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Abstract 

 

Tractography represents fiber tracts of the cerebral white matter and their 

connections in the brain based on Diffusion Weighted Magnetic Resonance Imaging 

(DW-MRI), which can reveal abnormalities in the white matter especially in fibers’ 

structure. 

While this technique is very useful in getting a 3d model of the brain’s neural 

circuits, it still has some important limitations as it produces a considerable amount of 

false fibers connections that give rise to false information especially when dealing with 

abnormal brain tissues.  

The main objective of our project is to develop an algorithm that aims to improve 

the accuracy of the tractography results using fiber to bundle coherence measures by 

cleaning the tractography streamlines and getting rid of spurious fibers and thus 

obtaining more accurate 3d representation of the brain which will also improve tumors 

visualization. 
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General Introduction 

 

Cerebral dissection used to be the only way to access the neural, then anatomists started 

using chemical markers to do neurography. More recently, neural fiber tractography based on 

local injection of chemical markers and subsequent observation of the induced propagation 

yielded high-quality connectivity mapping in the cat and monkey cerebral cortex. As of today, 

diffusion-weighted (DW) magnetic resonance imaging (MRI) is the unique noninvasive 

technique capable of quantifying the anisotropic diffusion of water molecules in biological 

tissues like the human brain white matter. 

The great success of DW-MRI comes from its capability to accurately describe the 

geometry of the underlying microstructure. DW-MRI captures the average diffusion of water 

molecules, which probes the structure of the biological tissue at scales much smaller than the 

imaging resolution. The diffusion of water molecules is Brownian under normal unhindered 

conditions, but in fibrous structure such as white matter, water molecules tend to diffuse along 

fibers. Due to this physical phenomenon, DW-MRI is able to obtain information about the 

neural architecture in vivo.  

On the other side, tractography has opened an entirely new noninvasive window on the 

white matter connectivity of the human brain and allows to visualize the different fibers 

connections. 

The connections of fibers in the human brain are complicated, and a crucial limitation of 

tractography is its inability to determine the precise origin and termination of fibers 

connections and usually ends up with many false fibers’ connections.  

One of the major challenges of the tractography is to get precise connections and get rid 

of the spurious neural connections, that’s why we are presenting in this work a method to 

improve the accuracy of the tractography output. 

The starting point and motivation of this work is to overcome the limitations of the 

tractography process by Cleaning its results and eliminate the spurious fibers that give rise to 

unprecise fibers connections, that would result in more precise visualization of tumors in 

brains with abnormal tissues. 

This report consists of four chapters. The first chapter aims to give an overall overview 

of the brain anatomy and it neural tissues and to present some MRI basics and principles and 

covers the principles of DW-MRI and high angular resolution diffusion imaging (HARDI) 
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reconstruction techniques. In particular, the fiber reconstruction algorithms to infer 

microstructure of biological tissues. The second chapter is devoted for presenting 

tractography algorithms both deterministic and probabilistic and showing the difference 

between them and then we will show our contribution by improving the tractography process 

by cleaning the results based on the bundle to fiber measures. Ultimately, chapter three 

presents the experimental results obtained from applying the algorithms described in chapter 

two and three on our dataset. Finally, we present our conclusions about the experiments and 

the results and suggest possible perspectives are drawn. 
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Brain Anatomy, MRI Basics and 

Reconstruction Methods 
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I.1 Introduction 

In this chapter, we will start by covering the basic cerebral anatomy of the white matter. 

In particular, what are the different brain and neural tissues? What is the organization of the 

white matter? How is the brain connected? What are some of the large fiber bundles in the 

brain? And cover some MRI basics and how it works. These notions are important to 

understand  

Afterwards, we will cover different reconstruction methods end their evolution from 

basic diffusion principles and diffusion tensor imaging to q-space imaging (QSI), high angular 

resolution diffusion imaging (HARDI) and beyond. 

I.2. The human brain and neural tissue 

The brain can roughly be split up into two different tissue types: gray matter and white 

matter. The gray matter (GM) contains neuronal cell bodies and dendrites, and can be found 

in the cerebral cortex and basal nuclei. Moreover, gray matter is predominantly found in the 

functional regions of the brain, such as the sensory, motor and association areas. White matter 

(WM) mainly consists of myelinated fibers, the axons, that are grouped into WM 

bundles/tracts. Specifically, the WM bundles form the connections that allow the different 

functional regions of the brain to communicate with each other and the rest of the body. 

 

Figure I.1: Structure of a typical neuron [1]. 

I.3. Diffusion in the brain 

At a microscopic scale, water molecules freely move and collide with each other in an 

isotropic medium according to Brownian motion [1]. This is illustrated in Figure I.2. 
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The macroscopic process of diffusion can also be described by Fick’s first law, derived 

by Adolf Fick in 1855 [2]. It relates the concentration difference of the diffusion substance C 

to a flux. The flux, J, is proportional to the gradient of the concentration, ∇C. The 

 

Figure I.2: Simulation of Brownian motion of a particle. 

proportionality constant D is the diffusion coefficient and the governing equation is given by 

 𝐽 =  −𝐷𝛻𝐶 (I.1) 

However, the Brownian motion is not efficient when it comes to detecting single water 

molecules as opposed to detecting a large set of particles. 

The diffusion probability density function was related by Einstein which is able to 

predict the displacement given a period of time. [3] 

 𝑝(𝑟, 𝑡) =
1

√(4𝜋𝑡𝑑𝑐)
3
𝑒
−‖𝑟‖2

4𝑡𝑑𝑐  (I.2) 

Where: dc is the diffusion coefficient (unit: m2/s), r is the displacement vector (unit: m), t is 

the time (unit: s). 

From equation (I.2), we can derive Einstein’s equation that describes the relation 

between the mean squared displacement and the diffusion coefficient 

 ‖𝑟‖2 = 6𝑑𝑐𝑡 (I.3) 

Importantly, isotropic diffusion occurs when the motion of the molecules is equal in all 

directions, whereas a directionally dependent diffusion is referred to as anisotropic diffusion. 

In the brain, anisotropic diffusion primarily occurs in the white matter, whereas the diffusion 

in gray matter is mostly isotropic. 
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I.4. MRI Basics 

In magnetic resonance imaging (MRI), magnetic fields are used to manipulate and 

measure the magnetization due to nuclear spins in the body. In order to create an image, three 

types of magnetic fields are used in MRI. First of all, the nuclear spins are aligned in the 

direction of a strong static magnetic field (> 1.5 Tesla), the B0 field. The nuclear spins (and 

therefore the magnetization) will start to precess around this B0 field at a frequency known as 

the Larmor frequency, which is proportional to the field strength. 

 

Figure I.3: a)- Anisotropic layered structure                                    b)- Isotropic uniform structure 

 

Figure I.4: Figure: Isotropic and anisotropic diffusion in the brain. In the white matter of the corpus callosum 

(red), diffusion occurs preferentially along the axonal fibers, resulting in anisotropic diffusion (b). In the 

ventricular cerebrospinal fluid (CSF; green), diffusion is unhindered and can be described as isotropic (c). 

Diffusion tensor ellipsoids representing anisotropic and isotropic diffusion are shown in b and c, respectively. 

 

Figure I.5: Schematic of the MagViz system. One pair of G y gradient coils is not shown for clarity. 
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Seven Gradient coils are used to generate gradients in the static magnetic field and 

introduce a positional dependency of the precession frequencies, which makes it possible to 

differentiate between signals coming from different positions in the body. Lastly, radio 

frequency (RF) fields are used to flip the magnetization into a plane that is transverse to the 

B0 field. This allows for measurement of the weak RF fields generated by the processing spins 

using receive coils. As a result of the positional dependence of the precession frequency this 

signal can be used to form an image 

 

Figure I.6: Gradients components. 

I.4.1. Pulse gradient spin echo 

The Stejskal-Tanner imaging sequence is used to measure the diffusion of water 

molecules in a given direction gi , i = 1,...,N. This pulse sequence is illustrated in Figure I.7. 

This sequence uses two gradient pulses g(t) in the direction g, of duration time δ, to control 

the diffusion-weighting. They are placed before and after a 180°, degrees refocusing pulse. 

More specifically, a first 90° degrees RF is applied to flip the magnetization in the transverse 

plane. The first gradient pulse causes a phase shift of the spins whose position are now a 

function of time. Spin position is in fact assumed to stay constant during time δ. Finally, the 

180° pulse combined with the second gradient pulse induces another phase shift. It is applied 

after a time ∆ separating the two gradient pulses. This pulse cancels the first phase shift only 

for static spins. On the other hand, spins under Brownian motion during the time period ∆ 

separating the two pulses undergo different phase shifts by the two gradient pulses, resulting 

in a T2 signal attenuation [4]. 

Stejskal and Tanner [5] showed that the signal attenuation S(q,τ) is expressed as the 3-

dimensional (3D) Fourier transform F of the ensemble average propagator P, 
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𝑆(𝑞, 𝜏)

𝑆0
= ∫𝑃(𝑟|𝑟0, 𝜏)𝑒

−2𝜋𝑖𝑞𝑇𝑅𝑑𝑟 = 𝐹[𝑃(𝑟|𝑟0, 𝜏)]

𝔑3

 (I.4) 

Where the value of q is given by q = γδG/2π, with 𝜸 the nuclear gyromagnetic ratio for water protons, G the 

applied diffusion gradient vector, S0 is the baseline image acquired without any diffusion gradients (also called 

b = 0 image) and P(r|r0,τ) is the diffusion PDF or diffusion propagator of water molecules introduced earlier. 

This P is ultimately the function we are looking to reconstruct in diffusion MRI.  

