
Registration Number: ………….../2020

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of

MASTER

In Control

Option: Control

Title:

Presented by:

- Tarek NEKKACHE

- Sofiane HACIANE

Supervisor:

Dr. O. HACHOUR

Safe Navigation of a Differential Drive

Mobile Robot using a PID Controller

 ACKNOWLEDGEMENT

First and foremost, all praises and thanks to Allah, the Almighty, the

merciful and the most compassion, for His showers of blessings throughout our

research work to complete it successfully and throughout our entire lives.

We would like to express our deep and sincere gratitude to our research

supervisor, Dr. O. HACHOUR for giving us the opportunity to do research and

providing valuable guidance and support. Her dynamism, vision, sincerity and

motivation have deeply inspired us. We learned from her the methodology to carry

out the research and to present the research works as clearly as possible. It was a

great privilege and honor to work and study under her guidance.

We are extremely grateful to our beloved parents for their love, prayers,

care and sacrifices to educate and prepare us for our future, we ask Allah to repay

them with the highest price that none can pay but him. Also, we express our thanks

to our sisters and brothers for their support along the years and for our friends and

comrades that made this journey unforgettable, we wish for them success and

happiness from this time until the end of time.

Finally, our thanks go to all the people who have supported us to complete

the research work directly or indirectly.

Abstract

The autonomous wheeled mobile robots are very interesting subject both in scientific

research and practical applications. They are considered from several different perspectives

mainly, engineering and computer science levels. This project deals with the modeling and

control of mobile robots combining the differential drive robot and unicycle models which

will be simulated using a PID controller. The PID controller is based on feedback and tries to

minimize the error using well-tuned parameters. The Odometry has been used to identify

the distance traveled by the robot. The sensing circuitry mounted on the robot provides the

feedback data to assure a safe outdoor navigation in a hostile environment. The Hybrid

Automata principle provides a switching logic between the designed controllers. In this

report, linear algebra is applied to develop a satisfying and stable model which is simulated

using a MATLAB based simulator called “Sim.I.am” that allows the design and

implementation of controllers on the robot.

Table of contents

 Abstract ………………………………………………………………………………….

 Table of contents ………………………………………………………………………...

 List of figures ………...

General Introduction

Overview ………………………………………………………………………………. 1

Motivation ……………………………………………………………………………… 1

Project Objectives ……………………………………………………………………… 2

Report Organization …………………………………………………………………… 2

CHAPTER 1 Theory Description

 1.1 Mathematical Model ... 3
 1.1.1 Differential Drive Model .. 3
 1.1.2 Unicycle Model .. 4
 1.1.3 Mapping of Models .. 6

 1.2 Odometry .. 7

 1.3 Controllers Design .. 13
 1.3.1 Go-To-Goal Controller ... 13
 1.3.2 PID Controller ... 14
 1.3.3 Tricky Angles ... 16
 1.3.4 Obstacle Avoidance Controller ... 17

 1.4 Hybrid Automata .. 19
 1.4.1 The Zeno Phenomenon ... 22
 1.4.2 Type of Obstacles ... 24
 1.4.3 Wall-Following Behavior ... 28
 1.4.4 The Hybrid Automata of the Mobile Robot ... 31

CHAPTER 2 Simulation
 2.1 Sim.I.am: A Robot Simulator... 32
 2.1.1 Mobile Robot Simulator…….. 34
 2.1.2 IR Range Sensors Characteristics.. 35
 2.1.3 Differential Wheel Drive ... 36
 2.1.4 Wheel Encoders ... 38

 2.2 Differential Drive .. 39
 2.3 Odometry... 39
 2.4 IR Distance Sensors............ .. 41
 2.5 Motor Limitations.. 41
 2.6 Controllers... 43
 2.6.1 Go-To-Goal Controller.. 43
 2.6.2 Obstacle Avoidance Controller.. 46
 2.6.3 AOandGTG (Blending) Controller.. 49
 2.6.4 Wall-Following Controller... 51

 2.7 Tests and Results.. 58
 2.8 Discussion.. 61

Conclusion ……………………………………………………………………….…….... 62

Appendix A: Switching Supervisor………...

References...

List of Figures

Figure 1.1: The representation of the Differential Drive……………………………………………. 3

Figure 1.2: The representation of the Mobile Robot in a 2D plane…………………………………. 4

Figure 1.3: The physical description of the Unicycle……………………………………………...... 5

Figure 1.4: The robot is moving counter-clockwise over a small time period……………………… 8

Figure 1.5: The distances traveled by the wheels and robot……………………………………........ 11

Figure 1.6: An illustration of a point robot and its goal location…………………………………… 13

Figure 1.7: Block diagram illustration of a simple PID controlled system…………………………. 14

Figure 1.8: (a) A simple PID output response, (b) A well-tuned PID output response…………… 15

Figure 1.9: Block diagram illustration of each term used in a PID regulator……………………... 16

Figure 1.10: An illustration of a point robot facing an obstacle in its path to goal location…….…. 17

Figure 1.11: An illustration of the transition between two different modes…………………….…. 19

Figure 1.12: An example of a hybrid automata model……………………………………………... 20

Figure 1.13: The Hybrid Automata model of the above example……………………………….…. 21

Figure 1.14: The Hybrid Automata model of a general system……………………………………. 22

Figure 1.15: The illustration of the switching surface 𝑔(𝑥)………………………………………... 23

Figure 1.16: The Hybrid Automata model of a general system after Regularizations……………... 25

Figure 1.17: An illustration of a Point-Obstacle……………………………………………………. 25

Figure 1.18: An illustration of a Circular Obstacle………………………………………………… 26

Figure 1.19: An illustration of a Convex Obstacle…………………………………………………. 26

Figure 1.20: An illustration of a Non-Convex Obstacle……………………………………………. 27

Figure 1.21: An illustration of a Labyrinth Obstacle…………………………………………….…. 27

Figure 1.22: A representation of the follow wall vectors…………………………………………… 28

Figure 1.23: An example of navigation situation…………………………………………………… 29

Figure 1.24: The final Hybrid Automata of the mobile robot………………………………………. 31

Figure 2.1: A simulation of a mobile robot and a Khepera III in the Sim.I.am simulator……….…. 31

Figure 2.2: (a) File that makes up the simulator, (b) The user interface of the simulator…………... 33

Figure 2.3: The simulated Mobile Robot…………………………………………………………… 34

Figure 2.4: (a)A graph and a (b)table illustrating the relationship between the distance …………... 36

 and output voltage of the sensor.

Figure 2.5: Steering the Mobile Robot to the goal location ൫𝑥௚, 𝑦௚൯ with heading angle 𝜃௚ ……… 43

Figure 2.6: PID gains were picked poorly, which lead to (a)Overshoot and (b) Undershoot………. 45

Figure 2.7: Faster settle time and good tracking with little overshoot……………………………… 45

Figure 2.8: IR range to point transformation………………………………………………………... 46

Figure 2.9: The 𝑢௚௧௚ and 𝑢௔௢vectors pointing out of the mobile robot…………………………… 49

Figure 2.10: The AOandGTG controller output resulting from the specified goal location………... 40

Figure 2.11: The illustration of the 𝑢௙௪,௧ vector……………………………………………………. 51

Figure 2.12: The illustration of the 𝑢௙௪,௧vector near a corner………………………………………. 52

Figure 2.13: The illustration of the 𝑢௙௪,௧
ᇱ and 𝑢௙௪,௣vectors near………………………………...…. 53

Figure 2.14: The illustration of the 𝑢௙௪, 𝑢௙௪,௧
ᇱ and 𝑢௙௪,௣

ᇱ vectors…………………………………… 54

Figure 2.15: Simulation environment…………………………………………………………….…. 58

Figure 2.16: Flowchart representation of the robots’ switching logic……………………………… 59

Figure 2.17: Example of a complete navigation of the mobile robot………………………………. 60

Figure 3.1: Car-like kinematics.………………………………………………………………….… 63

Figure 3.2: Unicycle curvature……………………………………………………………................ 63

Figure 3.3: Car curvature………………………………………………………………………….... 64

GENERAL INTRODUCTION

The following introduction highlights the general description of our work including both

project’s motivation and objectives.

1 | P a g e

 Overview

In recent years, the robotics and control of robotic systems is still an actual theme.

In past, the static robots were used mostly in industrial tasks as manipulators, but the

mobile robots were almost exclusively applied in research. The investigation and

development of the autonomous mobile robot are increasing gradually in many fields such

as in military, industries, and hospital. The mobile robots were designed with large size,

heavy and require a high cost computer system which need to be connected via cable or

wireless devices.

 Nowadays, the trend is to evolve with a small mobile robot which is reduced in

size, weigh, and cost of the system by using sensors, numerous actuators, and the

controller are carried on-board the robot. Mobile robots are built based on a good relation

of both hardware and software. There is one more thing that mobile robot really needs is

a good navigation system such as vision camera or sensing components which allows the

robot to perform successfully its tasks depending on the knowledge it has about the initial

configuration of the workspace, but also the ones obtained during its evolution.

There are certain problems that arise in mobile robots, such as: determining the

position and orientation in the environment, avoiding collision with different obstacles,

planning an optimal movement path. The robot navigation is influenced by several

methods, such as measuring the number of rotations made by the motor wheels, using

gyros and accelerometers, but usually determines the pose of the robot in relation to a

fixed coordinate system. When developing an autonomous mobile robot, to carry out the

specific navigation tasks, the robot must be equipped with a suitable locomotion system.

But the mobile robot would be nowhere near as effective, if it were not supported by an

adequate control system.

For that it is proposed a closed loop control by using a PID controller that allows

adjustment of the speed of the brushless DC motors. The reaction system is ensured

through two rotary incremental encoders.

 Motivation

Applying the ‘Control Principles’ which are the fundamental concepts for the

design and analysis of mathematical models to implement suitable controllers for a

mobile robot. The availability of various sensors and the efficiency of a

PID(Proportional–Integral-Differential) motivated us to design an controller which

enhances performance such as: Proportional Control that provides an immediate action to

the control error which improves the rise time, Integral Control which to minimize the

steady state error by driving it to zero, and the Differential Control increases damping in

order to ensure a continuous performance.

2 | P a g e

The PIDs are most frequently used to implement path following robots by

minimizing the error towards the actual goal. Since we are motivated to build an

autonomous wheeled robot that will navigate to any desired goal location while avoiding

obstacles crossing its path, we are going to use the PID controller to steer the robot

towards the goal coordinates by minimizing the angle between the robot’s heading and

goal location orientation.

The project relies on the MATLAB based simulator ‘Sim.I.am’ which allows the

testing of controllers and bridge the gap between theory and practice in ‘Control Theory’.

 Project Objectives

 The purpose of our project is to design a smart wheeled robot with an autonomous

motion provided that it avoids any obstacle (static or dynamic) in front and navigates

properly towards any desired and known coordinates of the goal. Our robot should be

able to negotiate different environments and reach successfully our desired goal location.

The Wheeled Robot will be able to:

 Displace autonomously.

 Avoid all kinds of obstacles.

 Reach the desired location.

The control design objectives are:

 Stability.

 Tracking.

 Robustness.

Report Organization

This report is divided into two chapters. The first chapter gives a general overview

about the models used and the linear algebra applied to develop the mathematical

equations. The second chapter introduces the ‘Sim.I.am’ simulator on which we will test

our controllers and ends with the implementation of our controllers. Finally, our report

finishes with a general conclusion and suggestions for future works.

CHAPTER 1

Theory Description

In robotics, one of the most important tasks is describing the system and the way it

functions, so how can we describe a mobile robot? And how does it achieve its goals? What

are the main challenges and limitations? And how can we go around them?

3 | P a g e

Chapter 1 Theory Description

1.1 Mathematical Model:

In order to design behaviors of controllers for Mobile Robots, we inevitably need

models to decide how the robots will behave while navigating in an environment. For our

Mobile Robot, we will use the Differential Drive Model. For instance, to successfully

implement this model on the Mobile Robot, we are going to move with this model to some

other model called the Unicycle Model which will allow us to overcome using complex

variables such as wheel velocities.

1.1.1 Differential Drive Model:

A lot of mobile robots use a drive mechanism known as differential drive. It consists

of two wheels mounted on a common axis, and each wheel can independently be driven

either forward or backward. While we can vary the velocity of each wheel, for the robot to

perform rolling motion, the robot must rotate about a point that lies along their common left

and right wheel axis. Figure 1.1 illustrates the differential drive model where the circle

represents the actual robot and the black rectangles are supposed to be the wheels [1].

Figure 1.1: The representation of the Differential Drive.

For instance, if we are turning our wheels at same rate, the robot will be moving

straight ahead. Also, if one wheel is turning slower than another, then the robot is turning

towards the direction in which the slower wheel is mounted. We have seen before that a

good controller shouldn’t have to take in consideration the particular parameters of each

robot in order to neglect the friction coefficient, however we need to consider two

parameters which are: the distance that separates the wheel base which is represented by 𝐿,

and the radius of the wheel represented by 𝑅. These two parameters are actually easy to

measure which facilitates the use of this model.

