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Abstract 

 
 

The autonomous wheeled mobile robots are very interesting subject both in scientific 

research and practical applications. They are considered from several different perspectives 

mainly, engineering and computer science levels. This project deals with the modeling and 

control of mobile robots combining the differential drive robot and unicycle models which 

will be simulated using a PID controller. The PID controller is based on feedback and tries to 

minimize the error using well-tuned parameters. The Odometry has been used to identify 

the distance traveled by the robot. The sensing circuitry mounted on the robot provides the 

feedback data to assure a safe outdoor navigation in a hostile environment. The Hybrid 

Automata principle provides a switching logic between the designed controllers. In this 

report, linear algebra is applied to develop a satisfying and stable model which is simulated 

using a MATLAB based simulator called “Sim.I.am” that allows the design and 

implementation of controllers on the robot. 
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GENERAL INTRODUCTION 

The following introduction highlights the general description of our work including both 

project’s motivation and objectives.  
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      Overview  
 

In recent years, the robotics and control of robotic systems is still an actual theme. 

In past, the static robots were used mostly in industrial tasks as manipulators, but the 

mobile robots were almost exclusively applied in research. The investigation and 

development of the autonomous mobile robot are increasing gradually in many fields such 

as in military, industries, and hospital. The mobile robots were designed with large size, 

heavy and require a high cost computer system which need to be connected via cable or 

wireless devices.           

      

 Nowadays, the trend is to evolve with a small mobile robot which is reduced in 

size, weigh, and cost of the system by using sensors, numerous actuators, and the 

controller are carried on-board the robot. Mobile robots are built based on a good relation 

of both hardware and software. There is one more thing that mobile robot really needs is 

a good navigation system such as vision camera or sensing components which allows the 

robot to perform successfully its tasks depending on the knowledge it has about the initial 

configuration of the workspace, but also the ones obtained during its evolution.   

 

There are certain problems that arise in mobile robots, such as: determining the 

position and orientation in the environment, avoiding collision with different obstacles, 

planning an optimal movement path. The robot navigation is influenced by several 

methods, such as measuring the number of rotations made by the motor wheels, using 

gyros and accelerometers, but usually determines the pose of the robot in relation to a 

fixed coordinate system. When developing an autonomous mobile robot, to carry out the 

specific navigation tasks, the robot must be equipped with a suitable locomotion system. 

But the mobile robot would be nowhere near as effective, if it were not supported by an 

adequate control system. 

For that it is proposed a closed loop control by using a PID controller that allows 

adjustment of the speed of the brushless DC motors. The reaction system is ensured 

through two rotary incremental encoders. 

 

             Motivation         

 

Applying the ‘Control Principles’ which are the fundamental concepts for the 

design and analysis of mathematical models to implement suitable controllers for a 

mobile robot. The availability of various sensors and the efficiency of a 

PID(Proportional–Integral-Differential) motivated us to design an controller which 

enhances performance such as: Proportional Control that provides an immediate action to 

the control error which improves the rise time, Integral Control which to minimize the 

steady state error by driving it to zero, and the Differential Control increases damping in 

order to ensure a continuous performance.  
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The PIDs are most frequently used to implement path following robots by 

minimizing the error towards the actual goal. Since we are motivated to build an 

autonomous wheeled robot that will navigate to any desired goal location while avoiding 

obstacles crossing its path, we are going to use the PID controller to steer the robot 

towards the goal coordinates by minimizing the angle between the robot’s heading and 

goal location orientation. 

The project relies on the MATLAB based simulator ‘Sim.I.am’ which allows the 

testing of controllers and bridge the gap between theory and practice in ‘Control Theory’.  

 

 

   Project Objectives  

   

    The purpose of our project is to design a smart wheeled robot with an autonomous 

motion provided that it avoids any obstacle (static or dynamic) in front and navigates 

properly towards any desired and known coordinates of the goal. Our robot should be 

able to negotiate different environments and reach successfully our desired goal location. 

The Wheeled Robot will be able to: 

 Displace autonomously. 

 Avoid all kinds of obstacles. 

 Reach the desired location. 

The control design objectives are: 

 Stability. 

 Tracking. 

 Robustness.  

 

Report Organization 

 

This report is divided into two chapters. The first chapter gives a general overview 

about the models used and the linear algebra applied to develop the mathematical 

equations. The second chapter introduces the ‘Sim.I.am’ simulator on which we will test 

our controllers and ends with the implementation of our controllers. Finally, our report 

finishes with a general conclusion and suggestions for future works. 

 

  

 

         



 
 

 

 

 

 

 

CHAPTER 1 

Theory Description 

 

In robotics, one of the most important tasks is describing the system and the way it 

functions, so how can we describe a mobile robot? And how does it achieve its goals? What 

are the main challenges and limitations? And how can we go around them? 
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Chapter 1 Theory Description 

1.1   Mathematical Model: 

In order to design behaviors of controllers for Mobile Robots, we inevitably need 

models to decide how the robots will behave while navigating in an environment. For our 

Mobile Robot, we will use the Differential Drive Model. For instance, to successfully 

implement this model on the Mobile Robot, we are going to move with this model to some 

other model called the Unicycle Model which will allow us to overcome using complex 

variables such as wheel velocities. 

 

1.1.1 Differential Drive Model: 

A lot of mobile robots use a drive mechanism known as differential drive. It consists 

of two wheels mounted on a common axis, and each wheel can independently be driven 

either forward or backward. While we can vary the velocity of each wheel, for the robot to 

perform rolling motion, the robot must rotate about a point that lies along their common left 

and right wheel axis. Figure 1.1 illustrates the differential drive model where the circle 

represents the actual robot and the black rectangles are supposed to be the wheels [1]. 

 

Figure 1.1: The representation of the Differential Drive. 

For instance, if we are turning our wheels at same rate, the robot will be moving 

straight ahead. Also, if one wheel is turning slower than another, then the robot is turning 

towards the direction in which the slower wheel is mounted. We have seen before that a 

good controller shouldn’t have to take in consideration the particular parameters of each 

robot in order to neglect the friction coefficient, however we need to consider two 

parameters which are: the distance that  separates the wheel base which is represented by 𝐿, 

and the radius of the wheel represented by 𝑅. These two parameters are actually easy to 

measure which facilitates the use of this model. 

 



 

4 | P a g e  
 

Chapter 1 Theory Description 

In order to control the way our robot is moving; we use two control signals which 

are the velocities of our two wheels, where 𝑣𝑟 and 𝑣𝑙 are the speed at which the right and 

left wheels are turning respectively. These two velocities are the input signals of our system.  

The mathematical model relating the two input signals (the velocities of the wheels) 

directly to the output signals (the position and orientation) of the mobile robot, based on 

these observations, the configuration transition equation is: 

 
                       Figure 1.2: The representation of the Mobile Robot in a 2D plane. 

The equations above contain cos𝜃and sin 𝜃 parts because the differential drive 

moves in the direction that its drive wheels are pointing. The translation speed depends on 

the average of the angular wheel velocities. To see this, consider the case in which one wheel 

is fixed and the other rotates. This initially causes the robot to translate at 1 2⁄  of the speed 

in comparison to bothwheels rotating. The rotational speed 𝜃̇ is proportional to the change 

in angular wheel speeds. The robot's rotation rate grows linearly with the wheel radius but 

reduces linearly with respect to the distance between the wheels. 

 

1.1.2 Unicycle Model: 

Dealing with the displacement and velocities of the two wheels of a differential drive 

robot is messy. A preferred model is that of a unicycle (Figure 1.3), where we can think of 

the robot as having one wheel that can move with a desired 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑣) at a specified 

heading 𝑡ℎ𝑒𝑡𝑎 (𝜃). The unicycle models are selected for their simplicity and good 

maneuverability. At same time, research is conducted on controllability, feedback, 

linearization and stabilization raises many research and development challenges in the 

control of unicycle type robots. Since our robot is designed to navigate to a certain goal 

location while avoiding obstacles, the unicycle model satisfies the tasks in a stable and 

smooth manner [2].  

 

𝑥̇ =
𝑅

2
(𝑣𝑟 + 𝑣𝑙) cos 𝜃 

𝑦̇ =
𝑅

2
(𝑣𝑟 + 𝑣𝑙) sin 𝜃 

𝜃̇ =
𝑅

𝐿
(𝑣𝑟 − 𝑣𝑙) 
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Chapter 1 Theory Description 

 

 

 

The unicycle type robot is in general a robot moving in a 2D world which is 

represented by an 𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒. It has some forward speed but zero instantaneous lateral 

motion.  

The equations to translate between the unicycle model and our wheel velocities 

allows us to simplify the differential drive model with the unicycle model. We have seen 

how to take measured wheel displacements to calculate the new robot pose. The kinematics 

of the unicycle model is usually described by a simple non-linear model: 

𝑥̇ = 𝑣 cos 𝜃 

𝑦̇ = 𝑣 sin 𝜃 

𝜃̇ = 𝑤 

where 𝑡ℎ𝑒𝑡𝑎(𝜃) is the orientation of the robot and (𝑥, 𝑦) are the coordinates representing 

the actual position of the mobile robot in the 𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒. 𝑣 and 𝑤 are the inputs and 

they represent the linear and angular velocities of the robot respectively. 

 

 

 

 

 

 

Figure 1.3: The physical description of the Unicycle. 
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Chapter 1 Theory Description 

1.1.3 Mapping of Models: 

 Since we have our two models, we need to combine them to have a final model which 

we can implement and design. We will be using the unicycle for analysis and control of its 

inputs 𝑣 and 𝜔 then map them to the inputs of the differential drive 𝑣𝑟 and 𝑣𝑙. 

 The mapping we are going to use is based on the kinematics of the two models: 

           

                                 

{
 
 

 
 𝑥̇ =

𝑅

2
(𝑣𝑟 + 𝑣𝑙) cos 𝜃

𝑦̇ =
𝑅

2
(𝑣𝑟 + 𝑣𝑙) sin𝜃

𝜃̇ =
𝑅

𝐿
(𝑣𝑟 − 𝑣𝑙)

…… .………… (1)               

  { 
𝑥̇ = 𝑣 cos 𝜃
𝑦̇ = 𝑣 sin𝜃

𝜃̇ = 𝑤

…… .…………………… . (2)    

From (1) and (2) we get the following linear equations: 

                          𝑣 =
𝑅

2
(𝑣𝑟 + 𝑣𝑙)   ⇒    

2𝑣

𝑅
= 𝑣𝑟 + 𝑣𝑙  

𝑤 =
𝑅

𝐿
(𝑣𝑟 − 𝑣𝑙)    ⇒    

𝑤𝐿

𝑅
= 𝑣𝑟 − 𝑣𝑙  

Since we are going to map our designed inputs (𝑣, 𝑤) onto the actual inputs (𝑣𝑟, 𝑣𝑙) 
that are indeed running on the robot, we derive these final linear equations which we are 

going to use on the mobile robot: 

 

𝑣𝑟 =
2𝑣+𝑤𝐿

2𝑅

𝑣𝑙 =
2𝑣−𝑤𝐿

2𝑅
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Chapter 1 Theory Description 

1.2 Odometry: 

Most robotics problems are ultimately reduced to the ability of localization in the 

environment of navigation. A basic method of navigation is odometry, using knowledge of 

your wheel’s motion to estimate your vehicle’s motion and actual location. 

We’ll assume that the vehicle is differentially driven: it has a motor on the left side 

of the robot, and another motor on the right side. If both motors rotate forward, the robot 

goes (roughly) straight. If the right motor turns faster than the left motor, the robot will move 

left. 

Our goal is to measure how fast our left and right motors are turning. From this, we 

can measure our velocity and rate of turn, and then integrate these quantities to obtain our 

position. 

In order to achieve odometry, we can use: 

 External Sensors: an external sensor would be a sensor that’s measuring something 

in the environment such as ultrasound, infrared, camera and laser scanners. 

 Internal Sensors: are sensors that are included in the robot and are measuring the 

position of the robots such as accelerometers, gyroscopes and wheel encoders. 

In this project, we will be using both external (Infrared) and internal (Wheel 

Encoder). Since the odometry is concerned with the self-localization of the robot in the 

environment, we will be interested in Wheel Encoders that iterates the number ticks of each 

wheel [3].  

