
APDU with error codes 1, 2, or 3, respectively (Table 2.4).

27

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

Code (Hex) Name Comments
0x01 Illegal function
0x02 Illegal data address
0x03 Illegal data value
0x04 Slave device failure

0x05 Acknowledge
Not commonly used. Indicates that the
slave will reply later to the request.

0x06 Slave device busy

0x08 Memory parity error
Used only in function codes 0x14 and
0x15.

0x0A Gateway path unavailable Only used by gateways.

0x0B
Gateway target device failed to re­
spond

Only used by gateways.

Table 2.4: Modbus Exception Codes [30]

2.4.4 Modbus Serial

Modbus serial follows the master–slave interaction model, with the Modbus client
becoming the master, and the Modbus servers taking the role of slaves. The master is
responsible for initiating the communication by sending requests to the slaves, one request
at a time. These, in turn, reply to the master with the requested data. The request/reply
exchange can be performed in one of two ways:

• Unicast mode: The master sends a request to a specific slave. The slave processes
this request and replies to the master.

• Broadcast mode: The master sends a request to all slaves. The slaves process this
request, but do not reply to the master

The master only starts a request/reply exchange once the previous exchange has finished.
Each Modbus serial network may only have one master. The number of slaves is limited
to 247. In Modbus serial, frames exchanged between master and slave devices can be
transmitted in one of two modes: RTU or ASCII, where RTU mode is the commonly used
one in industry.

2.4.4.1 RTU mode frame

The RTU mode uses an asynchronous approach for data transmission. Each byte,
within a frame, is transmitted using an 11 bit character (Figure 2.12):

• 1 start bit (ST), used for the initial synchronization.

28

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

• 8 bits, the data coded in binary with the least significant bit sent first.

• 1 parity bit (PT), used for error detection.

• 1 stop bit (SP), to ensure a minimum idle time between consecutive character trans­
missions.

Figure 2.12: RTU frame transmission [30]

2.4.5 Modbus TCP

AModbus TCP network consists of multiple devices connected through a TCP/IP net­
work, interacting following the client–server model. A client sends a request to a server,
which in turn responds to the client with the requested data. This transaction (request/re­
sponse exchange) is performed by sendingModbus TCP frames through a TCP connection
previously established between the client and the server. Connection establishment and
management are handled by the TCP/IP protocol and occur independently of the Modbus
protocol. A Modbus server listens on port 502 for requests from clients that wish to es­
tablish a new connection with the server. This port is presently reserved (and registered)
for Modbus applications.

2.4.5.1 Modbus TCP frame

Modbus TCP frames (request and response) consist of a MBAP header (Modbus Ap­
plication Protocol header) plus the application layer APDU (Figure 2.13).

The MBAP header comprises several fields:

• Transaction identifier: Since a client can issue several concurrent transactions over
the same TCP connection, the responses are not guaranteed to arrive in the same
order that the requests were sent. It is therefore necessary to have an identifier
for each transaction in order to match the request and response frames. The client
initializes this field when it performs a request. The server echoes this value in the
response frame.

29

CHAPTER 2. COMMUNICATION SOLUTIONS FOR INDUSTRIAL
APPLICATIONS

• Protocol identifier: This is used to identify the protocol; it currently always has the
value 0.

• Length: This field indicates the size (in bytes) of the unit identifier field plus the
APDU. Data transfer in a TCP connection is performed as a stream of bytes, which
could lead to a situation where several frames are waiting to be read in the reception
buffer. To identify frame boundaries in these situations, the frame length must be
known.

• Unit identifier: This field is used to identify the destination device (a slave). It
is used mainly by gateways between Modbus/TCP and Modbus serial networks,
where the gateway, upon receiving a Modbus/TCP frame, needs to know the iden­
tification of the slave on the Modbus serial network that should receive that frame.
Modbus/TCP devices that are not gateways usually ignore this field.

Unlike Modbus serial, Modbus TCP frames do not have an error detection field. This
was considered unnecessary as the TCP/IP stack already includes several error detection
mechanisms.

Figure 2.13: Modbus TCP frame [30]

Conclusion

Our contributions of this chapter were directed to achieve indirect connection between
the MAS and hardware to develop CPS approach. First, we developed the idea of using
agents to discrete event processes control. Second, we presented a concrete solution for
application development using JADE environment. Then a practical solution for connect­
ing the JADE platform indirectly with hardware using OPC standard, socket network and
Modbus protocol.

30

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

Chapter 3

Hardware­In­the­Loop Simulation

Introduction

The verification and validation is a crucial step to fill the gap between conception and
real­time operation, before execution of a software in the industrial environment.

Hardware­In­the­Loop Simulation (HILS) approach is considered as a promising val­
idation of the software by providing a desired degree of reliability and flexibility. It is
based on the integration of physical devices and electronic components (PLC, microcon­
troller, RFID technologies) in the 3D simulation loop.

In this study, HILS approach is used to validate the DES model by integrating all de­
vices that aid the approach works properly as: RFID, PLC and Arduino.

This chapter will give an overview onHILS approach, introduce the different hardware
elements integrated, and explain the interactions and the developed communication tools
between them.

31

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

3.1 HILS validation technique

Hardware­In­the­Loop Simulation (HILS) is a type of real­time simulation. We use
HILS simulation to test a controller design. It shows how a controller responds, in real
time, to realistic virtual stimuli. We also use HILS to determine if our physical system
(plant) model is valid.

In HILS technique, we use a real­time computer as a virtual representation of our plant
model and a real version of our controller.
A typical HILS setup is shown in Figure 3.1.

Figure 3.1: A typical HILS setup [31]

The desktop computer (development hardware) contains the real­time capable model
of the controller and plant. The development hardware also contains an interface with
which to control the virtual input to the plant. The controller hardware contains the
controller software that is generated from the controller model. The real­time processor
(target hardware) contains code for the physical system that is generated from the plant
model.[31]

32

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

3.1.1 HILS vs SILS

Another technique used for the same aim as HILS is the so called Software­In­the­
Loop Simulation (SILS)

3.1.1.1 SILS validation technique

Software­In­the­Loop Simulation (SILS) is simply replacing the hardware equipments
used previously in HILS approach (processor,controller and other equipments depending
on the application) by a simulation.

The SILS technique is often used in the design phase of control architecture in order
to adjust the control functionality and to evaluate its performance. This technique results
some advantages [32]:

• Speed up designing, implementation and debugging stage.

• Reducing time and cost in the design stage.

• Ability to exercise a much greater portion of the possible scenario space than em­
pirical testing.

3.1.2 HILS advantages

HILS technique can bring more fidelity to the control validation by maintaining the
behavior of the real system. This technique consists in integrating hardware equipment in
the closed loop with a simulation model. Two reasons argue the use of this technique. The
first one, a direct test on real manufacturing system can be not suitable because of high
safety risks and/or expensive test time and/or destructive test (products, equipment). The
second one, the simulation is not sufficiently accurate to mimic perfectly manufacturing
system, which leads to a lack of confidence in the validation of the control system. In
addition to the advantages inherited from SILS approach, some other advantages of this
technique are summarized as follows:

• Verification and validation of the complex control software in the presence of more
realistic conditions.

• Practice in a quasi­real industrial environment at the scale of a laboratory.

In some systems, both SILS and respectively HILS are used in the design validation re­
specting the workflow shown in Figure 3.2 .

33

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

Figure 3.2: System design till realization workflow [31]

3.2 The Programmable logic controller (PLC)

A programmable logic controller (PLC) is an industrial grade computer that is capable
of being programmed to perform control functions. The programmable controller has
eliminated much of the hardwiring associated with conventional relay control circuits.
Other benefits include easy programming and installation, high control speed, network
compatibility, troubleshooting and testing convenience, and high reliability.[33]

(a) Siemens s7­1200 compact PLC (b) Siemens s7­300 modular PLC

Figure 3.3: Siemens s7­1200 and s7­300 PLCs

34

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

A PLC exists in two distinguishable forms: compact and modular.

• A compact PLC: where all its elements are integrated like inputs/outputs, power
supply, communication unit...(Figure 3.3a) . This type of PLCs is made usually for
small automatic systems.

• A modular PLC: where its elements are seperated units (Figure 3.3b). This type
of PLCs is used in powerful and complex systems.