4 | P a g e

Chapter 1 Theory Description

In order to control the way our robot is moving; we use two control signals which

are the velocities of our two wheels, where 𝑣𝑟 and 𝑣𝑙 are the speed at which the right and

left wheels are turning respectively. These two velocities are the input signals of our system.

The mathematical model relating the two input signals (the velocities of the wheels)

directly to the output signals (the position and orientation) of the mobile robot, based on

these observations, the configuration transition equation is:

 Figure 1.2: The representation of the Mobile Robot in a 2D plane.

The equations above contain cos𝜃and sin 𝜃 parts because the differential drive

moves in the direction that its drive wheels are pointing. The translation speed depends on

the average of the angular wheel velocities. To see this, consider the case in which one wheel

is fixed and the other rotates. This initially causes the robot to translate at 1 2⁄ of the speed

in comparison to bothwheels rotating. The rotational speed 𝜃̇ is proportional to the change

in angular wheel speeds. The robot's rotation rate grows linearly with the wheel radius but

reduces linearly with respect to the distance between the wheels.

1.1.2 Unicycle Model:

Dealing with the displacement and velocities of the two wheels of a differential drive

robot is messy. A preferred model is that of a unicycle (Figure 1.3), where we can think of

the robot as having one wheel that can move with a desired 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑣) at a specified

heading 𝑡ℎ𝑒𝑡𝑎 (𝜃). The unicycle models are selected for their simplicity and good

maneuverability. At same time, research is conducted on controllability, feedback,

linearization and stabilization raises many research and development challenges in the

control of unicycle type robots. Since our robot is designed to navigate to a certain goal

location while avoiding obstacles, the unicycle model satisfies the tasks in a stable and

smooth manner [2].

𝑥̇ =
𝑅

2
(𝑣𝑟 + 𝑣𝑙) cos 𝜃

𝑦̇ =
𝑅

2
(𝑣𝑟 + 𝑣𝑙) sin 𝜃

𝜃̇ =
𝑅

𝐿
(𝑣𝑟 − 𝑣𝑙)

5 | P a g e

Chapter 1 Theory Description

The unicycle type robot is in general a robot moving in a 2D world which is

represented by an 𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒. It has some forward speed but zero instantaneous lateral

motion.

The equations to translate between the unicycle model and our wheel velocities

allows us to simplify the differential drive model with the unicycle model. We have seen

how to take measured wheel displacements to calculate the new robot pose. The kinematics

of the unicycle model is usually described by a simple non-linear model:

𝑥̇ = 𝑣 cos 𝜃

𝑦̇ = 𝑣 sin 𝜃

𝜃̇ = 𝑤

where 𝑡ℎ𝑒𝑡𝑎(𝜃) is the orientation of the robot and (𝑥, 𝑦) are the coordinates representing

the actual position of the mobile robot in the 𝑥 − 𝑦 𝑝𝑙𝑎𝑛𝑒. 𝑣 and 𝑤 are the inputs and

they represent the linear and angular velocities of the robot respectively.

Figure 1.3: The physical description of the Unicycle.

6 | P a g e

Chapter 1 Theory Description

1.1.3 Mapping of Models:

 Since we have our two models, we need to combine them to have a final model which

we can implement and design. We will be using the unicycle for analysis and control of its

inputs 𝑣 and 𝜔 then map them to the inputs of the differential drive 𝑣𝑟 and 𝑣𝑙.

 The mapping we are going to use is based on the kinematics of the two models:

{

 𝑥̇ =

𝑅

2
(𝑣𝑟 + 𝑣𝑙) cos 𝜃

𝑦̇ =
𝑅

2
(𝑣𝑟 + 𝑣𝑙) sin𝜃

𝜃̇ =
𝑅

𝐿
(𝑣𝑟 − 𝑣𝑙)

…… .………… (1)

 {
𝑥̇ = 𝑣 cos 𝜃
𝑦̇ = 𝑣 sin𝜃

𝜃̇ = 𝑤

…… .…………………… . (2)

From (1) and (2) we get the following linear equations:

 𝑣 =
𝑅

2
(𝑣𝑟 + 𝑣𝑙) ⇒

2𝑣

𝑅
= 𝑣𝑟 + 𝑣𝑙

𝑤 =
𝑅

𝐿
(𝑣𝑟 − 𝑣𝑙) ⇒

𝑤𝐿

𝑅
= 𝑣𝑟 − 𝑣𝑙

Since we are going to map our designed inputs (𝑣, 𝑤) onto the actual inputs (𝑣𝑟, 𝑣𝑙)
that are indeed running on the robot, we derive these final linear equations which we are

going to use on the mobile robot:

𝑣𝑟 =
2𝑣+𝑤𝐿

2𝑅

𝑣𝑙 =
2𝑣−𝑤𝐿

2𝑅

7 | P a g e

Chapter 1 Theory Description

1.2 Odometry:

Most robotics problems are ultimately reduced to the ability of localization in the

environment of navigation. A basic method of navigation is odometry, using knowledge of

your wheel’s motion to estimate your vehicle’s motion and actual location.

We’ll assume that the vehicle is differentially driven: it has a motor on the left side

of the robot, and another motor on the right side. If both motors rotate forward, the robot

goes (roughly) straight. If the right motor turns faster than the left motor, the robot will move

left.

Our goal is to measure how fast our left and right motors are turning. From this, we

can measure our velocity and rate of turn, and then integrate these quantities to obtain our

position.

In order to achieve odometry, we can use:

 External Sensors: an external sensor would be a sensor that’s measuring something

in the environment such as ultrasound, infrared, camera and laser scanners.

 Internal Sensors: are sensors that are included in the robot and are measuring the

position of the robots such as accelerometers, gyroscopes and wheel encoders.

In this project, we will be using both external (Infrared) and internal (Wheel

Encoder). Since the odometry is concerned with the self-localization of the robot in the

environment, we will be interested in Wheel Encoders that iterates the number ticks of each

wheel [3].

Suppose the left wheel has moved by a distance of 𝑑𝑙𝑒𝑓𝑡 and the right wheel has

moved 𝑑𝑟𝑖𝑔ℎ𝑡. For some small period of time (such that 𝑑𝑙𝑒𝑓𝑡 and 𝑑𝑟𝑖𝑔ℎ𝑡 are short), we can

reasonably assume that the robot trajectory was an arc (see Figure 1.4).

The initial state (𝑥, 𝑦, 𝜃) defines our starting point, with 𝜃 representing the robot’s

heading. After our vehicle has moved by 𝑑𝑙𝑒𝑓𝑡 and 𝑑𝑟𝑖𝑔ℎ𝑡, we want to compute the new

position, (𝑥′, 𝑦′, 𝜃′).
The center of the robot (the spot immediately between the two wheels that defines

the robot’s location), travels along an arc as well. Remembering that arc length is equal to

the radius times the inner angle, the length of this arc is:

𝑑𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑑𝑙𝑒𝑓𝑡 + 𝑑𝑟𝑖𝑔ℎ𝑡

2

8 | P a g e

Chapter 1 Theory Description

Figure 1.4: The robot is moving counter-clockwise over a small time period.

Given basic geometry, we know that:

 ф𝑟𝑙𝑒𝑓𝑡 = 𝑑𝑙𝑒𝑓𝑡………………… (1)

 ф𝑟𝑟𝑖𝑔ℎ𝑡 = 𝑑𝑟𝑖𝑔ℎ𝑡……………… . (2)

If 𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the distance between the left and right wheels, we can write:

𝑟𝑙𝑒𝑓𝑡 + 𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑟𝑟𝑖𝑔ℎ𝑡

Subtracting (1) from (2), we see:

ф𝑟𝑟𝑖𝑔ℎ𝑡 − ф𝑟𝑙𝑒𝑓𝑡 = 𝑑𝑟𝑖𝑔ℎ𝑡 − 𝑑𝑙𝑒𝑓𝑡

ф(𝑟𝑟𝑖𝑔ℎ𝑡 − 𝑟𝑙𝑒𝑓𝑡) = 𝑑𝑟𝑖𝑔ℎ𝑡 − 𝑑𝑙𝑒𝑓𝑡

ф𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑑𝑟𝑖𝑔ℎ𝑡 − 𝑑𝑙𝑒𝑓𝑡

ф =
𝑑𝑟𝑖𝑔ℎ𝑡 − 𝑑𝑙𝑒𝑓𝑡

𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

9 | P a g e

Chapter 1 Theory Description

All of our arcs have a common origin at point P . Note that the angle of the robot’s

baseline with respect to the 𝑥 − 𝑎𝑥𝑖𝑠 is 𝜃 − 𝜋 2⁄ . We now compute the coordinates of P :

𝑃𝑥 = 𝑥 − 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 cos(𝜃 −
𝜋
2⁄)

 = 𝑥 − 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 sin(𝜃)

𝑃𝑦 = 𝑦 − 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 sin(𝜃 −
𝜋
2⁄)

 = 𝑦 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 cos(𝜃)

Now we can compute 𝑥′and𝑦′:

 𝑥′ = 𝑃𝑥+𝑟𝑐𝑒𝑛𝑡𝑒𝑟 cos(ф + 𝜃 −
𝜋
2⁄)

 = 𝑥 − 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 sin(𝜃) + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 sin(ф + 𝜃)

 = 𝑥 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 [−sin(𝜃) + sin(ф) cos(𝜃) + sin(𝜃) cos(ф)

And

 𝑦′ = 𝑃𝑦+𝑟𝑐𝑒𝑛𝑡𝑒𝑟 sin(ф + 𝜃 −
𝜋
2⁄)

 = 𝑦 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 cos(𝜃) − 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 cos(ф + 𝜃)

 = 𝑦 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟[cos(𝜃) − cos(ф) cos(𝜃)+ sin(𝜃) sin(ф)]

If ф is small (as is usually the case for small time steps), we can approximate

sin(ф) = ф and cos(ф) = 1. This now gives us:

 𝑥′ = 𝑥 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 [−sin(𝜃) + ф cos(𝜃) + sin(𝜃)]

 = 𝑥 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟фcos(𝜃)

 = 𝑥 + 𝑑𝑐𝑒𝑛𝑡𝑒𝑟 cos(𝜃)

10 | P a g e

Chapter 1 Theory Description

and

 𝑦′ = 𝑦 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟 [cos(𝜃)− cos(𝜃) + фsin(𝜃)]

 = 𝑦 + 𝑟𝑐𝑒𝑛𝑡𝑒𝑟фsin(𝜃)

 = 𝑦 + 𝑑𝑐𝑒𝑛𝑡𝑒𝑟 sin(𝜃)

In summary, our odometry equations for (𝑥′, 𝑦′, 𝜃′) reduce to:

𝑥′ = 𝑥 + 𝑑𝑐𝑒𝑛𝑡𝑒𝑟 cos(𝜃)

𝑦′ = 𝑦 + 𝑑𝑐𝑒𝑛𝑡𝑒𝑟 sin(𝜃)

𝜃′ = 𝜃 + ф

where:

 𝑑𝑐𝑒𝑛𝑡𝑒𝑟 =
𝑑𝑙𝑒𝑓𝑡+𝑑𝑟𝑖𝑔ℎ𝑡

2

ф =
𝑑𝑟𝑖𝑔ℎ𝑡 − 𝑑𝑙𝑒𝑓𝑡

𝑑𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

We still have to measure the distance travelled by each wheel (𝑑𝑙𝑒𝑓𝑡 and 𝑑𝑟𝑖𝑔ℎ𝑡)

which implies the use of Wheel Encoders. The working principle of wheel encoders is

counting the ticks in order to compute the number of revolutions made by the wheels in a

certain amount of time. So, a wheel encoder gives the distance moved by each wheel. The

speeds of our motors give us two quantities: the rate at which the vehicle is turning, and the

rate at which the vehicle is moving forward. Given the amount of rotation of the motor and

the diameter of the wheel, we can compute the actual distance that the wheel has covered. In

order to simplify the calculations, we will work on the previous assumption that approximates

the distance traveled by each wheel as an arc which is valid for a short time scale (Figure

1.5). In our mobile robot, we consider the distance of the baseline as 𝐿, the distance traveled

by the left wheel as 𝐷𝑙 , the distance traveled by the right wheel as 𝐷𝑟 and the distance turned

by the center of the robot is referred to as 𝐷𝑐 .

11 | P a g e

Chapter 1 Theory Description

Figure 1.5: The distances traveled by the wheels and robot.

