People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University M’ Hamed BOUGARA - Boumerdes

- ——

Université de Boumerdes |
University of Boumerdes

T~

Institute of Electrical and Electronic Engineering
Department of Power and Control

Final Year Project Report Presented in Partial Fulfilment of

the Requirements of the Degree of

Master

In Electrical and Electronic Engineering

Option: Control Engineering

Title:
Information Archiving of remote HMI TP900
comfort In a PLC based networked plant using
ODK Development Kit and TIA Portal

Presented By:
- BOULOUDENE Walid

Supervisor: Co-Supervisor:
Dr. A. OUADI Mr. S. GALOU

Registration Number: M201531033530/2015

Abstract

In a plant composed of S7-1217Cs, connected to an HMI TP900 comfort at a remote location having
disconnection problems, we will be developing a solution to store Process Data of the plant PLCs in an Archiving
PLC chosen to be an S7-1507S installed in an IPC227E. The archiving will be done in a CSV file that will then
be accessed by the HMI after its re-connection. This development will be through ODK Development Kit and
TTA Portal. The solution obtained performs efficiently the task and fulfills the criteria of our customer.

Dedication

“What we know is a drop, what we don’t know is an ocean.”
ISAAC NEWTON

First of all we thank god the almighty for his protection through our life and
guidance to follow the right way and pray for him to show us the path to success.

] dedicate this work

To my parents, brother and sister. May this humble work make you proud and
hopefully reassure your hearts that the son and sibling you have, lives out to be the
image you have of him and hoped he grows into. May God preserve you and keep
you as the beacon and light of my life.

To all my friends, in particular those who will recognize themselves here, for all the
support and laughs during the long years leading to this moment.

Acknowledgement

First and above all, we thank God for the well-being and health in these
hard times, and for providing us this opportunity and granting us the capability
to complete this experience at IGEE.

We would like to thank our supervisor, Dr. Abderrehmane OUADI, for his
precious advice, supervision and support.

We would like to thank also all the professors and staff who helped us at
IGEE from close or afar, in particular Pr. Harriche, Pr. AitKaid and Pr.
Yelles (may god rest his soul) for being the image of INELEC we will always
remember and cherish and Dr. Dalila CHERIFI for her support and advice
throughout the years.

I would also like to express my sincere and complete gratitude and thank-
fulness to my co-supervisor Mr. Sofiane GALOU for the opportunity to work
on a project at SIEMENS and for all his guidance, assistance and monitoring
during the past months.

We also thank our parents for the support and encouragement they offered
us and all the resources and time they put so that we reach this point in life.

List

2.1
2.2

3.1
3.2
3.3
3.4
3.9
3.6
3.7
3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

of Figures

Physical aspect of the Solution proposed to our System. 11
Plant connection TIA portal 11
TSEND_C function block 12
TRCV_C function block 13
ODK application implementation process 14
Open user communication functions 15
TSEND_C function block configuration 15
SendDatal Data block 16
PLC_1_.SEND_DB Data block 16
Configuration of connection parameters of TSEND_C block func-

17200 & 17
TRCV_C function block configuration 17
ReceivedDataPLC1 Data block 18
Configuration of connection parameters of TRCV_C block function 18
Coordination Area Pointer tagging 19
Coordination Area Pointer bits assignement 19
Life bit cycle representation 20
Edge detection in the Life Bit Signal 20
Reset of edge detector 20
Disconnected detected and setting of the function output 21
Activation of webserver on S7-1507S 21
Example of S7-1500 Webpage interface 22
S7-1500 Webpage access to FileBrowser option 22
Flowchart of the ODK program 23
Code of the ODK application 25
Code of the ODK I/O ports 25
Generated function blocks from SCL file 26
Load function of the Read_Store program 26
TRCV_C function blocks connected to PLC1 and PLC2 27
HMI_LIFEE function block connections 27
Composition of the Writer function block trigger 27

LIST OF FIGURES

3.29 Connection of the Writer function to the Data Blocks compo-
nents and the activation trigger
3.30 Read system time function to obtain timestamp parameters

4.1 Two S7-1217Cs simulated using PLCSIM software
4.2 Data Block communication with EnableRead OFF
4.3 Data Block communication with EnableRead ON
4.4 TRCV_C block function with En_R set to False
4.5 TRCV_C block function with En_R set to True.
4.6 Network configuration of the HMI disconnection simulation . . .
4.7 Scenario simulation of disconnection of the HMI
4.8 HMI connected and Life bit changing every one second
4.9 HMI Disconnection detected

List of Tables

3.1 Data Types between C++ and ODK .
3.2 Input Data types

4.1 TRCV_C Status codes and desecription

Contents

Abstract
List of Figures,
List of Tables

1 Introduction

2 System Architecture and Functional Description
2.1 Introduction:
2.2 System specifications:

2.3 System Hardware description:

2.4 Conclusion:

3 System Software components description:
3.1 Introduction:
3.2 Construction of the software solution:
3.3 Development of the Software Solution:
3.3.1 TIA Portal programming:

3.4 Assembling and finalizing the Solution:
3.5 Conclusion:

4 System Implementation and simulation
4.1 Introduction:

5 Conclusions

Appendix A Instruments Data Sheet

© © © o

10
10
11
11

12
12
12
15
15
23
26
29

30
30
30
33

37

39

Chapter 1

Introduction

The automation of systems has been growing more and more in the industry and the reason for it is the mul-
tiple benefits it has brought to the manufacture process. The main reason it has invaded so many fields is all
thanks to the economical benefit it has generated, from economy of scale by reducing the cost of manufacture
by increasing the production and also from the economy of scope by providing a versatility in production and
so having less machines to buy to create different products.

The programmable logic controller or PLC is an example of automation system, we can describe it as an
industrial computer used to perform a various number of tasks that correspond the manufacturing process it
was assigned to. It corresponds perfectly as a basis for our solution, thanks to its many technological properties
such as:

1. Fast scan times
2. Small volume and high density of Inputs/Outputs.

3. Efficient data handling and intercommunication with different peripherals.

We can understand the large capabilities of the PLC when we realize how many ways can be used to program
it, either by:

- Ladder Diagram (LD): it is a programming language similar to circuit drawing, using contacts
and switches. It is more appealing and used by those who have electrical backgrounds.

- Instruction Lists (IL): it is a programming language similar to circuit drawing, using contacts
and switches. It is more appealing and used by those who have electrical backgrounds.

- Function Block Diagram (FBD): it is a programming language similar to circuit drawing, using
contacts and switches. It is more appealing and used by those who have electrical backgrounds.

For our solution we will be basing our work on not just one of the past languages but concatenate the project
using FBD, LD and even create new functions using a development kit we will introduce later in our report.

But the most important characteristic that led us to choose it as our ground to create the solution is
its ability to create functions from High-level languages, knowing our solution will be developed in a windows
environment, giving us the liberty to program the function in C++.

This flexibility will also permit other engineers to upgrade, extend and even enhance the program as they
desire or as the problem at hand requires.

The communication abilities of the PLCs will be useful in our solution implementation, we will be using
the Transmission Control Protocol (TCP) to perform the Data transfer between the plant PLCs and the PLC
used for Archiving, the TCP protocol is a complement of the Internet protocol (IP), the pair is commonly
mentioned as TCP /IP. This protocol is used for small distance between the plant PLCs and the Archiving PLC,
through an Ethernet switch and Profinet cables (do not exceed 100m). As we will see further in our work, the
IP addresses of the PLCs will be used as connection parameters to establish the data transfer.

CHAPTER 1. INTRODUCTION

The communication between the HMI and the Archiving PLC safely transferred using TCP/IP protocol in
form of webpage that access to the PLC. The HMI will be the access point to our saved files in the PLC by
reading the CSV files in the directory we will be setting as storage folder of the generated files.

The main and interested process data which is recorded when the HMI disconnects, and then send back
once the connection is back to its normal state, are stated as follow:

a. Process Alarms: The process alarms are activated either by a bit changing from 0 to 1 or
vice versa, this corresponds to discrete alarms in the HMI, or it can be a value that either goes higher
or lower than a certain threshold, this corresponds to analogue alarm.

b. Process Messages: Process messages are programmed according to the plant to display
certain messages corresponding to a new state change of the process, starting new step or accomplish-
ment of a certain task (whatever the client wishes to be notified by using messages), messages are set
in the HMI by creating a text list, linking it with a certain Tag or a PLC value, and specifying what
value sent from the PLC represents as Message we want to display.

c. Process Variables: The plant during its activity generates values that can either be in-
significant and do not need to be displayed or have an important role in the process control and plant

behavior. The latter type is the one we are interested in; they contain details that our customer
doesn’t want to lose.

SIEMENS in Algeria:
Siemens is an international multi-industry company of German origin in the field of technology.
Industry, Energy and Healthcare represent the main activities of the company. Siemens first activity in Algeria

was in 1857 and it was not till 1962 that it opened its first representative bureau, known now as Siemens SPA.

SIEMENS projects in Algeria:

417,
- -
i@‘

-} Ny PNl N
55 ™ =
18% of the energy capacity Over 300 water projects fully First Algiers metro line by Siemens
installed in Algeria is equipped with Siemens electrical in a consortium with CAF and Vinci
generated by Siemens turbines and automation systems

Chapter 2

System Architecture and Functional
Description

2.1 Introduction:

In this Chapter, we will be looking at what we used to develop our solution, with a detailed explanation
of the Hardware component and characteristics. We will also discuss the architecture of the plant proposed to
achieve the task at hand.