Intuitively, one has to sample the diffusion PDF along many q vectors to be able to 

reconstruct the diffusion PDF. The space of all possible 3D q vectors is called q-space. This is 

 

Figure I.7: Schematic Stejskal-Tanner imaging PGSE sequence. RF pulses could more realistic. 

the idea behind q-space imaging [6]. If the diffusion PDF is assumed to be Gaussian, one can 

work out the Fourier integral in Eq. I.4 analytically. The Stejskal-Tanner signal attenuation 

equation then becomes: 

 𝑆(𝑞, 𝜏) =  𝑆0𝑒
−𝑟𝑞𝑇𝐷𝑞 (I.5) 

Where D(q) = qTDq is the ADC. The signal attenuation is also often written with respect to 

unit vector, g = q/|q|, and it is common to introduce the b-value, b = τ|q|2. We thus obtain a 

signal attenuation with respect to the b-value given by 

 𝑆(𝑞, 𝜏) =  𝑆0𝑒
−𝜏|𝑞2|𝑔𝑇𝐷𝑔 ↔  𝑆(𝑏, 𝑔) =  𝑆0𝑒

−𝑏𝑔𝑇𝐷𝑔 = 𝑆0𝑒
−𝑏𝑔𝑇𝐷𝑔 (I.6) 
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I.4.2. Diffusion-Weighted Imaging (DWI) and b-values 

Diffusion-weighted imaging (DWI) is a form of MR imaging based upon measuring the 

random Brownian motion of water molecules within a voxel of tissue. In general, simplified 

terms, highly cellular tissues or those with cellular swelling exhibit lower diffusion 

coefficients. Diffusion is particularly useful in tumor characterization and cerebral ischemia. 

The diffusion is restricted by the structure of the tissue and this is normally called the 

apparent diffusion coefficient (ADC). The MR signal in dMRI is proportional to the T2 

relaxation, the diffusion in a voxel and the intra-voxel in-coherent motion. These last two 

parameters cannot be measured independently and are combined in the apparent diffusion 

coefficient (ADC), which results in the signal equation given below: 

 

  𝑆 = [ρ]𝑒
−𝑡
𝑇2 𝑒−𝑏𝐷 (I.7) 

Equation I.7 shows that the signal measured in dMRI is proportional to the proton density [ρ] 

and can be seen as a mix of a T2 weighted signal and a diffusion weighted signal. The b-value 

is a factor that reflects the strength and timing of the gradients used to generate diffusion-

weighted images. The higher the b-value the stronger the diffusion effects. Figure I.8 shows 

DW images for different b-values. We clearly note the importance of the b-value. 

 

Figure I.8: Diffusion-weighted images for different b-values.  



CHAPTER I                         BRAIN ANATOMY, MRI BASICS AND RECONSTRUCTION METHODS  
 

24 
 

The b-value is a function of the parameters shaping the gradient pulses, has units of mm−2s 

and is defined as: 

 𝑏 = 𝛾2𝐺2𝛿2(∆ − 
𝛿

3
) (I.8) 

Where γ represents the gyromagnetic ratio, G denotes the strength of the diffusion sensitizing gradient pulses, δ 

is the duration of the separate pulse sand ∆ stands for the time between the starting points of the two pulses 

I.5 Reconstruction techniques: 

One of the main goals of modern diffusion MRI is to determine, from a set of 

measurements in each voxel of an image volume, the dominant fiber orientation(s) in each 

voxel. Diffusion-tensor MRI was the first method to allow mapping of fiber orientations over 

an image volume and remains the most common. However, a drawback of diffusion-tensor 

MRI is that it can only reveal a single fiber orientation in each voxel and fails in voxels 

containing complex tissue architecture with more than one significant fiber orientation. 

Recently, a new generation of diffusion MRI technique has emerged. These techniques retain 

the desirable qualities of both diffusion-tensor MRI and aim to reveal complex tissue 

architectures with acquisition requirements similar to diffusion-tensor MRI. 

I.5.1. Diffusion Tensor Imaging (DTI) 

A. Diffusion Tensor model 

In vivo, the exponential proportionality of the dMRI signal to a single scalar ADC is only 

true in tissue with isotropic diffusion. If we want to describe anisotropic diffusion, the 3D 

diffusion profile needs to be taken into account. The diffusion tensor (DT) models the 

diffusion profile as an ellipsoid by assuming a single Gaussian diffusion process in a voxel, 

which is described by a 3 x 3 DT [40]:  

 𝐷 = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧
𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧
𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

] (II.9) 

With the diagonal elements representing the diffusion in three orthogonal directions and the 

off-diagonal elements representing the correlations of random motion between each pair of 

principal direction. In general, the orthogonal directions (x,y,z) are aligned with the gradients 

of the MR-system. The DT can be estimated by solving a linear system of 7 acquisitions, 

which consist of 6 acquisitions with non-colinear gradient directions and a b=0 acquisition to 

estimate the non-diffusion weighted signal. 
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The diffusion tensor is represented in 3×3 symmetric matrix as shown in figure I.9,             

where DXY = DYX, DXZ = DZX and DYZ = DZY. This means the diffusion tensor matrix is 

symmetric with only 6 unique elements. To estimate all of them we need a minimum of 7 

measurements, one baseline (b0) and 6 source data sets. 

The diffusion tensor is usually calculated from diffusion weighted images (DWI) by solving 

the Stejskal-Tanner equation: 

 𝑆𝑘 = 𝑆0𝑒
−𝑏𝑔𝑘

𝑇𝐷𝑔𝑘 (I.10) 

   

Where g is the gradient direction is written as: 

 𝑔 = (

𝑔𝑥
𝑔𝑦
𝑔𝑧
) (I.11) 

 

Figure I.9: Diffusion tensor representation 

From Eq. (I.10) we get: 

 
𝑔𝑇𝐷𝑔 = − 

ln (
𝑆
𝑆0
)

𝑏
 

(I.12) 

By replacing g and D in Eq. (I.12) we get: 

 (𝑔𝑥 𝑔𝑦 𝑔𝑧)(

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧
𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧
𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

)(

𝑔𝑥
𝑔𝑦
𝑔𝑧
) = − 

ln (
𝑆
𝑆0
)

𝑏
 (I.13) 

The right side of Eq. (I.13) can be expanded as follows: 

 𝑔𝑇𝐷𝑔 =  𝑔𝑥
2𝐷𝑥𝑥 + 𝑔𝑦

2𝐷𝑦𝑦 + 𝑔𝑧
2𝐷𝑧𝑧 + 2𝑔𝑥𝑔𝑦𝐷𝑥𝑦 + 2𝑔𝑥𝑔𝑧𝐷𝑥𝑧 + 2𝑔𝑦𝑔𝑧𝐷𝑦𝑧 (I.14) 

We replace now the Eq. (I.13) in Eq. (I.14) equation we get: 
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𝑔𝑥
2𝐷𝑥𝑥 + 𝑔𝑦

2𝐷𝑦𝑦 + 𝑔𝑧
2𝐷𝑧𝑧 + 2𝑔𝑥𝑔𝑦𝐷𝑥𝑦 + 2𝑔𝑥𝑔𝑧𝐷𝑥𝑧 + 2𝑔𝑦𝑔𝑧𝐷𝑦𝑧 = − 

ln (
𝑆
𝑆0
)

𝑏
 

(I.15) 

Sk, S0, gk are all known, and Since we have six unknown parameters of the diffusion tensor 

we need M applied gradient where M > 6. 

Finally, we get 

 𝑔𝑖
𝑇𝐷𝑔𝑖 = − 

ln(
𝑆

𝑆0
)

𝑏
                     i ∈ 1, . . . , M  (I.16) 

 (
𝑔1,𝑥
2 𝑔1,𝑦

2 𝑔1,𝑧
2 2𝑔1,𝑥𝑔1,𝑦 2𝑔1,𝑥𝑔1,𝑧 2𝑔1,𝑦𝑔1,𝑧

. . . . . . . . . . . .
𝑔𝑀,𝑥
2 𝑔𝑀,𝑦

2 𝑔𝑀,𝑧
2 2𝑔𝑀,𝑥𝑔𝑀,𝑦 2𝑔𝑀,𝑥𝑔𝑀,𝑧 2𝑔𝑀,𝑦𝑔𝑀,𝑧

)

(

 
 
 
 

𝐷𝑥𝑥
𝐷𝑦𝑦
𝐷𝑧𝑧
𝐷𝑥𝑦
𝐷𝑥𝑧
𝐷𝑦𝑧)

 
 
 
 

=
−1

𝑏𝑖

(

 
 
 
 
ln (
𝑆1
𝑆0
)

.

.

.

ln (
𝑆𝑀
𝑆0
)
)

 
 
 
 

   (I.17) 

To solve for diffusion tensor parameters, we apply the Linear Least Square method wich 

is illustrated in Eq. (I.18) on Eq. I.17): 

 𝑥∗ = (𝐴𝑇𝐴)−1𝐴𝑇𝑌 (I.18) 

Where  

 𝑥∗ =

(

 
 
 
 

𝐷𝑥𝑥
𝐷𝑦𝑦
𝐷𝑧𝑧
𝐷𝑥𝑦
𝐷𝑥𝑧
𝐷𝑦𝑧)

 
 
 
 

 (I.19) 

 𝐴 = (
𝑔1,𝑥
2 𝑔1,𝑦

2 𝑔1,𝑧
2 2𝑔1,𝑥𝑔1,𝑦 2𝑔1,𝑥𝑔1,𝑧 2𝑔1,𝑦𝑔1,𝑧

. . . . . . . . . . . .
𝑔𝑀,𝑥
2 𝑔𝑀,𝑦

2 𝑔𝑀,𝑧
2 2𝑔𝑀,𝑥𝑔𝑀,𝑦 2𝑔𝑀,𝑥𝑔𝑀,𝑧 2𝑔𝑀,𝑦𝑔𝑀,𝑧

) (I.20) 

 𝑌 =
−1

𝑏𝑖

(

 
 
 
 
ln (
𝑆1
𝑆0
)

.