In order to measure the distances 𝐷𝑟 and 𝐷𝑙 , we assume that each wheel has its own

number of ticks per revolution, then let 𝑁 be the number of ticks accomplished by a wheel

per revolution. Since most of wheel encoders give the total tick count since the beginning,

we need to count the number of ticks made by each wheel since the last position. We compute

the number of ticks using the following relation:

∆𝑡𝑖𝑐𝑘 = 𝑡𝑖𝑐𝑘′ − 𝑡𝑖𝑐𝑘

where 𝑡𝑖𝑐𝑘′ is the number of ticks accumulated at the actual position(𝑥′, 𝑦′, 𝜃′), 𝑡𝑖𝑐𝑘 is the

number of ticks saved from the previous position(𝑥, 𝑦, 𝜃) and ∆𝑡𝑖𝑐𝑘 is the number of ticks

realized by the wheel. We assume the number of ticks done by the left wheel as ∆𝑡𝑖𝑐𝑘𝑙𝑒𝑓𝑡

and the number of ticks done by the right wheel as ∆𝑡𝑖𝑐𝑘𝑟𝑖𝑔ℎ𝑡 . Then we use the following

equations to calculate the distances:

𝐷𝑙 = 2𝜋
∆𝑡𝑖𝑐𝑘𝑙𝑒𝑓𝑡

𝑁

𝐷𝑟 = 2𝜋
∆𝑡𝑖𝑐𝑘𝑟𝑖𝑔ℎ𝑡

𝑁

12 | P a g e

Chapter 1 Theory Description

Then the actual kinematics of the robot is given by:

𝑥′ = 𝑥 + 𝐷𝑐 cos(𝜃)

𝑦′ = 𝑦 + 𝐷𝑐 sin(𝜃)

 𝜃′ = 𝜃 +
𝐷𝑟 − 𝐷𝑙
2

where 𝐷𝑐 is computed as the following:

𝐷𝑐 =
𝐷𝑟 + 𝐷𝑙
2

13 | P a g e

Chapter 1 Theory Description

1.3 Controllers Design:

1.3.1 Go-To-Goal Controller:

The main objective of our robot is navigating to a specified location. The go-to-goal

behavior will make our robot move from its actual position (𝑥, 𝑦, 𝜃) to a new position which

is described as the goal location (𝑥𝑔, 𝑦𝑔, 𝜃𝑔)as it is represented in the Figure 1.6.

Figure 1.6: An illustration of a point robot and its goal location.

In order to reach the goal location using a differential drive robot that we can

model as a unicycle, we set the linear velocity 𝑣 as constant. Then, we need to control

the heading which is directly related to the angular velocity 𝑤 that is controlled using the

reference tracking.

The reference tracking is exerting a control action on a system in order to

manipulate the process output to be the same as the reference input. The reference

tracking is based on closed loop controllers that are also called feedback controllers.

A closed-loop control system is a system in which the value of some output

quantity is measured using sensors. Feeding back the value of the controlled quantity,

allows the manipulation of an input quantity so as to bring the value of the controlled

quantity closer to a desired value. The difference between the reference value and the

measured output is described as the error 𝑒.

14 | P a g e

Chapter 1 Theory Description

Since our main objective is to steer the robot towards a desired location, we will be

dealing with angles.

Firstly, we set the reference point to be the desired angle 𝜃𝑑. We already have the

actual heading of our robot as theta 𝜃. The tracking error 𝑒 for this kind of problem is:

𝑒 = 𝜃𝑑 − 𝜃

The desired angle 𝜃𝑑 can be calculated using the actual coordinates of the mobile

robot (𝑥, 𝑦) and the desired location coordinates (𝑥𝑔, 𝑦𝑔). The following arc tangent

formula can be used to compute the desired angle:

𝜃𝑑 = tan−1(
 𝑦
𝑔
− 𝑦

𝑥𝑔 − 𝑥
)

Since we have our tracking error, we can plug this error in a controller which will be

acting on it to correct the desired heading.

1.3.2 PID controller:

We assume that our mobile robot is driving at a constant velocity 𝑣0, which

implies the following design model:

{
𝑥̇ = 𝑣𝑜 cos 𝜃
𝑦̇ = 𝑣𝑜 sin𝜃

𝜃̇ = 𝑤

Then the objective is to make the mobile robot drive in the desired heading, which

implies controlling the angular velocity 𝜔. In order to achieve the desired heading control,

we need to implement a controller.

The PID controller compares the measured output with the input reference.

Figure 1.7: Block diagram illustration of a simple PID controlled system.

15 | P a g e

Chapter 1 Theory Description

The PID controller combines the position error and error of change output to correct

the PID parameters for mobile robot. The mobile robot uses infrared sensors to avoid

obstacles around it while heading to reach the desired position.

The simple output response curve using a simple PID control is shown in Figure 1.8a.

By using control theory on the PID, the output response curve is presented in Figure 1.8b.

As a result, the PID controller has a better performance.

(a) (b)

The control of the mobile robot implies controlling the heading which is a control loop

feedback mechanism. In PID control, the current output is based on the feedback of the

previous output, which is computed so as to keep the error small. The error is calculated as

the difference between the desired and the measured value, which should be as small as

possible. A correction of 𝜔 is applied by summing three terms, known as the proportional

term, integral term, and derivative term [4].

Since we have a model and a controller, we can control the steering of our mobile robot

by governing the angular velocity 𝑤 driving the robot towards the desired angle by

implementing the following PID regulator:

𝑤 = 𝐾𝑃𝑒 + 𝐾𝐼∫𝑒 𝑑𝜏 + 𝐾𝐷𝑒̇

Figure 1.8: (a) A simple PID output response, (b) A well-tuned PID output response.

16 | P a g e

Chapter 1 Theory Description

Where 𝑤 is the angular speed or the steering control input, 𝐾𝑃 is the proportional gain

constant, 𝐾𝐼 is the integral gain constant and 𝐾𝐷 is the differential gain constant.

 The Proportional term is used in calculating current errors, the Integral term provides

information about the amount of previous errors and the derivative term predicts the future

errors.

Figure 1.9: Block diagram illustration of each term used in a PID regulator.

1.3.3 Tricky angles:

Since dealing with angles is one of the most complicated tasks, we need to implement

our controller carefully by taking into consideration every possible case.

The main issue we could face is having significant errors while the actual errors are too

small. Suppose we have the following actual and desired angles:

𝜃 = 100𝜋 𝑟𝑎𝑑

and

𝜃𝑑 = 0 𝑟𝑎𝑑

this yields to the following error:

𝑒 = 𝜃𝑑 − 𝜃 = −100𝜋

which seems to be a huge error and can affect the actual behavior of the mobile robot by

making it spinning around without achieving its tasks. Whereas, we also notice that:

𝑒 = −100𝜋 = 0 𝑟𝑎𝑑

which implies that the robot is already on the desired angle and there is no need for correction.

17 | P a g e

Chapter 1 Theory Description

 We handle this issue by ensuring that the error always belongs to the range [−𝜋, 𝜋]

which is described by the following notation:

𝑒 ∈ [−𝜋, 𝜋]

 In order to apply the above solution, we use the inverse of the tangent function or

simply: the arctangent function. Then the error is calculated using the bellow mathematical

relationship:

𝑒 = tan−1(
sin(𝑒)

cos(𝑒)
)

1.3.4 Obstacle Avoidance Controller:

 Now that we have designed a controller which has the ability to take our robot to a

goal location, we have to implement another controller which is responsible of avoiding

obstacles while navigating to this goal location.

 Actually, our second main objective is to drive the robot safely without colliding with

the different kind of obstacles that exist in an unknown navigation environment. The go-to-

goal behavior alongside with the Obstacle Avoidance behavior are the basic dynamic duo of

mobile robots.

 For the obstacle avoidance controller, we are going to use the same concept used for

the go-to-goal controller by a defining a desired heading while sensing an obstacle that is

close to the robot. We assume that we have the situation described in the Figure 1.10 where

the obstacle is represented with a wall that is situated between the robot and its defined goal

location.

Figure 1.10: An illustration of a point robot facing an obstacle in its path to goal

location.

18 | P a g e

Chapter 1 Theory Description

The location of the obstacle (𝑥𝑜 , 𝑦𝑜) is identified using the sensors mounted on the

mobile robot which is referred to as a Range-Sensor Skirt. A Range-Sensor Skirt is an array

of sensors distributed evenly on the outside side of the robot with the objective of detecting

any obstacle around it within a defined range specified in the sensor characteristics.

If we were building a pure obstacle avoidance controller, we can simply steer our

robot to a direction opposite to the obstacle location using the following equation:

𝜃𝑑 = 𝜃𝑜 + 𝜋

where 𝜃𝑜 is the steering angle towards the obstacle location and can be calculated using the

arc tangent function:

𝜃𝑜 = tan−1(
 𝑦
𝑜
− 𝑦

𝑥𝑜 − 𝑥
)

 However, our main objective is to drive the robot to the desired location which

implies taking the goal location into consideration while avoiding the obstacle. The second

approach that can be used is going perpendicularly to the obstacle direction which can be

implemented using the equation bellow:

𝜃𝑑 = 𝜃𝑜 ±
𝜋

2

where the sign of
𝜋

2
 depends on which direction makes the robot closer to the desired goal

location. Even if the second approach gives a much better result than the first one, it still

needs adjustments by blending the two controllers using behavior-based control.

Behavior-based control implies switching between different modes of behaviors or

operations depending on the actual condition of navigation. If the robot detects no obstacles

around it, it switches to the go-to-goal mode. Whereas, if it detects an obstacle on his path to

the goal location, it switches to the obstacle avoidance controller. We refer to these kind of

systems as switched or hybrid systems.

19 | P a g e

Chapter 1 Theory Description

1.4 Hybrid Automata:

Hybrid Automata is a modeling formalism for hybrid systems that results from an

extension of finite-state machines by associating with each discrete state a continuous-state

model. Conditions on the continuous evolution of the system invoke discrete state transitions.

A broad set of analysis methods is available for hybrid automata including methods for the

reachability analysis and stability analysis. A hybrid automaton is a transition system that is

extended with continuous dynamics. It consists of locations, transitions, invariants, guards, n-

dimensional continuous functions, jump functions, and synchronization labels [5].

Since we are looking for a switch logic to combine our two dynamic behaviors, the

hybrid automata provide the means to describe both continuous dynamics with a discrete

switch logic. This implies that the discrete logic will be modeled as a finite state machine

that moves between different discrete states. Inside each state we have continuous dynamics

that describe our desired behavior.

Let the continuous state of the system to be 𝑥. As we will be switching between

different modes of operations, we add an additional discrete state 𝑞 which will indicate the

actual mode in which the system is. The dynamics now become:

𝑥̇ = 𝑓𝑞(𝑥, 𝑢)

where 𝑓𝑞(𝑥, 𝑢) depends on the mode we are operating in. The transition between different

discrete modes can be encoded in a state machine as:

 Figure 1.11: An illustration of the transition between two different modes.

When we jump between the different discrete modes 𝑞 and 𝑞′, we say that

transitions between different states in the finite state machine are being made.

The conditions under which a transition occurs are called guard conditions, i.e.,

a transition occurs from 𝑞 to 𝑞′ if:

𝑥 ∈ 𝐺𝑞,𝑞′

20 | P a g e

Chapter 1 Theory Description

 The guards are used to check whether some conditions are satisfied in order to

make a jump from one mode to another.

As a final component, we would like to allow abrupt changes in the continuous

state as the transitions occur. These abrupt changes are called resets and represented

as the following:

𝑥:= 𝑅𝑞,𝑞′

The resets are used to set the states to specific values after that a transition is made

from one mode to another. Putting all of this together yields to a very rich model known as a

hybrid automata (HA) model (see Figure1.12).

 Figure 1.12: An example of a hybrid automata model.

An important point to take into consideration, is that a hybrid system can be

destabilized by switching between different modes even if the different subsystems or modes

were asymptotically stable themselves. If we ignore the resets, there will be no abrupt

changes in the states when making transitions. The system becomes a switch system where

we have:

𝑥̇ = 𝑓𝜎(𝑥, 𝑢)

where 𝜎 is a switch signal and it indicates in which mode the system is running. Assume

there are p discrete modes in our system then:

𝜎(𝑡) ∈ 𝛴 = {1,… . , 𝑝}

21 | P a g e

Chapter 1 Theory Description

Given a switching system 𝑥̇ = 𝑓𝜎(𝑥), we can define three different kind of

stability:

1. Universal Asymptotic Stability: it implies that there is nothing that can

destabilize the system, which means that 𝑥 will always go to zero for any

value of sigma𝜎:

𝑥 → 0, ∀𝜎

2. Existential Asymptotic Stability: it implies that there exists a switch signal

𝜎that makes the state 𝑥 go to zero such as:

∃ 𝜎 𝑠. 𝑡. 𝑥 → 0

3. Hybrid Asymptotic Stability: it implies that we have a hybrid system that is

itself generating the switch signal, which means that the switch signal is

generated by an underlying hybrid automation and 𝑥 goes to zero not for any

or for all sigma 𝜎, but for the one that happens to be the one that we have in

our hybrid system:

𝑥 → 0

As a conclusion, we have to design stable controllers as subsystems and always make

sure that the resulted Hybrid Automata model is stable for each possible switching signal.

 Finally, we need to consider an important phenomenon in the hybrid automata model.

Suppose we have the following system:

𝑥̇ = {
−1 ; 𝑥 ≥ 0
+1 ; 𝑥 < 0

The above system is represented as a Hybrid Automata model in the Figure 1.13.

Figure 1.13: The Hybrid Automata model of the above example.

22 | P a g e

Chapter 1 Theory Description

Since we have only two modes, we notice that when the system reaches zero 0, it

starts switching infinitely many times in a single time-instant which causes what is called as

the Zeno Phenomenon.