3.2.1 PLC architecture and elements

Figure 3.4 shows the basic internal architecture of a PLC. It consists of a central pro­
cessing unit (CPU) containing the system microprocessor, memory, and input/output cir­
cuitry.[34]

Figure 3.4: PLC bacic architecture [34]

3.2.1.1 The Central processing unit (CPU)

It is the brain of a PLC, its internal structure comprises:

• Arithmetic and logic unit (ALU) that is responsible for data manipulation and car­
rying out arithmetic operations of addition and subtraction and logic operations of
AND, OR, NOT, and EXCLUSIVE­OR.

• Memory, termed registers, located within the microprocessor and used to store in­
formation involved in program execution.

• A control unit that is used to control the timing of operations.

35

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

3.2.1.2 Buses

Buses are the paths used for communication within the PLC. The information is trans­
mitted in binary form, that is, as a group of bits. The system has four buses:

• The data bus carries the data used in the processing done by the CPU

• The address bus is used to carry the addresses of memory locations.

• The control bus carries the signals used by the CPU for control, such as to inform
memory devices whether they are to receive data from an input or output data and
to carry timing signals used to synchronize actions.

• The system bus is used for communications between the input/output ports and the
input/output unit.

3.2.1.3 Memory

To operate the PLC system there is a need for it to access the data to be processed and
instructions, that is, the program, which informs it how the data is to be processed. Both
are stored in the PLC memory for access during processing. There are several memory
elements in a PLC system:

• The data bus carries the data used in the processing done by the CPU

• System Read­only memory (ROM) gives permanent storage for the operating sys­
tem and fixed data used by the CPU.

• A Random­access memory (RAM) is used for the user’s program.

• A Random­access memory (RAM) is used for data

• Possibly, as an extramodule, Erasable and programmable read­only­memory (EPROM)
is used to store programs permanently.

3.2.1.4 Input/Output Unit

The input/output unit provides the interface between the system and the outside world,
allowing for connections to bemade through input/output channels to input devices such as
sensors and output devices such asmotors and solenoids. It is also through the input/output
unit that programs are entered from a program panel.A small PLC is likely to have just one
form of input/output, such as 24 v. Outputs are specified as being of relay type, transistor
type(fastest switching action), or triac type.

36

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

3.2.2 PLC programming

Each input and output PLCmodule terminal is identified by a unique address. In PLCs,
the internal symbol for any input is a contact. Similarly, in most cases, the internal PLC
symbol for all outputs is a coil. The standard IEC 61131 was established to standardize
the multiple languages associated with PLC programming (Figure 3.5) by defining the
following five standard languages:

Figure 3.5: Standard IEC 61131 languages associated with PLC programming [33]

• Ladder Diagram (LD) a graphical depiction of a process with rungs of logic, sim­
ilar to the relay ladder logic schemes that were replaced by PLCs.

• Function Block Diagram (FBD) a graphical depiction of process fl ow using sim­
ple and complex interconnecting blocks.

• Sequential Function Chart (SFC) a graphical depiction of interconnecting steps,
actions, and transitions.

• Instruction List (IL) a low­level,text­based language that uses mnemonic instruc­
tions.

• Structured Text (ST) a high­level,text­based language such as BASIC, C, or PAS­
CAL specifically developed for industrial control applications.

3.2.3 Siemens ET 200SP PLC

ET 200SP PLC (Figure 3.6) is one of the recent releases of Siemens (04/2012). It is
mainly designed for complex distributed input/output systems to be employed as a slave
to a master controller taking advantage of its high scalability (possibility to be extended in
a modular form)(Figure 3.6b) and flexibility. It can be operated as a standalone controller
too (Figure 3.6a).

37

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

(a) ET 200SP PLC (b) Scaled ET 200SP PLC

Figure 3.6: Siemens ET 200SP PLC

Table 3.1 summerizes some important specifications about this PLC given by the man­
ufacturer.

CPU processing time
bit operation 48 ns

word operation 58 ns

fixed­point arithmetic 77 ns

floating­point arithmetic 307 ns

Supply voltage
type of supply voltage 24V (DC)

low limit of permitted range(DC) 19.2V

high limit of permitted range(DC) 28.8 V

reverse polarity protection Yes
Input current

current consumption (rated value) 0.6A

Inrush curent (maximum) 4.7A

Interfaces
number of Profinet ports 3 (1 integrated 2 via module)
number of input/output 0 integrated, up to 64 i/o module
Software engineering

Software IDE TIA Portal v13
Programming languages supported LAD,SFC,FBD,ST,IL

Table 3.1: Some technical specifications of ET200SP PLC [35]

Themajor advantage to use this PLC in this study is the ease ofOPCUA server creation
(Figure 3.7), hence PLC tags can be mapped easily to the emulation model in Flexsim to
drive the virtual FMS.

38

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

Figure 3.7: OPC UA server activation on ET 200SP PLC

3.3 Arduino Uno microcontroller board

Microcontroller (µC) is a term used to describe a system that includes a minimum of
microprocessor, program memory, data memory and input­output (I/O). Some microcon­
troller systems also include timers, counters, analog to digital (A/D) converters and so
on.[36]

Arduino Uno board (Figure 3.8) holds the 8­bit ATmega328 µC based on AVR archi­
tecture. It contains everything needed to support the microcontroller: 14 digital input/out­
put pins (of which 6 can be used as PWM outputs), 6 analog inputs (A0­A5) provide
Analog Digital Converter (ADC) with 10bits resolution, a 16 MHz crystal oscillator, a
USB connection, a power jack, an ICSP header, and a reset button.

Figure 3.8: Arduino Uno board composition

The Arduino Uno board specifications are summarized in table 3.2

39

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

Specification Parameter

Microcontroller ATmega328
Operating voltage 5V
Input voltage 7­12 V
Digital I/O pins 14
Analog input pins 6

DC current per input pin 40 mA
DC current for 3.3V pin 50 mA

Flash memory 32 Kb
SRAM 2 Kb

EEPROM 1 Kb
Clock speed 16kHz

Table 3.2: Arduino uno specifications [37]

3.3.1 Ethernet Shield W5100

The Arduino Ethernet Shield W5100 (Figure 3.9) allows an Arduino board to con­
nect to the internet. It is based on the Wiznet W5100 ethernet chip. The Wiznet W5100
provides a network (IP) stack capable of both TCP and UDP. It supports up to four simul­
taneous socket connections.[38]

Figure 3.9: Ethernet shield W5100

The Ethernet shield connects to an Arduino board using long wire­wrap headers which
extend through the shield (Figure 3.10). This keeps the pin layout intact and allows another

40

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

shield to be stacked on top. Arduino Uno communicates with the shield using the SPI bus.
This is on digital pins 11, 12, and 13. Pin 10 is used as SS pin.

Figure 3.10: Ethernet shield W5100 plugged in an Arduino Uno board

3.3.2 ”Ethernet.h” Library

The open source Arduino library dealing with Ethernet communication is ”Ether­
net.h.” To initialize the Ethernet library and network settings the function ”Ethernet.begin()”
that receives as arguments MAC, IP, Gateway and Subnet addresses.[39]

3.4 Communication betweenArduinoUno andET 200SP
PLC using Modbus TCP protocol

As described in the previous chapter, Modbus TCP communication protocol follows
a client­server model. In our project, ET 200SP PLC is the client and Arduino Uno is the
server. Hence, Arduino listens on port 502, wait for the PLC to connect and then start data
exchange according to a Modbus function.

3.4.1 Server (Arduino Uno) part

In addition to ”Ethernet.h”, Arduino offers ”ModbusIP.h” library to deal with Modbus
TCP communication.

3.4.1.1 ”ModbusIP.h” Library

This library implements Modbus protocol over TCP transport type. The main func­
tions are described Table 3.3.

41

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

Function Description

config(MAC,IP)
ReceivesMAC and IP adresses as argument to configure the
Modbus TCP network.

task()
Maintain the Modbus TCP communication. It is called once
in Void loop().

addCoil(coilPIN,STATE)
Receives the coil output pin number and a boolean value to
be read/written.

addIreg(IREG,Value) Receives the input register number and value as arguments.

addHreg (HREG, Value)
Receives the holding register number and value to be read­
/written as arguments.