.

.

ln (
𝑆𝑀
𝑆0
)
)

 
 
 
 

 (I.21) 

B. Diffusion Tensor Imaging measurements 

The diffusion tension model allows us to extract many useful parameters, the main 

diffusion orientation is determined by finding the eigen vectors and the eigen values of the 

Diffusion Tensor. Other important properties can be computed such as the apparent diffusion 

coefficient (ADC) and the fractional anisotropy (FA) [41]. The diffusion matrix is symmetric 

and can be written as follows: 
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 𝐷 = 𝑉𝛬𝑉𝑇 = (𝑒1 𝑒2 𝑒3) (
𝛾1 0 0
0 𝛾2 0
0 0 𝛾3

)(

𝑒1
𝑒2
𝑒3
) (I.22) 

Where 

 𝑉 = (𝑒1 𝑒2 𝑒3) (I.23) 

 

 𝛬 = (
𝛾1 0 0
0 𝛾2 0
0 0 𝛾3

) (I.24) 

The eigenvectors and eigenvalues of the DT are used to probe the microstructure of 

tissue in a voxel. Particularly, the first eigenvector defines the orientation of the fiber bundles 

while the eigenvalues can be used to describe the microstructure using rotationally invariant 

measures such as the degree of anisotropy. (fractional anisotropy or FA) and mean diffusivity 

(MD). These are defined as: 

 𝐹𝐴 = √
1

2

√(𝜆1 − 𝜆1)
2 + (𝜆2 − 𝜆3)

2 + (𝜆3 − 𝜆1)
2

√𝜆1
2 + 𝜆2

2 + 𝜆3
2 

 (I.25) 

 𝑀𝐷 =
𝜆1 + 𝜆2 + 𝜆3

3
 (I.26) 

Where λi denotes the ith eigenvector of the DT. 

 

Figure I.10: FA, RGB, field of diffusion tensors and principal diffusion direction of the DTs in an axial slice. 

The DTs are colored with respect to the FA map, blue to red corresponds to isotropic to anisotropic tensors. The 

DTs and e 1 vectors are shown where FA > 0.1 in half the axial slice. 
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C. Limitations: 

DTI and its assumption of a single Gaussian process has severe limitations as it is well 

known that the single tensor model does not hold in voxels with non-Gaussian diffusion. This 

is the case in voxels with multiple fiber populations, whose prevalence has been estimated to 

range from 33% up to ∼90% of the WM voxels. Consequently, DTI based tractography leads 

to erroneously reconstructed WM pathways, and ambiguous correlations of the scalar 

measures. For example, in the case of two crossing fibers an increase in the FA of one fiber 

population will result in a decrease in the FA measured using DTI. This limitation of the DT 

model is illustrated in Figure I.11 for two orthogonally crossing fibers. The expected fiber 

distribution has two maxima whereas the reconstructed DT profile is planar-like with no 

preferred diffusion direction. 

 

Figure I.11: Limitation of DTI in voxels with crossing configurations. DTI cannot resolve imaging voxels 

containing multiple fiber crossings. 

 

I.5.2. High angular resolution diffusion imaging (HARDI) techniques  

The goal of HARDI is to capture multiple fiber directions within the same imaging 

voxel. HARDI acquisitions are currently being improved every day with better material and 

better reconstruction algorithms. The idea now is to sample q-space along as many directions 

and q-magnitudes as possible in order to reconstruct the true diffusion PDF. This true 

diffusion PDF is model-free and can recover the diffusion of water molecules in any 

underlying fiber population. For example, Figure I.12 illustrates the expected diffusion PDF 

in the case of an isotropic imaging voxel, a single fiber imaging voxel and two crossing fibers 

imaging voxel. Note that we no longer have a scalar-valued or tensor-valued image but we 

now have a 3D image of 3D diffusion distributions. Hence, one can imagine that there are 
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technical requirements and trade-offs that one must make in HARDI acquisition. In particular, 

HARDI depends on the number of measurements N and the gradient strength (b-value), which 

will directly affect acquisition time and signal to noise ratio in the signal. Typically, there are 

two strategies used in HARDI: 1) sampling of the whole q-space 3D Cartesian grid or 2) 

single shell spherical sampling. In the first case, a large number of q-space points are taken 

over the discrete grid (N > 200) and the inverse Fourier transform of the measured DWI 

signal is taken to obtain an estimate of the diffusion PDF P. This is Diffusion Spectrum 

Imaging (DSI) in the HARDI literature and the theory of DSI goes back to the development of 

QSI by Callaghan [6], [7]. The method requires very strong imaging gradients (500 ≤ b ≤ 

20000 s/mm2) and a long time for acquisition depending on the number of sampling 

directions. The visualization of 3D diffusion PDF at every voxel is computationally intensive. 

Hence, people either take an isosurface of the diffusion PDF for a certain radius r or the 

diffusion orientation distribution function (ODF) is computed. The diffusion ODF contains 

the full angular information of the diffusion PDF and is defined as 

 

Figure I.12: Expected diffusion PDF in isotropic, single fiber and two crossing fibers. 

 𝛹(𝜃, 𝜑) = ∫ 𝑃(𝑟,
∞

0

𝜃, 𝜑)𝑑𝑟 (I.27) 

Where (θ, φ) obey physics convention in this project (θ ∈ [0, π], φ ∈ [0, 2π]). These data representations and 

data reductions for visualization are illustrated in Figure I.13. The diffusion ODF will play a central part of the 

project and is at the heart of Q-Ball Imaging (QBI). 
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In the second case, a discrete uniform sampling of the sphere is done for a certain radius 

in q-space (given by the b-value). The signal attenuation is thus measured on a single shell of 

q-space. The idea is that the radial information of the diffusion PDF can be discarded if one is 

interested in fiber directions. Thus, most single shell HARDI techniques aim at reconstructing 

the diffusion ODF or variants of this function in order to have a function whose maxima are 

aligned with the underlying fiber structure. More than 60 measurements are desirable and 

medium gradient strengths are acceptable although strong gradients give better diffusion ODF 

reconstructions. Typically, 60 ≤ N ≤ 200, b ≥ 3000s/mm2 is used and acquisition time is 

between 10 and 20 minutes. 

 

 

Figure I.13: Simplifying visualization of the 3D diffusion PDF or 3D displacement distribution by either taking 

an isosurface of the distribution or computing the diffusion ODF. Image taken from [8]. 

A. Diffusion Spectrum Imaging (DSI) 

This technique suggests the fairly straightforward means of extracting the diffusion PDF 

from measurements in q-space by measuring the signal on a Cartesian grid of points in q-

space and then taking the 3D inverse Fourier transform to obtain an approximated PDF. This 

technique is called q-space imaging (QSI) or diffusion spectrum imaging (DSI). However, 

DSI is restricted by severe technical limitations. First, in order to resolve features in the PDF 

of the order of some scale 1/a, it requires a box of side length > a in q-space. In practice, this 

requires many measurements and very large b-values compared to those used on conventional 

scanners. As we want δ small to satisfy the narrow pulse approximation, the gradients G must 



CHAPTER I                         BRAIN ANATOMY, MRI BASICS AND RECONSTRUCTION METHODS  
 

31 
 

be very high which creates eddy current distortions, and even can induce harmful electric 

fields in the subject. As a result of the DSI limitations, other techniques have been developed 

to attempt to extract the desired diffusion PDF and diffusion ODF information in a more 

efficient way. One such clinically feasible approach is single shell (HARDI) [9,10]. 

B. Q-Ball imaging 

Tuch [10,11] showed that the diffusion ODF could be estimated directly from the raw 

HARDI measurements on a single sphere of q-space without computing the full diffusion 

PDF. The basic assumption of QBI is that angular information is enough to recover fiber 

orientation distributions (forgetting about radial information). Hence, QBI is a modality which 

takes advantage of the fact that significantly less information is required to construct an 

angular function in real space than is required to construct a volume function, as in DSI. 

Specifically, QBI seeks to reconstruct the diffusion ODF, a function defined in Eq. I.27, 

which is the radial projection of the diffusion PDF.  

 

Figure I.14: Derivation of fiber alignment from diffusion spectrum imaging 

To compute the ODF, the QBI modality uses the Funk-Radon transform (FRT) G, a 

transformation from the unit sphere to itself as illustrated in Figure I.15 In order to find the 

Funk-Radon transformed value of the signal on the sphere at a given point u, one needs to 
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first find the plane through the origin with normal vector u and then compute the one-

dimensional integral over the intersection of that plane with the function on the original 

sphere. Intuitively, to find the new value at an arbitrarily defined “pole”, one integrates the 

spherical function f over the corresponding “equator” or great circle. This can be written 

explicitly as 

 𝐺[𝑓(𝑤)](𝑢)  = ∫𝛿(𝑢𝑇𝑤)𝑓(𝑤)𝑑𝑤 (I.28) 

Where u and w are constrained to be unit vectors 

 

Figure I.15: Funk-Radon Transform G[S] illustrated for the HARDI signal S with 1 fiber (left) and two 

orthogonal fibers (right). The thin lines are the true underlying fiber orientations and the thicker tubes are the 

detected maxima. These functions are spherical functions and for visualization purposes, the radius of the 

respective spheres are scaled by the corresponding value on the surface. 

 

C. The Spherical Harmonics 

Some of the reconstruction methods make use of spherical harmonics modeling to 

represent functions on the sphere, we begin with an introduction to spherical harmonics. 

Spherical harmonics 𝑌𝑙
𝑚 of order l and degree m are the angular portion of Laplace’s equation 

in spherical coordinates. They are defined as: 

 𝑌𝑙
𝑚(𝜃, 𝜑) = √

(2𝑙 + 1)(𝑙 − 𝑚)!