 

Suppose the left wheel has moved by a distance of 𝑑𝑙𝑒𝑓𝑡 and the right wheel has 

moved 𝑑𝑟𝑖𝑔ℎ𝑡. For some small period of time (such that 𝑑𝑙𝑒𝑓𝑡 and 𝑑𝑟𝑖𝑔ℎ𝑡 are short), we can 

reasonably assume that the robot trajectory was an arc (see Figure 1.4). 

The initial state (𝑥, 𝑦, 𝜃) defines our starting point, with 𝜃 representing the robot’s 

heading. After our vehicle has moved by 𝑑𝑙𝑒𝑓𝑡 and 𝑑𝑟𝑖𝑔ℎ𝑡, we want to compute the new 

position, (𝑥′, 𝑦′, 𝜃′). 
The center of the robot (the spot immediately between the two wheels that defines 

the robot’s location), travels along an arc as well. Remembering that arc length is equal to 

the radius times the inner angle, the length of this arc is: 

 

 

𝑑𝑐𝑒𝑛𝑡𝑒𝑟 = 
𝑑𝑙𝑒𝑓𝑡 + 𝑑𝑟𝑖𝑔ℎ𝑡

2
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Chapter 1 Theory Description 

 
Figure 1.4: The robot is moving counter-clockwise over a small time period. 

  

Given basic geometry, we know that: 

                      ф𝑟𝑙𝑒𝑓𝑡 = 𝑑𝑙𝑒𝑓𝑡………………… (1)    

                     ф𝑟𝑟𝑖𝑔ℎ𝑡 = 𝑑𝑟𝑖𝑔ℎ𝑡……………… . (2)  

If 𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the distance between the left and right wheels, we can write: 

 

𝑟𝑙𝑒𝑓𝑡 + 𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑟𝑟𝑖𝑔ℎ𝑡 

 

Subtracting (1) from (2), we see: 

ф𝑟𝑟𝑖𝑔ℎ𝑡 − ф𝑟𝑙𝑒𝑓𝑡 = 𝑑𝑟𝑖𝑔ℎ𝑡 − 𝑑𝑙𝑒𝑓𝑡 

ф(𝑟𝑟𝑖𝑔ℎ𝑡 − 𝑟𝑙𝑒𝑓𝑡) = 𝑑𝑟𝑖𝑔ℎ𝑡 − 𝑑𝑙𝑒𝑓𝑡 

ф𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑑𝑟𝑖𝑔ℎ𝑡 − 𝑑𝑙𝑒𝑓𝑡 

ф =
𝑑𝑟𝑖𝑔ℎ𝑡 − 𝑑𝑙𝑒𝑓𝑡

𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
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Chapter 1 Theory Description 

 

All of our arcs have a common origin at point P . Note that the angle of the robot’s 

baseline with respect to the 𝑥 − 𝑎𝑥𝑖𝑠 is 𝜃 − 𝜋 2⁄ . We now compute the coordinates of P : 

 

𝑃𝑥 = 𝑥 − 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 cos(𝜃 −
𝜋
2⁄ ) 

    = 𝑥 − 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 sin(𝜃) 

𝑃𝑦 = 𝑦 − 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 sin( 𝜃 −
𝜋
2⁄ ) 

     = 𝑦 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 cos(𝜃) 

 

Now we can compute 𝑥′and𝑦′: 

                                            𝑥′ = 𝑃𝑥+𝑟𝑐𝑒𝑛𝑡𝑒𝑟 cos(ф + 𝜃 −
𝜋
2⁄ ) 

                 =  𝑥 − 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 sin(𝜃) + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 sin(ф + 𝜃) 

                       =  𝑥 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 [−sin(𝜃) + sin(ф) cos(𝜃) + sin(𝜃) cos(ф) 

 

And 

                                        𝑦′ = 𝑃𝑦+𝑟𝑐𝑒𝑛𝑡𝑒𝑟 sin(ф + 𝜃 −
𝜋
2⁄ ) 

                                       =  𝑦 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 cos(𝜃) − 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 cos(ф + 𝜃) 

                       =  𝑦 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟[cos(𝜃) − cos(ф) cos(𝜃)+ sin(𝜃) sin(ф)] 

 

 

If ф is small (as is usually the case for small time steps), we can approximate 

sin(ф) = ф  and cos(ф) = 1. This now gives us: 

                                     𝑥′ =  𝑥 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 [−sin(𝜃) + ф cos(𝜃) + sin(𝜃)] 

     = 𝑥 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟фcos(𝜃) 

  = 𝑥 + 𝑑𝑐𝑒𝑛𝑡𝑒𝑟 cos(𝜃) 
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and 

                                    𝑦′ =  𝑦 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 [ cos(𝜃)− cos(𝜃) + фsin(𝜃)] 

 = 𝑦 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟фsin(𝜃) 

                                               = 𝑦 + 𝑑𝑐𝑒𝑛𝑡𝑒𝑟 sin(𝜃) 

In summary, our odometry equations for (𝑥′, 𝑦′, 𝜃′) reduce to: 

 

𝑥′ =    𝑥 + 𝑑𝑐𝑒𝑛𝑡𝑒𝑟 cos(𝜃) 

𝑦′ =    𝑦 + 𝑑𝑐𝑒𝑛𝑡𝑒𝑟 sin(𝜃) 

𝜃′ =    𝜃 + ф 

where: 

                                       𝑑𝑐𝑒𝑛𝑡𝑒𝑟 =  
𝑑𝑙𝑒𝑓𝑡+𝑑𝑟𝑖𝑔ℎ𝑡

2
 

ф =
𝑑𝑟𝑖𝑔ℎ𝑡 − 𝑑𝑙𝑒𝑓𝑡

𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
 

 

We still have to measure the distance travelled by each wheel (𝑑𝑙𝑒𝑓𝑡 and 𝑑𝑟𝑖𝑔ℎ𝑡) 

which implies the use of Wheel Encoders. The working principle of wheel encoders is 

counting the ticks in order to compute the number of revolutions made by the wheels in a 

certain amount of time. So, a wheel encoder gives the distance moved by each wheel. The 

speeds of our motors give us two quantities: the rate at which the vehicle is turning, and the 

rate at which the vehicle is moving forward. Given the amount of rotation of the motor and 

the diameter of the wheel, we can compute the actual distance that the wheel has covered. In 

order to simplify the calculations, we will work on the previous assumption that approximates 

the distance traveled by each wheel as an arc which is valid for a short time scale (Figure 

1.5). In  our  mobile robot, we consider the distance of the baseline as 𝐿, the distance traveled 

by the left wheel as 𝐷𝑙 , the distance traveled by the right wheel as 𝐷𝑟  and the distance turned 

by  the center of the robot is referred to as 𝐷𝑐 . 
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Figure 1.5: The distances traveled by the wheels and robot. 

 

In order to measure the distances 𝐷𝑟  and 𝐷𝑙 , we assume that each wheel has its own 

number of ticks per revolution, then let 𝑁 be the number of ticks accomplished by a wheel 

per revolution. Since most of wheel encoders give the total tick count since the beginning, 

we need to count the number of ticks made by each wheel since the last position. We compute 

the number of ticks using the following relation: 

∆𝑡𝑖𝑐𝑘 =  𝑡𝑖𝑐𝑘′ − 𝑡𝑖𝑐𝑘 

where 𝑡𝑖𝑐𝑘′ is the number of ticks accumulated at the actual position(𝑥′, 𝑦′, 𝜃′), 𝑡𝑖𝑐𝑘 is the 

number of ticks saved from the previous position(𝑥, 𝑦, 𝜃) and ∆𝑡𝑖𝑐𝑘 is the number of ticks 

realized by the wheel. We assume the number of ticks done by the left wheel as ∆𝑡𝑖𝑐𝑘𝑙𝑒𝑓𝑡  

and the number of ticks done by the right wheel as ∆𝑡𝑖𝑐𝑘𝑟𝑖𝑔ℎ𝑡 . Then we use the following 

equations to calculate the distances: 

 

𝐷𝑙 =  2𝜋
∆𝑡𝑖𝑐𝑘𝑙𝑒𝑓𝑡

𝑁
 

𝐷𝑟 =  2𝜋
∆𝑡𝑖𝑐𝑘𝑟𝑖𝑔ℎ𝑡

𝑁
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Then the actual kinematics of the robot is given by: 

 

𝑥′ =    𝑥 + 𝐷𝑐 cos(𝜃) 

𝑦′ =    𝑦 + 𝐷𝑐 sin(𝜃) 

     𝜃′ =  𝜃 +
𝐷𝑟 − 𝐷𝑙
2

 

 

where 𝐷𝑐 is computed as the following: 

𝐷𝑐 =  
𝐷𝑟 + 𝐷𝑙
2
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1.3 Controllers Design: 

1.3.1 Go-To-Goal Controller: 

The main objective of our robot is navigating to a specified location. The go-to-goal 

behavior will make our robot move from its actual position (𝑥, 𝑦, 𝜃) to a new position which 

is described as the goal location (𝑥𝑔,  𝑦𝑔, 𝜃𝑔)as it is represented in the Figure 1.6. 

 

 

Figure 1.6: An illustration of a point robot and its goal location. 

 

In order to reach the goal location using a differential drive robot that we can 

model as a unicycle, we set the linear velocity 𝑣 as constant. Then, we need to control 

the heading which is directly related to the angular velocity 𝑤 that is controlled using the 

reference tracking. 

The reference tracking is exerting a control action on a system in order to 

manipulate the process output to be the same as the reference input. The reference 

tracking is based on closed loop controllers that are also called feedback controllers. 

A closed-loop control system is a system in which the value of some output 

quantity is measured using sensors. Feeding back the value of the controlled quantity, 

allows the manipulation of an input quantity so as to bring the value of the controlled 

quantity closer to a desired value. The difference between the reference value and the 

measured output is described as the error 𝑒.  
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Since our main objective is to steer the robot towards a desired location, we will be 

dealing with angles. 

Firstly, we set the reference point to be the desired angle 𝜃𝑑. We already have the 

actual heading of our robot as theta 𝜃. The tracking error 𝑒 for this kind of problem is: 

𝑒 = 𝜃𝑑 − 𝜃 

The desired angle 𝜃𝑑 can be calculated using the actual coordinates of the mobile 

robot (𝑥, 𝑦) and the desired location coordinates (𝑥𝑔,  𝑦𝑔). The following arc tangent 

formula can be used to compute the desired angle: 

𝜃𝑑 = tan−1(
 𝑦
𝑔
−  𝑦

𝑥𝑔 − 𝑥
) 

Since we have our tracking error, we can plug this error in a controller which will be 

acting on it to correct the desired heading. 

1.3.2 PID controller: 

We assume that our mobile robot is driving at a constant velocity 𝑣0, which 

implies the following design model: 

{
𝑥̇ = 𝑣𝑜 cos 𝜃
𝑦̇ = 𝑣𝑜 sin𝜃

𝜃̇ = 𝑤

 

Then the objective is to make the mobile robot drive in the desired heading, which 

implies controlling the angular velocity 𝜔. In order to achieve the desired heading control, 

we need to implement a controller.  

The PID controller compares the measured output with the input reference.  

 

Figure 1.7: Block diagram illustration of a simple PID controlled system. 
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The PID controller combines the position error and error of change output to correct 

the PID parameters for mobile robot. The mobile robot uses infrared sensors to avoid 

obstacles around it while heading to reach the desired position. 

The simple output response curve using a simple PID control is shown in Figure 1.8a. 

By using control theory on the PID, the output response curve is presented in Figure 1.8b. 

As a result, the PID controller has a better performance. 

 

(a)                                                         (b) 

          

 

The control of the mobile robot implies controlling the heading which is a control loop 

feedback mechanism. In PID control, the current output is based on the feedback of the 

previous output, which is computed so as to keep the error small. The error is calculated as 

the difference between the desired and the measured value, which should be as small as 

possible. A correction of 𝜔 is applied by summing three terms, known as the proportional 

term, integral term, and derivative term [4].  