Table 3.3: Main useful functions ”ModbusIP.h” library

In our project, we send and receive integer numbers, consequently, we select holding
registers (see Table 2.1). Arduino reads one Holding Register (to which the PLC writes)
and writes to another one (which the PLC reads).

A proposed Arduino sketch to perform this task is as follows:

#i n c l u d e <Ethernet . h>
#i n c l u d e <ModbusIP . h>

cons t i n t WRITE_HREG=100; //The number o f the ho ld ing
// r e g i s t e r where we wr i t e

cons t i n t READ_HREG=101; //The number o f the ho ld ing
// r e g i s t e r to be read

ModbusIP mb; //modbus o b j e c t d e c l a r a t i o n
byte mac [] = {0xDE, 0xAD, 0xBE, 0xEF , 0xFE , 0xED} ;
byte ip []={192 , 168 , 0 , 5} ;
byte gateway []={192 , 168 , 0 , 200} ;
byte subnet []={255 , 255 , 255 , 0} ;

vo id setup ()
{

Ethernet . beg in (mac , ip , gateway , subnet) ;
mb. c o n f i g (mac , ip) ; // c o n f i g u r a t i o n o f the Modbus TCP

// network
mb. addHreg (WRITE_HREG, 1 2 7) ; // Holding r e g i s t e r s

// c o n f i g u r a t i o n .

42

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

//The i n i t i a l va lue can be
//any number .

mb. addHreg (READ_HREG, 1 2 7) ;
}

vo id loop ()
{

mb. task () ; // mainta in Modbus communication and
// data update

}

Listing 3.1: Arduino sketch for the desired Modbus TCP communcation

3.4.2 Client (ET 200SP PLC) Part

In TIA portal (see appendix B), each Modbus TCP session can handle only one func­
tion. In our case, two Modbus functions are executed: read a holding register and write
to a holding register; and hence two communication sessions are needed. Using Ladder
logic diagram, a Modbus TCP client session is a single function block ”MB_CLIENT”.
Hence to achieve our communication objective, two ”MB_CLIENT” blocks are required:
one with function read a holding register (Figure 3.11), and the other with function write
to a holding register (Figure 3.12).

Figure 3.11: Modbus TCP client read a holding register function block

43

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

Figure 3.12: Modbus TCP client write to a holding register function block

3.4.2.1 Description and specifications of ”MB_ CLIENT” function block

”MB_ CLIENT” function block has a set of parameters:

• REQ (Boolean): Modbus query to theModbus TCP server.As long as the input is set
(REQ=true), the instruction sends communication requests, that’s why we attached
to its input a memory zone that is always 1 (Always TRUE).

• Disconnect (Boolean): controls the establishment and termination of the connection
to the Modbus server: 0 establish connection, 1 disconnect.

• DONE (Boolean): set once Modbus job is completed without errors.

• BUSY (Boolean): 0 if noModbus request in progress,1 if a Modbus request is being
processed.

• ERROR (Boolean): 0 if no error occured.

• STATUS (Word):Detailed status information of the instruction.

• MB_DATA_PTR (Variant): Pointer to a data buffer for the data to be received from
the Modbus server or to be sent to the Modbus server.

• CONNECT (Variant): Pointer to the structure of the connection description. The
structure contains all information about the communication session: address of the
server (Arduino IP address in our case), port (502) communication type (TCP/IP),
physical interface ethernet port number...

44

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

The rest of parameters (MB_MODE,MB_DATA_ADDR,MB_DATA_LEN) depends
on the Modbus function we want to execute, the functions needed in our project are shown
in the following screen shot taken from TIA portal information system (Figure 3.13).

Figure 3.13: Modbus function parameters from TIA Portal information system

In the first block (Figure 3.11), we set MB_MODE = 0 inorder to perform a read
holding register function , MB_DATA_LEN = 1 because we need to read a single holding
register. The starting address is set to 40101 since the register number selected in the
server (Arduino) was 100, and since the memory zone for this function starts from 40001
then the selected register address is 40001 100 40101.

In the second block (Figure 3.12), we set MB_MODE = 1 inorder to perform a write
to holding register function, MB_DATA _LEN = 1 because this function can write to only
a single holding register.The starting address is set to 40101 since the register number
selected in the server (Arduino) was 101, and since the memory zone for this function
starts from 40001 then the selected register address is 40001 101 40102.

3.5 Radio frequency identification (RFID) technology

Radio frequency identification (RFID) is a wireless communication technology that is
used to uniquely identify tagged objects. There are three basic components to an RFID
system: (Figure: 3.14)

Figure 3.14: RFID basic building block

1. A tag (sometimes called a transponder), which is composed of a semiconductor
chip, an antenna, and sometimes a battery.

2. An interrogator (sometimes called a reader or a read/write device),which is com­
posed of an antenna, an RF electronics module, and a control electronics module.

45

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

3. A controller (sometimes called a host),which most often takes the form of a PC or a
workstation running database and control (often called middleware) software.[40]

3.5.1 RFID tags

The basic function of an RFID tag is to store data and transmit data to the interrogator,
and it can be classified according to its composition as:

3.5.1.1 Active vs. Passive Tags

RFID tags are said to be active if they contain an on­board power source, such as a
battery.
Passive RFID tags have no on­board power source and derive power.

3.5.1.2 Read­only vs. read/write ”smart” tags

Having only a read­only memory, Read­only (RO) tags are similar to bar codes. They
are programmed once, by a product manufacturer for instance, and from thereon cannot
be altered.

Read/Write tags are often called “smart” tags. Smart tags present the user with much
more flexibility than RO tags. They can store large amounts of data and have an address­
able memory that is easily accessed and changed.[40]

3.5.2 RFID Interrogator

An RFID interrogator acts as a bridge between the RFID tag and the controller and
has just a few basic functions:

• Read the data contents of an RFID tag

• Write data to the tag (in the case of smart tags)

• Relay data to and from the controller

• Power the tag (in the case of passive tags)

3.5.3 RFID Controller

RFID controllers are the “brains” of any RFID system. They are used to network
multiple RFID interrogators together and to centrally process information.

46

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

3.5.4 Frequency of operation

A key consideration for RFID is the frequency of operation. RFID systems can use
different bands for communication. (Figure 3.15)

Figure 3.15: RF spectrum [40]

In RFID there are both low frequency and high radio frequency bands in use, as shown
in the following list:

• Low Frequency RFID Bands

– Low frequency (LF): 125–134 KHz

– High frequency (HF): 13.56 MHZ

• High Frequency RFID Bands

– Ultra­high frequency (UHF): 860–960 MHZ

– Microwave: 2.5 GHz and above

The choice of frequency has a major effect on several characteristics of any RFID system
such as: read range, the type of tags to be chosen ...[40]

3.5.5 RC 522 RFID module

The RC522 (Figure 3.16) is a 13.56MHz RFID module that is based on the MFRC522
controller from NXP semiconductors. The module can supports I2C, SPI and UART com­
munications and normally is shipped with a RFID card and key fob. [41]

Figure 3.16: RC522 RFID module pinout

47

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

The pin specification of this RFID module is detailed in Table 3.4 .

Pin
Number

Pin Name Description

1 Vcc Used to Power the module, typically 3.3V is used
2 RST Reset pin – used to reset or power down the module
3 Ground Connected to Ground of system

4 IRQ
Interrupt pin – used to wake up the module when a
device comes into range

5 MISO/SCL/Tx
MISO pin when used for SPI communication, acts as
SCL for I2c and Tx for UART.

6 MOSI Master out slave in pin for SPI communication
7 SCK Serial Clock pin – used to provide clock source

8 SS/SDA/Rx
Acts as serial input (Slave Select) for SPI communi­
cation, SDA for I2C and Rx during UART

Table 3.4: RC522 pin configuration [41]

3.5.5.1 Arduino Uno ­ RC522 interface

Figure 3.17 shows the connection between Arduino Uno and RC522 module.

Pin
Wiring to
Arduino Uno

SDA Digital 10
SCK Digital 13
MOSI Digital 11
MISO Digital 12
IRQ unconnected
GND GND
RST Digital 9
3.3V 3.3V

Figure 3.17: Arduino Uno­RC522 pins connection

In this project, RC522 RFID module uses the Serial Peripheral Interface (SPI) pro­
tocol to communicate with Arduino. SPI is a synchronous serial data protocol used by
microcontrollers for communicating with one or more peripheral devices quickly over

48

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

short distances. With an SPI connection there is always one master device (usually a mi­
crocontroller) which controls the peripheral device through four lines:

• MISO (Master In Slave Out) ­ The Slave line for sending data to the master.