Finally, we will discuss the work performed by every component in the realization of the project, all in the
hope to facilitate the comprehension of the work implemented later to create our proposed solution.

2.2 System specifications:

The required work in the plant present various utilities with a certain degree of complexity, which con-
sists of handling simple hardware wiring and connection to programming the CPU and computer to accomplish
the desired task. That is recording information before disconnection and restitute it when the connection is
reestablished. The main components are presented hereafter:

2.2.1 Controllers:

We will be using two kinds of PLCs: physical and software controllers. The S7-1200 series used are
plant dedicated, while the S7-15008S is solution related.

2.2.2 Software:

We will be using the STIMATIC software such as: TIA portal, S7T-PLCSIM in both standard and
advanced versions and Eclipse for ODK 15008S.

CHAPTER 2. SYSTEM ARCHITECTURE AND FUNCTIONAL DESCRIPTION

2.3 System Hardware description:

Our work will revolve around PLC programming and network architecture of the plant, we will start by intro-
ducing their hardware:

2.3.1 Instruments:

The solution we decided to implement required the following:

a. SIMATIC S7-1507S:

The S7-1507S is a software controller that offers the same functionalities of S7-1500 automation
system only in PC-based real-time environment.

The configuration is easily done via TTA portal to select the properties we want our software
controller to have and it is downloaded on an IPC (which we will see next) to be operational.

It is used in our proposed solution, due to its versatility and ability to work with high-level lan-
guage program as C++. This allows us the possibility to create a function that will allow archiving
the data incoming from the plant PLCs to and then being accessed from the HMI terminal.

b. IPC227E:

The TPC227E is a Nanobox embedded industry PC used for its flexibility, high resistance and
versatile deployment. It can be used to interface multiple software such as: SIMATIC software
controllers and/or WinCC RT advanced. It was chosen because of its characteristics and options as
to allow large storage of files and a windowns 7 operating system, beneficial for our C++ program
development.

c. SIMATIC S7-1217C:

The S7-1217C is a controller used at our plant to perform the automation and control of the sys-
tem. There will be multiple PLCs of this type present at the plant, they will be the source of the
Process Data we wish to record and archive which will be our only interest.

d. SIMATIC HMI TP900 comfort:

Our HMI used in this project is the TP900 comfort, it has a large number of options and applica-
tions. It will serve the purpose of interfacing the information of the plant during its normal use,
and will access our Archive files in the S7-1507S thanks to the Windows CE 6.0 web browser. Its
role in our solution is to have access to our Archiving PLC and read the stored values created by
our code after it has reconnected to the network safely.

10

CHAPTER 2. SYSTEM ARCHITECTURE AND FUNCTIONAL DESCRIPTION

2.3.2 Networking Architecture:

The considered system architecture is proposed as shown in Fig. 2.5.

HMI at remote location

TP300 Comfort

IPC227E + 57-15075

I

57-1217C S7-1217C 57-1217C 57-1217C 0 S57-1219C

Plant configuration

Figure 2.1: Physical aspect of the Solution proposed to our System.

As seen in this Figure, we will be adding our IPC with the Software controller installed to perform the
communication and storing of data coming from the S7-1217Cs when our HMI disconnects for any reason.

Having the IPC on site will enable us to maintain a high transmission speed by using PROFINET
connection through an Ethernet switch between the S7-1507S and S7-1217Cs, making sure no data exchange

would be lost.

The project as worked on in the TTA portal software is represented as follows:

HMI_1

TF&D0 Comfort D
[O |

SW_PLC

1]
IFC227E PHIE ; 15075
| , .
{PHE_1] I N
FHNE_Z f

|
PLC_1 PLC_2 l PLC_3 PLC_4
=

CRUIZ217C | CFU1217C CFU1217C CPUIZI7C

Figure 2.2: Plant connection TIA portal

2.4 Conclusion:

As we have seen, the approach undertaken to create the solution requires the addition of the industrial computer
IPC227E and the software controller S7-1507S to the already existing plant PLCs and HMI. Our work will be
highly dependant on the software controller as to be the center of communcation and archiving process.

11

Chapter 3

System Software components
description:

3.1 Introduction:

In this chapter, we will be presenting the software used to create the solution, giving more details about the
various functions used, both present already in the software or the ones created from our part. Its aim is to
familiarize the functions to easily comprehend its use and way of work in the next chapters.

This part is considered as the main contribution that is developed in this project. While the hardware part
is performed for implementing the desired system specifications.

3.2 Construction of the software solution:

This solution will be developed separately:

A) TIA PORTAL Programing;:

This software is used to generate a function that enables the communication and data transfer from
the S7-1217Cs to the S7-1507S. To do so, and after reading and gathering information related to data
exchange between PLCs, we decided to perform this task using the TSEND_C function executed in
the S7-1217Cs to send data blocks where our desired process details (Alarms, Messages and Variables)
are located.

- TSEND _C:

This function will be present at the S7-1217Cs as the transferring function of
the DATA BLOCK that contains our process details:

TSEND_C
A
EN ENOD
.= REQ DOME —i
<7772 — CONNECT BUSY ..
<777 — DATA ERROR 1 -
- STATUS

Figure 3.1: TSEND_C function block

12

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

-REQ: Rising edge activation of the function block.
-CONNECT: Structure pointing to the connection description.
-DATA: Pointer to the send area that contains the address of the data to be sent.

We will link the process details to contents of this data block that will be of the same data type as
defined in the DATA_SEND block

In the S7-1507S we will be using the TRCV_C function linked to a data block that contains the re-
cipient for our process details mentioned above.

- TRCV_C:

This function will be present in our only S7-1507S as to receive the process details transferred
by the TSEND_C function in the S7-1217Cs. This function block is defined here:

TRCV_C

&%

EN ENO
..— EN_R DONE = ..
e — BUSY =i ..
ERROR = ...

— STATUS

<1775 — COMMNECT RCVD_LEM

<3 DATA
— F

Figure 3.2: TRCV_C function block

-EN_R: Enables receive of data from the TSEND when it is equal to 1 or TRUE.

-CONT: Establishes the communication between the Sender and Receiver when it is TRUE.
-CONNECT: Structure pointing to the connection description.

-DATA: Pointer to the send area that contains the address of the data to be received.

13

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

B) Eclipse ODK15008S:

ODK is a development kit that we will be using to program out custom function that will be
storing the process details we have seen in the last part in the comma separated values (CSV) file
as demanded, this kit will allow us to then generate files that the STEP7 can use, those files are the
Structured Control Language (SCL) file containing the functions codes to generate the function
blocks for further modifications in the TIA Portal environment, Shared Object (SO) file that we
can upload directly into the S7-1507S to perform the task at hand.

Eclipse for ODK 1500S is a software that contains the needed libraries, compilers and even a
template to perform the programming of the functions we wish to develop. This task will be
performed by coding based on the C++ template for the real-time environment, then compiled to

obtain the function block we wish to import into our software controller.

Our implementation process will be as follows:

clipse

=€

FLER

Figure 3.3: ODK application implementation process

14

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

3.3 Development of the Software Solution:
3.3.1 TIA Portal programming:

- Communication and data transfer:

As we have seen earlier, we will be performing the transfer of the process details by using the TTA
Portal functions found in the Communication instructions folder Open User Communication:

Options 23
| | Wl Wt 2 % O = |3
: =
. =
» | Favorites q
- . =)
» | Basic instructions =
» | Extended instructions
» | Technology A
— =1
~ | Communication @
Marme Wersion E
— R o
k| | 57 communication V13
* [| Dpen user communicati_. VE.DIE' =
4 TSEND_C V3.2 —"3
3 TRCV_C V32 >
2 TVAIL_C V5.0 3
b [7] Others ||
b [] WEE Server Vi LLI
b [] Others E
» [] Communication processal E
b [] TeleService V19 o

Figure 3.4: Open user communication functions

These two functions will be TSEND_C (for the 1217Cs) and TRCV_C (for the 1507S).

TSEND_C function configuration:

Network 1: Send_Data

This network is used to perform transfer of the process details in our PLC 1217C.

WR1
"TSEND_C_DB"
TSEND_C
|9
EMN EMNO
0.0 DOME —if5lse
*Clack_10Hz" — REQ BUSY —if3lse
TRUE =— CONT ERROR —falze
UnE2 STATUS — 1657000
"FLC_1_Send_DB" CONMECT
YDB3
"SentDatal” DATA -

Figure 3.5: TSEND_C function block configuration

15

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

The data blocks associated to this function are:

SentDatal

Mame Data type Offset Start value Retain Accessiblef.. Writa...
1 |4d[= Satic | =
2 |ag = Variable1 LReal 0.0 = =] =]
3 |ag = Variable2 Int 0 M =) =)
4 gm . Variable3 Uint 0 O =) =)
5 4q = Alarm1 Bool false | =) =)
6] = Alarm2 Bool false D E E
7 |lag = Alarm3 Ulnt 0 M =) =)
8 |4 = Alarm4 Bool false M =) =)
9 |gqg = Messagel Ulnt 0 O =) =)

Figure 3.6: SendDatal Data block

These will be linked to the process functions outputs to store the variables, alarms and messages
generated by the PLC during its work.

PLC_1_Send DB
MName Data type Start value Retain Accessiblef... Writa... Visiblein ...