Since we have a model and a controller, we can control the steering of our mobile robot 

by governing the angular velocity 𝑤 driving the robot towards the desired angle by 

implementing the following PID regulator: 

 

𝑤 = 𝐾𝑃𝑒 + 𝐾𝐼∫𝑒 𝑑𝜏 + 𝐾𝐷𝑒̇ 

 

Figure 1.8: (a) A simple PID output response, (b) A well-tuned PID output response. 
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Where 𝑤 is the angular speed or the steering control input, 𝐾𝑃 is the proportional gain 

constant, 𝐾𝐼 is the integral gain constant and 𝐾𝐷 is the differential gain constant. 

 The Proportional term is used in calculating current errors, the Integral term provides 

information about the amount of previous errors and the derivative term predicts the future 

errors. 

 

Figure 1.9: Block diagram illustration of each term used in a PID regulator. 

1.3.3 Tricky angles: 

Since dealing with angles is one of the most complicated tasks, we need to implement 

our controller carefully by taking into consideration every possible case.  

The main issue we could face is having significant errors while the actual errors are too 

small. Suppose we have the following actual and desired angles: 

𝜃 = 100𝜋 𝑟𝑎𝑑 

and 

𝜃𝑑 = 0 𝑟𝑎𝑑 

this yields to the following error: 

𝑒 = 𝜃𝑑 − 𝜃 = −100𝜋 

which seems to be a huge error and can affect the actual behavior of the mobile robot by 

making it spinning around without achieving its tasks. Whereas, we also notice that: 

𝑒 = −100𝜋 = 0 𝑟𝑎𝑑 

which implies that the robot is already on the desired angle and there is no need for correction. 
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 We handle this issue by ensuring that the error always belongs to the range [−𝜋, 𝜋] 

which is described by the following notation: 

𝑒 ∈ [−𝜋, 𝜋] 

 In order to apply the above solution, we use the inverse of the tangent function or 

simply: the arctangent function. Then the error is calculated using the bellow mathematical 

relationship: 

 

𝑒 = tan−1(
sin(𝑒)

cos(𝑒)
) 

1.3.4 Obstacle Avoidance Controller: 

 Now that we have designed a controller which has the ability to take our robot to a 

goal location, we have to implement another controller which is responsible of avoiding 

obstacles while navigating to this goal location. 

 Actually, our second main objective is to drive the robot safely without colliding with 

the different kind of obstacles that exist in an unknown navigation environment. The go-to-

goal behavior alongside with the Obstacle Avoidance behavior are the basic dynamic duo of 

mobile robots. 

 For the obstacle avoidance controller, we are going to use the same concept used for 

the go-to-goal controller by a defining a desired heading while sensing an obstacle that is 

close to the robot. We assume that we have the situation described in the Figure 1.10 where 

the obstacle is represented with a wall that is situated between the robot and its defined goal 

location. 

 

Figure 1.10: An illustration of a point robot facing an obstacle in its path to goal 

location. 
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The location of the obstacle (𝑥𝑜 ,  𝑦𝑜) is identified using the sensors mounted on the 

mobile robot which is referred to as a Range-Sensor Skirt. A Range-Sensor Skirt is an array 

of sensors distributed evenly on the outside side of the robot with the objective of detecting 

any obstacle around it within a defined range specified in the sensor characteristics. 

If we were building a pure obstacle avoidance controller, we can simply steer our 

robot to a direction opposite to the obstacle location using the following equation: 

𝜃𝑑 = 𝜃𝑜 + 𝜋 

where 𝜃𝑜 is the steering angle towards the obstacle location and can be calculated using the 

arc tangent function: 

𝜃𝑜 = tan−1(
 𝑦
𝑜
−  𝑦

𝑥𝑜 − 𝑥
) 

 However, our main objective is to drive the robot to the desired location which 

implies taking the goal location into consideration while avoiding the obstacle. The second 

approach that can be used is going perpendicularly to the obstacle direction which can be 

implemented using the equation bellow: 

𝜃𝑑 = 𝜃𝑜 ±
𝜋

2
 

where the sign of  
𝜋

2
 depends on which direction makes the robot closer to the desired goal 

location. Even if the second approach gives a much better result than the first one, it still 

needs adjustments by blending the two controllers using behavior-based control. 

Behavior-based control implies switching between different modes of behaviors or 

operations depending on the actual condition of navigation. If the robot detects no obstacles 

around it, it switches to the go-to-goal mode. Whereas, if it detects an obstacle on his path to 

the goal location, it switches to the obstacle avoidance controller. We refer to these kind of 

systems as switched or hybrid systems. 
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1.4 Hybrid Automata: 

Hybrid Automata is a modeling formalism for hybrid systems that results from an 

extension of finite-state machines by associating with each discrete state a continuous-state 

model. Conditions on the continuous evolution of the system invoke discrete state transitions. 

A broad set of analysis methods is available for hybrid automata including methods for the 

reachability analysis and stability analysis. A hybrid automaton is a transition system that is 

extended with continuous dynamics. It consists of locations, transitions, invariants, guards, n-

dimensional continuous functions, jump functions, and synchronization labels [5]. 

Since we are looking for a switch logic to combine our two dynamic behaviors, the 

hybrid automata provide the means to describe both continuous dynamics with a discrete 

switch logic. This implies that the discrete logic will be modeled as a finite state machine 

that moves between different discrete states. Inside each state we have continuous dynamics 

that describe our desired behavior. 

Let the continuous state of the system to be 𝑥. As we will be switching between 

different modes of operations, we add an additional discrete state 𝑞 which will indicate the 

actual mode in which the system is. The dynamics now become: 

𝑥̇ =  𝑓𝑞(𝑥, 𝑢) 

where 𝑓𝑞(𝑥, 𝑢) depends on the mode we are operating in. The transition between different 

discrete modes can be encoded in a state machine as: 

 

               Figure 1.11: An illustration of the transition between two different modes. 

When we jump between the different discrete modes 𝑞 and 𝑞′, we say that 

transitions between different states in the finite state machine are being made. 

The conditions under which a transition occurs are called guard conditions, i.e., 

a transition occurs from 𝑞 to 𝑞′ if: 

𝑥 ∈ 𝐺𝑞,𝑞′  
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 The guards are used to check whether some conditions are satisfied in order to 

make a jump from one mode to another. 

As a final component, we would like to allow abrupt changes in the continuous 

state as the transitions occur. These abrupt changes are called resets and represented 

as the following: 

𝑥:=  𝑅𝑞,𝑞′ 

The resets are used to set the states to specific values after that a transition is made 

from one mode to another. Putting all of this together yields to a very rich model known as a 

hybrid automata (HA) model (see Figure1.12). 

 

                       Figure 1.12: An example of a hybrid automata model. 

An important point to take into consideration, is that a hybrid system can be 

destabilized by switching between different modes even if the different subsystems or modes 

were asymptotically stable themselves. If we ignore the resets, there will be no abrupt 

changes in the states when making transitions. The system becomes a switch system where 

we have: 

𝑥̇ =  𝑓𝜎(𝑥, 𝑢) 

where 𝜎 is a switch signal and it indicates in which mode the system is running. Assume 

there are p discrete modes in our system then: 

𝜎(𝑡) ∈ 𝛴 = {1,… . , 𝑝} 
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Given a switching system  𝑥̇ =  𝑓𝜎(𝑥), we can define three different kind of 

stability: 

1. Universal Asymptotic Stability: it implies that there is nothing that can 

destabilize the system, which means that 𝑥 will always go to zero for any 

value of sigma𝜎: 

𝑥 → 0, ∀𝜎 

2. Existential Asymptotic Stability: it implies that there exists a switch signal 

𝜎that makes the state 𝑥 go to zero such as: 

∃ 𝜎 𝑠. 𝑡. 𝑥 → 0 

3. Hybrid Asymptotic Stability: it implies that we have a hybrid system that is 

itself generating the switch signal, which means that the switch signal is 

generated by an underlying hybrid automation and 𝑥 goes to zero not for any 

or for all sigma 𝜎, but for the one that happens to be the one that we have in 

our hybrid system: 

𝑥 → 0 

As a conclusion, we have to design stable controllers as subsystems and always make 

sure that the resulted Hybrid Automata model is stable for each possible switching signal. 

 Finally, we need to consider an important phenomenon in the hybrid automata model. 

Suppose we have the following system: 

𝑥̇ = {
−1   ;  𝑥 ≥ 0
+1   ;   𝑥 < 0

 

The above system is represented as a Hybrid Automata model in the Figure 1.13. 

 

Figure 1.13: The Hybrid Automata model of the above example. 
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Since we have only two modes, we notice that when the system reaches zero 0, it 

starts switching infinitely many times in a single time-instant which causes what is called as 

the Zeno Phenomenon. 

1.4.1 The Zeno Phenomenon: 

The Zeno Phenomenon leads to unnatural loss of stability of equilibriums and the 

emergence of unexpected and meaningless solutions in case of interconnected systems. Many 

works are devoted to the question of prolongation of such solutions, however there exist no 

unified or commonly accepted prolongation method [6].  

One solution to the Zeno Phenomenon is using Sliding Mode Control. Let us be more 

general and assume that we have the following system: 

𝑥̇ = {
𝑓1(𝑥)   ;  𝑔(𝑥) ≥ 0
𝑓2(𝑥)   ;  𝑔(𝑥) < 0

 

The above general system has the Hybrid Automata Model represented in the Figure 1.14. 

 

Figure 1.14: The Hybrid Automata model of a general system. 

Consider the switching surface 𝑔(𝑥)  =  0 represented in the Figure 1.15, decides 

in which mode the system will be operating. If 𝑔(𝑥) > 0 then the system will be using the 

𝑓1(𝑥), otherwise if 𝑔(𝑥) < 0 the system will be using the 𝑓2(𝑥).The most important point 

in our system is the 𝑔(𝑥)  =  0 where there is a possibility to have a sliding. 

 The sliding along the switching surface when occurs because 𝑓1(𝑥) and 𝑓2(𝑥)are 

pulling in different directions. The sliding mode happens when 𝑓1(𝑥) tries to drive the 

system towards the surface where 𝑔(𝑥) < 0 and 𝑓2(𝑥) tries to drive the system towards 

the surface where 𝑔(𝑥) > 0(see Figure 1.15). 
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Figure 1.15: The illustration of the switching surface 𝑔(𝑥). 

In order to check is the sliding occurs, we need to analyze the vector that is normal to 

the switching surface which is called the gradient. The sliding mode happens if the following 

conditions are satisfied: 

𝜕𝑔

𝜕𝑥
𝑓1 < 0  𝑎𝑛𝑑  

𝜕𝑔

𝜕𝑥
𝑓2 > 0………………… . (1) 

The term  
𝜕𝑔

𝜕𝑥
𝑓 is simply the derivative of 𝑔 in the direction of 𝑓and is called the Lie 

Derivative. The Lie Derivative is denoted by the term 𝐿𝑓𝑔. The conditions above (1) which 

should be satisfied to have sliding become: 

 

𝐿𝑓1𝑔 < 0 𝑎𝑛𝑑 𝐿𝑓2𝑔 > 0 

 

 In the case where the above conditions are satisfied, we apply Regularizations to our 

system in order to solve the Zeno Phenomenon problem. At 𝑔(𝑥)  =  0, the change in 

𝑔(𝑥)will be zero which implies that  
𝑑𝑔

𝑑𝑡
= 0. 