• MOSI (Master Out Slave In) ­ The Master line for sending data to the peripherals.

• SCK (Serial Clock) ­ The clock pulses which synchronize data transmission gener­
ated by the master.

• SS (Slave Select) ­ the pin on each device that the master can use to enable and
disable specific devices.[42]

3.5.5.2 MFRC522.h and SPI.h libraries

Inorder to program the interface and communication between Arduino and RC522
and perform an RFID read/write operation on a Mifare RFID tag, open source Arduino
libraries MFRC522.h and SPI.h are offered. To initiate an SPI communication we use the
function ”SPI.begin()”. The boolean function ”PICC_ReadCardSerial()” is used to detect
whether a tag is within the RC522 range.

In our project, RFID tags are distinguished through their UIDs. The followingArduino
scketch is proposed to read tags’ UIDs.

#i n c l u d e <SPI . h>
#i n c l u d e <MFRC522 . h>
#d e f i n e SS_PIN 10
#d e f i n e RST_PIN 9

MFRC522 mfrc522 (SS_PIN , RST_PIN) ; // Create MFRC522 i n s t a n c e

vo id setup ()
{

S e r i a l . beg in (9600) ; // I n i t i a t e a s e r i a l communication
SPI . beg in () ; // I n i t i a t e SPI bus
mfrc522 . PCD_Init () ; // I n i t i a t e MFRC522

}

void loop ()
{

i f (! mfrc522 . PICC_IsNewCardPresent ()) //Look f o r new cards
r e tu rn ;

49

CHAPTER 3. HARDWARE­IN­THE­LOOP SIMULATION

i f (! mfrc522 . PICC_ReadCardSerial ()) // S e l e c t one o f the
// cards

r e tu rn ;
S e r i a l . p r i n t (”UID tag : ”) ; //Show UID on s e r i a l monitor
S t r i n g content= ”” ;
byte l e t t e r ;
f o r (byte i = 0 ; i < mfrc522 . u id . s i z e ; i++)
{ // Pr int the UID in both dec imal and hexadec imal format

S e r i a l . p r i n t (mfrc522 . u id . uidByte [i]<0x10 ? ” 0” : ” ”) ;
S e r i a l . p r i n t (mfrc522 . u id . uidByte [i] , HEX) ;

}
}

Listing 3.2: Arduino sketch for reading RFID tags’ UIDs

Conclusion

In this chapter the composition and the interactions in the HILS system are clarified.
We got firstly a general idea about HILS technique. Then, we introduced the hardware
components integrated (ET 200SP PLC, Arduino Uno µC board with Ethernet Shield and
RC522 RFID module). Finally, we described communication tools (Modbus TCP and
OPC UA server activation) and interactions (RC522 connection and programming with
Arduino) to link between those components and the virtual model. Our HILS system is
now ready.

50

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

Chapter 4

Cyber­physical Product­driven System
Implementation

Introduction

In the last decade of twenty century, the cyber world and the physical world were
considered as two different entities. However, we can easily find that these two entities
are closely correlated with each other after integrating sensors and actuators in the cyber
systems.

Cyber systems became responsive to the physical world by enabling real time control
issued from conventional computer systems, thus giving birth to a new research paradigm
named Cyber­Physical SystemCPS that is considered as a building block of new industrial
systems (Industry 4.0).

This chapter proposes a validation and practical framework of PDS applied to the
highlyAutomated Flexible RobotizedAssembly System (AIP­PRIMECA) relying onMAS
as implementation framework, RFID as auto­identity technologies to provide the intelli­
gent product concept (PDS) and HILS as practical real timemonitoring of production lines
as well as products. In addition, FMS scheduling to enhance the flexibility and reliability
of AIP­PRIMECA.

51

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

4.1 Case study: AIP­PRIMECA FMS

AIP­PRIMECA 1 are resource centers which bring together the technical and human
resources used as training support in the fields of Integrated Design in Mechanics and
Production. There are ten regional AIP­PRIMECA poles in France.

Our MAS architecture of control is applied to an emulated FMS of AIP­PRIMECA
located at Valenciennes site. This experimental support (Figure 4.1) is an academic tech­
nological platform which is considered as a real production cell.

Figure 4.1: The real AIP­PRIMECA FMS of the case study

4.1.1 FSM data presentation

AIP­PRIMECA FMS is a fully robotically fexible assembly cell which is composed of
six workstations: load/unload robotic workstation (R1); three assembly Kuka robots (R2,
R3 and R4); a Cognex camera as an automated inspection workstation(M5) and finally,two
optional robotic workstations (R6 and R7) which are not used in this study.

1A french abbreviation whose translation is: Inter­establishment production and IT resource center for
mechanics

52

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

Figure 4.2 is a presentation diagram of the studied FMS.

Figure 4.2: AIP­PRIMECA FMS presentation diagram

Shuttles are used to transport products between different workstations through unidi­
rectional conveyor. Several routing nodes (divergence points) are indentified throughout
the conveying system (n1, n2, n3, n4, n5, n6, n7, n8, n9, n10 and n11). These routing
nodes are categorized to two types:machine routing nodes which are localized in front of
the entrance of machines (n2, n4, n5, n6, n8, n10 and n11) and ordinary rooting nodes (n1,
n3, n7 and n9).

Table 4.1 summarizes the transport time necessary for a shuttle to move between the
different nodes of the cell.

53

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 R1 R2 R3 R4 M5 R6 R7
n1 4 ­ ­ ­ ­ ­ ­ 5 ­ ­ ­ ­ ­ ­ ­ ­
n2 ­ 4 ­ ­ ­ ­ ­ ­ ­ ­ 5 ­ ­ ­ ­ ­ ­
n3 ­ ­ 4 ­ ­ ­ 5 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­
n4 ­ ­ ­ 4 ­ ­ ­ ­ ­ ­ ­ 5 ­ ­ ­ ­ ­
n5 ­ ­ ­ ­ 3 ­ ­ ­ ­ ­ ­ ­ 11 ­ ­ ­ ­
n6 ­ ­ ­ ­ ­ 4 ­ ­ ­ ­ ­ ­ ­ 5 ­ ­ ­
n7 ­ ­ ­ 5 ­ ­ 4 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­
n8 ­ ­ ­ ­ ­ ­ ­ 4 ­ ­ ­ ­ ­ ­ 5 ­ ­
n9 ­ 5 ­ ­ ­ ­ ­ ­ 4 ­ ­ ­ ­ ­ ­ ­ ­
n10 ­ ­ ­ ­ ­ ­ ­ ­ ­ 4 ­ ­ ­ ­ ­ 7 ­
n11 9 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 10
R1 ­ ­ ­ 6 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­
R2 ­ ­ ­ ­ ­ 5 ­ ­ ­ ­ ­ ­ 13 ­ ­ ­ ­
R3 ­ ­ ­ ­ ­ ­ 6 ­ ­ ­ ­ ­ ­ 7 ­ ­ ­
R4 ­ ­ ­ 7 ­ ­ ­ 6 ­ ­ ­ ­ ­ ­ ­ ­ ­
M5 ­ 7 ­ ­ ­ ­ ­ ­ ­ ­ 6 ­ ­ ­ ­ ­ ­
R6 12 ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ ­ 13
R7 ­ 6 ­ ­ ­ ­ ­ ­ ­ ­ 7 ­ ­ ­ ­ ­ ­

Table 4.1: Transportation time between different nodes of the FMS

Five basic components (plate, axis comp, I comp, r comp, L comp, and screw comp)
are assembled with different ways to form four products in the shape of letters (B, E, L and
T) (Figure 4.3). Each product formation requires several operations: loading plate on the
shuttle, different assembly operations, an inspection of the product, and finally unloading
product.

Figure 4.3: Basic components and products

54

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

Table 4.2 depicts different operations, their processing time, and possible machine in
which an operation is performed.

