
Registration Number:…..…../2020 

 

People’s Democratic Republic of Algeria 

Ministry of Higher Education and Scientific Research 

University M’Hamed BOUGARA – Boumerdes 

 
Institute of Electrical and Electronic Engineering 

Department of Electronics  

 

Final Year Project Report Presented in Partial Fulfilment of  

the Requirements for the Degree of  

MASTER 

In Electronics  

Option: Computer Engineering 

Title: 

 

 

 

Presented by: 

- FALKOUN Noussaiba  

- OUAKOUAK Ferial 

Supervisor: 

        Dr. CHERIFI Dalila  

                                               

EEG Signal Feature Extraction and 

Classification for Epilepsy Detection 



 

II 
 

 Dedications 

Dedications 

 

« Behind every young child who believed in himself is a parent who believed first » This 

humble work is dedicated to my amazing parents for their unconditional love and support 

throughout the years. And most of all, for always believing in me even when I failed to do so. I 

cannot imagine reaching this point in my life or even accomplishing this work without them 

around. This dedication is a token of my appreciation and the least I can do to thank them. 

I would also like to thank my friend Ferial with whom I shared the whole experience of 

this work, the bad, good and funny moments. It has been an unforgettable journey! 

Noussaiba 

 

I dedicate this work to my beloved parents Ali and Fatma, who continually provide their 

moral, spiritual, emotional, and financial support during my educational career. 

To my brothers Mohand, Lyes and Nouredine, my uncles, my aunts and my grandparents 

whom I am truly grateful for having them in my life. 

To all my friends, thank you for your encouragement, especially Amina, Nadia, Rania 

and Yasmine with whom bad moments of these five years have been good, and the good ones 

unforgettable. 

Special thanks to my friend Noussaiba and my best friend SAMIRA for their advice and 

patience.  

 Ferial 

 

 



 

III 
 

 Acknowledgments 

 

 

 

Acknowledgments 

 

 

First of all, we would like to thank Allah for His abundant grace in getting us through 

this process. Then, we would like to express our sincere gratitude to our supervisor                       

Dr. CHERIFI Dalila for providing her invaluable guidance, comments and suggestions 

throughout the course of this project. Last but not least, we would like to thank all the teachers 

and the staff of the Institute of Electrical and Electronic Engineering, for their great devotion 

towards their professions, and for providing a convenient working environment. 

 



 

IV 
 

 Abstract 

Abstract 

 

 Epilepsy is a neurological disorder of the central nervous system, characterized by 

sudden seizures caused by abnormal electrical discharges in the brain. Electroencephalogram 

(EEG) is the most common technique used for Epilepsy diagnosis. Generally, it is done by the 

manual inspection of the EEG recordings of active seizure periods (ictal). Several techniques 

have been proposed throughout the years to automate this process. 

           In this study, we have used three different approaches to extract features from the filtered 

EEG signals. The first approach was to extract eight statistical features directly from the time-

domain signal. In the second approach, we have used only the frequency domain information 

by applying the Discrete Cosine Transform (DCT) to the EEG signals. In the last approach, we 

have used a tool that combines both time and frequency domain information, which is the 

Discrete Wavelet Transform (DWT). Six different wavelet families have been tested with their 

different orders resulting in 37 wavelets. The extracted features are then fed to three different 

classifiers k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Artificial Neural 

Network (ANN) to perform two binary classification scenarios: healthy versus epileptic (mainly 

from interictal activity), and seizure-free versus ictal. We have used a benchmark database, the 

Bonn database, which consists of five different sets. In each scenario, we have taken different 

combinations of the available data. For Epilepsy detection (healthy vs epileptic), the first 

approach performed badly. Using the DCT improved the results, but the best accuracies were 

obtained with the DWT-based approach. For seizure detection, the three methods had a good 

performance. However, the third method had the best performance and was better than many 

state-of-the-art methods in terms of accuracy. After carrying out the experiments on the whole 

EEG signal, we separated the five rhythms and applied the DWT on them with the Daubechies7 

(db7) wavelet for feature extraction. We have observed that close accuracies to those recorded 

before can be achieved with only the Delta rhythm in the first scenario (Epilepsy detection) and 

the Beta rhythm in the second scenario (seizure detection). 