The Regularizations implies introducing a new mode called the Induced Mode 

which defined by the following equation: 

𝑥̇ = 𝜎1𝑓1 + 𝜎2𝑓2………………… (2) 
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Consider now the relation bellow: 

𝑑𝑔

𝑑𝑡
=
𝑑𝑔

𝑑𝑥
𝑥̇ =

𝜕𝑔

𝜕𝑥
(𝜎1𝑓1 + 𝜎2𝑓2) = 𝜎1𝐿𝑓1𝑔 + 𝜎2𝐿𝑓2𝑔 

since 
𝑑𝑔

𝑑𝑡
= 0, then: 

𝜎1𝐿𝑓1𝑔 + 𝜎2𝐿𝑓2𝑔 = 0   ⇒     𝜎2 = −𝜎1
𝐿𝑓1𝑔

𝐿𝑓2𝑔
 

Since we are not allowed to flow backward, then 𝜎1 and 𝜎2 must be positive. We 

also want the sum of 𝜎1 and 𝜎2 to be one in order to respect the dynamics of the system. So, 

we have the following additional constraints about 𝜎1 and 𝜎2:  

𝜎1, 𝜎2 ≥ 0 𝑎𝑛𝑑 𝜎1 + 𝜎2 = 1  

now we can compute the induced mode using the above relation: 

𝜎2 = −𝜎1
𝐿𝑓1𝑔

𝐿𝑓2𝑔
 

since we also have: 

𝜎1 + 𝜎2 = 𝜎1 (1 −
𝐿𝑓1𝑔

𝐿𝑓2𝑔
) = 1 

then we get: 

𝜎1 =
1

1 −
𝐿𝑓1𝑔

𝐿𝑓2𝑔

=
𝐿𝑓2𝑔

𝐿𝑓2𝑔 − 𝐿𝑓1𝑔
………………(3) 

which yields to: 

𝜎2 = −
𝐿𝑓1𝑔

𝐿𝑓2𝑔 − 𝐿𝑓1𝑔
…………………… . . … (4) 

we substitute the equations (3) and (4) into the relation (2) in order to get the final expression 

representing the induced mode: 

 

𝑥̇ =
1

𝐿𝑓
2
𝑔 − 𝐿𝑓

1
𝑔
(𝐿𝑓

2
𝑔𝑓

1
− 𝐿𝑓

1
𝑔𝑓

2
) 
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After the Regularizations, the Hybrid Automata of the general system represented in 

the Figure 1.14 becomes more stable because of the additional sliding mode that we have 

introduced (see Figure1.16). 

 

Figure 1.16: The Hybrid Automata model of a general system after Regularizations. 

 

1.4.2 Type of obstacles: 

 In the avoidance obstacle behavior, we have considered a standard simple type of 

obstacles which is not sufficient for a well-designed mobile robot. There are different types 

of obstacles that goes from the simplest to the most complicated one [7]. 

1. Point-Obstacles: 

For this type of obstacles (see Figure 1.17), the two previous behaviors are sufficient unless 

we need to add an induced mode due to Zeno Phenomenon. One way to deal with this type 

of obstacles, is by adding some noise which is not really needed in practice since the world 

is already noisy. 

 

Figure 1.17: An illustration of a Point-Obstacle. 
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2. Circular Obstacles: 

Basically, circular obstacles are point obstacles that are just larger (see Figure1.18) 

which means that we can deal with them using only the two previous controllers. 

 

Figure 1.18: An illustration of a Circular Obstacle. 

3. Convex Obstacles: 

A convex obstacle is more complexed obstacle that can look like a circle or rectangle (see 

Figure 1.19). Convexity implies that every two point in the obstacle can be joined with 

a straight line that completely lies inside the obstacle. The two behaviors that we have 

seen before will not be enough in order to avoid that kind of obstacles. 

 

     Figure 1.19: An illustration of a Convex Obstacle. 
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4. Non-Convex Obstacles: 

A convex obstacle is even more complexed than convex obstacle. The non-convex 

obstacle can look like any shape because it simply means that there exist two points that 

we cannot connect with a straight line (see Figure 1.20). This type of obstacles requires 

a more sophisticated behavior in order to reach the goal. 

 

Figure 1.20: An illustration of a Non-Convex Obstacle. 

5. Labyrinth Obstacles: 

The labyrinth obstacle is the most complexed obstacle that could face the robot while 

navigating towards the goal location. This type of obstacle which is also called a maze 

obstacle, is considered as one of the most challenging problems to face when designing 

robots. This type of obstacles (see Figure 1.21). requires a more advanced behavior to 

pass it and reach the desired location.  

 

Figure 1.21: An illustration of a Labyrinth Obstacle. 
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1.4.3 Wall-Following Behavior: 

In order to negotiate complex environment, the previous dynamic behaviors: Go-to-

Goal and Avoid Obstacles are now longer sufficient. The need of an additional behavior 

becomes essential because the robot needs a controller to follow the boundary of an 

obstacle/wall in order to be able to get around in the world. The missing behavior is the wall 

following which needs to be designed. 

The follow wall controller should maintain a constant distance to the obstacle/wall 

which is called the safety distance and is represented by a disc around the circular obstacle 

in Figure 1.22. We can clearly move in two different direction along a wall using either the 

clockwise follow wall vector 𝑢𝐹𝑊
𝑐

or the counterclockwise follow wall vector 𝑢𝐹𝑊
𝑐𝑐 . 

 

Figure 1.22: A representation of the follow wall vectors. 

The follow wall vector 𝑢𝐹𝑊  is simply the obstacle avoidance vector 𝑢𝐴𝑂 rotated by 

either −𝜋 2⁄  for  𝑢𝐹𝑊
𝑐𝑐  or  𝜋 2⁄   for  𝑢𝐹𝑊

𝑐  and scaled using by the scalar α.  

The rotation is made using the following rotation matrix 𝑅(φ): 

𝑅(φ) = [
cos(φ) − sin(φ)

sin(φ) cos(φ)
] 

Then the final expressions to calculate both 𝑢𝐹𝑊
𝑐  and 𝑢𝐹𝑊

𝑐𝑐  are: 

𝑢𝐹𝑊
𝑐 = 𝛼𝑅(−𝜋 2⁄ )𝑢𝐴𝑂 = 𝛼 [

0 1
−1 0

] 𝑢𝐴𝑂 

𝑢𝐹𝑊
𝑐𝑐 =  𝛼𝑅(𝜋 2⁄ )𝑢𝐴𝑂  = 𝛼 [

0 −1
1 0

] 𝑢𝐴𝑂 
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Since we have two possible vectors: clockwise follow wall vector 𝑢𝐹𝑊
𝑐

 or the 

counterclockwise follow wall vector 𝑢𝐹𝑊
𝑐𝑐 , we need a test to choose which is more 

appropriate to use at each possible obstacle. Consider using the inner product of two vectors: 

〈𝑣,𝑤〉 = 𝑣𝑇𝑤 = ‖𝑣‖‖𝑤‖𝑐𝑜𝑠(∠(𝑣, 𝑤)) 

The best approach is to consider the go-to-goal vector 𝑢𝐺𝑇𝐺  using the following 

mathematical relations: 

𝑖𝑓 〈𝑢𝐺𝑇𝐺 , 𝑢𝐹𝑊
𝑐 〉 > 0 ⇒ 𝑢𝐹𝑊

𝑐  

𝑖𝑓 〈𝑢𝐺𝑇𝐺 , 𝑢𝐹𝑊
𝑐𝑐 〉 > 0 ⇒ 𝑢𝐹𝑊

𝑐𝑐  

The above tests allow us to determine which direction to take when following a wall. 

We check the go-to-goal inner product with follow wall clockwise, if the result is positive 

the robot should go clockwise which implies that the angle between 𝑢𝐺𝑇𝐺  and 𝑢𝐹𝑊
𝑐

is less 

than 𝜋 2⁄ . This also means that angle between 𝑢𝐺𝑇𝐺  and 𝑢𝐹𝑊
𝑐𝑐

is greater than 𝜋 2⁄ . the 

same logic is followed when using the second test that is based on the go-to-goal inner 

product with follow wall counter-clockwise. 

Now we need to relate the wall following behavior to the go-to-goal and obstacle 

avoidance behaviors. In order to link our three behaviors, we are going to use the induced 

mode presented as a solution to the Zeno Phenomenon in hybrid systems. Suppose we have 

the situation represented in the Figure 1.23 where 𝑥 is the actual position of the robot, 𝑥𝑜is 

the obstacle position and 𝑥𝑔is the goal position. 

 

 

Figure 1.23: An example of navigation situation. 
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Let us consider delta ∆ as the safety distance that the robot need to keep from the 

obstacle when following it such as: 

∆= ‖𝑥 − 𝑥𝑜‖ 

Since we are going to deal with derivatives, it is much easier to use the square of a 

norm than the norm itself.  We define the switching surface 𝑔(𝑥)as the following: 

𝑔(𝑥) =
1

2
(‖𝑥 − 𝑥𝑜‖

2 − ∆2) = 0 

In order to compute the induced mode, we have to introduce the following 

functionssuch as: 

𝑓1(𝑥) = 𝐶𝐺𝑇𝐺(𝑥𝑔 − 𝑥) 

𝑓2(𝑥) = 𝐶𝐴𝑂(𝑥 − 𝑥𝑜) 

where 𝐶𝐺𝑇𝐺 is the go-to-goal component and 𝐶𝐴𝑂 is the avoid obstacle component. When 

𝑔(𝑥) > 0, 

the system will be using the function 𝑓1(𝑥) to reach the goal position. Otherwise if 

𝑔(𝑥) < 0, the system switches to the function 𝑓1(𝑥) to avoid the obstacle which is 

represented bellow: 

𝑥̇ = {
𝑓1(𝑥)  ;  𝑔(𝑥) > 0

𝑓2(𝑥)  ;  𝑔(𝑥) < 0
 

we have the following expression of the induced mode: 

𝑥̇ =
1

𝐿𝑓2𝑔 − 𝐿𝑓1𝑔
(𝐿𝑓2𝑔𝑓1 − 𝐿𝑓1𝑔𝑓2) 

we also have: 

𝜕𝑔

𝜕𝑥
= (𝑥 − 𝑥𝑜)

𝑇 

where we can define the bellow relations: 

𝐿1𝑔 =
𝜕𝑔

𝜕𝑥
𝑓1 = 𝐶𝐺𝑇𝐺(𝑥 − 𝑥𝑜)

𝑇(𝑥𝑔 − 𝑥) 

𝐿𝑓2𝑔 =
𝜕𝑔

𝜕𝑥
𝑓2 = (𝑥 − 𝑥𝑜)

𝑇𝐶𝐴𝑂(𝑥 − 𝑥𝑜) = 𝐶𝐴𝑂‖𝑥 − 𝑥𝑜‖
2 
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If we switch to the wall following behavior, we need to set conditions in order to stop 

following the wall otherwise the robot will keep following the wall. We want our robot to 

switch from the wall following behavior if enough progress has been made and if it has a 

clear path towards the goal. 

 We define 𝜏 to be the time at which we switched to the follow wall behavior. Then 

we can define the progress as: 

 

‖𝑥𝑔 − 𝑥‖ < ‖𝑥𝑔 − 𝑥(𝜏)‖ 

and the clear shot towards the goal condition as: 

〈𝑢𝐴𝑂 , 𝑢𝐺𝑇𝐺〉 > 0 

1.4.4 Hybrid Automata of the Mobile Robot: 

Finally, since we have all the necessary behaviors that makes our robot navigate from 

its actual position to the goal location without colliding with the different kinds of obstacles 

that can exist in his environment. By connecting all the previous modes and setting necessary 

guards, we get the final Hybrid Automata represented in the Figure 1.24 which will be 

followed while implementing out mobile robot. 

 

        Figure 1.24: The final Hybrid Automata of the mobile robot. 



 
 

 

 

 

 

 

Conclusion 1 

 

In this chapter, we looked at the mathematical model of the differential drive and mapped it 

to the Unicycle one. After that we tackled the topic of odometry and explained the different 

behaviors of navigation. Finally, we considered the problem of hybrid automata and infinite 

switching. 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

CHAPTER 2 

Simulation 

 

This chapter will be about simulation where we put all of the previously discussed theory 

through the test in the Sim.i.am simulator. What is this simulator? How does it represent 

the real robot, its sensors and physical limitations? Can we achieve desired behaviors? How 

to solve the problems introduced before? Was it useful? 
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2.1 Sim.I.am: A Robot Simulator 

Sim.I.am is an open-source mobile robot simulator based on MATLAB and Simulink 

that facilitates the implementation and design of controllers and algorithms that can be deployed 

on both simulated and actual mobile robots. 

 

 
 
 

         Sim.I.am is a mobile robot simulator designed to allow students to bridge the gap between 

theory and practice in control theory by enabling them to design and implement controllers for 

a mobile robot then test them in the simulator, finally deploy the code on an actual robotic 

Hardware such as the Khepera III mobile robot (and others) without ever having to implement 

code outside of MATLAB so that focus stays on the design of the controllers instead of 

implementation details that often derail the learning experience [8]. 

 

         The simulated robot for this project is a differential-drive mobile robot with IR (infra-red) 

obstacle sensing unit, wheel encoders, and Wi-Fi connectivity. The simulator allows students 

to use IR sensors and wheel encoders as feedback in their controllers, and control the mobile 

robot via input signals to the left and right wheels of the robot. 