4𝜋(𝑙 +𝑚)!
 𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃)𝑒𝑖𝑚𝜑 (I.29) 

In order to have an idea of what spherical harmonics look like, we show in Figure I.16 the real 

part squared, Re[𝑌𝑙
𝑚(θ,φ)]2, of the spherical harmonics 𝑌𝑙

𝑚 up to order 3. 
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Figure I.16: Real part squared Re[𝑌𝑙
𝑚(θ,φ)]2 of the spherical harmonics basis up to order 3. 

D. The Modified Real Spherical Harmonics Basis 

The spherical harmonics 𝑌𝑙
𝑚 (Eq. I.29) are a basis for complex functions on the unit 

sphere. Hence, any complex function defined on the sphere can be expressed as a series of 

spherical harmonics. This is very powerful and analogous to the Fourier transform very often 

used in image processing. In that case, any image can be decomposed in a Fourier series, 

namely in a sum of sinusoids and cosines. In this project, we have physical diffusion MRI 

measurements that represent the average attenuation of the diffusion of water molecules. 

Hence, the HARDI signal is assumed to be real and symmetric. Therefore, we want to define 

a modified spherical harmonic basis that is also real and symmetric. 

For 𝑙 =  0,2,4, . . . , 𝐿 and 𝑚 =  −𝑙, . . . ,0, . . . , 𝑙, we define a single index 𝑗 in terms of 𝑙 and 𝑚 

such that 𝑗(𝑙,𝑚)  =  
(𝑙2 + 𝑙 + 2)

2+ 𝑚
 . The modified basis then is 

 𝑌𝑗 = 

{
 
 

 
 √2𝑅𝑒 (𝑌𝑙

|𝑚|) ,                         𝑖𝑓 𝑚 < 0

𝑌𝑙
|𝑚|,                                       𝑖𝑓 𝑚 = 0

√2(−1)𝑚+1𝐼𝑚 (𝑌𝑙
|𝑚|) ,       𝑖𝑓 𝑚 < 0

 (I.30) 

Where 𝑅𝑒(𝑌𝑙
|𝑚|) and 𝐼𝑚(𝑌𝑙

|𝑚|) represent the real and imaginary parts of 𝑌𝑙
𝑚 respectively.  

Figure I.17 shows the spherical harmonics in the modified basis of order 4, L = 4.  
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Figure I.17:  Modified spherical harmonics up to order L = 4. l(j) represents the harmonic order for the jth 

coefficient. 

E. Spherical Deconvolution 

Spherical deconvolution was introduced approximately at the same period as q-ball 

imaging. Spherical convolution assumes that a distribution of fiber orientations convoluted 

with a single-fiber response function generates the measured diffusion signal, as illustrated in 

Figure I.19. Hence, the idea is to view the HARDI signal S as the convolution of the response 

function produced by a single-fiber R with the expected true fiber orientation distribution F. 

The problem can also be viewed more intuitively in real space using the ODF. The signal or 

ODF response function used as the deconvolution kernel is normally estimated from the data 

itself. Typically, we can use the corpus callosum voxels or voxels with a FA above 0.7 to 

estimate the response function R there. Alternatively, it can also be directly modeled with an 

appropriate signal or ODF for a single fiber. Then, using spherical harmonics theory and the 

convolution theorem, the problem is defined as a multiplication in spherical harmonics space: 

𝑆 =  𝑅 ∙ 𝐹. Hence, using a least-squares formulation, one can solve for the FOD: 𝐹 =

(𝑅𝑇𝑅)−1 𝑆. Hence, spherical deconvolution cannot be considered as a model-free technique 

because it needs a deconvolution kernel. In a sense, it is at the frontiers of model-free and 

model-based techniques. However, the linear solution just described of spherical 

deconvolution suffers from severe instabilities at high harmonic orders that lead to negative 

fiber ODF values and false spurious peaks. Hence, the original spherical deconvolution 

method was improved using nonlinear methods to better deal with the instabilities, noise, and 

negative diffusivities appearing in the deconvolution process. 
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Figure I.18: Spherical deconvolution intuition to improve angular resolution of ODF reconstruction. Assuming 

a particular response function, the deconvolution will remove the “blurry” part of the diffusion ODF to obtain a 

sharp fiber ODF that better captures the underlying fiber populations. Hence, a better angular resolution can be 

obtained, as illustrated in 45 + and 60 + crossing in the bottom of the figure. 

The measured signal S can be evaluated according to the following equation 

 𝑆(𝜃, 𝜑)  =  𝐹(𝜃, 𝜑)  ⊛  𝑅(𝜃) (I.31) 

Where 𝑆 is the measured signal, 𝐹 is the fODF an 𝑅 is the fiber response. Hence the problem 

of estimating the fiber orientations themselves is solved by inverting the problem to infer the 

FODF from the measured signal. 

 

Figure I.19: Spherical deconvolution techniques. Convolution assumption in q-space (signal space) and real 

space (ODF space). Deconvolution techniques seek tore construct the true fiber orientation distribution (FOD) 

or fiber orientation distribution function (fiber ODF) from an assumed single-fiber response function. 
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I.6. Summary: 

In this chapter we have seen an overall overview about the brain anatomy and its neural 

tissues. We presented also some MRI basics and its functionality and some basic principles 

were introduced for a better understanding of the physics behind the magnetic resonance 

imaging. Then, we explained how weighted imaging works and its relation with water 

diffusivity and b-values. 

Next, we saw the evolution of diffusion MRI from simple scalar DWI, to tensor DWI or 

DTI and beyond to HARDI techniques able to recover the 3D diffusion PDF and diffusion 

ODF of water molecules in biological tissues. In this project, we focus on techniques beyond 

the diffusion tensor imaging because they are able to recover complex multiple fiber 

distributions. We also saw the solution that each technique proposed to overcome the problem 

of multifiber detection of DTI. 
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II.1. Introduction 

Fiber tractography pieces together the local WM orientations to infer long-range 

connectivity patterns between distant brain regions. Diffusion MRI based fiber tractography is 

unique in its ability to delineate the WM fiber pathways in a non-invasive way. This raises 

possibilities for clinical applications and can provide new insights in neuroscientific research. 

Fiber tractography algorithms can be classified largely into deterministic, probabilistic, 

and global algorithms. In this chapter, we will discuss these different approaches and their 

limitations. We end the chapter with a brief overview of the current application. 

II.2. Deterministic tractography 

 Deterministic streamline tractography is currently the most common method for fiber 

tractography [12]. A streamline through a vector field is any line whose tangent is parallel to 

the local vector during its entire course. Mathematically, a line can be represented as a 3D 

space curve 𝑟(𝑠), parameterized by its arc length 𝑠. In order for a streamline to align with the 

vector field, the tangent at arc length 𝑠 , has to be equal to the vector at the corresponding 

position: 

 
𝑑𝑟(𝑠)

𝑑𝑠
= 𝑣[𝑟(𝑠)] (II.1) 

Where 𝑟(𝑠) denotes the 3D position along the streamline and v is the 3D vector field. 

Note that Eq. (II.1) is a differential equation that can be solved by means of integration: 

 𝑟(𝑠) =  ∫𝑣[𝑟(𝑠)]

𝑠0

 (II.2) 

Where 𝑟(𝑠0) = 𝑟0 represents the starting point of the streamline which is often referred to as 

seed point. Formally, streamline tractography can be defined as the process of integrating 

voxelwise fiber orientations into fiber pathways.  

A. Integration 

The most intuitive way to perform the numerical integration of Eq. (II.2) is by starting the 

procedure at seed point 𝑟0, calculating the corresponding fiber orientation 𝑣(𝑟0), and 

following that direction for a short distance ∆, which is called the ‘step size’, to obtain the 

next point 𝑟1  =  𝑟0  +  𝑣(𝑟0)∆ on the pathway. This method, known as Euler integration, can 

reconstruct the entire streamline by iteratively performing this procedure: 
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 𝑟𝑖+1 = 𝑟𝑖  +  v(𝑟𝑖)∆ (II.3) 

Note that Eq. (II.3) assumes that the value 𝑟𝑖 is constant during the step size ∆, which will 

make this method susceptible to overshoot in highly curved regions, especially for larger step 

sizes (Figure II.2). In order to take into account the variations of v between 𝑟𝑖 and 𝑟𝑖+1, the 

use of higher order numerical integration schemes has been proposed, such as the second-

order Runge-Kutta (RK2) or midpoint integration scheme:    

 𝑟𝑖+1 = 𝑟𝑖  +  v(𝑟𝑖  +  v(𝑟𝑖)
∆

2
)∆ (II.4) 

 

Figure II.1: Example of DTI streamlines on coronal slices of the human brain. The blue streamline corresponds 

to the corticospinal tract (CST). The red streamline corresponds to the corpus callosum. Note that each 

streamline’s tangent is parallel to the local vector field during its entire course 

Which has an associated error of order 𝑂(∆3) or the fourth-order Runge-Kutta (RK4) scheme 

 𝑟𝑖+1 = 𝑟𝑖 + 
𝑘1
6
+ 
𝑘2
3
+ 
𝑘3
3
+ 
𝑘4
6

 (II.5) 

With 

 𝑘1 =  v(𝑟𝑖)∆ (II.6) 

 𝑘2 =  v(𝑟𝑖 +
𝑘1
2
)∆ (II.7) 

 𝑘3 =  v(𝑟𝑖 +
𝑘2
2
)∆ (II.8) 

 𝑘2 =  v(𝑟𝑖 + 𝑘3)∆ (II.9) 

The RK4 scheme has an associated error of order 𝑂(∆5) and is known to be a good candidate 

for the numerical solution of Eq. (II.2). 
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B. Interpolation 

 The simplest method to obtain an estimate of the local fiber orientation at any location 

is to use nearest-neighbor interpolation [13,14]. This method approximates the desired fiber 

orientation by that of the nearest voxel. However, this approach leads to a much greater 

propagation of errors than approaches that perform a smooth interpolation between grid points 

(Figure II.3) [15]. Smooth interpolation methods assume that the fiber orientations between 

grid points contain contributions from each neighboring point. Most algorithms use trilinear 

interpolation, where the quantity of interest is calculated as a weighted sum from the 8 voxels 

nearest to the point of interest with the weight of each neighboring voxel determined by their 

distance to the point of interest. Some implementations perform trilinear interpolation on the 

raw diffusion weighted data and recompute the DT/dODF/fODF based on the interpolated 

data [16,17]. Another approach is to directly interpolate the DT/dODF/fODF profiles 

C. Seed point selection 

 In general, the integration procedure is performed on a number of seed points 𝑟0 that 

define a specific ‘region of interest’ (ROI).Typically, these ROIs are defined by the user. This 

task requires anatomical knowledge and is subject to inter-operator variability. To reduce the 

operator dependence, ROIs can also be defined from atlas labels, or they can be obtained from 

cortical activation maps measured with functional MRI (fMRI). This last approach is 

particularly appealing since it allows for correlation analyses between structural and 

functional connectivity. 