Operation name Designation Processing time (s) Realized by
Op1 Plate loading 10 R1
Op2 Axis mounting 20 R2, R3
Op3 r_ comp mounting 20 R2, R3
Op4 L_ comp mounting 20 R2, R4
Op5 I_ comp mounting 20 R4
Op6 Screw_ comp mounting 20 R3, R4
Op7 Inspection 5 M5
Op8 Plate unloading 10 R1

Table 4.2: Elementary operations (processing time, possible affectation)

In addition, the sequences of fabrication for each product are depicted in Table 4.3
Table 4.3 is read vertically for each product type column. For example, a product of type
B is produced by executing the ordered sequence: once Op1, three times Op2, twice Op3,
once Op4, once Op6, once Op7 and finally Op8 once.

Operation
name

Product types and assembly
sequence
B E L T

Op1 1 1 1 1
Op2 3 3 3 2
Op3 2 2 ­ 1
Op4 1 ­ 2 ­
Op5 ­ 1 ­ 1
Op6 1 ­ 2 ­
Op7 1 1 1 1
Op8 1 1 1 1

Table 4.3: The sequence of fabrication for each product

4.1.2 The proposed Multi­agent system (MAS)

The proposed MAS represents a set of soft agents, which describe the physical system
entities (products, machines and routings). The different agents interact and cooperate to
achieve the desired control functions. The description of different kind of agents is as
follows:

55

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

(a) Product agent (AgP):

• Each AgP represents an available product in the system.

• The agent has an overview of product status as processing time of each oper­
ations, operation carried, destination machine, etc.

• AgP is responsible to introduce the PDS paradigm by the product itself as a
physical aspect and it can apply its intelligence as a decisional aspect.

(b) Machine agent (AgM):

• Each AgM represents an available robot machine in the assembly

• The agent has an overview of machine status like machine queue status, prod­
ucts registered on the machine and the processing time of the operation.

• It has the responsibility to allow the product to pass to the corresponding ma­
chine or not.

(c) Routing agent (AgR):

• It represents the turntable of the physical assembly as decision point

• It determines the product travel in the system.

4.1.3 Communication protocol of the proposed MAS

Two types of messages are possible between different agents in order to form theMAS
communication protocol: registration messages and routing messages.

(a) Registration message:

• This happens at beginning of the next operation of the product will be per­
formed in a machine.

• AgP sends informationmessages to different appropriatemachine agents (AgMs)
to inquire about machine status.

• AgMs send back corresponding machine status to AgP when it selects the
appropriate machine according to its rule.

• AgP sends a registration message to the selected AgM.

(b) Routing message: The routing nodes are decisional points where the decision is
made to define the product path through the system. According to the type of rout­
ing, there are two kinds of possible routing messages:

• Product in front of machine rooting nodes

56

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

– AgP sends routing request message to AgM.

– The travel of product on the machine is authorized or not authorized de­
pending on machine rule and its queue status.

– AgR receives a routing order message from AgM to realize the approved
routine.

• Product in front of ordinary rooting

– AgP sends a routing order message to AgR in order to adjust the appro­
priate routing according to product status.

Table 4.4 summarize all the messages used in this proposed for both ACL that en­
sures inter­agent communication [18], and the communication between agents and their
corresponding physical entity with TCP/IP protocol.

Positioning
product

Message
type

Transmitter→reciver Designation

Output of
machine node
(operation is
finished)

TCP/IP PVirtual1→AgP Looking to accomplish next opera­
tions.

ACL AgP→AgMs Machines status request (informa­
tion).

AgMs→AgP Machines status send back (informa­
tion)

AgP→AgM Registration on machine destination
(order)

Machine routing
node

TCP/IP PVirtual→AgP Looking for appropriate routing.
ACL AgP→AgM Routing message (request)
TCP/IP AgM→M Queue machines status request (infor­

mation).
M→AgM Queue machines status send back (in­

formation).
ACL AgM→AgR Routing message (order).
TCP/IP AgM→M Diffusion of operation processing

time.
AgR→R Diffusion of appropriate routing.

Ordinary routing
node

TCP/IP PVirtual→AgP Looking for appropriate routing.
ACL AgP→AgR Routing message (order).
TCP/IP AgR→R Diffusion of appropriate routing.

Table 4.4: Exchanged messages within MAS into DES model

1PVirtual refers to the virtual product of simulation.

57

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

4.1.4 Product­driven approach

The employment of MAS offers to us the possibility to develop an intelligent product.
The implementation of the agents can make a product the main actor in decision­making
process throughout its life cycle in the shop floor.

AgP allows the product to apply intelligence, which is effective in the decision making
of FMS by sharing this intelligence with the aid of infotronic technology (RFID, WIFI,
etc.). [43]

Product is represented by unique identification (RFID tag), it is localized anywhere in
the system (depending on RFID reader location) and it can store its data and communicate
with its environment [44, 45]

4.1.5 FMS scheduling problem

Some operations are performed by different machines and there are different ways to
tranfer jobs between machines; what introduce the flexibility of the system. Inorder to
resolve our scheduling problem, Priority dispatching rules (PDRs) based Product­driven
system are proposed to control the robotised assembly cell.

PDRs are mainly used to face a dynamic unpredictable environment. They are able
to determine the processing priority of a job among several waiting jobs, on a maching
during the manufacuring process.

The proposed approach is integrated into aMulti­agent Control Framework.The schedul­
ing function is decomposed and distributed on different AgPs and AgMs. Accordingly,
each product available in the system can select a machine according to five proposed prod­
uct PDR’s assigned to product agent (Table 4.6). In addition, every machine performs the
passage order of registered product according to four proposed machine PDRs assigned
to each machine agent (Table 4.5).

PDRs
machine name

Description

SPT A product which has the shortest processing time .
LPT A product which has the longest processing time.
FIFO First input first output.
LIFO Last input first output.

Table 4.5: Dispatching rules assigned to a product

58

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

PDRs
product name

Description

M_ SPT
The machine with where the smallest processing time of the oper­
ation is realized.

M_ LPT
The machine with where the largest processing time of the opera­
tion is realized.

RP1
The least loaded machine and the shortest transportation time be­
tween a product location and product destination.

Table 4.6: Dispatching rules assigned to a machine

4.2 Experimental set­up

After discussing in details the different behaviours of the studied FMSofAIP­PRIMECA
and proposing a fitting PDS structure within a MAS framework; now, it is time to bring
all those predefined paradigms and tools into practice, that is implementing the cyber­
physical AIP­PRIMECA FMS.

4.2.1 DES model development

The DES model of AIP­PRIMECA FMS is developed in Flexsim 3D which provides
a realistic appearance of objects (Figure 4.4).

Figure 4.4: FlexSim DES model of AIP PRIMECA FMS

59

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

Before proceeding to different tests, it is necessary to have a valid and accurate model
in the HILS to maintain the reliability and stability of the proposed DCS.
The DES model is verified and validated according to transportation time between differ­
ent nodes of system (Table 4.1).

4.2.2 MAS development

The proposed MAS is developed on Netbeans IDE (see appendix A). It consists of
distinct agents are connected with their corresponding virtual object through a sockets
TCP/IP network.

• Five AgMs are created to represent the different robots in the system (simulation),
(R6 and R7 are not included).

• Eight AgQs represent all the possible decision points (routing) in the system (n1,n10
and n11 not included).

• The number of AgPs depends automatically on the number of available product in
the system.

The different exchanged messages are displayed in string format and they convey dis­
tinct information according to the message type. All this information is first coded by the
sender agent and sent to the receiver agent. The receiver agent collects the sent informa­
tion before their treatment.

Examples on sending messages between agents :

• 1z1z1z1z0z0z0z:
This message indicates that the available products in the system is 4 which are “B”,
“E”,”L”, “T” and the rest are not available (z is separator).

• St r ing m=” load ”+”z”+10+”z”+t [2]+ ”z” ;
Send (m, ”AgM1”) ;

This message indicates the agent t[2] (AgProdB) sends message to receiver agent
agM1 to load the product B through it with processing time equal to 10 (z here is
separator).

• St r ing m = ” routingQ1 ”+”z”+”1”+”z”+t [2]+ ”z” ;
Send (m, ”AgQ1”) ;

It is a product in front of ordinary routing message sent by product agent to
decision point Q1 to rotate (open), 1 indicates the inspection=0 and affectation=1.