 

 

 

 

 

Figure 2.1: A simulation of a mobile robot and a Khepera III in the Sim.I.am simulator. 

 

 

http://jdelacroix.github.com/simiam
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         The classes of the envirement shown in Figure 2.1 (2 dimentional grid, border and 

abstacles) can be found in the +simulator (Figure 2.2a) folder whereas the code of the 

differential drive (red robot) and the Khepera III robots that are navigating there is implemented 

in the +robot. The wheel IR sensors encoder and the programes are in the directory 

+robot/+sensor. The work done in this project is implemented mostly in the +controller folder 

where the robot have different controllers, each designed and tuned individually and has its own 

file with this form Name_of_controller.m (example: GoToGoal.m). 

 

For the sake of organizing the work, the simulator has the QBSupervisor.m file in 

+controller/+quickbot where an object of every controller is created then the logic to switch 

between them is maintained according to the events happening to the robot to successfully and 

safely  navigate the envirement to the gaol location. More information about the QBSupervisor 

is available in Appendix A. 

              

        In order to text the design, the play button shown in Figure 2.2b that pops up after 

launching should be pressed to start simulation. The button at its right is used to connect the 

simulator to a real robot. The plus and minus bottons are used for zooming in and out the 

envirement. The first button in the left is used to stop simulation and rest, the one next to it is 

for restarting the simulation in case the robot crashes.  

 

             Figure 2.2: (a) File that makes up the simulator, (b) The user interface of the simulator. 

 

(b) (a) 
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          While the simulator is a somewhat idealized version of the real world, it provides the 

students with a sufficient tool to test whether their controllers are behaving correctly. If a 

controller did not work in the simulator, it almost assuredly would not work on the real robot. 

Rather than port their controller from MATLAB to C, the simulator provides a network interface 

(TCP/IP) that simply links the inputs/outputs from the student’s controllers to the real robot 

instead of the simulated robot. This approach allows students to focus their attention on adapting 

their control design to the real robot, rather than worry about porting their controller to C. The 

Sim.I.am simulator is maintained by the Georgia Robotics and InTelligent (GRITS) 

Laboratory at the Georgia Institute of Technology.  

 

2.1.1 Mobile Robot Simulator: 

The simulated Mobile Robot equipped with five infrared (IR) range sensors, of which 

three are located in the front and two are located on its sides. The simulated Mobile Robot has 

a two-wheel differential drive system (two wheels, two motors) with a wheel encoder for each 

wheel.  

Figure 2.3 shows the simulated Mobile Robot. The robot simulator recreates the Mobile 

Robot as faithfully as possible. For example, the range, output, and field of view of the 

simulated IR range sensors match the specifications in the datasheet for the actual Sharp 

GP2D120XJ00F infrared proximity sensors on the Mobile Robot [9]. 

 

 

 

 

 

 

 

Figure 2.3: The simulated Mobile Robot. 

 

 

 

 

http://www.gritslab.gatech.edu/
http://www.gritslab.gatech.edu/
http://www.gatech.edu/


 

35 | P a g e  
 

Chapter 2 Simulation 

2.1.2 IR Range Sensors Characteristics: 

            In this section we cover some of the details pertaining to the five simulated IR sensors 

onboard the simulated Mobile Robot. The orientations (relative to the body of the Mobile 

Robot, as shown in Figure 2.3) of IR sensors 1 through 5 are 90°, 45°, 0°, 45° and 90°, 

respectively. IR range sensors are effective in the range from 0.04 m to 0.3 m only. However, 

the IR sensors return raw values in the range of [0.4, 2.75] V instead of the measured distances. 

Figure 2.4a demonstrates the function that maps these sensors values to distances. To 

complicate matters slightly, the controller onboard the physical Mobile Robot digitizes the 

analog output voltage using a voltage divider and a 12-bit, 1.8V analog-to-digital converter 

(ADC). To faithfully recreate the Mobile Robot in simulation, we simulate the effect of this 

digitization. Figure 2.4b is a look-up table to demonstrate the relationship between the ADC 

output, the analog voltage from the IR proximity sensor, and the approximate distance that 

corresponds to this voltage. 

Any controller can access the IR array through the robot object that is passed into its 

execute function. For example, 

ir_distances = robot.get_ir_distances( ); 

for i=1:numel(robot.ir_array) 

fprintf(’IR #%d has a value of %d’, i, 

robot.ir_array(i).get_range());  

fprintf(’or %0.3f meters.\n’, ir_distances(i)); 

end 

           It is assumed that the function get_ir_distances properly converts from the ADC 

output to an analog output voltage, and then from the analog output voltage to a distance in 

meters. Based on the look-up table in Figure 2.4b, then the conversion from analog output 

voltage to ADC output can be described using the following mathematical equation: 

𝑉𝐴𝐷𝐶 =
1000 ∙ 𝑉𝑎𝑛𝑎𝑙𝑜𝑔

3
 

The simulator uses a different voltage divider on the ADC, therefore: 

𝑉𝐴𝐷𝐶 =
1000 ∙ 𝑉𝑎𝑛𝑎𝑙𝑜𝑔

2
 

Converting from the analog output voltage to a distance is a little bit more complicated, because 

the relationships between analog output voltage and distance is not linear as it is demonstrated 

in the Figure 2.4a. The look-up table provides a coarse sample of points on the curve in Figure 

2.4a.  
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MATLAB has a polyfit function to t a curve to the values in the look-up table, and 

a polyval function to interpolate a point on that fitted curve. The combination of these two 

functions can be used to approximate a distance based on the analog output voltage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: (a)A graph and a (b)table illustrating the relationship between the distance and output 

voltage of the sensor. 

 

2.1.3 Differential Wheel Drive: 

Since the simulated Mobile Robot has a differential wheel drive (i.e., is not a unicycle), it has 

to be controlled by specifying the angular velocities of the right and left wheel (𝑣𝑟,𝑣𝑙), instead of 

the linear and angular velocities of a unicycle(𝑣, 𝑤).These velocities are computed by a 

transformation from(𝑣, 𝑤) to(𝑣𝑟,𝑣𝑙). Recall that the kinematics of the unicycle are defined as: 

𝑥̇ = 𝑣 cos(𝜃) 

𝑦̇ = 𝑣 sin(𝜃) 

𝜃̇ = 𝑤 

Distance (m) Voltage (V) ADC Out 
0.04 2.750 917 
0.05 2.350 783 
0.06 2.050 683 
0.07 1.750 583 
0.08 1.550 517 
0.09 1.400 467 
0.10 1.275 425 
0.12 1.075 358 
0.14 0.925 308 
0.16 0.805 268 
0.18 0.725 242 
0.20 0.650 217 
0.25 0.500 167 
0.30 0.400 133 

(a) Analog voltage output when an object 

is be-tween 0.04m and 0.3m in the IR 

proximity sensor’s field of view. 

 

(b)  A look-up table for interpolating a 

distance(m) from the analog (and digital) 

output voltages. 
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The kinematics of the differential drive are defined as: 

 

                                           𝑥̇ =
𝑅
2

(𝑣𝑟 + 𝑣𝑙)cos(𝜃) 

     𝑦̇ =
𝑅
2

(𝑣𝑟 + 𝑣𝑙) sin(𝜃) 

                                                      𝜃̇ =
𝑅
𝐿

(𝑣𝑟 − 𝑣𝑙) 

 

where R is the radius of the wheels and L is the distance between the wheels. 

The speed of the simulated Mobile Robot can be set in the following way assuming that the 

uni_to_diff function has been implemented, which transforms  (𝑣, 𝑤) to (𝑣𝑟,𝑣𝑙): 

 

 

v = 0.15; % m/s 

w = pi/4; % rad/s 

 

% Transform from v,w to v_r,v_l and set the speed of the robot 

[vel_r, vel_l] = obj.robot.dynamics.uni_to_diff(robot,v,w); 

obj.robot.set_speeds(vel_r, vel_l); 

 

The maximum angular wheel velocity for the physical Mobile Robot is approximately 80 

RPM or 8.37 rad/s and this value is reflected in the simulator. It is therefore important to note 

that if the simulated Mobile Robot is controlled to move at maximum linear velocity, it is not 

possible to achieve any angular velocity, because the angular velocity of the wheel will have 

been maximized. Therefore, there exists a tradeoff between the linear and angular velocity of 

the Mobile Robot: the faster the robot should turn, the slower it has to move forward. 
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2.1.4 Wheel Encoders: 

 

Each of the wheels is outfitted with a wheel encoder that increments or decrements a tick counter 

depending on whether the wheel is moving forward or backwards, respectively. Wheel encoders 

may be used to infer the relative pose of the simulated robot. This inference is called odometry. 

The relevant information needed for odometry is the radius of the wheel (32.5mm), the distance 

between the wheels (99.25mm), and the number of ticks per revolution of the wheel (16 

ticks/rev). For example, 

 

R = robot.wheel_radius; % radius of the wheel 

L = robot.wheel_base_length; % distance between the wheels 

 

tpr = robot. encoders(1).ticks_per_rev; % ticks per revolution 

for the right wheel 

fprintf(’The right wheel has a tick count of %d\n’, 

robot.encoders(1).state);  

fprintf(’The left wheel has a tick count of %d\n’, 

robot.encoders(2).state); 
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2.2 Differential Drive 

We start by Implementing the transformation from unicycle kinematics to differential 

drive kinematics, i.e. convert from (𝑣,𝑤)  to the right and left angular wheel speeds (𝑣𝑟,𝑣𝑙). 

In the simulator, (𝑣,𝑤) corresponds to the variables v and w, while (𝑣𝑟,𝑣𝑙) correspond to 

the variables vel_r and vel_l. The function used by the controllers to convert from 

unicycle kinematics to differential drive kinematics is named uni_to_diff, and inside of this 

function you will need to de ne vel_r(𝑣𝑟) and vel_l(𝑣𝑙) in terms of v, w, R, and L. 

R is the radius of a wheel, and L is the distance separating the two wheels.  

          function [vel_r,vel_l] = uni_to_diff(obj,v,w) 

            R = obj.wheel_radius; 

            L = obj.wheel_base_length; 

 

            vel_r = (2*v+w*L)/(2*R); 

            vel_l = (2*v-w*L)/(2*R); 

 

          end 

2.3 Odometry 

We Implement now the odometry for the robot, such that as the robot moves around, its 

pose (𝑥, 𝑦, 𝜃) is estimated based on how far each of the wheels have turned. We Assume that 

the robot starts at (0, 0,0). 

As seen in the first chapter, the general idea behind odometry is to use wheel encoders to 

measure the distance the wheels have turned over a small period of time, and use this 

information to approximate the change in pose of the robot. 

The pose of the robot is composed of its position (𝑥, 𝑦) and its orientation 𝜃 on a 2-

dimensional plane. The currently estimated pose is stored in the variable state_estimate, 

which bundles x, y, and theta. The robot updates the estimate of its pose by calling the 

update_odometry function which is called every dt seconds, where dt is 0.033s (or a little 

more if the simulation is running slower). 

% Get wheel encoder ticks from the robot 

        right_ticks = obj.robot.encoders(1).ticks; 

        left_ticks = obj.robot.encoders(2).ticks; 

 

% Recall the previous wheel encoder ticks 

        prev_right_ticks = obj.prev_ticks.right; 

        prev_left_ticks = obj.prev_ticks.left; 

 

% Previous estimate  

[x, y, theta] = obj.state_estimate.unpack(); 
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% Compute odometry here 

        R = obj.robot.wheel_radius; 

        L = obj.robot.wheel_base_length; 

        m_per_tick = (2*pi*R)/obj.robot.encoders(1).ticks_per_rev; 

 

where right_ticks and left_ticks are the accumulated wheel encoder ticks of the right 

and left wheel. prev_right_ticks and prev_left_ticks are the wheel encoder ticks 

of the right and left wheel saved during the last call to update odometry. R is the radius of each 

wheel, and L is the distance separating the two wheels. m_per_tick is a constant that tells 

you how many meters a wheel covers with each tick of the wheel encoder. So, we multiply 

m_per_tick by(right_ticks-prev_right_ticks)to get the distance travelled by 

the right wheel since the last estimate. 