D. Tract-editing and clustering 

 Tract-editing is used to introduce prior anatomical knowledge of the fiber bundles in the 

brain, in order to refine the fiber-tracking results. In practice, tract-editing is performed by 

defining ROIs through which the tract is known to pass (also referred to as inclusive ROIs or 

AND gates). Tracts that enter these regions are considered anatomically plausible, and all 

other tracts are discarded. It is also possible to define regions through which the tracts are 

known not to pass and discard any tract that enters these regions (also referred to as exclusive 

ROIs or NOT gates). As an example, Figure II.4 (b) shows a successful 3D reconstruction of 

the cingulum bundle, by means of two AND gates. This technique has been successfully used 

to isolate and visualize many different WM bundles and as such it is sometimes referred to as 

‘in vivo virtual dissection’.  
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Figure II.2: Euler vs. RK2 vs. RK4 integration for different step sizes. The seed point is indicated as a white dot. 

Note that, as we move away from the seed point, the integration errors accumulate. For Euler integration the 

accumulated error can become quite large, especially for large step sizes. Using higher order RK integration 

schemes, drastically reduces interpolation error made at each step, resulting in a much smaller accumulated 

error (even for relatively large step sizes). 

E. Tract termination 

A final important aspect of streamline tractography is choosing when a tract should stop. 

Two criteria are commonly used: a threshold on the diffusion anisotropy and a curvature 

threshold. For example, in DTI tractography it is common to stop a streamline when the FA 

falls below a certain threshold value (typically FA < 0 . 2). The rationale behind this criterion 

is that regions of low FA tend to be associated with high uncertainty in the principal diffusion 

direction, and therefore a large potential error for the next streamline step. For tractography 

methods based on multi-fiber reconstruction algorithms, tracking is usually terminated when 

the dODF or fODF amplitudes along the current tracking orientation fall below a certain 

threshold [17,18]. The curvature threshold imposes a maximum local curvature of the tract: if 

the angle between two successive steps is above a predefined threshold, the tract is 

terminated. Since it is unusual to find bends in the white matter bundles that haveradii of 

curvature on the scale of an imaging voxel, any sudden change in trajectory is likely to be 

caused by artifacts such as noise. 
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Figure II.3: Nearest neighbor vs. linear interpolation. The seed point is indicated as a white dot. Note that, as 

we move away from the seed point, the errors made by the nearest neighbor interpolation accumulate 

F. Limitations 

 Deterministic streamline tractography is susceptible to three main sources of errors [19]. 

First, DWI is susceptible to imaging noise, which may cause a poor estimation of the 

dominant diffusion directions used in streamline tractography. As an example, Figure II.5 

shows the variability of DTI fiber trajectories as a result of noise. Second, the microscopic 

anatomy of WM is bound to be more complex than what can be represented by the fiber 

reconstruction model. As such, streamline tractography is subject to modeling errors. This is 

especially true for tractography algorithms using the diffusion tensor model, which cannot 

resolve multiple fiber orientations inside one voxel. As an example, Figure II.6 shows the 

variability of DTI fiber trajectories as a result of modeling errors. Note that the uncertainty 

suddenly increases as soon as the trajectories enter regions of crossing fibers. Finally, 

streamline tractography is subject to integration errors. It is important to realize that all these 

errors will accumulate along the streamline (Figures II.5 and II.6). 
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Figure II.4: The cingulum bundle (b) is successfully extracted from whole brain tractography (a), using tract-

editing with two AND gates (green rectangles). 

 

Figure II.5: DTI tractography errors due to noise. A numerical phantom data set was constructed consisting of 

a single straight fiber bundle (a). Multiple trajectories where calculated for 100 noisy instances at low (b) and 

high (c) SNR. 

II.3. Probabilistic tractography 

 Deterministic tractography algorithms assume a unique fiber orientation estimate in 

each voxel and as such provide a single pathway emanating from each seed point (Figure II.7 

a). However, as made clear in the previous section, the local fiber orientation estimates are 

subject to errors and uncertainty. 
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Figure II.6: DTI tractography errors due to noise and modeling errors. The numerical phantom data set of figure 

II.5 was extended with two regions of crossing fibers (a). Multiple trajectories where calculated for 100 noisy 

instances at low (b) and high (c) SNR. Note that, as the trajectories enter the region of crossing fibers, large 

modeling errors occur. 

To characterize this uncertainty, probabilistic tractography algorithms generate a large 

collection or distribution of possible trajectories from each seed point (Figure II.7(b)). Brain 

regions that contain higher densities of the resulting trajectories are then deemed to have a 

higher probability of connection with the seed point [20, 21]. Probabilistic streamlines results 

are, therefore, often quantified by generating visitation count maps of the number of 

trajectories that traverse each voxel, which can then be analyzed and compared more readily 

(Figure II.7(c)) [19, 21]. 

By treating the problem in a probabilistic fashion, it also becomes possible to track 

through regions of high uncertainty, where deterministic techniques would usually stop, 

acknowledging, however, that the probability of connection beyond this region is lower. 

Typically, probabilistic tractography algorithms derive heavily from the deterministic 

streamline approach described in the previous section, and as such they are subject to the 

same limitations. The fundamental difference is that the orientations for tract propagation are 

drawn at random from a local uncertainty orientation density function (uODF) [22]. The main 

difference between the various probabilistic algorithms lies in how this uODF is constructed. 
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Figure II.7: Deterministic CSD streamline (a) vs. probabilistic streamlines (b) emanating from the same seed 

point (red sphere). From the probabilistic streamlines a visitation count map is often created (c), visualized here 

as a maximum intensity projection along the Y-axis. 

A. Heuristic approaches 

 The earliest methods, based on DTI, relate the probability of a tract to the number of 

times it is reconstructed in a Monte Carlo random walk, where the characteristics of the 

random walk are determined by the shape of the underlying diffusion tensor [23[, [24], [25]. 

In voxels where there is no anisotropy, the generated vector is completely random. In 

anisotropic regions, the uODF is skewed to the axis of longest diffusion. 

B. Rigorous approaches 

 To address the limitations of the heuristic approaches, more rigorous approaches were 

proposed that try to construct the true uODF. 

 

 

 



CHAPTER II                                               FIBER TRACKING AND PROPOSED POST PROCESSING 
  

46 
 

• Calibration approach: instead of relying on a heuristic approach, some methods 

perform a calibration experiment to determine an empirical relationship between 

the features of the data and expected uODF [24, 26]. 

• Bootstrap approach: the bootstrap is a non-parametric statistical procedure that 

enables one to estimate the uncertainty of a given statistic, by randomly selecting 

individual measurements, with replacement, from a set of repeated measurements, 

thus generating many bootstrap realizations of the data. Each realization provides a 

random estimate of a given statistic. By generating a sufficient number of 

realizations, one obtains a measure of the uncertainty of a given statistic from the 

data itself without requiring a priori assumptions about the sources of uncertainty 

[27-29]. Bootstrapping has previously been combined with DTI tractography in 

order to produce probabilistic fiber trajectories [30, 31] However, in a clinical 

setting, even the small amount of repeated measurements to allow accurate and 

precise bootstrapping can render acquisition time unacceptably long [32, 33]. The 

problem of long acquisition times can be addressed using the residual bootstrap 

[34, 35]. This approach obtains probability distributions for model parameters by 

resampling residuals from a model fit (e.g., diffusion tensor fit). The huge 

advantage of this method is that it does not require repeated measurements, 

bringing acquisition time into the clinical range. 

C. Global approaches 

 The previously mentioned tractography algorithms propagate the local fiber orientation 

estimates to obtain long-range fiber pathways. Recently, a number of tractography algorithms 

have been proposed based on a more global approach. Essentially, these algorithms attempt to 

find the configuration of fibers that best explains the observed data. As such, they do not rely 

on the preprocessing step to extract the fiber orientations, but rather operate directly on the 

acquired DW data, making tractography a one stage process. These methods rely on a model 

that predicts the DW signal intensities for a given arrangement of fiber orientations. These 

approaches have the potential to provide more robust results than current local streamlines 

methods. Unfortunately, these approaches are currently extremely computationally expensive 

limiting their immediate use in clinical environments. 
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II.4. Proposed Post-processing tractography: 

Diffusion magnetic resonance imaging fiber tractography is a powerful tool for 

investigating human white matter connectivity in vivo. However, because of false fiber 

detection making interpretation of the tractography result is difficult. Optimal tractography 

must begin with an accurate description of the sub voxel white matter fiber structure. The 

output of tractography algorithms often contains spurious fibers, which are isolated and 

poorly aligned with the surrounding bundle of fibers. The fiber to bundle coherence (FBC) 

provides us with a quantitative measure of fiber alignment and is therefore useful in pruning 

the results of tractography algorithms by removing spurious fibers that are identified by a low 

FBC.   