60

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

• The registration message sent by an AgP to the selected AgM. The character “z” is
designed as a separator between diferent conveyed information and the sign “w” is
designed to specify the message ends (Registration z processing time z AgP w).
For instance:

St r ing m = ”timing_M2”+”z”+”Prod ”+t [1]+ ”z”+s11+ ”w” ;
SendSocket (m) ;

This message holds the processing time duration of productProd t[1]which is prod­
uct B in the Robot M2 and sent to flexsim simulation to recover the duration, at
same time save this message on history table as: timing_M2zProd B1z100, where
processing time is 100.

4.2.3 HILS validation strategy

A virtual product keeps circulating in the virtual system (DES model) until it reaches
a decisional point where it solicited HILS mechanism. Then, HILS mechanism involves
the physical product in decision making. After that, the corresponding physical product
allows the virtual product to trigger its correspondig AgP within MAS. Finally the deci­
sion taken is applied in the DES model.

There are several decisional point where an RFID reader cn be positioned. The choice
of a the decisional point is crucial to avoid redundancy of the test and hence improve its
cost­effectiveness. To achieve the desired test, a strategy is developed. It relies on the
following:

• Several decisional points are identified in the system and can contribute in validating
the PDS.

• The identified decisional points are distinguished into three groups:

– Product in output of machine nodes (R1, R2, R3, or R4).

– Product in front of machine routing nodes (n2, n4, n5, n6 or n8).

– Product in front of ordinary routing nodes (n3, n7 or n9).

• Decision making are the same in decision points belonging to the same group (the
same agent interaction mechanism for each group). Consequently, a single deci­
sional point represents fairly the group of decisional points to which it belongs. We
select for instance:

– The decisional point in the output of the machine R2.

61

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

– The decisional point in front of the ordinary routing node n3. The decision
point in front of the machine routing node n4.

According to Table 4.4, the decisional mechanisms employed in decisional point n4
are the most complex among the three chosen decisional points. The three types of agents
(AgP, AgM and AgR) are solicited in decision making when a product is in front of n4
(Figure 4.5). Furthermore, the choice of the decisional point n4 is a good choice to high­
light the distributed control of dynamic routing processes for intelligent products.

Figure 4.5: Zoom­in the selected decisional point n4

4.2.4 Test procedure

The aim of the proposed HILS validation test, the synchronization between the virtual
process model and the physical process. For this, the turntable is used as a physical au­
tomated mean of synchronization between virtual flow and physical flow. The following
strategy is adopted for the test:

1. Concerning the simulation loop:

(a) The launch of a production line of four (4) virtual products in the DES model
(Types B, E, L and T respectively).

(b) The queue capacity of each machine is fixed to one single product (no more
than one pending product in a machine queue).

(c) FIFO PDR is the selected for all machines.

(d) M_SPT PDR is selected for the four products.

62

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

(e) Successive assembly operations are carried out in the same machine on the
present product.

2. Concering the hardware elements

(a) Real products (four colored Legos) associated with each virtual product.

(b) Each real product is tagged by RFID with a UID (Unique ID).

(c) Arduino Uno µC board is used to command the RFID tag reading through
RC522 RFID module. The µC board commands also the turntable rotation.

(d) Siemens ET 200SP PLC1 is used to command the virtual flow depending on
the RFID reading.

Four AgPs are created and associated with the four virtual products we have launched
(types: B, E, L and T). Once each product loading operation is completed (at the output of
R1), the virtual product is looking for the destination machine where its next operations
will be realized. When the virtual product arrives in front of the routing node n4, it activate
a boolean PLC tag via OPC UA, and then, HILS procedure is initiated. The procedure
progresses as follows: (see Figure 4.6)

Step 1: Via OPC UA, the DES system writes the present virtual product type (1, 2 ,3 or 4
corresponding to B, E, L,or T respectively) in a PLC Tag.

Step 2: Via Modbus TCP, the PLC tag passes the type to Arduino µC board.

Step 3: According to that received type and the physical tag UID reading by RC522 RFID
module, Arduino rotates the turntable until bringing the corresponding physical
product type at the RC522 position.

Step 4: Via Modbus TCP, Arduino sends the physical product type to the ET 200SP PLC.

Step 5: If the corresponding physical product type received, then a boolean PLC tag is
activated and the DES system read it via OPC UA. Else, go to step 3.

Step 6: Via TCP/IP, the virtual product contacts its corresponding agent (AgP) and resume
its routing in the DES system.

1A simulated ET 200SP is used instead of a real physical one which was unavailable as a result of training
cancellation. PLCSIM Advanced software (see appendix C) simulates almost all functionalities of a real ET
200SP PLC

63

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

Figure 4.6: HILS validation scenario

4.2.5 Results and discussion

According to M_SPT rule (Table 4.6), AgPs associated to products B and L select
machine R2 to perform the next sequence of assembly operations(3Op22Op3 and 3Op2
respectively), whereas, AgPs associated with products E and T select machine R3 the cor­
responding next sequence of assembly operations (3Op22Op3 and 2Op2Op3 respectively).

Since FIFO is selected for both machines, two situations occurs:

• Product B access firstly to machine R2 and product L access to machine R2 queue
pending for completion of product B operations.

• Product E access to machine R3 and product T access to machine R3 queue pending
for completion of product E operations.

64

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

Figure 4.7 is a Gantt chart showing the time schedule of assembly sequence in ma­
chines R2 and R3.

Figure 4.7: Gantt chart of R2 and R3 machines opeations

Synchronization time induced by HILS mechanism (time taken by the turntable to
bring the corresponding physical product) does not affect the objectives of this validation
technique in this study. Accordingly, it is not mentioned in the Gantt chart of Figure 4.7.

Control messages sent by the MAS to the DES model are stored in a history table in
FlexSim. Figure 4.8b shows that messages are properly during all products cycles. The
output of MAS control application (Figure 4.8a) shows the assembly sequence of each of
the four products, it matches exactly the sequences defined previously in Table 4.3.

65

CHAPTER 4. CYBER­PHYSICAL PRODUCT­DRIVEN SYSTEM
IMPLEMENTATION

(a) Java MAS application output (b) History of received messages in FlexSim

Figure 4.8: Exchanged messages between MAS and DES

Conclusion

This chapter presented the implementation of a CPS emulating AIP­PRIMECA FMS
relying on theoretical knowledge acquired from previous chapters. A MAS Java applica­
tion is designed to control the DES model of the FMS based on product­driven approach.
HILS validation technique (including RFID technology, PLC and Arduino µC board) is
applied to a selected decisional point. The approach has shown promising results.

66

GENERAL CONCLUSION

General Conclusion

To conclude our work, we can say that it was an interesting challenge to implement
a cyber­physical manufacturing system based on PDS paradigm, controlled with a MAS
Java application and validated with HILS technique.

In the theoretical part, we focused on the concepts, theories of all the approaches, tech­
niques, protocols, software and hardware used in this study.

The generalities on simulation are firstly presented as well as the choice of FlexSim
software for simulating industrial systems whether for educational purposes or for an in­
dustry projects.

Next, we represented a theories of a different techniques used to link the cyberspace
(DESmodel and JADEMAS)with the physical world (Arduino, RFID, routing or turntable)
using Sockets, OPC UA and Modbus protocol, also we concentrated about more detailed
information on the hardware used (PLC, Arduino, RFID) to close the loop of HILS ap­
proach.

In the practical part, the proposed MAS is implemented using Java program, distinct
smart agents are also created representing different active parts of the system (products,
robots, routings). They are provided by priority dispatching rules as intelligent decision
contribution, sharing information between them, communicating with emulator via socket
TCP/IP as well as commanding their different virtual parts.

The emulator is designed by Flexsim software that contains the 3D simulation of AIP­
PRIMECA, many program functions for communicating with other external softwares as
JADE via Sockets and PLCSIM via OPC UA and different codes for managing and or­
dering the sent messages from the MAS.

RFID technology is used to ensure real time communication between the hardware
and software. The employment of this technology helped the HILS approach to be easily
used for the V&V of the proposed DCS.

67

GENERAL CONCLUSION

Although all the problem that have faced, especially some communication and hard­
ware malfunctions, the main objective was successfully achieved by combining all those
approaches together to reach so called hardware in the loop simulation for product driven
control of cyber­physical manufacturing system.

As further work, we propose:

• Expand our Hardware loop simulation by inserting more hardware as conveyor,
robot which means more additional protocols, algorithms and costs.