% Calculate the distance travelled by the robot wheels 

       d_right = (right_ticks - prev_right_ticks)* m_per_tick; 

       d_left = (left_ticks - prev_left_ticks)* m_per_tick; 

 

       d_center = (d_right + d_left)/2; 

       phi = (d_right - d_left)/L; 

 

       x_dt = d_center*cos(theta); 

       y_dt = d_center*sin(theta); 

       theta_dt = phi; 

 

Once we have computed the change in(𝑥, 𝑦, 𝜃) (let us denote the changes as x_dt, 

y_dt, and theta_dt), you need to update the estimate of the pose: 

    % Update the estimate of the pose 

  theta_new = theta + theta_dt; 

  x_new = x + x_dt; 

  y_new = y + y_dt;                            

fprintf('Estimated(x,y,theta):(%0.3g,%0.3g,%0.3g)\n',x_new,y_ne

w,theta_new); 

% Save the wheel encoder ticks for the next estimate 

      obj.prev_ticks.right = right_ticks; 

      obj.prev_ticks.left = left_ticks; 

 

% Update your estimate of (x,y,theta) 

obj.state_estimate.set_pose([x_new,                                                            

y_new,atan2(sin(theta_new),cos(theta_new))]); 

 

        obj.state_estimate.set_pose([x_new, 

        y_new,atan2(sin(theta_new),cos(theta_new))]); 
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2.4 IR Distance Sensors 
We use the table in Figure 2.4b in the "IR Range Sensors" section of the second chapter, 

which maps distances (in meters) to raw IR values. Then, we implement code that converts raw 

IR values to distances (in meters). 

To retrieve the distances (in meters) measured by the IR proximity sensor, we need to 

implement a conversion from the raw IR values to distances in the get_ir_distances 

function. 

  function ir_distances = get_ir_distances(obj) 

            ir_array_values = obj.ir_array.get_range(); 

            ir_voltages = ir_array_values*3/1000; 

            coeff = [-0.0182 0.1690 -0.6264 1.1853 -1.2104 0.6293]; 

            ir_distances = polyval(coeff, ir_voltages); 

        end 

 

The variable ir_array_values is an array of the IR raw values. The coeff 

variable contains the coefficients returned by: 

      polyfit(ir_voltages_from_table,ir_distances_from_table,5); 

where the first input argument is an array of IR voltages from the table in Figure 2.4b and the 

second argument is an array of the corresponding distances from the table in Figure 2.4b. The 

third argument specifies that we will use a fifth-order polynomial to fit to the data. Instead of 

running this fit every time, we execute the polyfit once in the MATLAB command line, and 

enter them manually on the third line, i.e. coeff = [ ... ];. 

2.5 Motor Limitations 

We have two limitations of the motors on the physical Mobile Robot (which are 

simulated on the Mobile Robot we use in simulation). The first limitation is that the robot’s 

motors have a maximum angular velocity, and the second limitation is that the motors stall at 

low speeds. Suppose that we pick a linear velocity 𝑣 that requires the motors to spin at 90% 

power. Then, we want to change 𝑤 from 0 to some value that requires 20% more power from 

the right motor, and 20% less power from the left motor. This is not an issue for the left motor, 

but the right motor cannot turn at a capacity greater than 100%. The results are that the robot 

cannot turn with the 𝑤 specified by our controller. 

  Since our PID controllers focus more on steering than on controlling the linear velocity, 

we want to prioritize 𝑤 over 𝑣 in situations where we cannot satisfy 𝑤 with the motors. In fact, 

we will simply reduce v until we have sufficient headroom to achieve 𝑤 with the robot. The 

function ensure_w is designed to ensure that 𝑤 is achieved even if the original combination 

of 𝑣 and 𝑤 exceeds the maximum 𝑣𝑟  and 𝑣𝑙 . However, it is also true that the motors have a 

minimum speed before the robot starts moving. If no enough power is applied to the motors, 
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the angular velocity of a wheel remains at 0. Once enough power is applied, the wheels spin at 

a speed 𝑣𝑒𝑙𝑚𝑖𝑛. The ensure_w function will also take this limitation into account. For 

example, small (𝑣,𝑤) may not be achievable on the Mobile Robot, so ensure_w function 

scales up 𝑣 to make 𝑤 possible. Similarly, if (𝑣,𝑤) are both large, ensure_w scales down 𝑣 

to ensure 𝑤. 

 

Suppose 𝑣𝑟,𝑑 and 𝑣𝑙,𝑑 are the angular wheel velocities needed to achieve 𝑤. Then 

vel_rl_max is 𝑚𝑎𝑥(𝑣𝑟,𝑑, 𝑣𝑙,𝑑) and vel_rl_min is 𝑚𝑖𝑛(𝑣𝑟,𝑑, 𝑣𝑙,𝑑). A motor’s maximum 

forward angular velocity is obj.robot.max_vel(or 𝑣𝑒𝑙𝑚𝑎𝑥). So, for example, the 

equation that represents the if/else statement for the right motors is: 

 

𝑣𝑟 =  {

𝑣𝑟,𝑑 − (𝑚𝑎𝑥(𝑣𝑟,𝑑, 𝑣𝑙,𝑑) −  𝑣𝑒𝑙𝑚𝑎𝑥)     , 𝑖𝑓 𝑚𝑎𝑥(𝑣𝑟,𝑑, 𝑣𝑙,𝑑) > 𝑣𝑒𝑙𝑚𝑎𝑥

𝑣𝑟,𝑑 − (𝑚𝑖𝑛(𝑣𝑟,𝑑, 𝑣𝑙,𝑑) +  𝑣𝑒𝑙𝑚𝑎𝑥)       , 𝑖𝑓 𝑚𝑖𝑛(𝑣𝑟,𝑑, 𝑣𝑙,𝑑) < −𝑣𝑒𝑙𝑚𝑎𝑥

𝑣𝑟,𝑑 ,                                                  ,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

which defines the appropriate 𝑣𝑟  (or vel_r) needed to achieve 𝑤. This equation also applies 

to computing a new 𝑣𝑙 . The results of ensure w is that if 𝑣 and 𝑤 are so large that 𝑣𝑟  and/or 𝑣𝑙  

exceed 𝑣𝑒𝑙𝑚𝑎𝑥, then v is scaled back to ensure w is achieved. 

 

% Find the max and min vel_r/vel_l 

    vel_rl_max = max(vel_r_d, vel_l_d); 

    vel_rl_min = min(vel_r_d, vel_l_d); 

 

%Shift vel_r and vel_l if they exceed max/min vel 

    if (vel_rl_max > vel_max) 

        vel_r = vel_r_d - (vel_rl_max-vel_max); 

        vel_l = vel_l_d - (vel_rl_max-vel_max); 

    elseif (vel_rl_min < vel_min) 

        vel_r = vel_r_d + (vel_min-vel_rl_min); 

        vel_l = vel_l_d + (vel_min-vel_rl_min); 

    else 

        vel_r = vel_r_d; 

        vel_l = vel_l_d; 
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2.6 Controllers 

2.6.1 Go-To-Goal Controller: 

We implement the Go-To-Goal Controller using the different parts of a PID regulator that 

steers the robot successfully to some goal location. This is known as the go-to-goal behavior. 

 

 

Figure 4: Steering the Mobile Robot to the goal location (𝑥𝑔, 𝑦𝑔) with heading  

We calculate the heading angle  𝜃𝑔 , to the goal location (𝑥𝑔, 𝑦𝑔). Let 𝑢 be the vector from 

the robot located at (𝑥, 𝑦) to the goal located at (𝑥𝑔, 𝑦𝑔), then 𝜃𝑔 is the angle 𝑢 makes with 

the 𝑥 − 𝑎𝑥𝑖𝑠 (positive 𝜃𝑔is in the counterclockwise direction). 

 

The vector 𝑢 can be expressed in terms of its components along the x and y axis      (𝑢𝑥, 𝑢𝑦). 

In the code they represent u_x and u_y . We use these two components and the atan2 

function (to make sure 𝜃𝑔 stays in [−𝜋, 𝜋]) to compute the angle to the goal       𝜃𝑔 (theta_g 

in the code). 

 

The atan2 function returns the four-quadrant inverse tangent (𝑡𝑎𝑛−1) of Y and X, which 

must be real. The atan2 function follows the convention that atan2(x,x) returns 0. 

% distance between goal and robot in x-direction 

      u_x = x_g - x;      

% distance between goal and robot in y-direction 

      u_y = y_g - y; 

% angle from robot to goal. Hint: use ATAN2, u_x, u_y here. 

      theta_g = atan2(u_y,u_x); 

Figure 2.5: Steering the Mobile Robot to the goal location (𝑥𝑔, 𝑦𝑔) with                                                                               

heading angle 𝜃𝑔. 

 

https://www.mathworks.com/help/matlab/ref/atan2.html#buct8h0-4
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We calculate the error between the heading to the goal theta_g 𝜃𝑔 and the current 

heading of the robot theta𝜃 which is represented by the error e_k. 

 

% error between the goal angle and robot's angle 

 

e_k = theta_g-theta; 

e_k = atan2(sin(e_k), cos(e_k)); 

 

 We finally calculate the proportional, integral, and derivative terms for the PID 

regulator that steers the robot to the goal. 

 

The PID regulator will steer the robot to the goal, i.e. compute the correct angular 

velocity 𝑤. The PID regulator needs three parts implemented: 

 

(i) The first part is the proportional term e_P which is simply the current error e_k. 

e_P is multiplied by the proportional gain obj_Kp when computing w. 

 

(ii) The second part is the integral term e_I. The integral needs to be approximated 

in discrete time using the total accumulated error obj.E_k, the current error e_k, 

and the time step dt. e_I is multiplied by the integral gain obj_Ki when 

computing w, and is also saved as obj.E_k for the next time step. 

 

(iii) The third part is the derivative term e_D. The derivative needs to be approximated 

in discrete time using the current error e_k, the previous error obj.e_k_1, and 

the time step dt. e_D is multiplied by the derivative gain obj.Kd when 

computing w, and the current error e k is saved as the previous error obj.e_k_1 

for the next time step. 

 

We need to tune our PID gains to get a fast settle time (𝜃𝑔matches 𝜃 within 10% in three 

seconds or less) and there should be little overshoot (maximum 𝜃 should not increase beyond 

10% of the reference value 𝜃𝑔). What you don’t want to see are the following two graphs when 

the robot tries to reach goal location (𝑥𝑔, 𝑦𝑔) = (0, 1): 

Figure 2.6b demonstrates undershoot, which could be fixed by increasing the 

proportional gain or adding some integral gain for better tracking. Picking better gains leads to 

the graph in Figure 2.7. 
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                              (a)Overshoot                                              (b) Undershoot (slow settle time) 

Figure 2.6: PID gains were picked poorly, which lead to (a)Overshoot and (b) Undershoot. 

 

 

 

 

 

 

 

 

Figure 2.7: Faster settle time and good tracking with little overshoot. 

  We write the following code to implement the Go-To-Goal controller using the PID 

regulator: 

% error for the proportional term 

    e_P = e_k; 

% error for the integral term.  

    e_I = obj.E_k + e_k*dt; 

% error for the derivative term.  

    e_D = (e_k-obj.e_k_1)/dt;     

    w = obj.Kp*e_P + obj.Ki*e_I + obj.Kd*e_D; 

% Save errors for next time iteration 

   obj.E_k = e_I; 

   obj.e_k_1 = e_k; 
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2.6.2 Obstacle Avoidance Controller 

We will be implementing the different parts of a controller that steers the robot 

successfully away from obstacles to avoid a collision. This is known as the avoid-obstacles 

behavior. The IR sensors allow us to measure the distance to obstacles in the environment, but 

we need to compute the points in the world to which these distances correspond. Figure 3.8 

illustrates these points with a black cross.  

 

 

 

 

 

 

 

 

 

Figure 2.8: IR range to point transformation. 

The strategy for obstacle avoidance that we will use is as follows: 

1. Transform the IR distances to points in the world. 

2. Compute a vector to each point from the robot, 𝑢1, 𝑢2, … , 𝑢5. 

3. Weigh each vector according to their importance, 𝛼1𝑢1, 𝛼2𝑢2, … , 𝛼5𝑢5. For 

example, the front and side sensors are typically more important for obstacle avoidance 

while moving forward. 