Keywords: Electroencephalogram (EEG), Epilepsy, feature extraction, Discrete Cosine 

Transform (DCT), Discrete Wavelet Transform (DWT), classification, k-Nearest Neighbor (k-

NN), Support Vector Machine (SVM), Artificial Neural Network (ANN). 
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General introduction 
 

 The human brain is the most complex and mysterious organ of the human body, 

consisting of billions of neurons. It is considered as an electro-chemical machine because 

neurons exploit chemical reactions to generate electrical signals. These electrical signals can be 

monitored through different scientific techniques such as Electroencephalography (EEG), 

Magnetic Resonance Imaging (MRI), functional Magnetic Resonance Imaging (fMRI) and 

Positron Emission Tomography (PET). EEG is the most used technique to capture brain signals 

due to its ease of use, its excellent resolution and its low cost. It is used in the medical 

environment more precisely in the diagnosis and treatment of mental and neurological disorders 

(Alzheimer, Dementia....) and more particularly in the case of Epilepsy. 

 According to an estimate of the World Health Organization (WHO), Epilepsy affects 

around 50 million people worldwide. Epilepsy is characterized by recurrent and sudden 

seizures. These seizures are the result of a transient and unexpected electrical disturbance of the 

brain and excessive neuronal discharge that is evident in EEG. The detection of epileptic 

seizures by visual scanning of a patient’s EEG data is a tedious and time-consuming process. 

In addition, it requires an expert to analyze the entire length of the EEG recordings. Moreover, 

the diagnosis of Epilepsy is nearly impossible from the seizure-free EEG recordings. As a result, 

it is necessary to develop a robust and a reliable automatic classification and detection system 

for Epilepsy diagnosis. For this aim, several automated EEG signal classification methods, 

using different approaches, have been proposed. However, most of them deal with seizure 

detection only. 

 In this work, an analysis of EEG signal is performed to detect Epilepsy during both ictal 

and interictal states. This is executed using three different techniques of feature extraction and 

three distinct classification algorithms. In order to compare the performance of these methods, 

each algorithm is tested on a real dataset which consists of three subject groups: healthy subjects 

(normal EEG), epileptic subjects during a seizure-free interval (interictal EEG), and epileptic 

subjects during a seizure (ictal EEG). 

 This project report consists of four chapters. The first chapter aims to introduce the 

EEG signal and the Epilepsy. For this, a brief description of the anatomy and the activity of the 

brain is given followed by some basics of the EEG technique. The second chapter explains 

two steps of EEG signal analysis. The first step is the preprocessing and the second is feature 
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extraction where three techniques are described. Classification is a very important step of EEG 

signal analysis, for this the third chapter is devoted for machine learning and classification 

algorithms. Our choice was to use three classifiers, which are k-Nearest Neighbors, Support 

Vector Machine and Artificial Neural Network. Ultimately, chapter four presents the 

experimental results obtained from applying the algorithms described in chapter two and three 

on the Bonn dataset. Finally, conclusions of this work and possible perspectives are drawn 

followed by an appendix where extended experimental results are presented.



 

 

 

Chapter 1  
 

 

 

Review about the Brain and 

Electroencephalogram 
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 Chapter 1: Review about the Brain and Electroencephalogram  

1.1 Introduction 

This chapter gives basic knowledge about the brain and the electroencephalogram 

technique. Before diving into the main topic of our project, we saw fit to give a brief idea about 

the brain, since Epilepsy is a brain disorder, and give an insight about the EEG technique with 

some of its advantages and drawbacks and how it is used for Epilepsy diagnosis.  

1.2 Brain Anatomy 

The brain is one of the largest and most complex organs in the human body. It is the 

main organ of the human central nervous system (CNS). It functions as the coordinating center 

of sensation and intellectual and nervous activity. On a basic level, the brain can be divided into 

three major parts: cerebrum, cerebellum and brainstem, as shown in figure 1.1. 