1.4.1 The Zeno Phenomenon:

The Zeno Phenomenon leads to unnatural loss of stability of equilibriums and the

emergence of unexpected and meaningless solutions in case of interconnected systems. Many

works are devoted to the question of prolongation of such solutions, however there exist no

unified or commonly accepted prolongation method [6].

One solution to the Zeno Phenomenon is using Sliding Mode Control. Let us be more

general and assume that we have the following system:

𝑥̇ = {
𝑓1(𝑥) ; 𝑔(𝑥) ≥ 0
𝑓2(𝑥) ; 𝑔(𝑥) < 0

The above general system has the Hybrid Automata Model represented in the Figure 1.14.

Figure 1.14: The Hybrid Automata model of a general system.

Consider the switching surface 𝑔(𝑥) = 0 represented in the Figure 1.15, decides

in which mode the system will be operating. If 𝑔(𝑥) > 0 then the system will be using the

𝑓1(𝑥), otherwise if 𝑔(𝑥) < 0 the system will be using the 𝑓2(𝑥).The most important point

in our system is the 𝑔(𝑥) = 0 where there is a possibility to have a sliding.

 The sliding along the switching surface when occurs because 𝑓1(𝑥) and 𝑓2(𝑥)are

pulling in different directions. The sliding mode happens when 𝑓1(𝑥) tries to drive the

system towards the surface where 𝑔(𝑥) < 0 and 𝑓2(𝑥) tries to drive the system towards

the surface where 𝑔(𝑥) > 0(see Figure 1.15).

23 | P a g e

Chapter 1 Theory Description

Figure 1.15: The illustration of the switching surface 𝑔(𝑥).

In order to check is the sliding occurs, we need to analyze the vector that is normal to

the switching surface which is called the gradient. The sliding mode happens if the following

conditions are satisfied:

𝜕𝑔

𝜕𝑥
𝑓1 < 0 𝑎𝑛𝑑

𝜕𝑔

𝜕𝑥
𝑓2 > 0………………… . (1)

The term
𝜕𝑔

𝜕𝑥
𝑓 is simply the derivative of 𝑔 in the direction of 𝑓and is called the Lie

Derivative. The Lie Derivative is denoted by the term 𝐿𝑓𝑔. The conditions above (1) which

should be satisfied to have sliding become:

𝐿𝑓1𝑔 < 0 𝑎𝑛𝑑 𝐿𝑓2𝑔 > 0

 In the case where the above conditions are satisfied, we apply Regularizations to our

system in order to solve the Zeno Phenomenon problem. At 𝑔(𝑥) = 0, the change in

𝑔(𝑥)will be zero which implies that
𝑑𝑔

𝑑𝑡
= 0.

The Regularizations implies introducing a new mode called the Induced Mode

which defined by the following equation:

𝑥̇ = 𝜎1𝑓1 + 𝜎2𝑓2………………… (2)

24 | P a g e

Chapter 1 Theory Description

Consider now the relation bellow:

𝑑𝑔

𝑑𝑡
=
𝑑𝑔

𝑑𝑥
𝑥̇ =

𝜕𝑔

𝜕𝑥
(𝜎1𝑓1 + 𝜎2𝑓2) = 𝜎1𝐿𝑓1𝑔 + 𝜎2𝐿𝑓2𝑔

since
𝑑𝑔

𝑑𝑡
= 0, then:

𝜎1𝐿𝑓1𝑔 + 𝜎2𝐿𝑓2𝑔 = 0 ⇒ 𝜎2 = −𝜎1
𝐿𝑓1𝑔

𝐿𝑓2𝑔

Since we are not allowed to flow backward, then 𝜎1 and 𝜎2 must be positive. We

also want the sum of 𝜎1 and 𝜎2 to be one in order to respect the dynamics of the system. So,

we have the following additional constraints about 𝜎1 and 𝜎2:

𝜎1, 𝜎2 ≥ 0 𝑎𝑛𝑑 𝜎1 + 𝜎2 = 1

now we can compute the induced mode using the above relation:

𝜎2 = −𝜎1
𝐿𝑓1𝑔

𝐿𝑓2𝑔

since we also have:

𝜎1 + 𝜎2 = 𝜎1 (1 −
𝐿𝑓1𝑔

𝐿𝑓2𝑔
) = 1

then we get:

𝜎1 =
1

1 −
𝐿𝑓1𝑔

𝐿𝑓2𝑔

=
𝐿𝑓2𝑔

𝐿𝑓2𝑔 − 𝐿𝑓1𝑔
………………(3)

which yields to:

𝜎2 = −
𝐿𝑓1𝑔

𝐿𝑓2𝑔 − 𝐿𝑓1𝑔
…………………… . . … (4)

we substitute the equations (3) and (4) into the relation (2) in order to get the final expression

representing the induced mode:

𝑥̇ =
1

𝐿𝑓
2
𝑔 − 𝐿𝑓

1
𝑔
(𝐿𝑓

2
𝑔𝑓

1
− 𝐿𝑓

1
𝑔𝑓

2
)

25 | P a g e

Chapter 1 Theory Description

After the Regularizations, the Hybrid Automata of the general system represented in

the Figure 1.14 becomes more stable because of the additional sliding mode that we have

introduced (see Figure1.16).

Figure 1.16: The Hybrid Automata model of a general system after Regularizations.

1.4.2 Type of obstacles:

 In the avoidance obstacle behavior, we have considered a standard simple type of

obstacles which is not sufficient for a well-designed mobile robot. There are different types

of obstacles that goes from the simplest to the most complicated one [7].

1. Point-Obstacles:

For this type of obstacles (see Figure 1.17), the two previous behaviors are sufficient unless

we need to add an induced mode due to Zeno Phenomenon. One way to deal with this type

of obstacles, is by adding some noise which is not really needed in practice since the world

is already noisy.

Figure 1.17: An illustration of a Point-Obstacle.

26 | P a g e

Chapter 1 Theory Description

2. Circular Obstacles:

Basically, circular obstacles are point obstacles that are just larger (see Figure1.18)

which means that we can deal with them using only the two previous controllers.

Figure 1.18: An illustration of a Circular Obstacle.

3. Convex Obstacles:

A convex obstacle is more complexed obstacle that can look like a circle or rectangle (see

Figure 1.19). Convexity implies that every two point in the obstacle can be joined with

a straight line that completely lies inside the obstacle. The two behaviors that we have

seen before will not be enough in order to avoid that kind of obstacles.

 Figure 1.19: An illustration of a Convex Obstacle.

27 | P a g e

Chapter 1 Theory Description

4. Non-Convex Obstacles:

A convex obstacle is even more complexed than convex obstacle. The non-convex

obstacle can look like any shape because it simply means that there exist two points that

we cannot connect with a straight line (see Figure 1.20). This type of obstacles requires

a more sophisticated behavior in order to reach the goal.

Figure 1.20: An illustration of a Non-Convex Obstacle.

5. Labyrinth Obstacles:

The labyrinth obstacle is the most complexed obstacle that could face the robot while

navigating towards the goal location. This type of obstacle which is also called a maze

obstacle, is considered as one of the most challenging problems to face when designing

robots. This type of obstacles (see Figure 1.21). requires a more advanced behavior to

pass it and reach the desired location.

Figure 1.21: An illustration of a Labyrinth Obstacle.

28 | P a g e

Chapter 1 Theory Description

1.4.3 Wall-Following Behavior:

In order to negotiate complex environment, the previous dynamic behaviors: Go-to-

Goal and Avoid Obstacles are now longer sufficient. The need of an additional behavior

becomes essential because the robot needs a controller to follow the boundary of an

obstacle/wall in order to be able to get around in the world. The missing behavior is the wall

following which needs to be designed.

The follow wall controller should maintain a constant distance to the obstacle/wall

which is called the safety distance and is represented by a disc around the circular obstacle

in Figure 1.22. We can clearly move in two different direction along a wall using either the

clockwise follow wall vector 𝑢𝐹𝑊
𝑐

or the counterclockwise follow wall vector 𝑢𝐹𝑊
𝑐𝑐 .

Figure 1.22: A representation of the follow wall vectors.

The follow wall vector 𝑢𝐹𝑊 is simply the obstacle avoidance vector 𝑢𝐴𝑂 rotated by

either −𝜋 2⁄ for 𝑢𝐹𝑊
𝑐𝑐 or 𝜋 2⁄ for 𝑢𝐹𝑊

𝑐 and scaled using by the scalar α.

The rotation is made using the following rotation matrix 𝑅(φ):

𝑅(φ) = [
cos(φ) − sin(φ)

sin(φ) cos(φ)
]

Then the final expressions to calculate both 𝑢𝐹𝑊
𝑐 and 𝑢𝐹𝑊

𝑐𝑐 are:

𝑢𝐹𝑊
𝑐 = 𝛼𝑅(−𝜋 2⁄)𝑢𝐴𝑂 = 𝛼 [

0 1
−1 0

] 𝑢𝐴𝑂

𝑢𝐹𝑊
𝑐𝑐 = 𝛼𝑅(𝜋 2⁄)𝑢𝐴𝑂 = 𝛼 [

0 −1
1 0

] 𝑢𝐴𝑂

29 | P a g e

Chapter 1 Theory Description

Since we have two possible vectors: clockwise follow wall vector 𝑢𝐹𝑊
𝑐

 or the

counterclockwise follow wall vector 𝑢𝐹𝑊
𝑐𝑐 , we need a test to choose which is more

appropriate to use at each possible obstacle. Consider using the inner product of two vectors:

〈𝑣,𝑤〉 = 𝑣𝑇𝑤 = ‖𝑣‖‖𝑤‖𝑐𝑜𝑠(∠(𝑣, 𝑤))

The best approach is to consider the go-to-goal vector 𝑢𝐺𝑇𝐺 using the following

mathematical relations:

𝑖𝑓 〈𝑢𝐺𝑇𝐺 , 𝑢𝐹𝑊
𝑐 〉 > 0 ⇒ 𝑢𝐹𝑊

𝑐

𝑖𝑓 〈𝑢𝐺𝑇𝐺 , 𝑢𝐹𝑊
𝑐𝑐 〉 > 0 ⇒ 𝑢𝐹𝑊

𝑐𝑐

The above tests allow us to determine which direction to take when following a wall.

We check the go-to-goal inner product with follow wall clockwise, if the result is positive

the robot should go clockwise which implies that the angle between 𝑢𝐺𝑇𝐺 and 𝑢𝐹𝑊
𝑐

is less

than 𝜋 2⁄ . This also means that angle between 𝑢𝐺𝑇𝐺 and 𝑢𝐹𝑊
𝑐𝑐

is greater than 𝜋 2⁄ . the

same logic is followed when using the second test that is based on the go-to-goal inner

product with follow wall counter-clockwise.

Now we need to relate the wall following behavior to the go-to-goal and obstacle

avoidance behaviors. In order to link our three behaviors, we are going to use the induced

mode presented as a solution to the Zeno Phenomenon in hybrid systems. Suppose we have

the situation represented in the Figure 1.23 where 𝑥 is the actual position of the robot, 𝑥𝑜is

the obstacle position and 𝑥𝑔is the goal position.

Figure 1.23: An example of navigation situation.

30 | P a g e

Chapter 1 Theory Description

Let us consider delta ∆ as the safety distance that the robot need to keep from the

obstacle when following it such as:

∆= ‖𝑥 − 𝑥𝑜‖

Since we are going to deal with derivatives, it is much easier to use the square of a

norm than the norm itself. We define the switching surface 𝑔(𝑥)as the following:

𝑔(𝑥) =
1

2
(‖𝑥 − 𝑥𝑜‖

2 − ∆2) = 0

In order to compute the induced mode, we have to introduce the following

functionssuch as:

𝑓1(𝑥) = 𝐶𝐺𝑇𝐺(𝑥𝑔 − 𝑥)

𝑓2(𝑥) = 𝐶𝐴𝑂(𝑥 − 𝑥𝑜)

where 𝐶𝐺𝑇𝐺 is the go-to-goal component and 𝐶𝐴𝑂 is the avoid obstacle component. When

𝑔(𝑥) > 0,

the system will be using the function 𝑓1(𝑥) to reach the goal position. Otherwise if

𝑔(𝑥) < 0, the system switches to the function 𝑓1(𝑥) to avoid the obstacle which is

represented bellow:

𝑥̇ = {
𝑓1(𝑥) ; 𝑔(𝑥) > 0

𝑓2(𝑥) ; 𝑔(𝑥) < 0

we have the following expression of the induced mode:

𝑥̇ =
1

𝐿𝑓2𝑔 − 𝐿𝑓1𝑔
(𝐿𝑓2𝑔𝑓1 − 𝐿𝑓1𝑔𝑓2)

we also have:

𝜕𝑔

𝜕𝑥
= (𝑥 − 𝑥𝑜)

𝑇

where we can define the bellow relations:

𝐿1𝑔 =
𝜕𝑔

𝜕𝑥
𝑓1 = 𝐶𝐺𝑇𝐺(𝑥 − 𝑥𝑜)

𝑇(𝑥𝑔 − 𝑥)

𝐿𝑓2𝑔 =
𝜕𝑔

𝜕𝑥
𝑓2 = (𝑥 − 𝑥𝑜)

𝑇𝐶𝐴𝑂(𝑥 − 𝑥𝑜) = 𝐶𝐴𝑂‖𝑥 − 𝑥𝑜‖
2

31 | P a g e

Chapter 1 Theory Description

If we switch to the wall following behavior, we need to set conditions in order to stop

following the wall otherwise the robot will keep following the wall. We want our robot to

switch from the wall following behavior if enough progress has been made and if it has a

clear path towards the goal.