4. Sum the weighted vectors to form a single vector,  

                    𝑢𝑎𝑜 = 𝛼1𝑢1 + 𝛼2𝑢2 + ⋯ + 𝛼5𝑢5 

5. Use this vector to compute a heading and steer the robot to this angle. 

 

 

This strategy will steer the robot in a direction with the freest space (i.e., it is a direction 

away from obstacles). For this strategy to work, we will need to implement three crucial parts 

of the strategy for the obstacle avoidance behavior: 
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 Firstly, we will transform the IR distance (which we have converted from the raw 

IR values in IR Distance Sensors) measured by each sensor to a point in the reference 

frame of the robot: 

 

A point 𝑝𝑖  that is measured to be 𝑑𝑖  meters away by sensor 𝑖 can be written as the vector 

(coordinate) 𝑣𝑖 = [
𝑑𝑖

0
] in the reference frame of sensor 𝑖.  We first need to transform this point 

to be in the reference frame of the robot. To do this transformation, we need to use the pose 

(location and orientation) of the sensor in the reference frame of the robot: (𝑥𝑠𝑖
, 𝑦𝑠𝑖

, 𝜃𝑠𝑖
) or in 

code, (x_s, y_s, theta_s). The transformation is defined as: 

𝑣𝑖
′ = 𝑅(𝑥𝑠𝑖

, 𝑦𝑠𝑖
, 𝜃𝑠𝑖

) [
𝑣𝑖

0
], 

where 𝑅 is known as the transformation matrix that applies a translation by (𝑥, 𝑦) and a rotation 

𝜃 by: 

𝑅(𝑥, 𝑦, 𝜃) =  [
cos(𝜃) − sin(𝜃) 𝑥

sin(𝜃) cos(𝜃) 𝑦
0 0 1

] 

 

which we will implement in the function obj.get_transformation_matrix. 

We will also need to implement the transformation in the 

apply_sensor_geometry function. The objective is to store the transformed points in 

ir_distances_rf, such that this matrix has 𝑣1
′  as its rst column, 𝑣2

′  as its second column, 

and so on. 

 

function ir_distances_wf = apply_sensor_geometry(obj, ir_distances, 

state_estimate) 

% Apply the transformation to robot frame. 

 

            ir_distances_rf = zeros(3,5); 

    for i=1:5 

                x_s = obj.sensor_placement(1,i); 

                y_s = obj.sensor_placement(2,i); 

                theta_s = obj.sensor_placement(3,i); 

 

                R = obj.get_transformation_matrix(x_s,y_s,theta_s); 

                ir_distances_rf(:,i) = R*[ir_distances(i); 0; 1]; 

    end 

end 

 

 



 

48 | P a g e  
 

Chapter 2 Simulation 

 Secondly, we transform the point in the robot’s reference frame to the world’s 

reference frame: 

 

A second transformation is needed to determine where a point pi is located in the world that is 

measured by sensor 𝑖. We need to use the pose of the robot, (𝑥, 𝑦, 𝜃), to transform the robot 

from the robot’s reference frame to the world’s reference frame. This transformation is defined 

as: 

𝑣𝑖
′′ = 𝑅(𝑥, 𝑦, 𝜃)𝑣𝑖

′ 

We need also to implement this transformation in the apply_sensor_geometry 

function. The objective here is to store the transformed points in ir_distances_wf, such 

that this matrix has 𝑣1
′′ as its first column, 𝑣2

′′ as its second column, and so on. This matrix now 

contains the coordinates of the points illustrated in Figure 2.8 by the black crosses these points 

approximately correspond to the distances measured by each sensor approximately (because of 

how we converted from raw IR values to meters). 

 

 % Apply the transformation to world frame. 

 

            [x,y,theta] = state_estimate.unpack(); 

 

            R = obj.get_transformation_matrix(x,y,theta); 

            ir_distances_wf = R*ir_distances_rf; 

 

            ir_distances_wf = ir_distances_wf(1:2,:); 

 

 Finally, we use the set of transformed points to compute a vector that points away 

from the obstacle. The robot will steer in the direction of this vector and successfully avoid 

the obstacle: 

In the function execute, we implement the following strategy: 

(i) We compute a vector 𝑢𝑖  to each point (corresponding to a particular sensor) from 

the robot. Use a point’s coordinate from ir_distances_wf and the robot’s 

location (𝑥, 𝑦) for this computation. 

 

(ii) We pick a weight 𝛼𝑖 for each vector according to how important the particular 

sensor is for obstacle avoidance. For example, if you were to multiply the vector 

from the robot to point 𝑖 (corresponding to sensor 𝑖) by a small value (e.g., 0.1), 

then sensor 𝑖 will not impact obstacle avoidance significantly. We need to make 

sure that the weights are symmetric with respect to the left and right sides of the 

robot. Without any obstacles around, the robot should only steer slightly right (due 

to a small asymmetry in the how the IR sensors are mounted on the robot). 
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(iii) We sum up the weighted vectors,  𝛼𝑖𝑢𝑖, into a single vector 𝑢𝑎𝑜. 

(iv) We use 𝑢𝑎𝑜 and the pose of the robot to compute a heading that steers the robot 

away from obstacles (i.e., in a direction with free space, because the vectors that 

correspond to directions with large IR distances will contribute the most to 𝑢𝑎𝑜). 

 

% Compute the heading vector for obstacle avoidance 

 

     sensor_gains = [.7 1.5 0.5 1.5 .7]; 

     u_i = (ir_distances_wf-repmat ([x; y],1,5))*diag(sensor_gains); 

     u_ao = sum(u_i,2); 

 

 

2.6.3 AOandGTG (Blending) Controller: 

We will combine the two previous controllers into a single controller: The Goal-to-Goal 

and Avoid obstacles Controllers. The AOandGTG controller will allow the robot to drive to a 

goal, while not colliding with any obstacles on the way 

To implement our blending controller, we need to combine two vectors: 𝑢𝑔𝑡𝑔(the 

vector pointing to the goal from the robot) and 𝑢𝑎𝑜(the vector pointing from the robot to a 

point in space away from obstacles). These two vectors need to be combined (blended) in some 

way into the vector 𝑢𝑎𝑜,𝑔𝑡𝑔, which is the vector that points the robot both away from obstacles 

and towards the goal. 

 

Figure 2.9: The 𝑢𝑔𝑡𝑔  and  𝑢𝑎𝑜vectors pointing out of the mobile robot. 
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The linear combination of the two vectors 𝑢𝑔𝑡𝑔 and 𝑢𝑎𝑜 will yield to the vector 

𝑢𝑎𝑜,𝑔𝑡𝑔 which result in the robot driving to a goal without colliding with any obstacles in the 

way is computed our two vectors We need to weigh each vector according to their importance: 

 

𝑢𝑎𝑜,𝑔𝑡𝑔 =  𝛼𝑢𝑔𝑡𝑔 + (1 −  𝛼)𝑢𝑎𝑜           ;  𝑤ℎ𝑒𝑟𝑒 0 < 𝛼 < 1 

The following code implement the previous equations: 

% Blending the two vectors 

      alpha = 0.25; 

      u_ao_gtg = alpha*u_gtg+(1-alpha) *u_ao; 

 

By setting the goal location (1, 1), the robot will navigate successfully to the goal without 

colliding with the obstacle that is in the way. The output plot will likely look something similar 

to: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: The AOandGTG controller output resulting from the specified goal location.
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2.6.4 Wall-Following Controller: 

We will be implementing a wall following behavior that will aid the robot in navigating 

around different kind of obstacles that we have stated in the first chapter.  

We start by computing a vector 𝑢𝑓𝑤,𝑡, that estimates a section of the obstacle next to the robot 

using the robot’s right (or left) IR sensors. In the Figure 3.7, this vector, 𝑢𝑓𝑤,𝑡 (u_fw_t), is 

illustrated in red. 

 

 

Figure 2.11: The illustration of the 𝑢𝑓𝑤,𝑡 vector.

The direction of the wall following behavior (whether it is following the obstacle on the 

left or right) is determined by inputs.direction, which can either be equal to right or 

left. Suppose we want to follow an obstacle to the left of the robot, then we use the left set 

of IR sensors (1-3). If we are following the wall, then at all times there should be at least one 

sensor that can detect the obstacle. So, we need to pick a second sensor and use the points 

corresponding to the measurements from these two sensors to form a line that estimates a 

section of the obstacle. In the Figure 2.11 above, sensors 1 and 2 are used to roughly 

approximate the edge of the obstacle.  
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Corners are trickier (see Figure 2.8), because typically only a single sensor will be able to detect 

the wall. The estimate is off as one can see in the Figure 2.8, but as long as the robot isn’t 

following the wall too closely, it will be ok. 

 

 

 

 

 

 

 

 

 

(a)Outside Corner (b) Inside Corner 

Figure 2.12: The illustration of the 𝑢𝑓𝑤,𝑡vector near a corner. 

If we want to estimate a section of the wall using the right sensors (from IR sensors 1-

3), we need to pick the two sensors with the smallest reported measurement in 

ir_distances. Suppose sensor 2 and 3 returned the smallest values, then it is important 

that the sensor with smaller ID (we assume it is sensor 2) is assigned to 𝑝1(p_1) and the sensor 

with the larger ID (we assume it is sensor 3) is assigned to 𝑝2  (p_2), because we want that 

the vector points in the direction that the robot should travel, then let:  

p1 = ir_distances_wf(:,2)  

p2 = ir_distances_wf(:,3)  

Let us assume𝑢𝑓𝑤,𝑡as the vector that estimates a section of the obstacle such as: 

𝑢𝑓𝑤,𝑡 = 𝑝2 − 𝑝 
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Now that we have the vector 𝑢𝑓𝑤,𝑡 (represented by the red line in the Figures), 

we need to compute a vector 𝑢𝑓𝑤,𝑝 that points from the robot to the closest point on 

𝑢𝑓𝑤,𝑡. This vector isvisualized as blue line in the Figures and can be computed using 

a little bit of linear algebra: 

   𝑢𝑓𝑤,𝑡
′ =  

𝑢𝑓𝑤,𝑡

‖𝑢𝑓𝑤,𝑡‖
 ,   𝑢𝑝 =  [

𝑥
𝑦] ,  𝑢𝑎 =  𝑝1 

   𝑢𝑓𝑤,𝑝 = (𝑢𝑎 − 𝑢𝑝) − ((𝑢𝑎 − 𝑢𝑝) ∙ 𝑢𝑓𝑤,𝑡
′ )𝑢𝑓𝑤,𝑡

′  

where 𝑢𝑓𝑤,𝑝 corresponds to u_fw_p and 𝑢𝑓𝑤,𝑡
′  corresponds to u_fw_tp in the 

code. You can notice a small technicality which that we are computing 𝑢𝑓𝑤,𝑝 as the 

vector pointing from the robot to the closest point on 𝑢𝑓𝑤,𝑡, as if 𝑢𝑓𝑤,𝑡 were infinitely 

long. 

All the vectors used in the previous equations are illustrated in the Figure 3.13. 

 

Figure 2.13: The illustration of the 𝑢𝑓𝑤,𝑡
′  and 𝑢𝑓𝑤,𝑝vectors near.

The last step is to combine 𝑢𝑓𝑤,𝑡 and 𝑢𝑓𝑤,𝑝 such that the robot follows the obstacle all the way 

around at some distance 𝑑𝑓𝑤 (d_fw). 𝑢𝑓𝑤,𝑡 will ensure that the robot drives in a direction that 

is parallel to an edge on the obstacle, while 𝑢𝑓𝑤,𝑝 needs to be used to maintain a distance 𝑑𝑓𝑤 

from the obstacle. 
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One way to achieve this is, 

𝑢𝑓𝑤,𝑝
′ = 𝑢𝑓𝑤,𝑝 −  𝑑𝑓𝑤

𝑢𝑓𝑤,𝑝

‖𝑢𝑓𝑤,𝑝‖
 

Suppose the 𝑑 is the distance between the robot and the obstacle, then the vector 

𝑢𝑓𝑤,𝑝
′ (u_fw_pp) is: 

 Pointing towards the obstacle if: 𝑑 > 𝑑𝑓𝑤 . 

 Near zero if:𝑑 ≃ 𝑑𝑓𝑤 .  