 

Figure 1.1 The main parts of the brain [1]. 

1.2.1 The Cerebrum  

The Cerebrum or cortex is the forward-most portion and largest part of the human brain. 

It is composed of the right and left hemispheres, which are joined by mass of nerve cells called 

the corpus callosum. It is responsible of conscious thinking such as judgment, reasoning and 

learning, and sensory processing such as initiation and coordination of movement [1,2]. 

1.2.2 The Cerebellum 

The cerebellum is located behind the top part of the brainstem. It has two hemispheres, 

which have highly folded surfaces. It receives information from the sensory systems, the spinal 

cord and some other parts of the brain to fine-tune motor activity [3]. The cerebellum 

contributes to regulation and control of fine movements, posture and balance [1]. 
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1.2.3 The Brainstem 

The brainstem is the area at the base of the brain that lies between the deep structures of 

the cerebral hemispheres and the cervical spinal cord [4]. It serves a critical role in regulating 

certain involuntary actions of the body such as heartbeat, breathing, bladder function and sense 

of equilibrium. 

1.3 Brainwaves 

There are about 85 billion neurons in the human brain [1]. Each individual neuron 

connects to thousands of others. The communication between neurons is at the root of all the 

human thoughts, emotions and behaviors. It happens through small electrical currents that travel 

along the neurons and throughout enormous networks of brain circuits [5]. The synchronized 

electrical pulses resulting from this communication produce the brainwaves. Our emotions and 

activities select which brainwaves are dominant: the slow brainwaves when we feel tired and 

sleepy, the moderate brainwaves when we are calm and relaxed, or the fast brainwaves when 

we feel wired or hyper-alert. They are divided into five bands or rhythms according to the 

frequency: the Delta rhythm, the Theta rhythm, the Alpha rhythm, the Beta rhythm and the 

Gamma rhythm. The frequency boundaries of each band change from one source to another. In 

this research, we considered the frequency bands defined in Wikipedia. Figure 1.2 shows the 

five rhythms extracted from a 3 seconds (approximately) EEG recording of a healthy subject 

with eyes open. The amplitude is in microvolts. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Figure 1.2 EEG recordings of the five rhythms (a) Delta (b) Theta (c) Alpha (d) Beta and  (e) Gamma. 

1.3.1 Delta Rhythm (<4Hz) 

Delta waves are the slowest and highest amplitude brainwaves [1]. They are generated 

in deep meditation and dreamless sleep. Delta waves suspend external awareness and are the 

source of empathy. This is also the state where healing and regeneration are stimulated [6]. 

1.3.2 Theta Rhythm (4Hz-7Hz) 

Theta waves occur most often in sleep and are strongly detectable when we are 

dreaming. They are also dominant in deep meditation. In theta, our senses are withdrawn from 

the external world and focused on signals originating from within. Research has also shown a 

positive association of theta waves with memory, creativity and psychological well-being [5,6]. 

1.3.3 Alpha Rhythm (8Hz-15Hz) 

Alpha waves were the first to be discovered and they are easily observed [5]. They are 

stronger during physical relaxation with eyes closed and weaker during mental or physical 

activity with eyes open [1]. Alpha is the resting state for the brain. Its waves aid overall mental 

coordination, calmness, alertness, mind/body integration and learning [6].  

1.3.4 Beta Rhythm (16Hz-31Hz) 

Beta is a fast activity. It is present when we are alert and our attention is directed towards 

cognitive tasks and the outside world. It is dominant in the normal waking state of 

consciousness when we are busy thinking actively [6]. 

1.3.5 Gamma Rhythm (>32Hz) 

At the moment, Gamma frequencies are the black holes of EEG research as it is still 

unclear where they are generated in the brain and what they reflect [1]. In fact, Gamma was 

dismissed as 'spare brain noise' at first. There are many speculations about the role of Gamma 
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waves, some researchers think that they modulate perception and consciousness and that they 

relate to expanded consciousness and spiritual emergence [6], but nothing has been confirmed 

yet. 

1.4 Brain disorders 

The brain is the control center of the body. It is the major part in the nervous system, 

which controls everything from the human senses to the muscle movements of the body. 