 We define 𝜏 to be the time at which we switched to the follow wall behavior. Then

we can define the progress as:

‖𝑥𝑔 − 𝑥‖ < ‖𝑥𝑔 − 𝑥(𝜏)‖

and the clear shot towards the goal condition as:

〈𝑢𝐴𝑂 , 𝑢𝐺𝑇𝐺〉 > 0

1.4.4 Hybrid Automata of the Mobile Robot:

Finally, since we have all the necessary behaviors that makes our robot navigate from

its actual position to the goal location without colliding with the different kinds of obstacles

that can exist in his environment. By connecting all the previous modes and setting necessary

guards, we get the final Hybrid Automata represented in the Figure 1.24 which will be

followed while implementing out mobile robot.

 Figure 1.24: The final Hybrid Automata of the mobile robot.

Conclusion 1

In this chapter, we looked at the mathematical model of the differential drive and mapped it

to the Unicycle one. After that we tackled the topic of odometry and explained the different

behaviors of navigation. Finally, we considered the problem of hybrid automata and infinite

switching.

CHAPTER 2

Simulation

This chapter will be about simulation where we put all of the previously discussed theory

through the test in the Sim.i.am simulator. What is this simulator? How does it represent

the real robot, its sensors and physical limitations? Can we achieve desired behaviors? How

to solve the problems introduced before? Was it useful?

32 | P a g e

Chapter 2 Simulation

2.1 Sim.I.am: A Robot Simulator

Sim.I.am is an open-source mobile robot simulator based on MATLAB and Simulink

that facilitates the implementation and design of controllers and algorithms that can be deployed

on both simulated and actual mobile robots.

 Sim.I.am is a mobile robot simulator designed to allow students to bridge the gap between

theory and practice in control theory by enabling them to design and implement controllers for

a mobile robot then test them in the simulator, finally deploy the code on an actual robotic

Hardware such as the Khepera III mobile robot (and others) without ever having to implement

code outside of MATLAB so that focus stays on the design of the controllers instead of

implementation details that often derail the learning experience [8].

 The simulated robot for this project is a differential-drive mobile robot with IR (infra-red)

obstacle sensing unit, wheel encoders, and Wi-Fi connectivity. The simulator allows students

to use IR sensors and wheel encoders as feedback in their controllers, and control the mobile

robot via input signals to the left and right wheels of the robot.

Figure 2.1: A simulation of a mobile robot and a Khepera III in the Sim.I.am simulator.

http://jdelacroix.github.com/simiam

33 | P a g e

Chapter 2 Simulation

 The classes of the envirement shown in Figure 2.1 (2 dimentional grid, border and

abstacles) can be found in the +simulator (Figure 2.2a) folder whereas the code of the

differential drive (red robot) and the Khepera III robots that are navigating there is implemented

in the +robot. The wheel IR sensors encoder and the programes are in the directory

+robot/+sensor. The work done in this project is implemented mostly in the +controller folder

where the robot have different controllers, each designed and tuned individually and has its own

file with this form Name_of_controller.m (example: GoToGoal.m).

For the sake of organizing the work, the simulator has the QBSupervisor.m file in

+controller/+quickbot where an object of every controller is created then the logic to switch

between them is maintained according to the events happening to the robot to successfully and

safely navigate the envirement to the gaol location. More information about the QBSupervisor

is available in Appendix A.

 In order to text the design, the play button shown in Figure 2.2b that pops up after

launching should be pressed to start simulation. The button at its right is used to connect the

simulator to a real robot. The plus and minus bottons are used for zooming in and out the

envirement. The first button in the left is used to stop simulation and rest, the one next to it is

for restarting the simulation in case the robot crashes.

 Figure 2.2: (a) File that makes up the simulator, (b) The user interface of the simulator.

(b) (a)

34 | P a g e

Chapter 2 Simulation

 While the simulator is a somewhat idealized version of the real world, it provides the

students with a sufficient tool to test whether their controllers are behaving correctly. If a

controller did not work in the simulator, it almost assuredly would not work on the real robot.

Rather than port their controller from MATLAB to C, the simulator provides a network interface

(TCP/IP) that simply links the inputs/outputs from the student’s controllers to the real robot

instead of the simulated robot. This approach allows students to focus their attention on adapting

their control design to the real robot, rather than worry about porting their controller to C. The

Sim.I.am simulator is maintained by the Georgia Robotics and InTelligent (GRITS)

Laboratory at the Georgia Institute of Technology.

2.1.1 Mobile Robot Simulator:

The simulated Mobile Robot equipped with five infrared (IR) range sensors, of which

three are located in the front and two are located on its sides. The simulated Mobile Robot has

a two-wheel differential drive system (two wheels, two motors) with a wheel encoder for each

wheel.

Figure 2.3 shows the simulated Mobile Robot. The robot simulator recreates the Mobile

Robot as faithfully as possible. For example, the range, output, and field of view of the

simulated IR range sensors match the specifications in the datasheet for the actual Sharp

GP2D120XJ00F infrared proximity sensors on the Mobile Robot [9].

Figure 2.3: The simulated Mobile Robot.

http://www.gritslab.gatech.edu/
http://www.gritslab.gatech.edu/
http://www.gatech.edu/

35 | P a g e

Chapter 2 Simulation

2.1.2 IR Range Sensors Characteristics:

 In this section we cover some of the details pertaining to the five simulated IR sensors

onboard the simulated Mobile Robot. The orientations (relative to the body of the Mobile

Robot, as shown in Figure 2.3) of IR sensors 1 through 5 are 90°, 45°, 0°, 45° and 90°,

respectively. IR range sensors are effective in the range from 0.04 m to 0.3 m only. However,

the IR sensors return raw values in the range of [0.4, 2.75] V instead of the measured distances.

Figure 2.4a demonstrates the function that maps these sensors values to distances. To

complicate matters slightly, the controller onboard the physical Mobile Robot digitizes the

analog output voltage using a voltage divider and a 12-bit, 1.8V analog-to-digital converter

(ADC). To faithfully recreate the Mobile Robot in simulation, we simulate the effect of this

digitization. Figure 2.4b is a look-up table to demonstrate the relationship between the ADC

output, the analog voltage from the IR proximity sensor, and the approximate distance that

corresponds to this voltage.

Any controller can access the IR array through the robot object that is passed into its

execute function. For example,

ir_distances = robot.get_ir_distances();

for i=1:numel(robot.ir_array)

fprintf(’IR #%d has a value of %d’, i,

robot.ir_array(i).get_range());

fprintf(’or %0.3f meters.\n’, ir_distances(i));

end

 It is assumed that the function get_ir_distances properly converts from the ADC

output to an analog output voltage, and then from the analog output voltage to a distance in

meters. Based on the look-up table in Figure 2.4b, then the conversion from analog output

voltage to ADC output can be described using the following mathematical equation:

𝑉𝐴𝐷𝐶 =
1000 ∙ 𝑉𝑎𝑛𝑎𝑙𝑜𝑔

3

The simulator uses a different voltage divider on the ADC, therefore:

𝑉𝐴𝐷𝐶 =
1000 ∙ 𝑉𝑎𝑛𝑎𝑙𝑜𝑔

2

Converting from the analog output voltage to a distance is a little bit more complicated, because

the relationships between analog output voltage and distance is not linear as it is demonstrated

in the Figure 2.4a. The look-up table provides a coarse sample of points on the curve in Figure

2.4a.

36 | P a g e

Chapter 2 Simulation

MATLAB has a polyfit function to t a curve to the values in the look-up table, and

a polyval function to interpolate a point on that fitted curve. The combination of these two

functions can be used to approximate a distance based on the analog output voltage.

Figure 2.4: (a)A graph and a (b)table illustrating the relationship between the distance and output

voltage of the sensor.

2.1.3 Differential Wheel Drive:

Since the simulated Mobile Robot has a differential wheel drive (i.e., is not a unicycle), it has

to be controlled by specifying the angular velocities of the right and left wheel (𝑣𝑟,𝑣𝑙), instead of

the linear and angular velocities of a unicycle(𝑣, 𝑤).These velocities are computed by a

transformation from(𝑣, 𝑤) to(𝑣𝑟,𝑣𝑙). Recall that the kinematics of the unicycle are defined as:

𝑥̇ = 𝑣 cos(𝜃)

𝑦̇ = 𝑣 sin(𝜃)

𝜃̇ = 𝑤

Distance (m) Voltage (V) ADC Out
0.04 2.750 917
0.05 2.350 783
0.06 2.050 683
0.07 1.750 583
0.08 1.550 517
0.09 1.400 467
0.10 1.275 425
0.12 1.075 358
0.14 0.925 308
0.16 0.805 268
0.18 0.725 242
0.20 0.650 217
0.25 0.500 167
0.30 0.400 133

(a) Analog voltage output when an object

is be-tween 0.04m and 0.3m in the IR

proximity sensor’s field of view.

(b) A look-up table for interpolating a

distance(m) from the analog (and digital)

output voltages.

37 | P a g e

Chapter 2 Simulation

The kinematics of the differential drive are defined as:

 𝑥̇ =
𝑅
2

(𝑣𝑟 + 𝑣𝑙)cos(𝜃)

 𝑦̇ =
𝑅
2

(𝑣𝑟 + 𝑣𝑙) sin(𝜃)

 𝜃̇ =
𝑅
𝐿

(𝑣𝑟 − 𝑣𝑙)

where R is the radius of the wheels and L is the distance between the wheels.

The speed of the simulated Mobile Robot can be set in the following way assuming that the

uni_to_diff function has been implemented, which transforms (𝑣, 𝑤) to (𝑣𝑟,𝑣𝑙):

v = 0.15; % m/s

w = pi/4; % rad/s

% Transform from v,w to v_r,v_l and set the speed of the robot

[vel_r, vel_l] = obj.robot.dynamics.uni_to_diff(robot,v,w);

obj.robot.set_speeds(vel_r, vel_l);

The maximum angular wheel velocity for the physical Mobile Robot is approximately 80

RPM or 8.37 rad/s and this value is reflected in the simulator. It is therefore important to note

that if the simulated Mobile Robot is controlled to move at maximum linear velocity, it is not

possible to achieve any angular velocity, because the angular velocity of the wheel will have

been maximized. Therefore, there exists a tradeoff between the linear and angular velocity of

the Mobile Robot: the faster the robot should turn, the slower it has to move forward.

38 | P a g e

Chapter 2 Simulation

2.1.4 Wheel Encoders:

Each of the wheels is outfitted with a wheel encoder that increments or decrements a tick counter

depending on whether the wheel is moving forward or backwards, respectively. Wheel encoders

may be used to infer the relative pose of the simulated robot. This inference is called odometry.

The relevant information needed for odometry is the radius of the wheel (32.5mm), the distance

between the wheels (99.25mm), and the number of ticks per revolution of the wheel (16

ticks/rev). For example,

R = robot.wheel_radius; % radius of the wheel

L = robot.wheel_base_length; % distance between the wheels

tpr = robot. encoders(1).ticks_per_rev; % ticks per revolution

for the right wheel

fprintf(’The right wheel has a tick count of %d\n’,

robot.encoders(1).state);

fprintf(’The left wheel has a tick count of %d\n’,

robot.encoders(2).state);

39 | P a g e

Chapter 2 Simulation

2.2 Differential Drive

We start by Implementing the transformation from unicycle kinematics to differential

drive kinematics, i.e. convert from (𝑣,𝑤) to the right and left angular wheel speeds (𝑣𝑟,𝑣𝑙).

In the simulator, (𝑣,𝑤) corresponds to the variables v and w, while (𝑣𝑟,𝑣𝑙) correspond to

the variables vel_r and vel_l. The function used by the controllers to convert from

unicycle kinematics to differential drive kinematics is named uni_to_diff, and inside of this

function you will need to de ne vel_r(𝑣𝑟) and vel_l(𝑣𝑙) in terms of v, w, R, and L.

R is the radius of a wheel, and L is the distance separating the two wheels.

 function [vel_r,vel_l] = uni_to_diff(obj,v,w)

 R = obj.wheel_radius;

 L = obj.wheel_base_length;

 vel_r = (2*v+w*L)/(2*R);

 vel_l = (2*v-w*L)/(2*R);

 end

2.3 Odometry

We Implement now the odometry for the robot, such that as the robot moves around, its

pose (𝑥, 𝑦, 𝜃) is estimated based on how far each of the wheels have turned. We Assume that

the robot starts at (0, 0,0).