 

Figure II.8: left: false brain imaging and right: expected brain imaging 

The false fibers outcome from errors, which is a combination start appearing from the 

data acquisition, passing from different methods of reconstruction and ends with different 

algorithms of tractography, this error is either increased from step to step or another error is 

produced in each step. 
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II.4.1. The proposed algorithm: 

In this work, we propose to add another stage in the general flowchart which is the 

cleaning of the tractography results in order to obtain more realistic results implemented 

efficiently using multithreading and pre-computed lookup tables. 

 

Figure II.9: Proposed Improvement of Tractography Algorithm  

II.4.2. Kernel density estimation: 

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the 

probability density function of a random variable. Kernel density estimation is a fundamental 

data smoothing problem where inferences about the population are made, based on a finite 

data sample. In some fields such as signal processing and econometrics it is also termed the 

Parzen–Rosenblatt window method, after Emanuel Parzen and Murray Rosenblatt, who are 

usually credited with independently creating it in its current form. One of the famous 

applications of kernel density estimation is in estimating the class-conditional marginal 

densities of data when using a naive Bayes classifier, which can improve its prediction 

accuracy dramatically. 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Statistical_population
https://en.wikipedia.org/wiki/Statistical_sample
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Econometrics
https://en.wikipedia.org/wiki/Emanuel_Parzen
https://en.wikipedia.org/wiki/Murray_Rosenblatt
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
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Figure II.10: Kernel density estimation of 100 normally distributed random numbers using different smoothing 

bandwidths. 

A. Definition: 

Let (x1, x2, …, xn) be a univariate independent and identically distributed sample drawn 

from some distribution with an unknown density ƒ. We are interested in estimating the shape 

of this function ƒ. Its kernel density estimator is 

 𝑓ℎ(𝑥) =  
1

𝑛
∑𝐾ℎ(𝑥 − 𝑥𝑖) =  

1

𝑛ℎ
∑𝐾(

𝑥 − 𝑥𝑖
ℎ

𝑛

𝑖=1

)

𝑛

𝑖=1

 (II.10) 

Where K is the kernel - a non-negative function - and h > 0 is a smoothing parameter called 

the bandwidth. A kernel with subscript h is called the scaled kernel and defined as Kh(x) = 1/h 

K(x/h). Intuitively one wants to choose h as small as the data will allow; however, there is 

always a trade-off between the bias of the estimator and its variance. The choice of bandwidth 

is discussed in more detail below. 

A range of kernel functions are commonly used: uniform, triangular, biweight, triweight, 

Epanechnikov, normal, and others. The Epanechnikov kernel is optimal in a mean square 

error sense, though the loss of efficiency is small for the kernels listed previously. Due to its 

convenient mathematical properties, the normal kernel is often used, which means                     

K(x) = ϕ(x), where ϕ is the standard normal density function. 

The construction of a kernel density estimate finds interpretations in fields outside of 

density estimation. For example, in thermodynamics, this is equivalent to the amount of heat 

generated when heat kernels (the fundamental solution to the heat equation) are placed at each 

data point locations xi. Similar methods are used to construct discrete Laplace operators on 

point clouds for manifold learning (e.g. diffusion map). 

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Random_number_generator
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Probability_density_function
https://en.wikipedia.org/wiki/Kernel_(statistics)#In_non-parametric_statistics
https://en.wikipedia.org/wiki/Smoothing
https://en.wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use
https://en.wikipedia.org/wiki/Standard_normal
https://en.wikipedia.org/wiki/Thermodynamics
https://en.wikipedia.org/wiki/Heat_kernel
https://en.wikipedia.org/wiki/Heat_equation
https://en.wikipedia.org/wiki/Discrete_Laplace_operator
https://en.wikipedia.org/wiki/Manifold_learning
https://en.wikipedia.org/wiki/Diffusion_map
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B. Lookup table: 

In computer science, a lookup table is an array that replaces runtime computation with a 

simpler array indexing operation. The savings in terms of processing time can be significant, 

since retrieving a value from memory is often faster than undergoing an "expensive" 

computation or input/output operation. The tables may be precalculated and stored in static 

program storage, calculated (or "pre-fetched") as part of a program's initialization phase 

(memorization), or even stored in hardware in application-specific platforms. Lookup tables 

are also used extensively to validate input values by matching against a list of valid (or 

invalid) items in an array and, in some programming languages, may include pointer functions 

(or offsets to labels) to process the matching input. FPGAs also make extensive use of 

reconfigurable, hardware-implemented, lookup tables to provide programmable hardware 

functionality. 

C. Lookup tables in image processing: 

In data analysis applications, such as image processing, a lookup table (LUT) is used to 

transform the input data into a more desirable output format. For example, a grayscale picture 

of the planet Saturn will be transformed into a color image to emphasize the differences in its 

rings. A classic example of reducing run-time computations using lookup tables is to obtain 

the result of a trigonometry calculation, such as the sine of a value. Calculating trigonometric 

functions can substantially slow a computing application. The same application can finish 

much sooner when it first recalculates the sine of a number of values, for example for each 

whole number of degrees (The table can be defined as static variables at compile time, 

reducing repeated run time costs). When the program requires the sine of a value, it can use 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Static_memory_allocation
https://en.wikipedia.org/wiki/Prefetcher
https://en.wikipedia.org/wiki/FPGA
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Trigonometry
https://en.wikipedia.org/wiki/Sine
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Figure II.11: Red (A), Green (B), Blue (C) 16 bit Look Up Table file sample. (Lines 14 to 65524 not shown) 

the lookup table to retrieve the closest sine value from a memory address, and may also take 

the step of interpolating to the sine of the desired value, instead of calculating by 

mathematical formula. Lookup tables are thus used by mathematics co-processors in 

computer systems. An error in a lookup table was responsible for Intel's infamous floating-

point divide bug. 

II.4.3.  Fiber to bundle coherence measures: 

The fiber to bundle coherence (FBC) quantitative measure of the alignment of each 

fiber with the surrounding fiber bundles [36]. These measures are useful in ‘cleaning’ the 

results of tractography algorithms, since low FBCs indicate which fibers are isolated and 

poorly aligned with their neighbors, as shown in the figure below. 

 

Figure II.12: The contribution of two fiber points to the kernel density estimator. 

https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://www.dipy.org/documentation/1.1.1./examples_built/fiber_to_bundle_coherence/#meesters2016
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On the left this figure illustrates (in 2D) the contribution of two fiber points to the kernel 

density estimator. The kernel density estimator is the sum over all such locally aligned 

kernels. The local fiber to bundle coherence shown on the right color-coded for each fiber, is 

obtained by evaluating the kernel density estimator along the fibers. One spurious fiber is 

present which is isolated and badly aligned with the other fibers, and can be identified by a 

low LFBC value in the region where it deviates from the bundle. Figure adapted from 

Portegies [37]. 

II.4.4. Fiber to bundle coherence algorithm: 

Here we implement FBC measures based on kernel density estimation in the non-flat 

5D position-orientation domain. First, we compute the kernel density estimator induced by the 

full lifted output (defined in the space of positions and orientations) of the tractography. Then, 

the Local FBC (LFBC) is the result of evaluating the estimator along each element of the 

lifted fiber. A whole fiber measure, the relative FBC (RFBC), is calculated by the minimum 

of the moving average LFBC along the fiber. An example is illustrated in figure II.13. 

Step 1: 

• A lookup-table is created, containing rotated versions of the fiber propagation kernel  

rotated over a discrete set of orientations[38].  

• In order to ensure rotationally invariant processing, the discrete orientations are 

required to be equally distributed over a sphere. By default, a sphere with 100 

directions is used obtained from electrostatic repulsion in DIPY. 

Step 2: 

• The FBC measures are now computed, taking the tractography results and the lookup 

tables as input 

Step 3: 

• After calculating the FBC measures, a threshold can be chosen on the relative FBC 

(RFBC) in order to remove spurious fibers. Recall that the relative FBC (RFBC) is 

calculated by the minimum of the moving average LFBC along the fiber. 

https://www.dipy.org/documentation/1.1.1./examples_built/fiber_to_bundle_coherence/#duitsandfranken2011
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Figure II.13: The fiber to bundle coherence (FBC) measures are demonstrated on the reconstruction of the optic 

radiation (OR). The OR can be obtained through probabilistic tractography by tracking fibers from the 

calcarine sulcus to the lateral geniculate nucleus (shown in top). The fibers are color-coded by the local FBC 

value (LFBC). The tractography result is cleaned (shown in bottom) by removing fibers with a relative FBC 

(RFBC) lower than the threshold τ=0.3. 

II.5. Summary: 

In this chapter, we saw two different techniques of fibers tractography, that is, the 

deterministic one and the probabilistic one, the difference between them and the limitation of 

each one. 

However, tractography is prone to generate spurious streamlines, which deviate strongly 

from neighboring streamlines, that’s why we proposed an improvement by cleaning the 

results using fiber to bundle coherence (FBC) Algorithm. 
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III.1. Introduction 

After introducing the new step added to the previous algorithm, a call for the software 

implementation is established. The program was implemented from scratch using Payton 

programming language including many libraries like nibabel, numpy, scipy, fury. 

In this section we will present the dataset we used in our experiments, the different 

tools, software, programs and libraries that were used in the accomplishment of the 

experiments. And finally, we will present our results and discuss them.  

III.2. Dataset: 

The needed data was obtained from the UK dataset archive resumed in Table III.4 [39] 

and we have also used simulated data for further analysis. 

III.3. Processing software: 

Many software programs are available on the net to provide the user with a full support 

in dealing with 3D images, they run on different platforms and are all for free. The programs 

we used are listed below: 

III.3.1. MI Brain: 

` Is a program for viewing, processing and analyzing images from diffusion MRI 

developed by the Canadian firm Imeka in 2015. To date, it is used in the imaging laboratories 

of the University of Sherbrooke while awaiting its official launch planned in march 2016. 