Therefore, when the brain is damaged, it can lead to severe consequences and different disorders 

that vary according to which area is affected. Some of these disorders are Dementia, Alzheimer, 

Epilepsy and schizophrenia. 

1.4.1 Dementia 

Dementia is an overall term that covers a wide range of specific medical conditions 

characterized by a decline in memory, language, problem-solving and other thinking skills that 

affect a person's ability to perform everyday activities [7]. Dementia is caused by damage to or 

loss of nerve cells and their connections in the brain. It affects people differently depending on 

the damaged area [8]. 

1.4.2 Alzheimer 

Alzheimer is a type of dementia that causes problems with memory, thinking and 

behavior. It is a progressive condition such that it develops gradually and becomes more severe 

within the years. Alzheimer leads to nerve cell death and tissue loss throughout the brain. Over 

time, the brain shrinks dramatically, affecting nearly all its functions [9]. 

1.4.3 Epilepsy 

Epilepsy is a chronic disorder in which clusters of nerve cells, or neurons, in the brain 

sometimes signal abnormally causing strange sensations, emotions, and behavior, or 

convulsions, muscle spasms, and loss of consciousness in some cases [10]. It is characterized 

by unpredictable seizures. They may be related to a brain injury or a family tendency, but often 

the cause is completely unknown.  

1.4.4 Schizophrenia 

Schizophrenia is a chronic and severe mental disorder. People with schizophrenia may 

seem like they have lost touch with reality. Scientists have found that people who have the 

disorder may be more likely to have glitches in their genes that may disrupt brain development. 
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Doctors also believe the brain loses tissue over time. Some imaging tools have shown that 

people with schizophrenia have less grey matter [11]. 

1.5 Electroencephalogram 

Electroencephalogram (EEG) is an electrophysiological technique used to evaluate the 

brain function by measuring the electrical activity produced by the ionic current within the 

neurons of the brain. It records patterns of activity during rest and in response to certain stimuli. 

The electrical data is recorded from sensors (electrodes) placed at the scalp surface. 

1.5.1 Early History of EEG 

The electrical properties of the brain were first discovered by the English scientist, 

Richard Caton (1842-1926). He recorded the electrical activity from the brains of animals using 

a sensitive galvanometer, noting fluctuations in activity during sleep and absence of activity 

following death [12]. It was first applied to humans in the 1920s by German neurologist Hans 

Berger (1873–1941) [1]. He was the one to invent the electroencephalogram and give it its 

current name [13]. Berger’s findings were independently confirmed in early 1934 by Lord 

Adrian in England and by Hallowell Davis at Harvard, in the United States [14]. The field of 

clinical EEG began in 1935, after Gibbs, Davis and Lennox described interictal spike waves 

and the three cycles/s pattern of clinical absence seizures. In 1947, The American EEG Society 

was founded and the first International EEG congress was held [13].  

1.5.2 The 10-20 System 

The 10-20 system is one of the two most common systems for defining and naming 

electrode locations/positions along the scalp. The electrodes are placed at 10% and 20% points 

along lines of longitude and latitude. In the 10-20 system, electrode names begin with one or 

two letters indicating the general brain region or lobes where the electrode is placed, and it ends 

with a number or letter indicating the distance to the midline. Odd numbers are used in the left 

hemisphere, even numbers in the right hemisphere. Larger numbers indicate greater distances 

from the midline, while electrodes placed at the midline are labeled with a “z” for zero. Figure 

1.3 shows an electrode distribution based on the 10-20 system over the scalp. The Nasion (Nz) 

indicates the depression between the eyes at the top of the nose. The Inion (Iz) indicates the 

bump at the back of the head [1].   
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Figure 1.3 Electrodes placement according to the 10-20 system [1]. 