As seen in the first chapter, the general idea behind odometry is to use wheel encoders to

measure the distance the wheels have turned over a small period of time, and use this

information to approximate the change in pose of the robot.

The pose of the robot is composed of its position (𝑥, 𝑦) and its orientation 𝜃 on a 2-

dimensional plane. The currently estimated pose is stored in the variable state_estimate,

which bundles x, y, and theta. The robot updates the estimate of its pose by calling the

update_odometry function which is called every dt seconds, where dt is 0.033s (or a little

more if the simulation is running slower).

% Get wheel encoder ticks from the robot

 right_ticks = obj.robot.encoders(1).ticks;

 left_ticks = obj.robot.encoders(2).ticks;

% Recall the previous wheel encoder ticks

 prev_right_ticks = obj.prev_ticks.right;

 prev_left_ticks = obj.prev_ticks.left;

% Previous estimate

[x, y, theta] = obj.state_estimate.unpack();

40 | P a g e

Chapter 2 Simulation

% Compute odometry here

 R = obj.robot.wheel_radius;

 L = obj.robot.wheel_base_length;

 m_per_tick = (2*pi*R)/obj.robot.encoders(1).ticks_per_rev;

where right_ticks and left_ticks are the accumulated wheel encoder ticks of the right

and left wheel. prev_right_ticks and prev_left_ticks are the wheel encoder ticks

of the right and left wheel saved during the last call to update odometry. R is the radius of each

wheel, and L is the distance separating the two wheels. m_per_tick is a constant that tells

you how many meters a wheel covers with each tick of the wheel encoder. So, we multiply

m_per_tick by(right_ticks-prev_right_ticks)to get the distance travelled by

the right wheel since the last estimate.

% Calculate the distance travelled by the robot wheels

 d_right = (right_ticks - prev_right_ticks)* m_per_tick;

 d_left = (left_ticks - prev_left_ticks)* m_per_tick;

 d_center = (d_right + d_left)/2;

 phi = (d_right - d_left)/L;

 x_dt = d_center*cos(theta);

 y_dt = d_center*sin(theta);

 theta_dt = phi;

Once we have computed the change in(𝑥, 𝑦, 𝜃) (let us denote the changes as x_dt,

y_dt, and theta_dt), you need to update the estimate of the pose:

 % Update the estimate of the pose

 theta_new = theta + theta_dt;

 x_new = x + x_dt;

 y_new = y + y_dt;

fprintf('Estimated(x,y,theta):(%0.3g,%0.3g,%0.3g)\n',x_new,y_ne

w,theta_new);

% Save the wheel encoder ticks for the next estimate

 obj.prev_ticks.right = right_ticks;

 obj.prev_ticks.left = left_ticks;

% Update your estimate of (x,y,theta)

obj.state_estimate.set_pose([x_new,

y_new,atan2(sin(theta_new),cos(theta_new))]);

 obj.state_estimate.set_pose([x_new,

 y_new,atan2(sin(theta_new),cos(theta_new))]);

41 | P a g e

Chapter 2 Simulation

2.4 IR Distance Sensors
We use the table in Figure 2.4b in the "IR Range Sensors" section of the second chapter,

which maps distances (in meters) to raw IR values. Then, we implement code that converts raw

IR values to distances (in meters).

To retrieve the distances (in meters) measured by the IR proximity sensor, we need to

implement a conversion from the raw IR values to distances in the get_ir_distances

function.

 function ir_distances = get_ir_distances(obj)

 ir_array_values = obj.ir_array.get_range();

 ir_voltages = ir_array_values*3/1000;

 coeff = [-0.0182 0.1690 -0.6264 1.1853 -1.2104 0.6293];

 ir_distances = polyval(coeff, ir_voltages);

 end

The variable ir_array_values is an array of the IR raw values. The coeff

variable contains the coefficients returned by:

 polyfit(ir_voltages_from_table,ir_distances_from_table,5);

where the first input argument is an array of IR voltages from the table in Figure 2.4b and the

second argument is an array of the corresponding distances from the table in Figure 2.4b. The

third argument specifies that we will use a fifth-order polynomial to fit to the data. Instead of

running this fit every time, we execute the polyfit once in the MATLAB command line, and

enter them manually on the third line, i.e. coeff = [...];.

2.5 Motor Limitations

We have two limitations of the motors on the physical Mobile Robot (which are

simulated on the Mobile Robot we use in simulation). The first limitation is that the robot’s

motors have a maximum angular velocity, and the second limitation is that the motors stall at

low speeds. Suppose that we pick a linear velocity 𝑣 that requires the motors to spin at 90%

power. Then, we want to change 𝑤 from 0 to some value that requires 20% more power from

the right motor, and 20% less power from the left motor. This is not an issue for the left motor,

but the right motor cannot turn at a capacity greater than 100%. The results are that the robot

cannot turn with the 𝑤 specified by our controller.

 Since our PID controllers focus more on steering than on controlling the linear velocity,

we want to prioritize 𝑤 over 𝑣 in situations where we cannot satisfy 𝑤 with the motors. In fact,

we will simply reduce v until we have sufficient headroom to achieve 𝑤 with the robot. The

function ensure_w is designed to ensure that 𝑤 is achieved even if the original combination

of 𝑣 and 𝑤 exceeds the maximum 𝑣𝑟 and 𝑣𝑙 . However, it is also true that the motors have a

minimum speed before the robot starts moving. If no enough power is applied to the motors,

42 | P a g e

Chapter 2 Simulation

the angular velocity of a wheel remains at 0. Once enough power is applied, the wheels spin at

a speed 𝑣𝑒𝑙𝑚𝑖𝑛. The ensure_w function will also take this limitation into account. For

example, small (𝑣,𝑤) may not be achievable on the Mobile Robot, so ensure_w function

scales up 𝑣 to make 𝑤 possible. Similarly, if (𝑣,𝑤) are both large, ensure_w scales down 𝑣

to ensure 𝑤.

Suppose 𝑣𝑟,𝑑 and 𝑣𝑙,𝑑 are the angular wheel velocities needed to achieve 𝑤. Then

vel_rl_max is 𝑚𝑎𝑥(𝑣𝑟,𝑑, 𝑣𝑙,𝑑) and vel_rl_min is 𝑚𝑖𝑛(𝑣𝑟,𝑑, 𝑣𝑙,𝑑). A motor’s maximum

forward angular velocity is obj.robot.max_vel(or 𝑣𝑒𝑙𝑚𝑎𝑥). So, for example, the

equation that represents the if/else statement for the right motors is:

𝑣𝑟 = {

𝑣𝑟,𝑑 − (𝑚𝑎𝑥(𝑣𝑟,𝑑, 𝑣𝑙,𝑑) − 𝑣𝑒𝑙𝑚𝑎𝑥) , 𝑖𝑓 𝑚𝑎𝑥(𝑣𝑟,𝑑, 𝑣𝑙,𝑑) > 𝑣𝑒𝑙𝑚𝑎𝑥

𝑣𝑟,𝑑 − (𝑚𝑖𝑛(𝑣𝑟,𝑑, 𝑣𝑙,𝑑) + 𝑣𝑒𝑙𝑚𝑎𝑥) , 𝑖𝑓 𝑚𝑖𝑛(𝑣𝑟,𝑑, 𝑣𝑙,𝑑) < −𝑣𝑒𝑙𝑚𝑎𝑥

𝑣𝑟,𝑑 , , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

which defines the appropriate 𝑣𝑟 (or vel_r) needed to achieve 𝑤. This equation also applies

to computing a new 𝑣𝑙 . The results of ensure w is that if 𝑣 and 𝑤 are so large that 𝑣𝑟 and/or 𝑣𝑙

exceed 𝑣𝑒𝑙𝑚𝑎𝑥, then v is scaled back to ensure w is achieved.

% Find the max and min vel_r/vel_l

 vel_rl_max = max(vel_r_d, vel_l_d);

 vel_rl_min = min(vel_r_d, vel_l_d);

%Shift vel_r and vel_l if they exceed max/min vel

 if (vel_rl_max > vel_max)

 vel_r = vel_r_d - (vel_rl_max-vel_max);

 vel_l = vel_l_d - (vel_rl_max-vel_max);

 elseif (vel_rl_min < vel_min)

 vel_r = vel_r_d + (vel_min-vel_rl_min);

 vel_l = vel_l_d + (vel_min-vel_rl_min);

 else

 vel_r = vel_r_d;

 vel_l = vel_l_d;

43 | P a g e

Chapter 2 Simulation

2.6 Controllers

2.6.1 Go-To-Goal Controller:

We implement the Go-To-Goal Controller using the different parts of a PID regulator that

steers the robot successfully to some goal location. This is known as the go-to-goal behavior.

Figure 4: Steering the Mobile Robot to the goal location (𝑥𝑔, 𝑦𝑔) with heading

We calculate the heading angle 𝜃𝑔 , to the goal location (𝑥𝑔, 𝑦𝑔). Let 𝑢 be the vector from

the robot located at (𝑥, 𝑦) to the goal located at (𝑥𝑔, 𝑦𝑔), then 𝜃𝑔 is the angle 𝑢 makes with

the 𝑥 − 𝑎𝑥𝑖𝑠 (positive 𝜃𝑔is in the counterclockwise direction).

The vector 𝑢 can be expressed in terms of its components along the x and y axis (𝑢𝑥, 𝑢𝑦).

In the code they represent u_x and u_y . We use these two components and the atan2

function (to make sure 𝜃𝑔 stays in [−𝜋, 𝜋]) to compute the angle to the goal 𝜃𝑔 (theta_g

in the code).

The atan2 function returns the four-quadrant inverse tangent (𝑡𝑎𝑛−1) of Y and X, which

must be real. The atan2 function follows the convention that atan2(x,x) returns 0.

% distance between goal and robot in x-direction

 u_x = x_g - x;

% distance between goal and robot in y-direction

 u_y = y_g - y;

% angle from robot to goal. Hint: use ATAN2, u_x, u_y here.

 theta_g = atan2(u_y,u_x);

Figure 2.5: Steering the Mobile Robot to the goal location (𝑥𝑔, 𝑦𝑔) with

heading angle 𝜃𝑔.

https://www.mathworks.com/help/matlab/ref/atan2.html#buct8h0-4

44 | P a g e

Chapter 2 Simulation

We calculate the error between the heading to the goal theta_g 𝜃𝑔 and the current

heading of the robot theta𝜃 which is represented by the error e_k.

% error between the goal angle and robot's angle

e_k = theta_g-theta;

e_k = atan2(sin(e_k), cos(e_k));

 We finally calculate the proportional, integral, and derivative terms for the PID

regulator that steers the robot to the goal.

The PID regulator will steer the robot to the goal, i.e. compute the correct angular

velocity 𝑤. The PID regulator needs three parts implemented:

(i) The first part is the proportional term e_P which is simply the current error e_k.

e_P is multiplied by the proportional gain obj_Kp when computing w.

(ii) The second part is the integral term e_I. The integral needs to be approximated

in discrete time using the total accumulated error obj.E_k, the current error e_k,

and the time step dt. e_I is multiplied by the integral gain obj_Ki when

computing w, and is also saved as obj.E_k for the next time step.

(iii) The third part is the derivative term e_D. The derivative needs to be approximated

in discrete time using the current error e_k, the previous error obj.e_k_1, and

the time step dt. e_D is multiplied by the derivative gain obj.Kd when

computing w, and the current error e k is saved as the previous error obj.e_k_1

for the next time step.

We need to tune our PID gains to get a fast settle time (𝜃𝑔matches 𝜃 within 10% in three

seconds or less) and there should be little overshoot (maximum 𝜃 should not increase beyond

10% of the reference value 𝜃𝑔). What you don’t want to see are the following two graphs when

the robot tries to reach goal location (𝑥𝑔, 𝑦𝑔) = (0, 1):

Figure 2.6b demonstrates undershoot, which could be fixed by increasing the

proportional gain or adding some integral gain for better tracking. Picking better gains leads to

the graph in Figure 2.7.

45 | P a g e

Chapter 2 Simulation

 (a)Overshoot (b) Undershoot (slow settle time)

Figure 2.6: PID gains were picked poorly, which lead to (a)Overshoot and (b) Undershoot.

Figure 2.7: Faster settle time and good tracking with little overshoot.

 We write the following code to implement the Go-To-Goal controller using the PID

regulator:

% error for the proportional term

 e_P = e_k;

% error for the integral term.

 e_I = obj.E_k + e_k*dt;

% error for the derivative term.

 e_D = (e_k-obj.e_k_1)/dt;

 w = obj.Kp*e_P + obj.Ki*e_I + obj.Kd*e_D;

% Save errors for next time iteration

 obj.E_k = e_I;

 obj.e_k_1 = e_k;

46 | P a g e

Chapter 2 Simulation

2.6.2 Obstacle Avoidance Controller

We will be implementing the different parts of a controller that steers the robot

successfully away from obstacles to avoid a collision. This is known as the avoid-obstacles

behavior. The IR sensors allow us to measure the distance to obstacles in the environment, but

we need to compute the points in the world to which these distances correspond. Figure 3.8

illustrates these points with a black cross.