<0 ~ Static

Interfaceld | Hw_any 64

L D CONM_OUC 1

- ConnectionType Byte 16£0B

- ActiveEstablished Boal true
8 ¥ RemoteAddress IP_Vvia

~ ADDR Array[1.4] of Byte

a ADDR[1] Byte 192
a ADDR[2] Byte 168
= ADDR[3] Byte 1

= ADDR[4] Byte 5

= RemotePort Uint 2000
- LocalPort Uint]

00 =1 h W B W b =

NN NN

000000000000
NURNEEMEEMEREE
RHREEEEREREE
NURNEEMEEMEREE

ary
(%)

Figure 3.7: PLC_1_.SEND_DB Data block

16

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

This Data Block is generated by configuring the TSEND_C function connection as follows:

|§Properties ||"_i.'.lnfo y"ﬂDiagnostics |

General Configuration |

Connection parameter .
TRy L) nnection parameter
eneral
Local Partner
End point: |PLC_1 [CPU 1217C DCIDCIDC] | [software PLC_1 [CPU 15075] [+]
(<IT]
15075
i Interface: | FLC_1, PROFINETinterface_1[X1 : PN(LAN|~ | | software PLC_1, IE gereral_1[x101] [=|
v Subnet: |PNIE_1 | = [PriE_1 |
Address: [192.168.0.1 | [192188010 |
Connection type: | TCF |V|
Connection ID {dec): | 1 | |2 |
Connection data: |PLC_‘I_Send_DB | - | |Soﬁ:wa re PLC_1_Receive_DB | - |
@ Active connection establishment O Active connection establishment

Figure 3.8: Configuration of connection parameters of TSEND_C block function

As we can see, the connection parameters are the interface of connection, and by setting the
options a data block is created in the on-work PLC.

We have to clarify that the “Active connection establishment” is active for the PLC that is in
charge of the data transfer (the sender).

TRCV_C function configuration

- MNetwork 2: Receive_Data

This network is used to perform transfer of the process details from the PLC 1217C to our 15075.

DB 2
“TRCV_C_DE"
TRCV_C
&%)
EMN EMNO
#HM|_State — EN_R DONE —=i2lz2
TRUE =— COMT BUSY —ifalze
falze
B8 ERROR — ot
"Software PLC_ STATUS b ULy
1_Receive_DE" — CoMNNECT RCWVD_LEM — O
YDB6
"ReceivedDataPLC
1" — pATA -

Figure 3.9: TRCV_C function block configuration

17

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

ReceivedDataPLC1
Marme

1 <@ = Static
2 4= Wariablel
3 4l . Wariable2
4 4] = Variable3
5 |« = Alarm1
6 4 = Alarm2
ST Alarm3
8 |4 = Alarmd
9 4] = Messagel

The data blocks associated to this function are:

Data type Offset Start value Retain Accessible f_. Writa_..
LReal 0.0 M = =
Int 0 | [+ [+
Ulnt 0 | [+ [+
Bool false D E E
Bool false M = =
Ulnt 0 | [+ [+
Bool false | v v
Ulnt 0 M [[

Figure 3.10: ReceivedDataPLC1 Data block

These are the exact variables, alarms and messages generated by the PLC 1217C during its
work, and that we will be receiving once the data transfer is activated.

General Configuration |

Connection param

Block parameter

Overview of the co

ete

<

nfig...

Tl T e

Connection parameter

|§ Properties ||"

il Info y"ﬂ Diagnostics

General
Local Partner
End point: |Software PLC_1 [CPU 15075] | |PLC_1 [cPU 1217C DODCIDC] [+]
Py
15075
Interface: | Software PLC_1, IE general_1[x101] [+| | PLC_1, PROFINETinterface_1[x1 : PN(LAN| = |
Subnet: |FN/E_1 | = [pnnE_1 | =
Address: [192.168.0.10 | [192.18801 |
Connection type: |TCP |V|

Configuration mode: | Use program blocks

|v|

Connection ID (dec): | 2

K |

Connection data: | Software PLC_1_Receive_DB

|v|

[PLC_1_send_DE [+]

() Active connection establishment

(s} Active connection establishment

Figure 3.11: Configuration of connection parameters of TRCV_C block function

As we can see, the connection parameters are the interface of connection, and by setting the

options, a data block is created in the on-work PLC.

We once again set the PLC_1 as the “Active connection establishment” for it is the sending

PLC.

18

CHAPTER 3.

SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

- Detection of HMI disconnection:

To detect the HMI TP900 comfort disconnection for whatever reason, we will be using the
Coordination pointer of our HMI which is a word data type:

PFE » HMI_1 [TP900 Comfort] » Connections

g}?’ Connections to 57 PLCs in Devices & networks :_".
Connections
Name a Communication driver HMI time synchronization mode Station Partner Node
HMI_Connection_1 SIMATIC 57 1500 None [=] Wali Software PLC_1 CPU .
<Add news
[<] i [»>

L O . |

Parameter Area pointer

Active Display name FLC tag Access mode Address
E Coordination HMI_Coord_AND_Time HMI_Word_Coord [_1 <symbaolic access>
0 Dateftime <Undefined= <symbolic access>
[:] Job mailbox <Undefineds= <zymbolic accesss
D Data record <Undefined> <symbaolic access>
[<]

M [»

Figure 3.12: Coordination Area Pointer tagging

This will be sent into our data block named: HMI_Coord_AND _Time in the variable: HMI_Word_Coord
and stored as a word, this word is devised as follows:

Assignment of the bits in the "Coordination” area pointer

high-order byte low-order byte
15 6|7 |2 1 0
fstword |=|=|=|=|=|=|=|=|=-|=|=-|=-|=-|X|X| X
2st word not assigned oo e
et o \— Startup bit

Operation mode
Life bit

- = reserved
X = assigned

Figure 3.13: Coordination Area Pointer bits assignement

We can easily notice that the 3 least significant bits represent:

-Startup bit: is equal to 1 when it turns on and then 0.

-Operation mode: is equal to 1 when the HMI is turned off by the User and 0 during normal
operation mode.

-Life Bit: this bit changes every second from 0 to 1 alternately.

We will be using the Life Bit to detect the disconnection of our HMI and use it to activate
the EN_R of our TRCV_C function and launch the data transfer between the 1217Cs and the
1507S.

19

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

The Life Bit as mentioned previously will have the following form:

Life Bit Signal

L

-

0 >
1 2 3 4 5 & Time (Sec)

Figure 3.14: Life bit cycle representation

In the case of disconnection, this bit will retain its value at that moment, so to detect con-
nection loss, we will create a function named HMI_LIFEE that will detect the rising edge and
falling edge, with a timer of 1s to detect whether our Life Bit changed its state or not, in the
case 1 second passes without detection of F/R edge, the output of the function will be set to 1,
enabling communication and data transfer from the 1217Cs to the 1507S. If the connection is
achieved with the HMI once again, the output of the function becomes 0 stopping unnecessary
data transfer.

The function HMI_LIFEE is represented here for more details:

1.Edge detection of the LifeBit.

Network 1: LifeBit Edge Detection

Detection of the PIN edge sign of HMI being ON.

#HMI_Coord_
Word %62 #Edge

f==— P | {s}

#edgel

#HM_Coord_
Wiord 3eX2

N}
#edge2

Figure 3.15: Edge detection in the Life Bit Signal

2.Resetting the Pedge and Nedge after 1second of detection:

Network 2: 1second On-Off Reset

Resetting the PN edge detecteur after one second to detect the next one.

HWDB1
"IEC_Timer_0_DE"
TON
#Edge Time #Edge
——] ——— Q {R}
T#999ms PT ET T#Oms

Figure 3.16: Reset of edge detector

20

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

3.Disconnection detected after more than 1 second of no edge detection:

Network 3: Discennection Detection

lfthe PIN edge is not activated in more than 15 the disconnection happened.

%DB9
“IEC_Timer_0_
DE_1"
TON
#Edge Time #Disconnected

]
/1 N Q { }
TE1001ms FT ET T#0rms

Figure 3.17: Disconnected detected and setting of the function output

- Interface in HMI:

The work would not be done if the HMI after its reconnection could not have access to the
created files, that’s why we will be setting the Webpage in our S7-1507S so that the HMI can
access this webpage by entering the IP address of the PLC.

We will first have to setup our PLC by selecting in its properties webserver and activate web
server on this module as well as the protection we want to include, for this task we will be using
read access only. We can see the setting of these parameters in here:

&

D CPU 15075

<[m 100% N %
T
|§, Properties ||'3'.Info y"ﬂ Diagnostics |

J General || 10 tags ” System constants || Texts |
» General Web
¥ PROFINET onboard [X1] &b server

PROF\NFT onboard [X2] General

FC 5tation N

Protection E Activate web server on this module

» Advanced configuration

Figure 3.18: Activation of webserver on S7-1507S

21

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

This will make the PLC generate a webpage that is accessible from a web browser by entering
its IP address, the resulting webpage is represented as follows:

ey
G - e T Foa - B0 % | & e
SIEMENS il AT -COT pLIA LT 2 TG el

Eragish -'

SIMATIC S7-1500

Figure 3.19: Example of S7-1500 Webpage interface

As we can see, this webpage menu contains multiple options, the one we are mostly interested
in is the “FILEBROWSER” as our HMI now can access the Files saved in the PLC and by
that, it can open and read the new created “Datal.og” CSV files:

SIEMENS 571500 MR station_1/PLC_1

Usar: Philop Filebrowser
Log out
I
» Start page Mame Sze Changed Dalete Raneme
LoG 3276S 10:56:14 pm 0110172012
» Diagnostics m 512 10:56: 14 pm 0110172012
* Diagnostic Buffer Directory operations:

i

» Module information . .
Datei auswihlan | Keine ausgewahit Upload fils

» Alarms

+ Communication
» Topology

v Tayg status

+ Watch tables

» Customer pages

+ Datalogs

» Introduction

Figure 3.20: S7-1500 Webpage access to FileBrowser option

22

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

3.3.2 ODK 1500S programming:

In this part we will be discussing the creation of the function named Writer, which purpose is to archive the
process details transferred from the plant PLCs in a CSV file of our choice.
The Flowchart of our program is represented here:

HMIOF==1

Create C5V file in the path we
desired with timestamp in name

HMIOF ==1 Clase file

False
True
Write Alarm details
with timestamp and AlarmxPLCx == 1
PLC number True

False

Write Value with
timestamp and VarkPLCx = Tempxx

PLC number

Write Message details
with timestamp and MsgPLCx ==x »
PLC number

Figure 3.21: Flowchart of the ODK program

From this flowchart we can easily notice the conditional parts of the code, the result of each condition and

the overall aspect of the program we are about to write.
We will first search for the libraries appropriate to perform such tasks and the corresponding functions to

each of the steps.