1.5.3 EEG compared to other imaging techniques 

EEG has many advantages over other imaging techniques. The central benefit of EEG 

is its very high time resolution, which makes it able to capture cognitive and emotional 

processes and the physiological changes underlying them much better than other brain imaging 

techniques (such as MRI or PET scanners). Moreover, the process of measuring the neural 

activity is direct and simple, unlike fMRI in which it is obtained indirectly and requires a much 

deeper understanding of the relationship between what is measured and how it relates to 

cognitive processing. EEG is also inexpensive and lightweight, which makes it easily 

accessible, portable and easy to handle [1]. Despite all the advantages of the 

electroencephalogram, it has its own limitations, such as its poor spatial resolution which makes 

it inadequate in many applications. For any distribution of electrical field strengths detected on 

the scalp, there is an infinity of possible spatial patterns, of electrical activity, that could have 

generated it [15]. Table 1.1 illustrates the main differences between EEG, MRI, and fMRI [16]. 

Table 1.1 Comparison between EEG, MRI and fMRI. 

 EEG MRI FMRI 

Temporal resolution High Low Low 

Spatial resolution Low High High 

Brain activity 

measurement 
Directly Only the structure Indirectly 

Level of expertise 

needed 
Some training Extensive training Extensive training 

Cost 
Accessible to many 

researchers 

Requires extensive 

funding 

Requires extensive 

funding 

Portability 

Both fully portable 

and semi portable 

devices available 

Not portable Not portable 
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1.6 EEG for Epilepsy diagnosis 

EEG is the most common test used to diagnose Epilepsy. The electrodes attached to the 

scalp, with a paste-like substance or cap, record the electrical activity of the brain. If a person 

has Epilepsy, it is common to have changes in the normal pattern of brain waves, even when 

there is no seizure. However, the changes are more noticeable during seizure activity. The 

doctor may monitor patients on video when conducting an EEG while they are awake or asleep, 

to record any seizures they experience in order to determine their kind. The test may be done 

in a doctor's office or the hospital. If appropriate, an ambulatory EEG, which the patient wears 

at home, may be used. The EEG records seizure activity over the course of a few days. The 

doctor may give some instructions to trigger the seizures [17]. Recently, many researches are 

conducted in order to make the process of detecting Epilepsy automatic by means of machine 

learning. That is also the topic of interest in our project. 

1.7 Summary 

In this chapter, we briefly described the brain anatomy, its main rhythms and some 

diseases that result from occasional damages that could occur in it, from which Epilepsy is the 

most common and the disorder of interest in our project. The EEG technique is presented next 

with a brief history, the most common system used for the electrodes placement and a 

comparison with other imaging techniques. Finally, we described the traditional way to 

diagnose Epilepsy with EEG.
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2.1 Introduction – Literature review  

 Electroencephalography (EEG) records brain activities by measuring the voltage 

fluctuation on the scalp. This signal has a great potential for diagnosis and treatment of brain 

disorders.  However, it is very difficult to get useful information from raw EEG signals directly. 

Hence, preprocessing and feature extraction steps are necessary in the EEG signal analysis.  

 Numerous methods of feature extraction and classification have been proposed 

throughout the years. The Bonn database is used as a benchmark data set in many of the cited 

works. It consists of five sets denoted A, B, C, D and E. Sets A and B recordings belong to 

healthy subjects. Sets C and D recordings belong to epileptic patients during seizure-free 

intervals. Set E corresponds to seizure recordings (more details about the dataset are provided 

in chapter 4). Gandhi et al. (2011) [18] used the DWT to extract three features from the EEG 

signals, energy, entropy and standard deviation. As classifiers, they used SVM and Probabilistic 

Neural Networks (PNN) to obtain a maximum accuracy of 95.44% for the ABCD-E case [19]. 