Figure 2.8: IR range to point transformation.

The strategy for obstacle avoidance that we will use is as follows:

1. Transform the IR distances to points in the world.

2. Compute a vector to each point from the robot, 𝑢1, 𝑢2, … , 𝑢5.

3. Weigh each vector according to their importance, 𝛼1𝑢1, 𝛼2𝑢2, … , 𝛼5𝑢5. For

example, the front and side sensors are typically more important for obstacle avoidance

while moving forward.

4. Sum the weighted vectors to form a single vector,

 𝑢𝑎𝑜 = 𝛼1𝑢1 + 𝛼2𝑢2 + ⋯ + 𝛼5𝑢5

5. Use this vector to compute a heading and steer the robot to this angle.

This strategy will steer the robot in a direction with the freest space (i.e., it is a direction

away from obstacles). For this strategy to work, we will need to implement three crucial parts

of the strategy for the obstacle avoidance behavior:

47 | P a g e

Chapter 2 Simulation

 Firstly, we will transform the IR distance (which we have converted from the raw

IR values in IR Distance Sensors) measured by each sensor to a point in the reference

frame of the robot:

A point 𝑝𝑖 that is measured to be 𝑑𝑖 meters away by sensor 𝑖 can be written as the vector

(coordinate) 𝑣𝑖 = [
𝑑𝑖

0
] in the reference frame of sensor 𝑖. We first need to transform this point

to be in the reference frame of the robot. To do this transformation, we need to use the pose

(location and orientation) of the sensor in the reference frame of the robot: (𝑥𝑠𝑖
, 𝑦𝑠𝑖

, 𝜃𝑠𝑖
) or in

code, (x_s, y_s, theta_s). The transformation is defined as:

𝑣𝑖
′ = 𝑅(𝑥𝑠𝑖

, 𝑦𝑠𝑖
, 𝜃𝑠𝑖

) [
𝑣𝑖

0
],

where 𝑅 is known as the transformation matrix that applies a translation by (𝑥, 𝑦) and a rotation

𝜃 by:

𝑅(𝑥, 𝑦, 𝜃) = [
cos(𝜃) − sin(𝜃) 𝑥

sin(𝜃) cos(𝜃) 𝑦
0 0 1

]

which we will implement in the function obj.get_transformation_matrix.

We will also need to implement the transformation in the

apply_sensor_geometry function. The objective is to store the transformed points in

ir_distances_rf, such that this matrix has 𝑣1
′ as its rst column, 𝑣2

′ as its second column,

and so on.

function ir_distances_wf = apply_sensor_geometry(obj, ir_distances,

state_estimate)

% Apply the transformation to robot frame.

 ir_distances_rf = zeros(3,5);

 for i=1:5

 x_s = obj.sensor_placement(1,i);

 y_s = obj.sensor_placement(2,i);

 theta_s = obj.sensor_placement(3,i);

 R = obj.get_transformation_matrix(x_s,y_s,theta_s);

 ir_distances_rf(:,i) = R*[ir_distances(i); 0; 1];

 end

end

48 | P a g e

Chapter 2 Simulation

 Secondly, we transform the point in the robot’s reference frame to the world’s

reference frame:

A second transformation is needed to determine where a point pi is located in the world that is

measured by sensor 𝑖. We need to use the pose of the robot, (𝑥, 𝑦, 𝜃), to transform the robot

from the robot’s reference frame to the world’s reference frame. This transformation is defined

as:

𝑣𝑖
′′ = 𝑅(𝑥, 𝑦, 𝜃)𝑣𝑖

′

We need also to implement this transformation in the apply_sensor_geometry

function. The objective here is to store the transformed points in ir_distances_wf, such

that this matrix has 𝑣1
′′ as its first column, 𝑣2

′′ as its second column, and so on. This matrix now

contains the coordinates of the points illustrated in Figure 2.8 by the black crosses these points

approximately correspond to the distances measured by each sensor approximately (because of

how we converted from raw IR values to meters).

 % Apply the transformation to world frame.

 [x,y,theta] = state_estimate.unpack();

 R = obj.get_transformation_matrix(x,y,theta);

 ir_distances_wf = R*ir_distances_rf;

 ir_distances_wf = ir_distances_wf(1:2,:);

 Finally, we use the set of transformed points to compute a vector that points away

from the obstacle. The robot will steer in the direction of this vector and successfully avoid

the obstacle:

In the function execute, we implement the following strategy:

(i) We compute a vector 𝑢𝑖 to each point (corresponding to a particular sensor) from

the robot. Use a point’s coordinate from ir_distances_wf and the robot’s

location (𝑥, 𝑦) for this computation.

(ii) We pick a weight 𝛼𝑖 for each vector according to how important the particular

sensor is for obstacle avoidance. For example, if you were to multiply the vector

from the robot to point 𝑖 (corresponding to sensor 𝑖) by a small value (e.g., 0.1),

then sensor 𝑖 will not impact obstacle avoidance significantly. We need to make

sure that the weights are symmetric with respect to the left and right sides of the

robot. Without any obstacles around, the robot should only steer slightly right (due

to a small asymmetry in the how the IR sensors are mounted on the robot).

49 | P a g e

Chapter 2 Simulation

(iii) We sum up the weighted vectors, 𝛼𝑖𝑢𝑖, into a single vector 𝑢𝑎𝑜.

(iv) We use 𝑢𝑎𝑜 and the pose of the robot to compute a heading that steers the robot

away from obstacles (i.e., in a direction with free space, because the vectors that

correspond to directions with large IR distances will contribute the most to 𝑢𝑎𝑜).

% Compute the heading vector for obstacle avoidance

 sensor_gains = [.7 1.5 0.5 1.5 .7];

 u_i = (ir_distances_wf-repmat ([x; y],1,5))*diag(sensor_gains);

 u_ao = sum(u_i,2);

2.6.3 AOandGTG (Blending) Controller:

We will combine the two previous controllers into a single controller: The Goal-to-Goal

and Avoid obstacles Controllers. The AOandGTG controller will allow the robot to drive to a

goal, while not colliding with any obstacles on the way

To implement our blending controller, we need to combine two vectors: 𝑢𝑔𝑡𝑔(the

vector pointing to the goal from the robot) and 𝑢𝑎𝑜(the vector pointing from the robot to a

point in space away from obstacles). These two vectors need to be combined (blended) in some

way into the vector 𝑢𝑎𝑜,𝑔𝑡𝑔, which is the vector that points the robot both away from obstacles

and towards the goal.

Figure 2.9: The 𝑢𝑔𝑡𝑔 and 𝑢𝑎𝑜vectors pointing out of the mobile robot.

50 | P a g e

Chapter 2 Simulation

The linear combination of the two vectors 𝑢𝑔𝑡𝑔 and 𝑢𝑎𝑜 will yield to the vector

𝑢𝑎𝑜,𝑔𝑡𝑔 which result in the robot driving to a goal without colliding with any obstacles in the

way is computed our two vectors We need to weigh each vector according to their importance:

𝑢𝑎𝑜,𝑔𝑡𝑔 = 𝛼𝑢𝑔𝑡𝑔 + (1 − 𝛼)𝑢𝑎𝑜 ; 𝑤ℎ𝑒𝑟𝑒 0 < 𝛼 < 1

The following code implement the previous equations:

% Blending the two vectors

 alpha = 0.25;

 u_ao_gtg = alpha*u_gtg+(1-alpha) *u_ao;

By setting the goal location (1, 1), the robot will navigate successfully to the goal without

colliding with the obstacle that is in the way. The output plot will likely look something similar

to:

Figure 2.10: The AOandGTG controller output resulting from the specified goal location.

51 | P a g e

Chapter 2 Simulation

2.6.4 Wall-Following Controller:

We will be implementing a wall following behavior that will aid the robot in navigating

around different kind of obstacles that we have stated in the first chapter.

We start by computing a vector 𝑢𝑓𝑤,𝑡, that estimates a section of the obstacle next to the robot

using the robot’s right (or left) IR sensors. In the Figure 3.7, this vector, 𝑢𝑓𝑤,𝑡 (u_fw_t), is

illustrated in red.

Figure 2.11: The illustration of the 𝑢𝑓𝑤,𝑡 vector.

The direction of the wall following behavior (whether it is following the obstacle on the

left or right) is determined by inputs.direction, which can either be equal to right or

left. Suppose we want to follow an obstacle to the left of the robot, then we use the left set

of IR sensors (1-3). If we are following the wall, then at all times there should be at least one

sensor that can detect the obstacle. So, we need to pick a second sensor and use the points

corresponding to the measurements from these two sensors to form a line that estimates a

section of the obstacle. In the Figure 2.11 above, sensors 1 and 2 are used to roughly

approximate the edge of the obstacle.

52 | P a g e

Chapter 2 Simulation

Corners are trickier (see Figure 2.8), because typically only a single sensor will be able to detect

the wall. The estimate is off as one can see in the Figure 2.8, but as long as the robot isn’t

following the wall too closely, it will be ok.

(a)Outside Corner (b) Inside Corner

Figure 2.12: The illustration of the 𝑢𝑓𝑤,𝑡vector near a corner.

If we want to estimate a section of the wall using the right sensors (from IR sensors 1-

3), we need to pick the two sensors with the smallest reported measurement in

ir_distances. Suppose sensor 2 and 3 returned the smallest values, then it is important

that the sensor with smaller ID (we assume it is sensor 2) is assigned to 𝑝1(p_1) and the sensor

with the larger ID (we assume it is sensor 3) is assigned to 𝑝2 (p_2), because we want that

the vector points in the direction that the robot should travel, then let:

p1 = ir_distances_wf(:,2)

p2 = ir_distances_wf(:,3)

Let us assume𝑢𝑓𝑤,𝑡as the vector that estimates a section of the obstacle such as:

𝑢𝑓𝑤,𝑡 = 𝑝2 − 𝑝

53 | P a g e

Chapter 2 Simulation

Now that we have the vector 𝑢𝑓𝑤,𝑡 (represented by the red line in the Figures),

we need to compute a vector 𝑢𝑓𝑤,𝑝 that points from the robot to the closest point on

𝑢𝑓𝑤,𝑡. This vector isvisualized as blue line in the Figures and can be computed using

a little bit of linear algebra:

 𝑢𝑓𝑤,𝑡
′ =

𝑢𝑓𝑤,𝑡

‖𝑢𝑓𝑤,𝑡‖
 , 𝑢𝑝 = [

𝑥
𝑦] , 𝑢𝑎 = 𝑝1

 𝑢𝑓𝑤,𝑝 = (𝑢𝑎 − 𝑢𝑝) − ((𝑢𝑎 − 𝑢𝑝) ∙ 𝑢𝑓𝑤,𝑡
′)𝑢𝑓𝑤,𝑡

′

where 𝑢𝑓𝑤,𝑝 corresponds to u_fw_p and 𝑢𝑓𝑤,𝑡
′ corresponds to u_fw_tp in the

code. You can notice a small technicality which that we are computing 𝑢𝑓𝑤,𝑝 as the

vector pointing from the robot to the closest point on 𝑢𝑓𝑤,𝑡, as if 𝑢𝑓𝑤,𝑡 were infinitely

long.

All the vectors used in the previous equations are illustrated in the Figure 3.13.

Figure 2.13: The illustration of the 𝑢𝑓𝑤,𝑡
′ and 𝑢𝑓𝑤,𝑝vectors near.

The last step is to combine 𝑢𝑓𝑤,𝑡 and 𝑢𝑓𝑤,𝑝 such that the robot follows the obstacle all the way

around at some distance 𝑑𝑓𝑤 (d_fw). 𝑢𝑓𝑤,𝑡 will ensure that the robot drives in a direction that

is parallel to an edge on the obstacle, while 𝑢𝑓𝑤,𝑝 needs to be used to maintain a distance 𝑑𝑓𝑤

from the obstacle.

54 | P a g e

Chapter 2 Simulation

One way to achieve this is,

𝑢𝑓𝑤,𝑝
′ = 𝑢𝑓𝑤,𝑝 − 𝑑𝑓𝑤

𝑢𝑓𝑤,𝑝

‖𝑢𝑓𝑤,𝑝‖

Suppose the 𝑑 is the distance between the robot and the obstacle, then the vector

𝑢𝑓𝑤,𝑝
′ (u_fw_pp) is:

 Pointing towards the obstacle if: 𝑑 > 𝑑𝑓𝑤 .

 Near zero if:𝑑 ≃ 𝑑𝑓𝑤 .

 Pointing away from the obstacle if: 𝑑 < 𝑑𝑓𝑤 .

All that is left is to linearly combine 𝑢𝑓𝑤,𝑡
′ and 𝑢𝑓𝑤,𝑝

′ into a single vector 𝑢𝑓𝑤 (u_fw)

that can be used with the PID controller to steer the robot along the obstacle at the

distance 𝑑𝑓𝑤.

𝑢𝑓𝑤 = 𝛼𝑢𝑓𝑤,𝑡
′ + β𝑢𝑓𝑤,𝑝

′

Figure 2.14 illustrates the 𝑢𝑓𝑤, 𝑢𝑓𝑤,𝑡
′ and 𝑢𝑓𝑤,𝑝

′ vectors.