The data types used in our ODK application can be easily introduced using the C data types:

ODK data type | SIMATIC data type | C++4 data type
ODK_DOUBLE LREAL double
ODK_FLOAT REAL float
ODK_INT64 LINT long long
ODK_INT32 DINT long
ODK_INT16 INT short
ODK_INTS8 SINT char
ODK_UINT®64 ULINT unsigned long long
ODK_UINT32 UDINT unsigned long
ODK_UINT16 UINT unsigned short
ODK_UINTS8 USINT unsigned char
ODK_LWORD LWORD unsigned long long
ODK_DWORD DWORD unsigned long
ODK_WORD WORD unsigned short
ODK_BYTE BYTE unsigned char
ODK_BOOL BOOL unsigned char
ODK_DTL DTL struct ODK_DTL
ODK_S7STRING STRING unsigned char

Table 3.1: Data Types between C++ and ODK

23

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

The code we used contains the following inputs:

Input Data Type C++ | Data Type ODK Detail
HMI state
HMIOF BOOL ODK_BOOL ODK_TRUE == OFF
ODK_FALSE == ON
MsgPLCx UINT ODK_UINT16 Message number.
UINT ODK_UINT16
VarxPLCx LREAL ODK_DOUBLE Process Variable value.
INT ODK_INT16
AlarmxPLCx BOOL ODK_BOOL Process alarm state or number.
UINT ODK_UINT16
Sc USINT ODK_UINTS Seconds (0-59)
Mn USINT ODK_UINTS Minutes (0-59)
Hr USINT ODK_UINTS Hours (0-23)
Day USINT ODK_UINTS Day (1-31)
Mth USINT ODK_UINTS Month (1-12)
Yr UINT ODK_UINT16 Year (xx)

Table 3.2: Input Data types

Side note: to obtain the time, we will be using the RD_SYS_T function to generate the time structure DTL
that we will store in our data block and extract the components to use them in our code. The code we will
obtain is the following:

#include "ODK_Functicns.h”
#include <stdlib.h>

#include <iostream>

#include <string>

#include <fstream>

#include <time.h:

#include <stdio.h>

#include <sstream>

using namespace std;

1® * OnLoad() is invoked after the application binary was loaded.[]
EXPORT_API ODK_RESULT OnLoad {void)

[T

@

oo

// place your coede here
return ODK_SUCCESS;

s @ w0

[
—

* onUnload() is invoked before the application binary is unloaded or when
ODK-Host terminates.
* fireturn ODK_SUCCESS notify, that no error occurs
. any other value notify, that an error occurs (user defined)
- ODK application will be unloaded anyway

@\

Y

XPORT_API ODK_RESULT OnUnload (void)

& 0 oo -

15E

{
// place your code here
return ODK_SUCCESS;

2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3

}

= ODK_RESULT Writer (ODK_BOOL& HMIOF, ODK_UINT16& MsgPLC1l, ODK_DOUBLE& VarlPLC1, ODK_INT16& Var2PLC1, ODK_UINT16& Var3PLCL,

@B W Rk

9

a1 0ODK_DOUBLE& VarlPLC2, ODK_INT16& Var2PLC2, ODK_UINT16& Var3PLC2, ODK_UINT16& MsgPLC2, ODK_BOOL& AlarmlPLCL,
92 ODK_BOOL& Alarm2PLC1, ODK_UINT168& Alarm3PLC1, ODK_BOOLR Alarm4PLC1, ODK_BOOL& AlarmlPLC2, ODK_BOOL& Alarm2PLC2,
93 0ODK_BOOL& Alarm3PLC2, ODK_BOOL& Alarm4PLC2, ODK_UINTB& Sc, ODK_UINTS& Mn, ODK_UINTS& Hr,

94 0ODK_UINT3& Day, ODK_UINT8& Mth, ODK_UINT16& Yr)

as {

96 int Temp3l=8, Templl=@, Temp2l=8,Temp32=0, Templ2=@, Temp22=8, TempMPl=8, TempMP2=8;

a7 while (true)

98 {if (HMIOF == ODK_TRUE)

a9

166 std::ostringstream oss

161 oss << "C:/StoringFolder/Datalog "<< Hr << "_"<< Mn << "_"<< Sc << "-"<q Day << "< Mth << "< Y <<U.gsy";

162 ofstream MyFile;

183 string Timestamp = oss.str();

164 MyFile.open(Timestamp.c_str());

185 MyFile << "Time_Date,Content,PLC Number™;

106 while (HMIOF == ODK_TRUE)

187 { if (AlarmlPLC1 == ODK_TRUE)

188

169 MyFile << Hr << "_"<< Mn << "_"<< S5c << "-"<< Day << "_"<< Mth << "_"<< ¥Yr <<",Alarml has been turned OM, PLC1";}

110 if (Alarm2PLC1 == ODK_TRUE)

12 MyFile << Hr << "_"<< Mn << "_"<< Sc << "-"<< Day << "_"<< Mth << "_"<< ¥r <<",Alarm2 has been turned ON, PLC1";}
3 if (Alarm3PLCL > 45)

MyFile << Hr €< "_"<< Mn << "_"<< 5c << "-"<< Day €< "_"<< Mth << "_"<< ¥r <<",Alarm3 has been turned OM, PLC1";}
if (Alarm4PLCL == ODK_TRUE)

MyFile << Hr €< "_"<< Mn << "_"<< 5C << "-"<< Day << "_V<d Mth << "_"<< ¥r <<",Alarmd has been turned OM, PLC1V;}
if (AlarmlPLC2 == ODK_TRUE)

MyFile << Hr << "_"<< Mn << "_"<< 5c << "-"<< Day << << Mth << << Yr <<",Alarml has been turned ON, PLC2";}

24

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

if (Alarm2PLC2 == ODK_TRUE)

MyFile << Hr << "_
if (Alarm3PLC2 == ODK_TRUE)

MyFile << Hr <<
if (Alarm4PLC2 == ODK_TRUE)

{
MyFile << Hr

if { MsgPLCL != TempMP1){

if (MsgPLCL == 1)

i

MyFile << Hr €< "_"<< Mn < "

if (MsgPLCL == 2)

MyFile << Hr << "
if (MsgPLCL == 3)
{

MyFile << Hr
if { MsgPLCL

if { MsgPLC2 !
if (MsgPLC2

TempMP2) {

MyFile << Hr <
1
== 1)

[T

MyFile << Hr <<
if (MsgPLC2 == 2)

MyFile << Hr <<
if (MsgPLC2Z == 3)

MyFile << Hr << "
if (MsgPLC2 == 4)

MyFile << Hr << "
if { VarlPLC1l != Templl)

MyFile << Hr €< "_"<< Mn < "
if { Var2PLCLl != Temp21)

i

MyFile << Hr << "_"<< Mn << "
if (Var3PLC1l != Temp31)
MyFile << Hr << "_"<< Mn << "
if (VarlPLC2 != Templl)

{

MyFile << Hr << "_"<< Mn << "
if { var2PLC2 != Temp22)
MyFile << Hr << "_"<< Mn << "
if { Var3PLC2Z != Temp32)

i

MyFile << Hr €< " _"<< Mn << "

MyFile.close(); } }
return 0DK_SUCCESS;

"<< Mn << "
" Mg Mno<< "

€¢ " "e< Mn o< "
1

"< Mn o< "
€@ M e Mn o< "

" teg Mn << "

" teo tn << "

" teg Mn << "

"<< Mn << "

"eg

"ee

ee

ee

tee

"ec

"eg

"o

"eg

"ee

"eg

ee

tee

"ec

"eg

"eg

ee

Sc

Sc

Sc

Sc

Sc

5c

Sc

5C

Sc

Sc

Sc

Sc

5c

Sc

Sc

The ODK function demands

<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day
<< "-"<< Day

Figure 3.22: Code of the ODK application

also to define the IN,OUT,INOUT of our function as follows:

"

"

«w "

e "

"

"o

"eq

"eg

"eg

"eg

"eg

"o

e

"eg

"eq

"eg

"eg

"eg

"eg

"o

"eg

"eg

Mth

Mth

Mth

Mth

Mth

Mth

Mth

Mth

Mth

Mth

Mth

Mth

Mth

Mth

Mth

Mth

Mth

"< Yr <

" Med Yr o<

" Meg W <

" Meg W <

"_ted ¥r <

R

"< Yr <

" tee Yr <"