Nicolaou et al. (2012) [20] extracted a single feature, which is the permutation entropy from 

EEG signals and used the SVM classifier to report 93.5% accuracy for the A-E data sample 

whereas the maximum accuracy for other data samples such as B-E, C-E, D-E and ABCD-E is 

86.1% [19]. M. Z. Parvez and M. Paul (2013) [21] presented an approach based on the high-

frequency components of The DCT for feature extraction, which are combined with the 

bandwidth feature extracted from the Empirical Mode Decomposition (EMD). They used the 

Least Square SVM (LS-SVM) classifier to identify the ictal and interictal period of epileptic 

EEG signals from different brain locations. The maximum achieved accuracy on the Freiburg 

database was 79%. V. Bajaj and R. B. Pachori (2013) [22] proposed a novel method to detect 

the seizures using the Hilbert transformation of Intrensic Mode Functions (IMFs). The 

classification achieved an accuracy of 90% [23]. R. J. Martis et al. (2013) [24] used a decision 

tree classifier with energy, fractal dimension and entropy as features. The achieved accuracy is 

95.7% [23]. N. Ahammed et al. (2014) [25] used the Daubechies order 2 wavelet to extract the 

coefficients. The parameters fed to a linear classifier are energy, entropy, mean, maximum and 

minimum. They used three sets from the Bonn database, set A, set D and set E. The overall 

accuracy obtained is 84.2%. Juarez-Guerra et al. (2015) [26] extracted statistical features such 

as mean, median and variance from the EEG signals and used the feed-forward neural networks 

to report an accuracy of 93.23% [27]. Zakariya Lasfer et al. (2017) [27] used only sets A and E 

from the Bonn database for seizure detection. They extracted the wavelet coefficients as 

features and calculated the energy of each wavelet coefficient. They obtained a maximum 
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accuracy of 98.1%, a sensitivity of 97.8% and a specificity of 98.1% with the ANN classifier. 

A. B. Peachap and D. Tchiotsop (2019) [28] decomposed the EEG signal using Laguerre 

polynomials based wavelets. They reduced the dimensionality with Principal Component 

Analysis (PCA) and performed the classification using SVM and pattern recognition ANN. 

They tested multiple cases from the Bonn database. The lowest classification accuracy obtained 

with ANN was 94% and with SVM, it was 90%, which corresponds to data sample C-E. The 

best classification accuracy with ANN was 100% and with SVM, it was 98%, which 

corresponds to data sample B-E. They also pointed out that the scheme they used constitutes a 

classical case of overfitting, such as all the reported accuracies were 100% before the cross-

validation.   

2.2 Methodology 

 In our study, we will use for the preprocessing step a Butterworth low-pass filter to 

correct and remove artifacts. For feature extraction step, three methods are proposed in this 

chapter. The first one is to directly extract eight features from the original signal. In the second 

method, features are extracted from the EEG signal after transforming it to frequency domain 

using Discrete Cosine Transform. For the third method, the EEG signal is transformed to time 

frequency domain using Discrete Wavelet Transform then some features are extracted from it. 

These two steps of EEG signal analysis are described in this chapter. 

 

 

 

Figure 2.1 Block diagram of the basic steps applied to EEG signal analysis. 

 

2.3 Preprocessing 

 EEG recording is highly susceptible to various forms of noise and artifacts, such as 

blinking or muscle movement, that can contaminate the data and distort the picture. So, an 

initial task of any EEG data analysis is noise and artifact removal, which consists of 

separating the relevant neural signals from random neural activity that occurs during EEG 

recordings.  This is done in the step of preprocessing, which is a procedure of transforming data 

into a format that is more suitable for further analysis and interpretable for the user [29].  For 

this preprocessing step, a filtering is done using a second-order low-pass Butterworth filter to 

cut off all the frequencies above 60Hz which are viewed as noise. 

EEG data Preprocessing 
Feature 

extraction 
Classification 
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2.3.1 Butterworth filter 

 The Butterworth filter, described by the British engineer and physicist Stephen 

Butterworth, is a type of signal processing filter designed to have  frequency response as flat as 

possible in the passband [30]. It is specified by two parameters, the cutoff frequency and the 

filter order.  When the frequency increases, the frequency response decreases monotonically, 

and as the filter order increases, the transition band becomes narrower [31] as it is illustrated in 

figure 2.2.  

 

Figure 2.2 The squared magnitude of the frequency response for Butterworth filters of orders N = 2,4,8 [31]. 