Figure 2.14: The illustration of the 𝑢𝑓𝑤, 𝑢𝑓𝑤,𝑡
′ and 𝑢𝑓𝑤,𝑝

′ vectors.

55 | P a g e

Chapter 2 Simulation

Finally, we implement all the steps above in the code bellow:

% Selecting p_2 and p_1, then compute u_fw_t

if(strcmp(inputs.direction,'right'))

% Pick two of the right sensors based on ir_distances

 S = [1:3 ; ir_distances(5:-1:3)'];

 [Y,i] = sort(S(2,:));

 S = S(1,i);

 Sp = 5:-1:3;

 S1 = Sp(S(1));

 S2 = Sp(S(2));

if(S1 < S2)

 p_1 = ir_distances_wf(:,S2);

 p_2 = ir_distances_wf(:,S1);

else

 p_1 = ir_distances_wf(:,S1);

 p_2 = ir_distances_wf(:,S2);

end

else

% Pick two of the left sensors based on ir_distances

 S = [1:3 ; ir_distances(1:3)'];

 [Y,i] = sort(S(2,:));

 S = S(1,i);

 Sp = 1:3;

 S1 = Sp(S(1));

 S2 = Sp(S(2));

if(S(1) > S(2))

 p_1 = ir_distances_wf(:,S(2));

 p_2 = ir_distances_wf(:,S(1));

else

 p_1 = ir_distances_wf(:,S(1));

 p_2 = ir_distances_wf(:,S(2));

end

end

 u_fw_t = p_2-p_1;

% Computing u_a, u_p, and u_fw_tp to compute u_fw_p

u_fw_tp = u_fw_t/norm(u_fw_t);

u_a = p_1;

 u_p = [x;y];

 u_fw_p = ((u_a-u_p)-((u_a-u_p)'*u_fw_tp)*u_fw_tp);

% Combining u_fw_tp and u_fw_pp into u_fw;

 u_fw_pp = u_fw_p/norm(u_fw_p);

 u_fw = d_fw*u_fw_tp+(u_fw_p-d_fw*u_fw_pp);

56 | P a g e

Chapter 2 Simulation

The above function takes in the direction of wall following as an input when it is

called in the QBSupervisor.m file using the sliding_right(inputs.direction’)

and sliding_left (inputs.direction) functions, where inputs.direction

is equal to either ‘left’ or ‘right’. Finally, we compute u_fw for each side.

Once the follow wall vector is returned, we want to know whether we need to

follow the wall or not by knowing if the obstacle is in our way to the goal. We do that by

solving for 𝜎1 and 𝜎2 in the following equation:

[𝑢𝑔𝑡𝑔 𝑢𝑎𝑜] [
𝜎1

𝜎2
] = 𝑢𝑓𝑤

We want to write u_fw as a linear combination of u_gtg and u_ao, we return true

if both 𝜎1 and 𝜎2 are positive; meaning that u_fw lays between the GTG vector and the

AO vector where the u_gtg is driving the robot to the obstacle that u_ao is driving it

away from.

We use slide to decide whether we start following the wall and in what direction.

Again, we change e_k to:

Using Wall-Following controller may ensure following the path at a certain distance

from an obstacle but it does not take the robot to the goal location; so, we just need it to get

to the other side of an obstacle until we can break away and switch to going to goal.

The conditions that must be satisfied in order to stop following the wall are:

 The position of the robot is closer to the goal than it was when it started following

the wall.

 The angle between u_ao and u_gtg is smaller than 60 degrees (Tunable).

A=[u_gtg u_ao];

sigma = inv(A)*u_fw;

slide = false;

if sigma(1) > 0 && sigma(2) > 0

slide = true;

end

 theta_fw = atan2(u_fw(2), u_fw(1));

 e_k = theta_fw-theta;

 e_k = atan2(sin(e_k), cos(e_k));

57 | P a g e

Chapter 2 Simulation

To check the first condition we save the distance from the goal to the point that the

robot started following the wall d_prog via function set_progress_point()(called

every time before switching to go to goal),

then we compare it with the distance from the goal to the current position of the robot at

every update via progress_made(). If it returns true then the first condition is

satisfied.

To check the second condition, we make a simple computation:

 function set_progress_point_new(obj)

 [x, y, theta] = obj.state_estimate.unpack();

 obj.d_prog = (norm([x-obj.goal(1);y-obj.goal(2)]));

 end

function rc = progress_made(obj, state, robot)

 % Check for any progress

 [x, y, theta] = obj.state_estimate.unpack();

 rc = false;

 distance =[x-obj.goal(1);y-obj.goal(2)];

 if (norm(distance)<(obj.d_prog -0.1))

 rc = true;

 end

end

function rc = check_angel_gtg_ao(u_ao, u_gtg)

 th1 = atan2(u_ao(2),u_ao(1))*180/pi ;

 th_gtg = atan2(u_gtg(2),u_gtg(1)) *180/pi;

 th_diff = min([abs(th1 - th_gtg),abs(th1 - th_gtg+360),

 abs(th1 - th_gtg-360)]) ;

 rc = false;

 if (th_diff < 60)

 rc = true;

 end

 end

58 | P a g e

Chapter 2 Simulation

2.7 Tests and results

Now that we know how each controller work wall, we need to know when to use

them. Before starting simulation we initialize the coordinates of starting point of the robot

(in the xml file that describes the environment), the goal it wants to reach and set the

current controller that it should drive with to the Go_To_Goal in the QBSupervisor.m file

which is responsible for counting and updating the current pose of the robot, checking the

events happening and switching between controllers accordingly. The robot will try to

navigate the environment in Figure 2.15.

Where the red rectangles are obstacles and the green circle is the goal point which is

now the origin (0,0). Every rectangle represents 0.1 cm.

Figure 2.15: Simulation environment.

59 | P a g e

Chapter 2 Simulation

The following Figure 2.16 represents a Flowchart about how the decisions are

made when switching between controllers.

Figure 2.16: Flowchart representation of the robots’ switching logic.

60 | P a g e

Chapter 2 Simulation

Using the above switching logic, our Mobile Robot reached the desired goal location

successfully without collision. The different steps of a navigation example are shown in the

Figure 2.17.

(a) At Obstacle. (b) Wall Following.

wall

(c) Break from Wall Following. (d) Obstacle Avoidance.

(e) At Goal.

Figure 2.17: Example of a complete navigation of the mobile robot.

61 | P a g e

Chapter 2 Simulation

2.8 Discussion

These results have been obtained by implementing stages of design and theory then

testing them on simulation.

First, we implemented the go to goal behavior in an obstacle-free environment adjusting

the heading of the robot to the goal. Second, the avoid obstacle behavior is triggered at a

certain distance (d_unsafe) from an obstacle while going to a goal then once safe the robot

switches back to the first controller. Switching could cause multiple problems like the Zeno

Phenomenon which consists of switching too many times and error in state estimation. As a

solution, the blending mode was introduced to solve this complication and having a smoother

ride.

As the robot tries to reach its destination, it may encounter a malicious type of obstacles

that is described to be non-convex where it fails to get around them using the previous

controllers alone. Thus, one more controller is required to follow a path that is decided by

the geometry of the obstacle at distance d_fw until it is cleared and no longer in the way to

the goal location; this is known as the follow wall controller. Finally, we switched between

them according to the events encountered by the robot.

Although the simulation has been successful, however it is not very powerful for many

reasons; nowadays we have more accurate sensors, advanced AI and path planning

algorithms that cover this subject. Furthermore, since the robots depends largely on the values

to decide what to do when facing obstacles, the five sensors used by the simulator are

defiantly not enough to fully understand the nature of the obstacle thus not enough to deal

with all kinds of hostile navigation environment, sensing skirt are used for more efficient

behaviors.

Conclusion 2

In this chapter, we introduced the Sim.i.am simulator and showed the way it closely

demonstrated real world components, then we implemented the PID controller for the error

for each behavior and provided the switching logic that supervised the robot in its journey

to the goal location and shown results and discussion.

Appendix A

Switching Supervisor

QBSupervisor

As seen before the QBSupervisor.m file is responsible for the switching logic between behaviors

and updating the position of the robot. The main components of this file are

 Execute function (execute()): this function keeps getting called and executed while

the simulation is running. It responsible for the switching between controllers and

updating the position of the robot.

 State machine support functions: these include the function listed bellow

1) Switch_to_state(name): this function uses takes a name as an input that will

be used to choose a controller from an array of controllers initialized earlier to

switch to that behavior for example to start following wall we call:

 switch_to_state('follow_wall');

2) Check_event(name): events are the reporters that tells us whether the robot or

sensors has satisfied some mathematical clauses that have a physical significance for

our robots. For example:

 if check_event('unsafe')

 switch_to_state('avoid_obstacles');

 end

3) Is_in_state(name): this function returns true if the robot’s state is the one

entered as a parameter. We use it to check the in switching logic as follows

If is_in_state('avoid_obstacles')&&…
 check_event(obstacle_is_cleared)

 switch_to_state('go_to_goal');

 end

this simply means that if the robot is avoiding obstacle and the sensors’ range is clear

of obstacles; then it can switch to go_to_goal behavior.

The code bellow shows the switching logic used for our mobile robot:
if (obj.check_event('at_goal'))

 if (~obj.is_in_state('stop'))

 [x,y,~] = obj.state_estimate.unpack();

 fprintf('stopped at (%0.3f,%0.3f)\n', x, y);

 end

 obj.switch_to_state('stop');

 elseif obj.check_event('unsafe')

 obj.switch_to_state('avoid_obstacles');

 elseif (obj.is_in_state('go_to_goal')

 ||obj.is_in_state('ao_and_gtg')) ...

 &&obj.check_event('at_obstacle')

 If obj.check_event('slidong_left')

 obj.fw_direction = 'left';

 obj.set_progress_point_new();

 obj.switch_to_state('follow_wall');

 elseif obj.check_event('slidong_right')

 obj.fw_direction = 'right';

 obj.set_progress_point_new();

 obj.switch_to_state('follow_wall');

 end

 elseif obj.is_in_state('follow_wall')

 angle = check_angel_gtg_ao(u_ao, u_gtg);

 if angle&&obj.check_event('progress_made')

 obj.switch_to_state('go_to_goal')

 end

 elseif obj.is_in_state('avoid_obstacles')

 if(obj.check_event('obstacle_cleared'))

 disp('Obstacle is cleared :')

 obj.switch_to_state('go_to_goal');

 end

 else

 if(~obj.is_in_state('go_to_goal'))

 obj.switch_to_state('go_to_goal');

 end

 end

References

[1] G. Dudek, Computational Principles of Mobile Robots (2000).

[2] Kansas State University – Polytechnic Campus. LabVIEW Robotics

Programming Study Guide, The Unicycle Model. Retrieved from:

http://faculty.salina.k-state.edu/tim/robotics_sg/Control/kinematics/unicycle.html

[3] Massachusetts Institute of Technology, E. Olson. A Primer Odometry and Motor

Control (2004).

[4] T. Sokunphal. Velocity Control of a Car-Like Mobile Robot (2017).

[5] S. Kowalewski & all. Handbook of Hybrid Systems Control (2009).

[6] S. Dashkovskiy1 and P. Feketa, Zeno Phenomenon in Hybrid Dynamical

Systems (2017).

[7] Georgia Institute of Technology, Dr. M. Egerstedt. Control of Mobile Robots.

Retrieved from: https://www.coursera.org/learn/mobile-

robot/lecture/UEKZs/convex-and-non-convex-worlds

[8] Georgia Robotics and InTelligent Systems Laboratory, J.P. de La Croix (2003).

Sim.I.am. Retrieved from: http://gritslab.gatech.edu/home/2013/10/sim-i-am/

[9] Georgia Robotics and InTelligent Systems Laboratory, J.P. de La Croix, M.

Hale (2016). Coursera: Control of Mobile Robots.

http://faculty.salina.k-state.edu/tim/robotics_sg/Control/kinematics/unicycle.html
https://www.cambridge.org/core/search?filters%5BauthorTerms%5D=S.%20Kowalewski&eventCode=SE-AU

	Front page.pdf
	0_Front page template-(Master-Control).pdf
	1_ACKNOWLEDGEMENT.pdf

	part 1.pdf
	2_Abstract.pdf
	1-tablesof content.pdf
	2- list of figures.pdf
	5_GENERAL INTRODUCTION.pdf
	6_Genral Introduction.pdf

	chapter 1.pdf
	10_CHAPTER 1.pdf
	11_Chapter 1 - Theory Description.pdf
	12_Conclusion 1.pdf

	chapter 2.pdf
	13_CHAPTER 2.pdf
	14_Chapter 2 - Simulation.pdf
	15_Conclusion 2.pdf

	Conclusion.pdf
	conclusion 1.pdf
	CONCLUSION 2.pdf
	conclusion 3.pdf

	Appendix and References.pdf
	18_APPENDIX A.pdf
	19_Appendix A.pdf
	20_References.pdf