A. Characteristics: 

MI-Brain allows you to view, edit, analyze images and perform real-time tractography 

of nerve fiber bundles from diffusion MRI images. This software offers the possibility of 

stacking images (open several images at the same time and superimpose them). There are a 

multitude of file formats that can be processed by MI-Brain: fiber bundle file, DWI, DICOM, 

NIfti, PGN, TIFF, GIF, JPEG. MI-Brain has tools to make a desired selection of bundles of 

nerve fibers from one ROI region of interest to another. In addition, it is possible to display 

fibers having a minimum and / or a maximum length (in mm). This technique is widely used 

in the field of neuroscience research. 
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B. Features: 

 MI-Brain can be handled via an interface of floating windows arranged side by side. 

The main window is divided into 3 main sections: 

 

Figure III.1: Tractography of an open human brain with MI-Brain. 

• Left section: Space of open files in MI-Brain®. At the top, we find the names of the 

files that are open (without extensions) provided, on the left, with a small solid square. 

To hide (hide) the display of an image or an object, just click on the small square 

which will appear, at this time, empty. At the bottom, there is the spatial information 

of the open image. You can navigate (move) in the space of the image, either by 

changing the numbers manually, or by scrolling the blue bar along the line in front of 

the name of the axis on which you want to move. 

• Middle section: Four square sub-windows for viewing the different anatomical 

sections of the brain. the lower right section gives the 3D view of a volume (3D) 

image. The other three offer a 2D view. the top left sub-window offers an axial view, 

the top right window shows a sagittal view and finally the bottom left window is used 

to visualize the coronal slices. 

• Right section: Analysis and image processing functions. The most used function is 

that which allows to select bundles of nerve fibers. This can be done either by placing 

selection boxes at determined  locations, or by manually drawing, on the anatomical 

https://fr.wikipedia.org/wiki/Tractographie
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structures, regions of interest which can be saved as a file. In both cases, the fiber 

bundles that pass only to those regions of interest (selection or drawn boxes) are 

displayed and  are  marked  by color codes in relation to the anatomical view of each 

space: 

1. The red color: It represents the left-right orientation. It marks the axial plane 

(top view). 

2. The blue color: It represents the lower-upper orientation. It marks the 

coronal plane (front view). 

3. The green color: It represents the front-back orientation. It marks the 

sagittal plane (side view). 

These color codes facilitate better interpretation of images and help quickly recognize the 

orientation of fibers, images and objects in space. 

 

 

Figure III.2: The midbrain views (superior (Axial), posterior (Coronal), lateral (Sagittal) and 3D views) 

 

https://fr.wikipedia.org/wiki/3D
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III.3.2. Mango: 

 Mango is multi-image analysis GUI and a viewer for medical research images. It 

provides analysis tools and a user interface to navigate image volumes. The different features 

of the software is given as follow: 

• Support for anal Analyze, DICOM, NEMA-DES, MINC, NIFTI and NIFTI2 image 

formats  

• Support: VTK (legacy), GIFTI (.surf.gii) and BrainVisa surface formats. 

• Partial support: TIFF, Concorde microPET, AFNI (legacy), Stimulate, and CTI 

ECAT.  

• Development: Supports both Java Plugin API and Python Script API development.  

• Customizable: Create custom filters, color tables, file formats, and atlases.  

• Command-line integration: open and process images from the command-line.  

• Web: Custom protocol and Papaya JavaScript viewer.  

• ROI Editing: Threshold and component-based tools for painting and tracing ROIs.  

• Surface Rendering: Interactive surface models supporting cut planes and overlays.   

• Image Registration: Semi-automatic image co-registration and manual transform 

editing.  

• Image Stacking: Threshold and transparency-based image overlay stacking.   

• Analysis: Histogram, cross-section, time-series analysis, image and ROI statistics.   

• Processing: Kernel and rank filtering, arithmetic/logic image and ROI calculators. 

III.4. Tools and libraries used in the implementation of the program: 

III.4.1. Python: 

Python is an Interpreted, high-level, general-purpose programming language. Created 

by Guido van Rossum and first released in 1991, Python's design philosophy emphasizes code 

readability with its notable use of significant whitespace 

III.4.2. DIPY: 

DIPY is a free and open source software project for computational neuroanatomy, 

focusing mainly on diffusion Magnetic Resonance Imaging (dMRI) analysis, in another word 

is the paragon 3D/4D+ imaging library in Python. Contains generic methods for spatial 

normalization, signal processing, machine learning, statistical analysis and visualization of 

medical images. Additionally, it contains specialized methods for computational anatomy 

including diffusion, perfusion and structural imaging and It implements a broad range of 

algorithms for denoising, registration, reconstruction, tracking, clustering, visualization, and 

statistical analysis of MRI data. 
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III.4.3. NiBabel: 

Read/write access to some common Neuroimaging file formats, this package provides 

read +/- write access to some common medical and Neuroimaging file formats, including: 

ANALYZE (plain, SPM99, SPM2 and later), GIFTI, NIfTI1, NIfTI2, CIFTI-2, MINC1, 

MINC2, AFNI BRIK/HEAD, MGH and ECAT as well as Philips PAR/REC. We can read 

and write FreeSurfer geometry, annotation and morphometry files. There is some very limited 

support for DICOM, NiBabel is the successor of PyNIfTI. 

III.4.4. NumPy: 

NumPy is a library for the Python programming language, adding support for large, 

multi-dimensional arrays and matrices, along with a large collection of high-level 

mathematical functions to operate on these arrays. The ancestor of NumPy, Numeric, was 

originally created by Jim Hugunin with contributions from several other developers. In 2005, 

Travis Oliphant created NumPy by incorporating features of the competing Numarray into 

Numeric, with extensive modifications. NumPy is open-source software and has many 

contributors. 

III.4.5. Scipy: 

Scipy is a free and open-source Python library used for scientific computing and 

technical computing. it contains modules for optimization, linear algebra, integration, 

interpolation, special functions, FFT, signal and image processing, ODE solvers and other 

tasks common in science and engineering. SciPy builds on the NumPy array object and is part 

of the NumPy stack which includes tools like Matplotlib, pandas and SymPy, and an 

expanding set of scientific computing libraries. This NumPy stack has similar users to other 

applications such as MATLAB, GNU Octave, and Scilab. The NumPy stack is also 

sometimes referred to as the SciPy stack. 

III.5. Data file format:  

Nifti stands for Neuroimaging Informatics Technology Initiative and it is an open file 

format commonly used to store brain imaging data obtained using Magnetic Resonance 

Imaging methods. In dipy, nifti data is a 4D array where the first 3 dimensions are the i, j, k 

voxel coordinates and the last dimension is the number of non-weighted (S0s) and diffusion-

weighted volumes.  
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III.6. Region of interest: 

 A region of interest (often abbreviated ROI), are samples within a data set identified for 

a particular purpose. The concept of a ROI is commonly used in many application areas. For 

example, in medical imaging, the boundaries of a tumor may be defined on an image or in a 

volume, for the purpose of measuring its size. Dipy allows us to select a specific ROI from the 

streamlines obtained from the tractography by using the target tool which allows one to filter 

streamlines that either pass through or do not pass through some region of the brain. 

• Dipy’s target tool: 

 The target tool is a function that we used in order to filter out streamlines that pass 

through a specific region of interest. This function takes a set of streamlines and a region of 

interest (ROI) and returns only those streamlines that pass though the ROI  

 

Figure III.3: a) Corpus Callosum Axial b) Corpus Callosum Sagittal ROIs filtered using the target tool 

III.7. Description of the Program Operation: 

We implement FBC measures based on kernel density estimation in the non-flat 5D 

domain. First, we compute the kernel density estimator induced by the full lifted output of the 

tractography. Then, the Local FBC (LFBC) results from evaluating the estimator along each 

element of the lifted fiber (Figure III.1). A whole fiber measure, the relative FBC (RFBC), is 

calculated by the minimum of the moving average LFBC along the fiber. The kernels used in 

the kernel density estimation have a probabilistic interpretation. 
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III.7.1. Experiment 1: 

In this experiment, we describe an example illustrating the method which is performed on 

the Stanford HARDI dataset (150 orientations, b=2000s/mm^2). Constrained Spherical 

Deconvolution is used to create the fiber orientation density function, after which probabilistic 

tractography is applied. The spurious fibers identified by a low RFBC are removed by setting 

a threshold (τ=0.2). Regarding computation time, after a one-time computation of the lookup-

table (taking several minutes) the fiber tracking followed by the FBC computation. The 

different steps are presented below:  

• Loading the data:  The FBC measures are evaluated on the Stanford HARDI dataset 

(150 orientations, b=2000 s/mm2s/mm2). 

• Selecting a region of interest:  Select a relevant part of the data (left hemisphere) 

coordinates given in x bounds, y bounds, z bounds this done with the help of mango 

software to extract the coordinates. 

• Fitting the data: The data is first fitted to Constant Solid Angle (CDA) ODF Model. 

CSA is a good choice to estimate general fractional anisotropy (GFA). The stopping 

criterion can be used to restrict fiber tracking to those areas where the ODF shows 

significant restricted diffusion, thus creating a region-of-interest in which the 

computations are performed. 

• Fibers Reconstruction: We first fit the data to the Constrained Spherical 

Deconvolution (CSD) model in DIPY. This model represents each Voxel in the data 

set as a collection of small white matter fibers with different orientations. The density 

of fibers along each orientation is known as the Fiber Orientation Distribution (FOD), 

used in the fiber tracking. 

• Tractography:  Local Tracking is used for probabilistic tractography which takes the 

direction getter along with the stopping criterion and seeds as input. 