The magnitude-squared function of an Nth order Butterworth low-pass filter and a cutoff 

frequency Ωc is given by [31]:    

 | Ha (jΩ) |2 = 
1

1+(
𝑗Ω

𝑗Ω𝑐 
)2𝑁

  (2.1) 

  

Figure 2.3 shows two recordings of a 200 points EEG signal, where the x-axis represents 

the sample number and the y-axis represents the amplitude in microvolts. The recording in 

Figure 2.3(a) is not filtered; while the one in Figure 2.3(b) is filtered using a Butterworth filter 

of order 2 at a cutoff frequency of 60 Hz. Significant differences can be observed between the 

two recordings.   

https://en.wikipedia.org/wiki/Engineer
https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Stephen_Butterworth
https://en.wikipedia.org/wiki/Stephen_Butterworth
https://en.wikipedia.org/wiki/Filter_(signal_processing)
https://en.wikipedia.org/wiki/Frequency_response
https://en.wikipedia.org/wiki/Passband
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(a)            (b) 

Figure 2.3 One portion of an EEG signal (a) before and (b) after filtering process. 

2.3 Feature extraction 

 After the preprocessing stage, a filtered EEG signal suitable for extracting the needed 

features is obtained. In this study three methods of feature extraction are used. In the first 

method, we extract statistical features directly from the filtered time-domain signal. In the 

second method, we transform the signal to the frequency domain using DCT. While in the third 

method, the signal is transformed to the time frequency domain by the DWT. This section 

describes the theoretical background behind these methods. 

2.3.1 Feature extraction using statistical parameters 

 Throughout our study, eight statistical features have been introduced. They are 

maximum, mean, standard deviation, median, mode, first quartile, third quartile and 

interquartile range.  

● Mean 

 The mean, or average, of a set of values is the ratio of their sum divided by the total 

number of values in the set. Thus, if there are a total of N numbers in a data set whose values 

are given by a group of x-values, then the arithmetic mean of these values, denoted by µ, can 

be found using this formula: 

 µ = 
1

𝑁
 ∑ 𝑥𝑁

𝑛=1 n  (2.2) 

Where xn is the value of the nth point of the dataset. 
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● Standard deviation 

 The standard deviation is a statistic value that measures the dispersion of a dataset 

relative to its mean. It is calculated by determining the variation between each data point relative 

to the mean. If the data points are further from the mean, there is a higher deviation within the 

data set. Thus, the more spread out the data, the higher the standard deviation [32]. The standard 

deviation, 𝜎, is the square root of the variance, 𝜎2. Unlike the variance which is expressed in 

squared units, the standard deviation is expressed with the same units as the original data. The 

standard deviation of a dataset of N values is calculated by: 

 𝜎 = √
∑ (𝑁

𝑖=1 𝑥𝑖−µ)2

𝑁
 (2.3) 

Where xi is the value of the ith point of the dataset and µ is the mean value of the dataset. 

● Median 

 The median of a set of data is the middle number of the set when these numbers are 

sorted in an ascending or descending order. If there is an odd number of data, the middle value 

is picked as the median. But if the number of data is even, then there is no single middle value; 

the median is then defined to be the mean of the two middle values [33].  The median of a 

dataset of N elements, x, is given by:                              

 

  𝑥𝑁+1

2

                                 if N is odd  

   
1

2
 [ 𝑥𝑁

2

 + 𝑥𝑁

2
+1

]                 if N is even 

 

(2.4) 

 Mode 

 The mode is a statistical measure of central tendency in a dataset. It is defined to be the 

number that occurs most frequently in the set. Thus, the mode is not unique for a particular 

dataset; there may be several modes in a dataset or none at all [34]. 

● First quartile and third quartile 

 The first and third quartiles are descriptive statistics that are measurements of position 

in a data set. For a sorted dataset in an ascending order, the lower half of this dataset is the set 

of all values that are to the left of the median, and the higher half is the set of all values that are 

to the right of the median. The first quartile, denoted by Q1, is the median of the lower half of 

the data set and the third quartile, denoted by Q3, is the median of the upper half of the data set 

[35]. 

M  = 

https://en.wikipedia.org/wiki/Arithmetic_mean
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● Interquartile range 

 The interquartile range, IQR, also called the midspread, is a measure of statistical 

dispersion of a dataset. It is equal to the difference between the third quartile and the first 

quartile [36]. 