" Me< ¥r <"

" tee vr <"

" Me< ¥r <"

" tec vro<<”

" tee Wb o<<”

" tee vr <"

"reg Ye <<”

" Me< ¥r <"

" tec vro<<”

N

-

Ky

Ky

*,Message

~

",Message Two, PLCL";

~

", Message

N

", Message

sMessage

sMessage

sMessage

JMessage

,Variable 2

Jvariable 3

,Wariable 1

,Variable 2

,Variable 3

44/ how to create a function in ODK 15885.
45 0DK_RESULT Writer([INOUT]

45
47
48
449
58
51
52
53
54
55
56
57
58
59
8
61

",Alarm2 has been turned OM,

",Alarm3 has been turned ON,

",Alarm4 has been turned ON,

One, PLCL";TempMP1

TempMPL =

Three, PLCL";TempMPl =

Four, PLC1"; TempMPl =

One, PLC2";TempMP2

Two, PLC2";TempMP2

,Variable 1 walue is:
value is: " << Var2PLC1 <<
value is: " << Var3PLC1 <<
value is: " << VarlPLC2 <<"
" << Var2PLC2Z <<

value is:

value is: " << Var3PLL2 <<"

, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]
, [INOUT]

ODK_BOOL HMIOF
ODK_UINT1le MsgPLCl
ODK_DOUBLE WarlPLCl
ODK_INTle War2PLCL
QDK_UINT1le VWar3PLCL
QDK_DOUBLE VarlPLC2
ODK_INT1G Var2PLC2
0DK_UINT1E Var3PLC2
ODK_UINT1e MsgPLCZ2
ODK_BOOL AlarmlPLC1
0DK_BOOL Alarm2PLC1

PLC2";}

pLC2";)

pLC2";)

= MsgPLC1;}

MsgPLCL; }

MsgPLCL; }

MsgPLCL; }}

= MsgPLC2;}

= MsgPLC2;}

Three, PLC2";TempMP2 = MsgPLC2;}

Four, PLC2";TempMP2 = MsgPLC2;}}

" << VarlPLC1 <<",PLCL";

ODK_UINT16 Alarm3PLCL

ODK_BOOL Alarm4PLC1
ODK_BOOL Alarm1PLC2
ODK_BOOL Alarm2PLC2
ODK_BOOL Alarm3PLC2
ODK_BOOL Alarm4PLC2
ODK_UINT8 Sc
ODK_UINTS Mn
ODK_UINTE Hr
ODK_UINTS Day
ODK_UINTS Mth
ODK_UINT16 Yr);

Figure 3.23: Code of the ODK I/O ports

,PLCL";

LPLC1";

JPLC2";

,PLC2"

,PLC2";

3

3

3

3

H

3

Templl

Temp2l

Temp31

Templ2

Temp22

Temp32

VarlPLC1;}

Var2PLC1;}

Var3PLC1;}

VarlPLC2;}

Var2PLC2;}

Var3PLC2;}}

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

After the creation of our function and using the release_so compiler, we have now successfully created the
SCL file we need to import into our STEP7 Tia Portal for further modifications or to simply connect it to our
project, We will then open TIA Portal and select external software and upload our Read_Store.scl file, after
it is completed, we generate the function blocks that can be easily noticed, for they have been added to our
“Program blocks” folder:

b ?IE Software units

« |l Program blocks
K’ Add new block
3 Main [OB1]
48 HMI_LIFEE [FB2]
4 Fea d=5tDrE=GEtTra ce [FEA]
& Read_Store_Load [FE3]
48 Read_Store_Unload [FE4]
48 Read_StoreWriter [FES]
@ HMI_Coord_AND_Time [DE10]
@ HMI_LIFEE_DE [DB4]
@ FReceivedDataPLCT [DB6]
@ FReceivedDataPLCZ [DB7]

b o System blocks

b r*-_*} Technology objects

= External source files
K Add new external file
| | Read_Store scl

» Lo PLC tags

Figure 3.24: Generated function blocks from SCL file

3.4 Assembling and finalizing the Solution:

We now only have to incorporate our generated functions to the Main function of our 1507S. For
the Writer function, we will first have to use the Load function as it is mandatory when working with ODK
functions.

i Network 1: ...

Comment

WDB11
"Read_Store_
Load_DB"
YWB3
"Read_5tore_Load”
EN ENO
true — REQ "HMI_Coord_
AMD_Time".
DOME —iDone
BUSY —ifalze
ERROR —if3lze
STATUS — 0

Figure 3.25: Load function of the Read_Store program

26

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

Followed by network 2 and 3 that receives the process data from PLC1 and PLC2:

¥ Network 2: Receive_Data PLCT * Network 3: Receive_Data PLC2

This network is used to perform transfer of the process details from the FLC 1217C to our 15075. Comment

%DB2 %DB12
*TRCV_C_DE" *TRCV_C_DB_1"
TRCV_C TRCV_C
=%
EN ENO EN
#HMI_State — EM_R DOMNE =i #HMI_State — EM_R
TRUE == CONT BUSY =i TRUE — CONT
%wB8 ERROR— B
"Software PLC_ STATUS *Software PLC
1_Receive_DB" — cONNECT RCVD_LEN — 0 1_Receive_DB_
b
S CONMECT
"ReceivedDataFLC YDBT
1 DATA — *ReceivedDataPLC
2" — DATA =

Figure 3.26: TRCV_C function blocks connected to PLC1 and PLC2

We then add in the next network the HMI_LIFEE function block we have conceived earlier:

- Network 4: HM_Disconnection_detector.

¥DB4
"HMI_LIFEE_DEB"
B2
“HMI_LIFEE®
EN ENO
"HMI_Coord “HMI_Coord_
AND_Time". AND_Time".
HM_Wiord_ ypa_coord Disconnected — Disconnected
Coord — word -

Figure 3.27: HMI_LIFEE function block connections

To activate the Writer function, we will use the Done output of the LOAD function and the Disconnected
output of HMI_LIFEE function:

= Network 5: Lead function and HMI disconnect to Activate Writer function

"Hll_Coord_

“HMI_Coord_ "HMI_Coord_ AND_Time".
AMD_Time". AMD_Time". Activate_

Done Disconnected StoreFunc

] |] L

1 F 1 F { F—
"HMI_Coord_
AMD_Time".
Activate_
StoreFunc

Figure 3.28: Composition of the Writer function block trigger

27

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

The next step we have to make is insert the Writer function and configure its inputs as we have mentioned
earlier, the result is given here:

¥ Network 6: Storing Function.

Comment

%DB13
“Read_
StoreWriter_DB"
WFB5
"Read_StoreWriter”
EN ENO
STATUS — 0

“HM_Coord_
AND_Time".
Activate_

StoreFunc — puaoF

DB6 77?7
“ReceivedDataPLC
1" Messagel MsgPLC1

DB6 777
"ReceivedDataPLC
1" Varizble! — yar1PLC1

DB6 777
“ReceivedDataPLC
1" Variable2 — yar2prLC1

DB6 777
"ReceivedDataPLC
1" Variable3 — yar3pLC1

PIDB7.DBX0.0
“ReceivedDataPLC
2" Variable1 Var1PLC2

%DB7 DBWS
“ReceivedDataPLC
2" Variable2 — yar2pPLC2

%DB7 DBEWI1O
“ReceivedDataPLC
2" Variable3 — yar3pLC2

DB7 DBW14
“ReceivedDataPLC
2" Messagel MsgPLC2

DB6 777
“ReceivedDataPLC
1".Alarm1 — Alarm1PLCT

DB6 777
“ReceivedDataPLC
1".Alarm2 — Alarm2PLCT

DB6 777
“ReceivedDataPLC
17.Alarm3 — Alarm3PLCT

DB6 777
“ReceivedDataPLC
1".Alarm4 — plarm4PLCT

%DB7 DBX12.0
“ReceivedDataPLC
2" Alarm1 — Alarm1PLC2

%DB7 DBX12.1
“ReceivedDataPLC
2".Alarm2 — alarm2PLC2

“DB7 DBX12.2
“ReceivedDataPLC
2" Alarm3 — Alarm3PLC2

%DB7 DBX123
“ReceivedDataPLC
2°.Alarm4 — alarm4PLC2

28

CHAPTER 3. SYSTEM SOFTWARE COMPONENTS DESCRIPTION:

"HMI_Coord_
AND_Time".
DateTime.

SECOND __ ¢,

"HMI_Coord_

AND_Time".

DateTime.
MINUTE Mn

"HMI_Coord_
AND_Time".
DateTime HOUR —

"HMI_Coord_
AND_Time".
DateTime DAY g Day

"HMI_Coord_

AND_Time".

DateTime.
MONTH Mith

"HMI_Coord_
AND_Time".
DateTime YEAR — vy

Figure 3.29: Connection of the Writer function to the Data Blocks components and the activation trigger

We also add the function RD_SYS_T that we use to obtain the Time and Date components used in our
program:

hd Metwork 7: Read system time.
This function will enable us to cbtain Time and Date components.
RD_SYS_T
DTL
— EN ENO

"HMI_Coord_
AMD_Timme".
RET AL — ReturnvalueDTL

"HMI_Coord_
AMD_Time".
out — DateTime

Figure 3.30: Read system time function to obtain timestamp parameters

3.5 Conclusion:
As seen, the solution is a cascade of functions working independently, simultaneously and interacting with

each other to perform the complete work of communication of Process Data after detection of disconnection,
its Archiving and finally, its access from the HMI terminal on re-connection.