 Pointing away from the obstacle if: 𝑑 < 𝑑𝑓𝑤 . 

 

All that is left is to linearly combine 𝑢𝑓𝑤,𝑡
′  and 𝑢𝑓𝑤,𝑝

′  into a single vector 𝑢𝑓𝑤 (u_fw) 

that can be used with the PID controller to steer the robot along the obstacle at the 

distance 𝑑𝑓𝑤. 

𝑢𝑓𝑤 =  𝛼𝑢𝑓𝑤,𝑡
′ + β𝑢𝑓𝑤,𝑝

′  

Figure 2.14 illustrates the 𝑢𝑓𝑤, 𝑢𝑓𝑤,𝑡
′  and 𝑢𝑓𝑤,𝑝

′ vectors. 

 

Figure 2.14: The illustration of the 𝑢𝑓𝑤, 𝑢𝑓𝑤,𝑡
′  and 𝑢𝑓𝑤,𝑝

′ vectors.
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Finally, we implement all the steps above in the code bellow: 

% Selecting p_2 and p_1, then compute u_fw_t 

if(strcmp(inputs.direction,'right')) 

% Pick two of the right sensors based on ir_distances 

             S = [1:3 ; ir_distances(5:-1:3)']; 

             [Y,i] = sort(S(2,:)); 

             S = S(1,i);       

             Sp = 5:-1:3; 

 

             S1 = Sp(S(1)); 

             S2 = Sp(S(2)); 

 

if(S1 < S2) 

                    p_1 = ir_distances_wf(:,S2); 

                    p_2 = ir_distances_wf(:,S1); 

else 

                    p_1 = ir_distances_wf(:,S1); 

                    p_2 = ir_distances_wf(:,S2); 

end 

else 

% Pick two of the left sensors based on ir_distances 

             S = [1:3 ; ir_distances(1:3)']; 

             [Y,i] = sort(S(2,:)); 

             S = S(1,i);    

             Sp = 1:3; 

 

             S1 = Sp(S(1)); 

             S2 = Sp(S(2)); 

 

if(S(1) > S(2)) 

                    p_1 = ir_distances_wf(:,S(2)); 

                    p_2 = ir_distances_wf(:,S(1)); 

else 

                    p_1 = ir_distances_wf(:,S(1)); 

                    p_2 = ir_distances_wf(:,S(2)); 

end 

end 

        u_fw_t = p_2-p_1; 

 

% Computing u_a, u_p, and u_fw_tp to compute u_fw_p 

u_fw_tp = u_fw_t/norm(u_fw_t); 

u_a = p_1; 

         u_p = [x;y]; 

         u_fw_p = ((u_a-u_p)-((u_a-u_p)'*u_fw_tp)*u_fw_tp); 

 

% Combining u_fw_tp and u_fw_pp into u_fw; 

         u_fw_pp = u_fw_p/norm(u_fw_p); 

         u_fw = d_fw*u_fw_tp+(u_fw_p-d_fw*u_fw_pp); 
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The above function takes in the direction of wall following as an input when it is 

called in the QBSupervisor.m file using the sliding_right(inputs.direction’) 

and sliding_left (inputs.direction) functions, where inputs.direction 

is equal to either ‘left’ or ‘right’. Finally, we compute u_fw for each side. 

 

Once the follow wall vector is returned, we want to know whether we need to 

follow the wall or not by knowing if the obstacle is in our way to the goal. We do that by 

solving for 𝜎1 and  𝜎2 in the following equation: 

 

[𝑢𝑔𝑡𝑔 𝑢𝑎𝑜] [ 
𝜎1

𝜎2
] = 𝑢𝑓𝑤 

 

We want to write u_fw as a linear combination of u_gtg and u_ao, we return true 

if both 𝜎1 and 𝜎2 are positive; meaning that u_fw lays between the GTG vector and the 

AO vector where the u_gtg is driving the robot to the obstacle that u_ao is driving it 

away from. 

 

 

 

 

 

We use slide to decide whether we start following the wall and in what direction. 

Again, we change e_k to: 

 

 

 

Using Wall-Following controller may ensure following the path at a certain distance 

from an obstacle but it does not take the robot to the goal location; so, we just need it to get 

to the other side of an obstacle until we can break away and switch to going to goal. 

The conditions that must be satisfied in order to stop following the wall are:  

 The position of the robot is closer to the goal than it was when it started following 

the wall. 

 The angle between u_ao and u_gtg is smaller than 60 degrees (Tunable). 

A=[u_gtg u_ao]; 

sigma = inv(A)*u_fw; 

 

slide = false; 

if sigma(1) > 0 && sigma(2) > 0 

slide = true; 

end 

 

 

  theta_fw = atan2(u_fw(2), u_fw(1)); 

  e_k = theta_fw-theta; 

  e_k = atan2(sin(e_k), cos(e_k)); 
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To check the first condition we save the distance from the goal to the point that the 

robot started following the wall d_prog via function set_progress_point()( called 

every time before switching to go to goal),  

 

 

 

 

 

then we compare it with the distance from the goal to the current position of the robot at 

every update via progress_made(). If it returns true then the first condition is 

satisfied.  

 

 

 

 

 

 

 

 

 

To check the second condition, we make a simple computation: 

 

 

 

 

 

 

 

   function set_progress_point_new(obj) 

       [x, y, theta] = obj.state_estimate.unpack(); 

       obj.d_prog = (norm([x-obj.goal(1);y-obj.goal(2)])); 

   end 

 

function rc = progress_made(obj, state, robot) 

             

        % Check for any progress 

        [x, y, theta] = obj.state_estimate.unpack(); 

        rc = false; 

             

        distance =[x-obj.goal(1);y-obj.goal(2)]; 

           

        if (norm(distance)<(obj.d_prog -0.1)) 

           rc = true; 

        end  

end 

 

function rc = check_angel_gtg_ao(u_ao, u_gtg)    

             

         th1 =  atan2(u_ao(2),u_ao(1))*180/pi ; 

         th_gtg = atan2(u_gtg(2),u_gtg(1)) *180/pi;  

         th_diff =  min([abs(th1 - th_gtg),abs(th1 - th_gtg+360), 

                               abs(th1 - th_gtg-360)]) ;  

            rc = false; 

 

            if (th_diff < 60) 

            rc = true; 

            end 

   end 
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2.7 Tests and results 

Now that we know how each controller work wall, we need to know when to use 

them. Before starting simulation we initialize the coordinates of starting point of the robot 

(in the xml file that describes the environment), the goal it wants to reach and set the 

current controller that it should drive with to the Go_To_Goal in the QBSupervisor.m file 

which is responsible for counting and updating the current pose of the robot, checking the 

events happening and switching between controllers accordingly. The robot will try to 

navigate the environment in Figure 2.15. 

Where the red rectangles are obstacles and the green circle is the goal point which is 

now the origin (0,0). Every rectangle represents 0.1 cm. 

 

 

 

 

Figure 2.15: Simulation environment. 
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The following Figure 2.16 represents a Flowchart about how the decisions are 

made when switching between controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Flowchart representation of the robots’ switching logic. 
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Using the above switching logic, our Mobile Robot reached the desired goal location 

successfully without collision. The different steps of a navigation example are shown in the 

Figure 2.17. 

                    

 

 

                        

 

 

 

  

 

(a) At Obstacle. (b) Wall Following. 

wall 

(c) Break from Wall Following. (d) Obstacle Avoidance. 

(e) At Goal. 

 

 

Figure 2.17: Example of a complete navigation of the mobile robot. 
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2.8 Discussion 

These results have been obtained by implementing stages of design and theory then 

testing them on simulation. 

First, we implemented the go to goal behavior in an obstacle-free environment adjusting 

the heading of the robot to the goal. Second, the avoid obstacle behavior is triggered at a 

certain distance (d_unsafe) from an obstacle while going to a goal then once safe the robot 

switches back to the first controller. Switching could cause multiple problems like the Zeno 

Phenomenon which consists of switching too many times and error in state estimation. As a 

solution, the blending mode was introduced to solve this complication and having a smoother 

ride.  

As the robot tries to reach its destination, it may encounter a malicious type of obstacles 

that is described to be non-convex where it fails to get around them using the previous 

controllers alone. Thus, one more controller is required to follow a path that is decided by 

the geometry of the obstacle at distance d_fw until it is cleared and no longer in the way to 

the goal location; this is known as the follow wall controller. Finally, we switched between 

them according to the events encountered by the robot. 

Although the simulation has been successful, however it is not very powerful for many 

reasons; nowadays we have more accurate sensors, advanced AI and path planning 

algorithms that cover this subject. Furthermore, since the robots depends largely on the values 

to decide what to do when facing obstacles, the five sensors used by the simulator are 

defiantly not enough to fully understand the nature of the obstacle thus not enough to deal 

with all kinds of hostile navigation environment, sensing skirt are used for more efficient 

behaviors. 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

Conclusion 2 

 

In this chapter, we introduced the Sim.i.am simulator and showed the way it closely 

demonstrated real world components, then we implemented the PID controller for the error 

for each behavior and provided the switching logic that supervised the robot in its journey 

to the goal location and shown results and discussion. 

 

 

 

 

 

 

 

 

 

 









 
 

 

 

 

 

 

Appendix A 

 

Switching Supervisor 

 

 

 

 

 

 

 

 

 

 

 

 

 



QBSupervisor 

As seen before the QBSupervisor.m file is responsible for the switching logic between behaviors 

and updating the position of the robot. The main components of this file are  

 Execute function (execute()): this function keeps getting called and executed while 

the simulation is running. It responsible for the switching between controllers and 

updating the position of the robot. 

 State machine support functions: these include the function listed bellow 

1) Switch_to_state(name): this function uses takes a name as an input that will 

be used to choose a controller from an array of controllers initialized earlier to 

switch to that behavior for example to start following wall we call:    

 
       switch_to_state('follow_wall'); 

 

2) Check_event(name): events are the reporters that tells us whether the robot or 

sensors has satisfied some mathematical clauses that have a physical significance for 

our robots. For example: 

           
                if check_event('unsafe') 

                   switch_to_state('avoid_obstacles'); 

                end 

 

           

3) Is_in_state(name): this function returns true if the robot’s state is the one 

entered as a parameter. We use it to check the in switching logic as follows 

     

If is_in_state('avoid_obstacles')&&… 
                 check_event(obstacle_is_cleared) 

                   switch_to_state('go_to_goal'); 

           end 

 

this simply means that if the robot is avoiding obstacle and the sensors’ range is clear 

of obstacles; then it can switch to go_to_goal behavior. 

 

 

 

 

 

 

 

 



The code bellow shows the switching logic used for our mobile robot:    
if (obj.check_event('at_goal')) 

                if (~obj.is_in_state('stop')) 

                    [x,y,~] = obj.state_estimate.unpack(); 

                    fprintf('stopped at (%0.3f,%0.3f)\n', x, y); 

                end 

                obj.switch_to_state('stop'); 

   

       elseif obj.check_event('unsafe') 

                obj.switch_to_state('avoid_obstacles'); 

 

  elseif (obj.is_in_state('go_to_goal') 

                  ||obj.is_in_state('ao_and_gtg')) ... 

                      &&obj.check_event('at_obstacle') 

 

               If obj.check_event('slidong_left') 

                    obj.fw_direction = 'left'; 

                    obj.set_progress_point_new(); 

                    obj.switch_to_state('follow_wall'); 

                

               elseif obj.check_event('slidong_right') 

                    obj.fw_direction = 'right'; 

                    obj.set_progress_point_new(); 

                    obj.switch_to_state('follow_wall'); 

                end 

 

        elseif obj.is_in_state('follow_wall') 

                

               angle = check_angel_gtg_ao(u_ao, u_gtg); 
 

                   if angle&&obj.check_event('progress_made') 

                        obj.switch_to_state('go_to_goal') 

                   end 

                     

        elseif obj.is_in_state('avoid_obstacles') 

                if(obj.check_event('obstacle_cleared')) 

                    disp('Obstacle is cleared :') 

                obj.switch_to_state('go_to_goal'); 

                end 

 

        else 

                  if(~obj.is_in_state('go_to_goal')) 

                  obj.switch_to_state('go_to_goal'); 

                  end 

  end 
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