• Lookup-table: A lookup-table is created, containing rotated versions of the fiber 

propagation kernel Pt, regarding the kernel. In order to ensure rotationally invariant 

processing, the discrete orientations are required to be equally distributed over a 

sphere. By default, a sphere with 100 directions is used. 
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• FBC measures: After calculating the FBC measures, a threshold can be chosen on the 

relative FBC (RFBC) in order to remove spurious fibers. Recall that the relative FBC 

(RFBC) is calculated by the minimum of the moving average LFBC along the fiber. In  

this example we show the results for threshold 0 (i.e. all fibers are included) and 0.2 

(removing the 20 percent most spurious fibers in this example). 

• Saving the result: Finally, the streamlines obtained from the tractography are saved 

and can be now visualized using and visualization program like Mi-Brain. The 

tractography result is shown in figure III.4. 

 The tractography result is then cleaned by removing fibers with a relative FBC (RFBC) 

lower than the threshold τ=0.2 as illustrated in figure III.5. 

  

Figure III.4: The optic radiation obtained through 

probabilistic tractography colored by local fiber to 

bundle coherence 

Figure III.5: Cleaned tractography results based on 

the fiber to bundle measures. 

III.7.2. Experiment 2: 

The program was run using different data varying from simulated and real ones normal 

and abnormal for the whole brain and separate regions of interest. It was tested several times 

using different methods of reconstruction and tractography varying the Generalized Fractional 

Anisotropy (GFA) and the threshold of cleaning τ. The results on the whole brain is given in 

the following tales: 
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Table III.1: Results of Fiber tracking, before and after proposed Post-Processing with FBC using DTI 

reconstruction method. 

 

GFA 

Reconstruction 

Method 

Tractography 

Algorithm 
τ 

Number of 

Streamlines 

before 

Number of 

Streamlines 

after 

0.4 DTI Deterministic 0.2 25231 23155 

0.25 DTI Probabilistic 0.3 62088 51244 

0.2 DTI Probabilistic 0.3 81203 70123 

Table III.2: Results of Fiber tracking, before and after proposed Post-Processing with FBC using CSD 

reconstruction method. 

 

GFA 

Reconstruction 

Method 

Tractography 

Algorithm 
τ 

Number of 

Streamlines 

before 

Number of 

Streamlines 

after 

0.4 CSD Deterministic 0.2 35071 33219 

0.25 CSD Probabilistic 0.3 90401 79366 

0.2 CSD Probabilistic 0.3 160878 136001 

Table III.3: Results of Fiber tracking, before and after proposed Post-Processing with FBC using Q-Ball 

reconstruction method. 

 

GFA 

Reconstruction 

Method 

Tractography 

Algorithm 
τ 

Number of 

Streamlines 

before 

Number of 

Streamlines 

after 

0.4 Q-Ball Deterministic 0.2 32547 29215 

0.25 Q-Ball Probabilistic 0.3 78620 50112 

0.2 Q-Ball Probabilistic 0.3 12594 10489 

III.7.2. Experiment 3: 

In this experiment, we have applied the different programs using CSD reconstruction 

method in the brain-damaged region and for that purpose, we have used five patients data 

obtained from the UK dataset archive resumed in Table III.4 [39], we have chosen the 

maximum number of streamlines near the Regions Of Interest (ROI). 
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Table III.4: Summary of the clinical data used in the study 

Cases Pathology/ Tumor location/ Sex/ Age 

Case 1:  Astrocytoma type II (Wemiche Area), M/41years 

Case 2:  Astrocytoma type II (Left Temporal Cortex), F/27 years 

Case 3:  Astrocytoma type III (Right Supplementory Motor Area), F/26 years 

Case 4: Glioblastoma Multiform (Right Primay MotorArea), F/40years 

Case 5:   Glioblastoma Multiform (Right Primary Motor Area), M/42 years 

 

 

 

 

 The following figures present the visualization of the obtained result of the five cases 

using MI-Brain. The results of the tractography cleaning are saved and then loaded to            

MI-Brain software. 

Table III.5: Results of tracking cleaning with FBC, before and after proposed Post-Processing using CSD 

reconstruction method for the five different cases. 

Case GFA 
Reconstruction 

Method 

Tractography 

Algorithm 

τ 

 

Number of 

Streamlines 

before 

Number of 

Streamlines 

after 

1 0.2 CSD Probabilistic 0.3 41136 23541 

2 0.2 CSD Probabilistic 0.3 34418 19496 

3 0.2 CSD Probabilistic 0.3 39664 21496 

4 0.2 CSD Probabilistic 0.3 49631 31469 

5 0.2 CSD Probabilistic 0.3 35623 22367 
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➢ Case 1: 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.6: Visualization of Tractography results of the whole brain for case 1: a) Showing the brain matter  

along with the brain fibers. b) Focusing on the tractography results. 

 

 

 

 

 

 

Figure III.7: Visualization of Tractography results of the ROI 

(tumor area) fore case 1 before cleaning. 
Figure III.8: Visualization of the Tractography results of the 

ROI (tumor area) for case 1 after cleaning. 
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➢  Case 2: 

Figure III.9: Visualization of tractography results of the whole brain for case 2: a) Showing the brain matter 

along with the brain fibers. b) Focusing on the tractography results. 

 

  

Figure III.10: Visualization of tractography results of the         

ROI (tumor area) fore case 2 before cleaning. 

Figure III.11: Visualization of the tractography results for 

the ROI (tumor area) for case 2 after cleaning. 
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➢ Case 3: 

 

 

 

 

 

 

 

 

 

 

Figure III.12: Visualization of tractography results of the whole brain for case 3. 

 

 

  

Figure III.13: Visualization of tractography results of the 

ROI (tumor area) for case 3 before cleaning. 

Figure III.14: Visualization of the tractography results for the 

ROI (tumor area) for case 3 after cleaning. 
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➢ Case 4: 

 

Figure III.15: Visualization of tractography results of the whole brain for case 4. 

 

  

Figure III.16: Visualization of tractography results of the ROI 

(tumor area) for case 4 before cleaning. 

Figure III.17: Visualization of the tractography results for the 

ROI (tumor area) for case 4 after cleaning. 
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➢ Case 5: 

 

Figure III.18: Visualization of tractography results of the whole brain for case 5. 

 

  

Figure III.19: Visualization of tractography results of the ROI 

(tumor area) for case 5 before cleaning. 

Figure III.20: Visualization of the tractography results for the 

ROI (tumor area) for case 5 after cleaning. 



 

70 
 

III.8. General discussion:  

1. The increase of the b value improves the angular precision but in the same time 

produces more false fibers since the more we decrease GFA the more the peaks 

produced the more error produced in the acquisition, reconstruction and tractography 

steps. This is why we get more false fiber as we decrease GFA.  

2. Changing the parameters in each step (acquisition, different methods of reconstruction 

and tractography) produces different brain images with different number of 

streamlines. The number of false fibers is due to noise caused by the acquisition and 

errors engendered in each step of reconstruction and tractography.   

3. The new step added to the previous algorithm improves the final result by cleaning the 

tractography algorithm which removed the spurious fibers that are poorly aligned with 

their neighbors. 

4. The results show that the visualization of the brain fibers is clearly improved 

especially when dealing with abnormal cases where it leads to a better detection of the 

tumor that results in clearer coordinates. This is mainly caused by the suppression of 

the false fibers that were confusing and perturbing the tumor’s borders. 

5. Choosing a region of interest gives a better study statistic for a specific region in the 

brain such as a tumor with abnormal data and it requires less time and resources to 

output the result. 

III.9. Summary 

          In this chapter we carried the previous work of our colleagues and presented an updated 

version of the tractography algorithm which consists in cleaning the result of tractography. 

The output of tractography algorithms often contains spurious fibers which are isolated and 

poorly aligned with the surrounding bundle of fibers. The fiber to bundle coherence (FBC) 

provides us with a quantitative measure of fiber alignment and is therefore useful in pruning 

the results of tractography algorithms by removing spurious fibers and facilitating the 

processing of raw data obtained from MRI, with different visualization options in 3d. 

Moreover, a statistical study was performed in both real and simulated data with different 

brain states including tumors. The analysis was carried by changing different parameters to 

note the difference between each case and the effect of these parameters on the results. 

Therefore, getting a visualization of five brain cases with abnormal tissues.
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General Conclusion & Further Work 

 

This objective of this project was to propose an algorithm to enhance the tractography 

process and improve its results. 

This work required some background knowledge on cerebral white matter anatomy and 

diffusion MRI principles. All these topics were reviewed and covered in the first chapter. 

We first presented different reconstruction methods used to detect diffusion directions 

in the brain starting by DTI and showing its limitations in detecting multiple fibers crossings, 

then we introduced more efficient algorithms known as HARDI and discussed the solutions 

that were proposed to overcome these limitations. After that, we saw two main algorithms, 

probabilistic and deterministic, used in the tractography to visually represent fibers tracts. 

Afterwards, we proposed an algorithm that was is able to improve the tractography 

algorithm by cleaning the results and removing the spurious algorithm to get clearer 

visualization of the whole brain or a specific region of interest. We have run our algorithm on 

different datasets with different brain states including abnormalities. We were able to 

successfully apply the algorithm on the different cases and visualized them using the            

Mi-Brain software. A statistical study was performed to analyze and compare between the 

different results and show the effect of the FBC technique using different parameters and 

reconstruction methods. We finally were able to get better visualization of the brain especially 

the ones including abnormalities where the reduction of the spurious fibers produced more 

defined borders of the tumors. 

As further work, parallelism (multiprocessing) can be used to speed up the signal 

reconstruction process and hence resulting in a more efficient algorithm. Since the whole 

process of reconstruction and tractography usually takes a considerable amount of time, it can 

be reduced by optimizing the algorithm such that the voxels can be processed in parallel.
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