29

Chapter 4

System Implementation and simulation

4.1 Introduction:

Due to the circumstances we have encountered this year, the Simulation of this project will revolve only
around the Data Transfer simulation and the HMI disconnection detection, due to restricted access to the
Siemens headquarter and unavailability of the device (IPC227E) and the software controller (S7-1507S), no
simulation of the Archiving nor the HMI access to the generated CSV files. We have because of this, performed
tests on the C++ storing file program in a third party software to confirm at least the well behaviour and
actual performance of our code, as for the Webpage access, we have searched examples and visualized videos
concerning this method and have gathered enough positive reviews to be reassured it will work.

The Simulation of the mentioned parts above is aimed to visualize and confirm the well behavior of our

protocol concerning the work achieved, this will be performed using the S7T-PLCSIM V15.1, a simulation software
that will enable us to emulate the S7-1217Cs for example.

4.2 Simulation of the DATA transfer functions:

In this part, we will be testing the TSEND_C and TRCV_C functions implemented in two S7-1217Cs to
perform data exchange of Data Block components we have encountered previously.

We will begin by simulating the two PLCs obtaining the following display:

Windor

Project Edit View Insert

f [Seveproict &)

Options Tools

= (3 X e 5 M

P
R & coonline &¥ Gooffine : fp [N [x T sea

Totally Integrated Automation
POR

Hel
G TAL

Devices

] e
RG Siemens X 8 Siemens
~ | Find and replace
~ 7 simulations PLC_1 [CPU 1217€ DCIDCDC] PLC_2 [CPU 1217€ DEIDEIDC]

B Add new device
gy Devices & networks
» [PLc_1 [cPu 1217¢ DaDCDC]
» [m PLC 2 [cPU1217CDODODC]
» [i4 Ungrouped devices
» 5§ security semings
» [g§ common data
» [Z]) Documentation settings X1 192.168.0.1 x1 192.168.0.2

» [@ Languages & resources N B
+ i Online access <pas de projet> <pas de projets

» [5 Card ReaderiUSB memory

SIEMENS SIEMENS

eI [

M RUNJSTOP M RUN/STOP
B ERROR M ERROR
B MANT MRES B MAINT MRES

Find in substructures

Find in hid

G Properties |*i}Info | 2] Diagnostics
|| General | Cross-references | Compile |
0] 2.]@)] [show o)l messages
I Message Goto | ? Date Time
~ [Details view [“Hello’ was loaded successiully. 9/1112020 10:52:49 PM
J Modul, [} 'PLC_2_Receive_DB'was loaded successfully. 91112020 10:52:49 PM
ule
o "TRCV_C' was loaded successiully. 9/11/2020 10:52:49 PM v‘ La"guages & resources
[} ‘Main' was loaded successfully. 9111/2020 10:52:49 FM = 7
Nt " Loading completed (errors: 0; warnings: 0). 911112020 10:52:56 PM ~| Editing language 2
Device configuration - <] >]<] >
Portal vie =2 Overview Bl a a =

Figure 4.1: Two S7-1217Cs simulated using PLCSIM software

30

CHAPTER 4. SYSTEM IMPLEMENTATION AND SIMULATION

We then access our Data Blocks entitled:
- SendData

- HMISTATE

- ReceiveData

This to test the transfer of the components and time delay, as we can see here, the ReceiveData and SendData
have different values meaning no data exchange is performed yet, but if we look closely to our HMIState data
block, we can notice the element En_R is False, meaning the TRCV_C function still isn’t reading the data
incoming (sent) from the TSEND_C function block.

Project Edit View Insert Online Options Tools Window Help

Cf i saveprojer @ ¥ = 5 X D G MR B R coonline ¥ cooffline jp [N M8 3]] [<corchinprojece

Totally Integrated Automation
PORTAL

Devices Options B
[= =F B, B = 57 Keepacwalvalues (g . Snapshot @ B copysnapshors tostrtvalues g & © = L] E
S
Hello | Find and replace 3
~ 5l Program blocks o[~] Name Data type start value Monitor value Retsin Accessible ... | writa... | Visiblein... |set...
I Add new block 1< v stetic Find: 'f_J
& win[o81] @ |2 @= cx o0l . FaLse 3] " ® W i ——
e [[] whole words anly %
@ RecieveData [DB1] @ w
» 5 System blacks 0’7 [0 Match case
» [3 Technology objects
=F oF B, @ B 72 Keepacwalvalues gg! Snapshor By B, * 4 || 2% 2% o B = 7] keepactushvalues [gg Snapshot % = * =
SendData RecieveData
Name Data type Offset | Start value Monitor value Name Data type Offset Start velue Moniter value R
1 @ ~ Static 1 4@ v Static
2 [van uint 00 0 50 2 |a[= van umne 00 0 0]
3 las v LReal 20 00 00 3 las Ve LReal 20 0.0 00
4 @n Var3 Int 100 200 4 @@= var3 Int 100 o o
N5 @ Aami Bool 120 e TRUE 5 @s= Aarmi Eool 120 e FALSE il
N6 @@= Aam2 Ulnt 14.0 4 6 |[@s Aam2 Ulnt 140 0
N7 @ g Bool 160 alse FALSE 7 @@= g Bool 160 false FALSE
Vg @ gl string 180 r & @@= Mgl String 180 o

¢
[

<p]

| B

1 Y
Uverview | & SendDsta (D-- | @ RecieveData ... | i Hello (DB3}
Figure 4.2: Data Block communication with EnableRead OFF

We now change the En_R in our HMISTATE data block to be True, just as the chnage occurs we can notice
the update of the elements in the ReceiveData block to be exactly the same as those in the SendData block.

Project Edit View Insert Online Options Tools Window Help

[(Y | saveproject @ X 08 Gy X)& (¢ 5 [0 B [} F coonline @N Gooffine gy [N I8 3¢ | (1] [cearchin g

Totally Integrated Automation
PORTAL

Devices Options =
st Ry -— [=
R =S N, keep acwal values (g Snapshor ¥ ¥ copysnapshots o smrvalues g & = =1
e
Hello ~ | Find and replace 5
~ [l Program blocks Name Data type start value Monitor value Retain Accessiblef... | Writa... | Visiblein .. |set..
B Add new block 1 <@ ~ Swmtic Find: "J_J
& wsin [081] O |2 @ enr ool e TRUE 3] “ ¥ ™ g W=
- H
— ‘Whole words only ®
° 8 ly z
+ I3 system blacks ° Dlranese
» [Technology obiects Find in s ubs tructures

=+ @ B, B = °7 Keepacwalvalues [@g: Snapshor W 58, % B || =F 2 8, B = "7 Keepactalvalues (s Snapshor W = * =H
SendData RecieveData
Name Data type: Offset | Start value Monitor value Name Data type Offset Startvalue Moniter value R
1 <@ v static 1@ v swic
2 @ ven uint 00 0 50 2 @ vert Ulnt 00 0 50]
3 @ Va2 LReal 20 0.0 0.0 3@ v LReal 20 00 00
4 @an Var3 Int 100 200 4 @nw var3 Int 100 o 200
s @@= Aarmi Bool 120 TRUE 5 @ Aami Eool 120 e TRUE il
6 lam= Alam2 Ulnt 140 4 6 |[@s Aamz2 Ulnt 140 a
7 la- Msg Bool 160 alse FALSE 7 . Msg Bool 160 false FALSE
8 l@m= Mgl string 180 G 8 @ gt String 180 =

Bl
[

]

Cfel
4 Portal view 1 overview | @ SendData (D | @ RecieveData . | @ Hello (DB3)

Figure 4.3: Data Block communication with EnableRead ON

We can also use the Status output of the TRCV_C function block to prove the enabling of the data receive,
we will monitor the function block with En_R Boolean True and Boolean False and read the corresponding the
Status code and what it denotes:

31

CHAPTER 4. SYSTEM IMPLEMENTATION AND SIMULATION

L& Siemens

& T o
4k Ak =0 7 = S PLC 2 [CPU 1217C DCIDCIDC]
¥ Network1: SIEMENS
Comment
M RUN/STOP e
%DB2 B ERROR
“TRCV_C_DB" B MAINT MRES
QR x1 192.168.0.2
&%
EN ENO <pas de projet=
FALSE FALSE ...C DUDUDC] » Program blocks » Hello [DB3] -2l X
“Hello™ En_R ==(EN_R DONE ==172l52
TRUE —CONT EALSE 5 T T T
BUSY ——if2lse g a, g E Keep acwal values [gg 4 =]
%DB4 FALSE ficli :
"PLC_2_ ERROR ——=2l:e Mame pe Start value Monitor value
Receive_DB" —|CcONNECT 1687004 1 40 > Static :
STATUS |— 1647000 2 |ag . En_R false FALSE]
%DB1 o |]] >
“RecieveData" —|DATA - RCVD_LEN —0

Figure 4.4: TRCV_C block function with En_R set to False

FLC Siemens

L
4k ik —0— 7 = 1 PLC_2 [CPU 1217C DC/DCIDC]
~ Network1: .. SIEMENS
Comment
B RUN/STOP sTOP
%DB2 B ERROR
"TRCV_C_DB" B MAINT MRES
TRCV_C X1 192.168.0.2
&%)
= ENO <pas de projet>
TRUE FALSE ...CDUDUDC] » Program blocks » Hello [DB3] -2l X
'Hello'.En_R—F_N_R DONE ==172l52
TRUE ==|CONT TRUE ; ==t ;
BUSY |—if2lse F= i, EE Keep actuslvalues [gg ' =
%DB4 FALSE Hello .
"PLC_2_ ERROR —=zlse MName pe Start value Maonitor value
Receive_DB" —|coNMECT 1647006 1 <@ T static :
STATUS — 1647000 2 |ag . En_R false TRUE]
%DB1 a [i | >
“RecieveData" — DATA - RCVD_LEN —0

Figure 4.5: TRCV_C block function with En_R set to True

We read the Status output corresponding to the two states of the En_R input:

- En_R set to False : Status code is 16#7004

- En_R set to True : Status code is 1647006

We access the manual of our function block to obtain the information related to these status codes we find
the following;:

Status Code

Description

1647004

Connection established and monitored
No job processing active

1647006

Data is currently being received.