• Merge the dispatching rulesmethodwith optimization algorithms as neural network,
search harmony methods to minimize makespan or energy.

• Back up our communication between the duo spaces by IOT by inserting UDP pro­
tocol, WIFI, web platform development.

68

APPENDIX A. NETBEANS IDE

Appendix A

NetBeans IDE

NetBeans is an IntegratedDevelopment Environment (IDE) for Java. NetBeans allows
applications to be developed from a set of modular software components called modules.
NetBeans runs on Windows, macOS, Linux and Solaris. In additional to Java develop­
ment, it has extensions for other languages like PHP, C, C++, HTML5 and JavaScript.
NetBeans IDE supports development of all Java application types (Java SE, Java ME,
web, EJB and mobile applications).[46]

A.1 Project creation

When you create an IDE project, you create an environment in which to build and run
your applications. Using IDE projects eliminates configuration issues normally associated
with developing on the command line. You can build or run your application by choosing
a single menu item within the IDE in the following manner :

1. Start NetBeans IDE.

2. In the IDE, choose File, New project as shown in Figure A.1 below.

Figure A.1: Windows platform of NetBeans software

APPENDIX A. NETBEANS IDE

3. In the new project wizard expand the java category and select Java application as
shown in FigureA.2 below, then click Next.

Figure A.2: New Project wizard, choose Project page

4. In the Name and Location page of the wizard (Figure A.3), do the following:

• In the project Name field, type your project’s name (”aippffa” for our project).

• In the Create Main Class field, type your main class(aippffa.aippffa or like our
main class which is:jade.Boot).

• Finally, click finish.

Figure A.3: New Project wizard, name and location page

APPENDIX A. NETBEANS IDE

5. The project is created and opened in the IDE. The essential components should be
seen as follow:

• The Project’s window, which contains a tree view of the components of the
project, including source files, libraries that your code depends on, and so on.

• The Source Editor window with a file called ”aippffa.java” open.

• The Navigator window, which you can use to quickly navigate between ele­
ments within the selected class. (see Figure A.4)

Figure A.4: NetBeans IDE with the Aippffa project open

A.2 Class creation

To create Java class in NetBeans, you should follow all the steps:[46]

1. Create a new Java application. Be sure to uncheck Create main class.

2. Right­click on the Source Packages folder and select New, Java Package. Enter
your webmail user name for the name of the project.

3. Right­click the user name package and select New, Java Main Class.

4. Name your class menu.

5. Run the project. You will be prompted to select the main class.

Figure A.5 summarize those steps:

APPENDIX A. NETBEANS IDE

Figure A.5: Java class creation in NetBeans IDE

APPENDIX B. TIA PORTAL

Appendix B

TIA Portal

The Totally Integrated Automation Portal, referred to as TIA Portal in the following,
offers all the functions you need for implementing your automation task assembled in a
single, cross software platform. It is the first shared working environment for integrated
engineeringwith the various SIMATIC systemsmade available within a single framework.
The TIA Portal therefore also enables reliable, convenient cross­system collaboration for
the first time. All required software packages, from hardware configuration and program­
ming to visualization of the process are integrated in a comprehensive engineering frame­
work.[47]

B.1 Advantages of working with TIA Portal

The following features provide efficient support during the realization of your automa­
tion solution when working with TIA Portal:

• Integrated engineering with a uniform operating concept.

• Consistent, centralized data management with powerful editors and universal sym­
bols.

• Comprehensive library concept.

• Multiple programming languages.

APPENDIX B. TIA PORTAL

B.2 User Interface

B.2.1 Portal view

The portal view provides a task­oriented view of the toolbox. The goal of the portal
view is to provide a simple navigation in the tasks and data of the project. This means the
functions of the application can be reached via individual portals for the most important
tasks. Figure B.1 shows the structure of the portal view:

Figure B.1: The structure of TIA Portal platform [47]

1 Portals for the different tasks: The portals provide the basic functions for the indi­
vidual task areas. The portals that are provided in the portal view depends on the
products that have been installed.

2 Actions for the selected portal: Here, you will find the actions available to you in
the portal you have selected. You can call up the help function in every portal on a
context­sensitive basis.

3 Selection panel for the selected action: The selection panel is available in all portals.
The content of the panel adapts to your current selection.

4 Switch to project view: You can use the ”Project view” link to switch to the project
view.

5 Display of the project that is currently open: Here, you can obtain information about
which project is currently open.

APPENDIX B. TIA PORTAL

B.2.2 Project view

The project view is a structured view of all components of a project. In the project
view the various editors are available that you can use to create and edit the corresponding
project components.Figure B.2 shows the structure of the project view:

Figure B.2: TIA Portal project view [47]

1 Menu bar: The menu bar contains all the commands that you require for your work.

2 Toolbar: The toolbar provides you with buttons for commands you will use fre­
quently. This gives you faster access to these commands than via the menus.

3 Project tree: The project tree gives you access to all components and project data.

4 Work area: The objects that you can open for editing purposes are displayed in the
work area.

5 Task cards: Task cards are available depending on the edited or selected object. The
task cards available can be found in a bar on the right­hand side of the screen. You
can collapse and reopen them at any time.

6 Details view: Certain contents of a selected object are shown in the details view.
This might include text lists or tags.

7 Inspector window: Additional information on an object selected or on actions exe­
cuted are displayed in the Inspector window.

8 Switching to portal view: You can use the ”Portal view” link to switch to the portal
view.

APPENDIX B. TIA PORTAL

B.3 Project creation

The following steps show how to create a new project:[47]

1. Start Totally Integrated Automation Portal (TIA Portal).

2. Create the project under any path as shown in Figure ??

Figure B.3: Tia Portal project creation: specifying name and path [47]

Next, you should add a new PLC to the project and configure its properties. To add a
new device to the project, follow these steps:

1. Use the portal to add a new device as shown in Figure B.4:

Figure B.4: Device & networks: add new device [47]

2. Select the desired PLC.

3. Make sure that the “open device view” option is enabled, if the option is not enabled,
left click on the option to enable it.

4. Click “add” as shown in Figure B.5:

APPENDIX B. TIA PORTAL

Figure B.5: PLC device chosen [47]

With the PLC, the organization block “Main [OB1]” is automatically created in the
project. The following steps show how to open the organization block in program editor:

1. Open “the program blocks” folder in the project tree.

2. Open the organization block “Main [OB1]” as shown in Figure B.6.

Figure B.6: Project tree, program blocks, Main [OB1] [47]

APPENDIX B. TIA PORTAL

B.4 Tags

A tag is a variable used in the program that can take on different values. Depending
on the range of application. The tags are divided into the following categories:

• Local tags: they apply only in the block in which they are defined.

• PLC tags: they apply throughout the entire PLC.

B.4.1 PLC tags

A PLC tags is made up of the following components:

• Name: The name of a tag is valid for a PLC and may only occur once within the
entire program

• Data type: The data type defines the value representation and the permitted value
range.

• Address: The address of a tag is absolute and defines the memory area from which
the tag reads or writes a value.

APPENDIX C. S7­PLCSIM ADVANCED

Appendix C

S7­PLCSIM Advanced

Simulation systems support the development of programs and the deployment in pro­
duction that follows. In the automation world, a simulated test environment shortens com­
missioning times. It is possible to test the program after program changes in the virtual
controller before it is loaded into the corresponding real controller and the plant is put into
operation.

Using S7­PLCSIM Advanced, we can simulate our CPU programs on a virtual con­
troller without a need for a real controller for this. We can configure your CPU in TIA
Portal, program our application logic and then load the hardware configuration and the
program into the virtual controller. From there we can run our program logic, observe the
effects of simulated inputs and outputs and adapt our programs. In addition to commu­
nicating via Softbus, S7­PLCSIM Advanced provides a full Ethernet connection and can
thus also communicate distributed.[48]

C.1 Advantages of the software

The use of S7 PLCSIM Advanced offers numerous advantages:

• Improve quality of automation projects.

• Accelerate time to market.

• Reduce production times.

• Reduce risk for commissioning.

• Avoid costs for hardware in simulation environments.

• Increase efficiency in maintenance.