Table 4.1: TRCV_C Status codes and desecription

This proves the functionality and high speed rate of data exchange performed thanks to the Open User

communication block functions.

32

CHAPTER 4. SYSTEM IMPLEMENTATION AND SIMULATION

We notice through multiple tests that the clock time we are using as trigger for REQ of the TSEND_C
function block leaves a whole 0.1s between each data transfer, this time window even if for us might seem
insignificant could hold valuable and important information.

This Data exchange from this perspective is efficient and usable as a step in our Archiving process.

4.3 HMI Disconnection Detection:

We will be testing the block function we have generated, using the Coordination Area pointer LIFE bit in
addition to the functions present in the TTA Portal library, to detect the disconnection of the HMI at the remote
location, we have simulated a PLC of type S7-1217C for simplicity reasons.

The simulation of this block function can be either monitored from outside as simple input/output relation,
or it can be also be supervised from within the function block, having more information about its behaviour.
For simulation sake, we will be using a 1Hz clock generated by the PLC to partially simulate the HMI Life
bit, this will permit the existence of an edge (will be only a rising edge but will be enough for this simulation)
every one second as the Life bit signal would generate. We will also add a normally closed contact to simulate
Disconnection, making the Life bit signal constant and equal its previous value before disconnection occurred.
The resulting Simulation environment be:

%DB7
"HMI_LIFEE_DE"
%FB1
"HMI_LIFEE"
EN ENO
*HMI_Test". "HMI_Test".
AMI_EIT — Hmi_gim Disconnected — HMI_GFF
fzlze — edgel
fzlze — erigel
Network 3: ..
%MO.5 “HMI_Test".
*Oodk_1Hz" HMI_EIT
] | I 1
1| L |
“HMI_Tast". “HMI_Tast".
HWI_EIT DiscoSim
] |] |

Figure 4.6: Network configuration of the HMI disconnection simulation

33

CHAPTER 4. SYSTEM IMPLEMENTATION AND SIMULATION

We start first with the simple I/O monitoring:

Main
Mame Data type Default value Comment
T——— | PLC_1 [CPU 1217C DCIDCIDC]
I+ A =~ 7 — 2
%DB7
“HMI_LIFEE_DE" OP
WFET RROR 0
"HMI_LIFEE"
FALSE ekl
“HMI_Test")
HMI_BIT __| HMILBIT Tz B <pas de projets
FALSE
edget
FALSE
=== % Keepactuslvalues [gg ©
HMI_Test
Name Datatype Startvalue Monitor value
Network 3: 1 4 v static
Comment 2 4w HMI_BIT Bool false FALSE
3 4@nw HMI_OFF Bool false FALSE
EMOE “HM|_Test' “HM|_Test' 3
ST ol YT 4 @n= DiscoSim | Bool FALSE
£ [
I 1 ¥ [«] [
Main
Mame Data type Default value ‘Comment
T——— | PLC_1 [CPU 1217C DCIDCIDC]
Ik Al == {7} = =
%DB7
“ HMI_LIFEE_DE" R OP
WFET RROR °
"HMI_LIFEE"
52 168.0
—-|Hmi_Bim Disconnected <pas de projet>
FALSE
edgel
FALSE
o Keep actuslvalues [gg *
Datatype Startvalue Monitor value
Network 3: 1 4] v static
Comment 2 @ HMI_BIT | Boal false FALSE
3 4w HMI_OFF Bool false TRUE
HMOE “HMI_Test" “HM|_Test"
oot ftonaiad HMLET 4 @= Discosim Bool TRUE
<]
, A pomn I] [

Figure 4.7: Scenario simulation of disconnection

of the HMI

For the supervision from inside the function block we obtain the following supervision windows:

HMI_LIFEE ...JDUDC] » Program blocks » HMI_Test [DB4]
Name Urita... | Visiblein .. Setpoint Comment
< ¥ Input - 3 z
= HMI_BIT = _* [= | Keep actual values =8 L2 =] =] =]
< ¥ Output HMI_Test
Name Datatype Startvalue Monitor value o]] IZ
1 4@ ~ Smatic
o condition defined. Z @n= HMI_EIT Bool false TRUE
3 @aw HMI_OFF Bool false FALSE
I - —0— T2 — - :
4 @1n= DiscoSim Bool false FALSE
Network 1: [<] []
o t -
ommen FC G iamens
eI #Edge 1 [CPU 1217C DCIDTIDC]
1ol !
P S =————1
-1 5} SIEMENS
#edge2
TRUE
M RUN/STOP
FHMI_EIT B ERROR
_| N----
I- H MAINT
#edgel
TRUE x1 192.168.0.1
<pas de projet-

34

CHAPTER 4. SYSTEM IMPLEMENTATION AND SIMULATION

HMI_LIFEE
Name Urita.. | Visiblein . Setpoint Comment
< ¥ Input - 3 7
= HMI_BIT =F 2F B, B =77 keepacwalvalues g " =N~ =]
< ¥ Output HMI_Test
j‘ﬂ Namne Datatype Startvalue Monitor value ol =]] IZ
1 <@ ~ Smatic fad
o condition defined. 2 @@= HMI_EIT Bool false FALSE E [
ERL T HMI_OFF Bool false FALSE
I i —0— T2 > - =
4 @1 = DiscoSim Bool false FALSE
NEwWUIR O, al m
Comment
5 Slemens
TaOME 1[CPU 1217C DCIDCIDC]
*DB6
"IEC_Timer_0_ SIEMENS
DB_1"
TON
T X —_—
SﬂlEd?e ime xﬂlscfnnected B RUNISTOP
i IN Q fi == B ERROR
T#1001ms — — T&0ms
ms PT ET m W MAINT MRES
x1 192 168.0.1
Network 4: <pas de projet-
Figure 4.8: HMI connected and Life bit changing every one second
HMI_LIFEE ¢
Name rita... | Visiblein ... Setpoint Comment
< ¥ Input . T T
= HMI_BIT =, B E= 7 keepacwalvalues [gg k = =] =]
< ¥ Output HMI_Test
j‘ﬂ Name Datatype Startvalue Monitor value o =]
1 |4 v Static ~
o condition defined. 2 l@= HMLBIT Bool false FALSE E
3 @n= HMI_OFF Bool false TRUE
I A —0— T2 = -
4 |4q = DiscoSim Bool Ise TRUE
Comment | ¢ ” m |
Network 1: - Siemens
Comment
#HMI_BIT #Edge SIEMENS
1Pt {5 p===mt
#edge2 19§ RUN
RUN / 5TOP
FALSE n i STOP
Bl ERROR
FHMI_BIT H MAINT MRES
Nt
L x1 192.168.0.1
#edgel
FALSE <pas de projet»
HMI_LIFEE
Name Urita.. | Visiblein .. Setpoint Comment
< ¥ Input - 7
< = HII_BIT =F = L -3 E m: Keep actual values g = =) =)
< ¥ Output HMI_Test
j‘ﬂ Namne Datatype Startvalue Monitor value fodl =]
1 <@ > Smatic fad
o condition defined. Z @@= HMI_EIT Bool false FALSE E
3 @@= HMI_OFF Bool false TRUE
I - —0— T2 = -
4 |gn = DiscoSim | Bool alse TRUE
Comment | b4 ” m
FIC Siemens
TE15_1MS
IB6 1 [CPU 1217C DEIDCIDC]
"IEC_Timer_0_
DB_1" SIEMENS
TON
#Edge Time #Disconnected =
IN Q :)_| B RUN/STOP
T#1001ms —{pT ET|— T#0ms M ERROR
H MAINT MRES
x1 19216801
Network 4: <pas de projet-
Comment

Figure 4.9:

35

HMI Disconnection detected

CHAPTER 4. SYSTEM IMPLEMENTATION AND SIMULATION

We can notice that when our Disconnection simulating button is off, the 1Hz clock activates the edge detec-
tors and confirms connection, and that it is established and maintained.

Just as we turn on our disconnection simulating button, the HMI_Bit no longer witnesses a signal change
and so no edge has been detected, activating the output of our Disconnection output and setting it to Boolean
True.

Through various tests and by setting our disconnection to be just after an edge change, we have a window
of almost a whole second before the detection of connection loss, this means a large number of Data could be
lost in the scenario this period witnesses an anomaly and then comes back to normal.

As for the rest of the solution, the simulation will be performed, we hope, as soon as the sanitary measures

allow us to do so, thankfully the contact and communication with our SIEMENS supervisor has always been
swift and full of support, permitting a future development and finalization of the project to reach its end goal.

36

Chapter 5

Conclusions

As we have seen through the past chapters, our solution is a composition of existing functions in our PLCs’
libraries and the development of new ones.

And through the implementation and simulation, we can be confidant that the different functions and data
blocks will work in harmony to perform the task solution constructed based on them.

The performance of our solution related to time can be measured as the addition of the time delays resulting
from each part, as for example our Detection of Disconnection. We have noticed that the maximum delay
that could occur would be approximately one second (in the case the disconnection occurs just after an edge is
generated), leading to a 1 second delay before the disconnection is properly detected. Next comes the rate of
exchange, we will have a 0.1 second between every Data transmission meaning the data generated during this
0.1 second will be lost if of course the data witnesses different values at the new cycle.

For the Archiving program, the delay is the time the program will take to make each scan of the inputs and
perform the Archiving of Data and loop again the scan, leading to 174 instruction, with a maximum processing
time set to 2nanoseconds. We can be sure that the delay is insignificant and leading to a high performance
factor, thanks to fast execution time compared to Data receiving time.

The HMI interface of the stored CSV files is non time critical and can be done at any moment.

As a general overview of the solution, we can conclude its various advantages:

e Time efficiency:

As for the nature of the problem at hand, time of communication and storage is of high importance as to
reach the lowest percentage of Data loss, as we have seen previously, the time delays and processing time
add up to a maximum of 1 second the moment of disconnection and 0.1 second after detection.

e Versatility:
This program biggest advantage is the generality it has to perform this task for any problem of similar
nature, all thanks, to its conception using high-language programming, permitting changes to be applied
to the original code and creating a function based on the main block but with a flexibility as to the types
to be saved, new variables, alarms or messages to be saved, and also the addition of system alarms.

e Cost:

Thanks to the creation of the Archiving function and the use of already present hardware to develop
parts of the solution, we have achieved numerous savings rather than buying a software already present
to perform similar task that chains us to a single use. Since our program has been developed for and in
the company, this makes it free for any future use in any other project by SIEMENS engineers for any
project of similar nature, all thanks to the versatility factor.

37

CHAPTER 5. CONCLUSIONS

As for expansion and enhancement in future work we would mention:

e Program robustness:

The upgrade we can implement in our program is the verification of the creation and closure of the file
after the corresponding command for these tasks, this will guarantee no problem of storage could ever
originate from the Archiving code nor the malfunction of the machine, the added part will contain a
conditional statement that will let the program move forward only if the creation and closure commands
have been performed successfully.

e Time:
The improvement we could make concerning time of execution and performance of our solution, would
be to first create a custom clock using Pulse Width Modulation function to generate a clock with faster
cycle than the 10Hz factory present in our PLC, to obtain a higher rate of Data exchange and so less

Data loss in the process. We could also use the bit mode in the Coordination Area Pointer to diminish
the Detection of HMI Disconnection delay.

e HMI access PLC:

The enhancement we could perform on the part of our solution related to HMI access of the CSV file
contating the Process Data saved, is by creating a customer page using HTML coding to create a webpage
that enables us to directly read the CSV file without having to download them. This expansion would
benefit our work by facilitating the access to the files and also, by canceling the mandatory download of
the files to access them and reducing the storage problems that could occur.

38

Appendix A

Instruments Data Sheet

S7-1507S Software Controller:

SIMATIC Software Controller CPU 1507 5

Product details. | Technical dats

Technical data

SIMATIC 57-1500, Scftwars Contreller CPU 15075 Single Beense f. 1 instsll, R-5W,
SW and documentation on OWD, License key on LUSE stick, R-5W Class A, &
languages (deen,itfres zh), executable in Windows 7 and Windows 10; Reference
HW SIMATIC IPCZxTE, IPC4xTE, IPC4xTD, IPCH:TD, IPCaxTD

%

e

General informaion
Product type designation CPU 15075
Software version 2B

= |EM data Yes; [EMD to 1EM3

= STEFP T TIA Portal configurablefintegrated from wersicn Wi
Conhguration control
Wiz datasst Yes
Memaony
SIMATIC memary card reguired Mo; Usa of the PC mass storage

= integrated (for program) 5 Mbyie

= integrated (for data) 20 Mbys=

= integrated (for CPLU function library of CPU Runtime) 50 M=

= integrated (on PC mass storags) 320 Mbyt=

= with UFS “fzs; 31l memony areas declsred retentive
= with non-wolatils memary ‘es; Depending on PC hardwars:

CPU processing times
for bit operations, typ.

1 ns; On IPC42TE, Intel Xeon processor

for word operations, typ. 2 ns; On IPC42TE, Intel Xeon processor
for fred point srithrete, typ. 2 ns; On IPC42TE, Intel Xeon processor
for floating point anthmetic, typ. 2 ns; On IPC42TE, Intel Xeon processor

APPENDIX A. INSTRUMENTS DATA SHEET

IPC227E Nanobox PC:

SIMATIC IPC227E (Nanobox PC)

Product detsils. | Technical data | CAx data

Technical data

SIMATIC IPC22TE (Manobax PC); 1x display post; 2x 1001001 000 Mbit's Ethernst
RJ45; 1 2 USB3.0, 3 x WE82.0; CFast skot; 24 W DC industrial power supply

DM rail, wall rounting, portrait rounting

Baox PC, builtin unit
Type of supply voltage 24N DG
= (Mams/voiage failure stored energy time 20 ms
Processar
Processor tyoe Irtel Celeron M2EB0T / M2930, Intel Aom E3545
Chipset SoC
Graphic
Graphics controler Integrated
Hard disk 25" SATA = 320 GB
55D s
Memany
Type of memony DDRAL S0-DIMM
Main memony 2/4/8GH
Capacity of main memaony, mas. 3 Ghyte
Retentive dats anea (incl. timers, counters, flags), max 512 kbyt=; 128 K3 can be stored in the buffer time; optional
Hardware configuration
= fr== slots 1z PCle (x1) (optional)
» Mumber of PCI slats 1; Opticnal
= Mumber of compact flash slots 1; CFast

40

APPENDIX A. INSTRUMENTS DATA SHEET

S7-1217C DC/DC/DC Controller:

Technical data

SIMATIC 57-1200, CPU 121TC, compac: CRU, DCVDCIDE, 2 PROFINET ports
onbozrd 10: 10 O 24 W DC; 4 DI RS4220485; & DO 24 W DC; 0.54; 4 DO
R5422/435; 2 Al 0-10W DC, 2 A0 0-20 mA Power supply: DC 20.4-28.8V DC,
Program/dats mermary 150 KB

General informasion
Product type designaticn CPU1217C DC/DC/IDC
Firmmwware version 44

= Programmming package STEP T V16 or higher

Supply voltage

Rated valus (OC)

= 24 DC s
permissible range, lewer lirmit (00C) 204 W
permissible range, uppsr limit (OC) 2BEW
Reverse polanty protection s

= Rated value (DC) 240

= permissible range, lower limit (OC) 204w

= permissible ranps, woper Emit {OC) 2BEW
Current consumption {rated value) 800 mA; CPU only
Current consumptian, max. 1 00 méy; CPU with all expansion modules
Inrush current, max 12.4; atZB 8 DC
[t 0E8A%s

Output current
for backplane bus (5 W DC), mac
Encoder supply

1600 m&; Max. 5V OC for SM and CM

= 24 L+ minus 4% DC min.
ower loss
Piower loss, typ.

|

12w

w
= integrated 150 kbyte
= zxpandable Mo

41

APPENDIX A. INSTRUMENTS DATA SHEET

SIMATIC HMI TP900 Comfort:

SIMATIC HMI TPS00 Comfort

Product details | Technical deta | CAx dats

Technical data

SIMATIC HMI TP200 Comfort, Comfor Panel, Touch operation, 57 widescreen TFT
display, 15 million colors, PROFINET interface, MPI/PROFIBUS DP interfzce, 12 M3
configuration memaory, Windows CE 6.0, (Microsoft Suppon included Secwnty
updates discontinwsd} configurable frem WnCC Comfiort W11

Design of disglay TFT
Seresn disgonal Bin
Display width 185 mm
Display heaght 117 mmi
Mumber of colors 16777 216
CResdfon(mxeE)
= Horizontal image resolution 300 Pixel
= Wertical image resoluton 430 Pixel
CEsdighing
= MTEBF backightng {at 25 "C} 0003 h
= Bacilight dimmakbile ‘fies; 0-100 %
Conirol elements
= Function keys
— Number of function keys 1]
— Mumber of function keys with LEDs 1]
= Keys with LED Mo
= System keys Mo
= Mumeric keyboard ‘fes; Onscreen keybosrd
= alphanumeric keyboard ‘fzs; Onscreen keybosrd

= Diesign as fouch socresn fes

42

People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University M’Hamed
BOUGARA - Boumerdes

Department of
Power and Control

Institute of Electrical and
Electronic Engineering

- r <

Université de Boumerdes

University of Boumerdes
T -

Authorization for Final

Year Project Defense
Academic year: 2019/2020

The undersigned supervisor: OUADI Abderrahmane
Authorizes the students:

BOULOUDEN Walidccco oo Option

to defend their final year Master program project entitled:
information Archiving of remote HMI TP900 comfort In a PLC based
networked plant using ODK Development Kit and TIA Portal

during the session of: [] June H September.

Date: 14/09/2020

The Supervisor: A. Ouadi The Department Head