APPENDIX C. S7­PLCSIM ADVANCED

C.2 User Interface

S7­PLCSIM Advanced provides a control panel (Figure C.1) for creating and operat­
ing instances of a virtual controller.[48]

Figure C.1: PLCSIM Advanced control panel [48]

1 Online Access: Switch to select the communication interface (either local via soft­
bus or via TCP/IP).

2 TCP/IP communication: Selection of network adapter for distributed communica­
tion.

3 Virtual Time Scaling: Slider to adjust the scaling factor.

4 Start Virtual S7­1500 PLC: Opens and closes the text boxes for creating the in­
stance (virtual controller). Here we specify name, network addresses and type of
the instance.

5 Buttons: Buttons for operating the selected instances.

APPENDIX C. S7­PLCSIM ADVANCED

6 Instance list: The list shows the available local instances. The instances can be
resorted using the mouse cursor.

7 LED displays: The meaning of the LED is displayed when you move the mouse
over it.

8 Icons:Icons for operating the instance

9 Runtime Manager Port: Here you open a port on the local PC.

10 Virtual SIMATICMemory Card: Open an Explorer window here in which you select
the path to the virtual memory card.

11 Display messages: Here you disable the PLCSIM Advanced messages in the Win­
dows task bar for the duration of the operation.

12 Function manual: This is where you open the S7­PLCSIM Advanced Function
Manual in a standard PDF viewer.

13 Exit: Exit logs off all instances and closes the Control Panel.

REFERENCES

References

[1] Yongxin Liao et al. “Past, present and future of Industry 4.0 ­ a systematic litera­
ture review and research agenda proposal”. In: International Journal of Production
Research 55 (Mar. 2017).

[2] Alexander Verl, Armin Lechler, and Jan Schlechtendahl. “Glocalized cyber physi­
cal production systems”. In: Production Engineering 6 (Dec. 2012).

[3] Laszlo Monostori et al. “Cyber­physical systems in manufacturing”. In: CIRP An­
nals ­ Manufacturing Technology 65 (Aug. 2016), pp. 621–641.

[4] Jay Lee, Behrad Bagheri, and Hung­An Kao. “A Cyber­Physical Systems architec­
ture for Industry 4.0­based manufacturing systems”. In: SME Manufacturing Let­
ters 3 (Dec. 2014).

[5] Ke­Sheng Wang. “Intelligent and integrated RFID (II­RFID) system for improv­
ing traceability in manufacturing”. In: Advances in Manufacturing 2 (June 2014),
pp. 106–120.

[6] Z.X. Guo et al. “An RFID­based intelligent decision support system architecture
for production monitoring and scheduling in a distributed manufacturing environ­
ment”. In: International Journal of Production Economics 159 (Jan. 2015), pp. 16–
28.

[7] HaoZhang et al. “ADigital Twin­BasedApproach forDesigning andMulti­Objective
Optimization of Hollow Glass Production Line”. In: IEEE Access 5 (Oct. 2017),
pp. 26901–26911.

[8] DuncanMcfarlane et al. “The intelligent product inmanufacturing control andman­
agement”. In: J. EAIA (Jan. 2002), pp. 54–64.

[9] Ricki Ingalls. “Introduction to simulation: introduction to simulation.” In: Jan. 2002,
pp. 7–16.

[10] Pierre­Jean Erard and Pontien Déguénon. SIMULATION PAR EVENEMENTS DIS­
CRETS. 1996.

[11] Flexsim Software Products. URL: https : / / www . flexsim . com/ [Access date:
04/2020].

REFERENCES

[12] FlexSim. URL: https://en.wikipedia.org/wiki/FlexSim [Access date: 05/2020].

[13] Flexsim Software Products. Flexsim User Manual.

[14] EMULATION. URL: https ://docs . flexsim.com/en/20 .0/Reference/Tools/
Emulation/ [Access date: 08/2020].

[15] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. “Developing Multi­
agent Systems with JADE”. In: Developing Multi­Agent Systems with JADE (Feb.
2007), pp. 1–286.

[16] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. “Developing Multi­
agent Systems with JADE”. In: July 2000, pp. 89–103.

[17] Telecom Italia Lab. URL: http://jade.tilab.com/.

[18] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing Multi­
Agent Systems with JADE. Wiley Series in Agent Technology. 2007.

[19] Ahmed R. Sadik and Bodo Urban. “A Holonic Control System Design for a Human
& Industrial Robot Cooperative Workcell”. In: May 2016, p. 119.

[20] Lesson: All About Sockets. URL: https : / / docs . oracle . com / javase / tutorial /
networking/sockets/ [Access date: 06/2020].

[21] Network Programming sing sockets. URL: http ://cs .gmu.edu/~setia/cs707/
slides/sockets.pdf [Access date: 06/2020].

[22] TCP/IP Protocol Services. URL: http://diranieh.com/SOCKETS/TCPIP.htm
[Access date: 06/2020].

[23] The OPC Foundation. The Interoperability Standard for Industrial Automation &
Other RelatedDomains. URL: https://opcfoundation.org/ [Access date: 06/2020].

[24] OLE for Process Control (OPC) Overview. Emerson Process Management Group.

[25] Marcel Nicola et al. “SCADASystemsArchitecture Based onOPC andWeb Servers
and Integration of Applications for Industrial Process Control”. In: (Jan. 2018).

[26] Eugen Diaconescu and Cristian Spirleanu. “Communication Solution for Industrial
Control Applications with Multi­agents Using OPC Servers”. In: Oct. 2012.

[27] The OPC Foundation. URL: https://opcfoundation.org/ [Access date: 06/2020].

[28] Wolfgang Mahnke, Stefan­Helmut Leitner, and Matthias Damm. “OPC unified ar­
chitecture”. In: Mar. 2009, p. 7.

[29] Why OPC UA Matters. URL: https://www.ni.com/en- lb/innovations/white-
papers/12/why-opc-ua-matters.html [Access date: 09/2020].

[30] B.M. Wilamowski and J.D. Irwin. Industrial communication systems. Apr. 2016,
pp. 1–962.

REFERENCES

[31] Mathworks. What Is Hardware­In­The­Loop Simulation? URL: https : / / www .
mathworks . com/help/physmod/simscape/ug/what - is - hardware - in - the -
loop-simulation.html [Access date: 05/2020].

[32] Bachir Mihoubi et al. “Hardware in the loop simulation for product driven control
of a cyber­physical manufacturing system”. In: Production Engineering 14 (Mar.
2020).

[33] Frank D.Petruzella. Programmable logic controllers. 4th. 2011.

[34] W.Bolton. Programmable logic controllers. 5th. 2009.

[35] Siemens. Simatic ET 200SP CPU 1512SP­1 PN manual.

[36] D. Ibrahim SDCARDPROJECTSUSINGTHEPICMICROCONTROLLERNewnes.
Jan. 2010.

[37] Components101.ArduinoUno. URL: https://components101.com/microcontrollers/
arduino-uno [Access date: 09/2020].

[38] Ethernet Shield. URL: https://www.arduino.cc/Main/ArduinoEthernetShield
[Access date: 08/2020].

[39] Ethernet library. URL: https://www.arduino.cc/en/reference/ethernet [Access
date: 08/2020].

[40] V.Daniel Hunt. RFID­ A GUIDE TO RADIO FREQUENCY IDENTIFICATION.
2007.

[41] RC522 RFID Module. URL: https://components101.com/wireless/rc522-rfid-
module [Access date: 08/2020].

[42] SPI library. URL: https ://www.arduino . cc/en/reference/SPI [Access date:
08/2020].

[43] Hind EL HAOUZI and André Thomas. “Design and validation of a product­driven
control system based on a six sigma methodology and discrete event simulation”.
In: Production Planning and Control 20 (Sept. 2009).

[44] GerbenMeyer, Gijs Roest, and N. Szirbik. “Intelligent Products for Monitoring and
Control of Road­Based Logistics”. In: Sept. 2010, pp. 1–6.

[45] Duncan Mcfarlane et al. “Product intelligence in industrial control: Theory and
practice”. In: Annual Reviews in Control 37 (Apr. 2013), pp. 69–88.

[46] NetBeans IDE Java Quick Start Tutorial. URL: https://netbeans.org/kb/docs/
java/quickstart.html [Access date: 08/2020].

[47] Siemens. SIMATIC TIA Portal STEP 7 Basic V10.5 Getting Started. 2009.

[48] Siemens. S7­PLCSIM Advanced Function Manual. 2016.