IQR = Q3-Q1       (2.5) 

2.3.2 Feature extraction using Discrete Cosine Transform (DCT) 

 The Discrete Cosine Transform (DCT) is very similar to the Fourier Transform (FT), 

but DCT involves the use of just Cosine functions and real coefficients, whereas FT makes use 

of both Sine and Cosine functions and requires the use of complex numbers. Both FT and DCT 

are transformation methods used for converting a time series signal into basic frequency 

components and their respective inverse functions convert things back the other way. A  DCT 

expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at 

different frequencies. An important feature of DCT is that it takes correlated input data and 

concentrates its energy in just the first few transform coefficients. If the input data consists of 

correlated quantities, then only the first few coefficients are large and the other coefficients are 

zeros or small numbers. Therefore, they can be negligible. The one-dimensional DCT for a 

signal is given by [37]: 

 Gf  = √
2

𝑛
 Cf ∑ 𝑝𝑛−1

𝑡=0 t cos   
(2𝑡+1)𝑓𝜋

2𝑛
     (2.6) 

                                                          
1

√2
   ,       f = 0 ,  

                                                           1  ,       f > 0,   

The input is a set of n data values pt, and the output is a set of n DCT transform coefficients (or 

weights) Gf.         

 Figure 2.4(a) shows a 200 points EEG signal in time domain. While figure 2.4(b) shows 

the same signal after applying DCT on it. In frequency domain, figure 2.4(b), we can see that 

the energy is compressed into the first coefficients. 

Where   Cf  =  

= 

for f = 0, 1, …,n-1.                                            

https://en.wikipedia.org/wiki/Statistical_dispersion
https://en.wikipedia.org/wiki/Statistical_dispersion
https://en.wikipedia.org/wiki/Data_points
https://en.wikipedia.org/wiki/Cosine
https://en.wikipedia.org/wiki/Frequency
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(a)                                                                     (b) 

Figure 2.4 An EEG signal (a) before and (b) after DCT. 

2.3.3 Feature extraction using Discrete Wavelet Transform (DWT) 

● Overview of wavelets 

 In signal processing, there are several ways to extract desirable features from a signal 

whether on time-domain, frequency-domain or time-frequency domain. Fourier Transform is 

probably the most popular transform used to obtain the frequency spectrum of a signal. The 

Fourier coefficients of the transformed function represent the contribution of each sine and 

cosine function at each frequency [38]. Because time resolution is totally lost, FT is only 

suitable for stationary signals, i.e., signals whose frequency content does not change with time. 

However, most of the biological signals, such as, Electrocardiogram, Electromyography, etc 

have different characteristics at different time or space, i.e., they are non-stationary. Therefore, 

in the analysis of these signals, both frequency and time information are needed simultaneously 

[39]. To solve this problem, the Short-Time Fourier Transform (STFT) was introduced. In 

STFT the non-stationary signal is divided into small portions, which are assumed to be 

stationary. This is done using a window function of a chosen width, which is shifted and 

multiplied with the signal to obtain the small stationary signals. The Fourier Transform is then 

applied to each of these portions to obtain the STFT of the signal [39]. By doing this, we get a 

two-variable signal as a function of time and frequency. The drawback is that once the particular 

size for the time window is chosen, that window is the same for all frequencies. The Wavelet 

Transform (WT) came to solve the problem of FT and STFT. In contrast to STFT, which uses 

a single analysis window, the Wavelet Transform uses long windows where low-frequency 

information is needed, and shorter windows where high-frequency information is needed [40]. 

The Wavelet Transform provides accurate frequency information at the low frequencies and 

accurate time information at high frequencies. This property is important in biomedical 

applications, because most signals in the biomedical field always contain high frequency 

components with short time periods and low frequency components with long time periods. 
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Figure 2.5 The Time-Frequency tiling for (a) Time-Domain (b) Frequency-Domain (c) STFT (d) DWT [39]. 

 In figure 2.5(a) no frequency information is given, only the time-frequency tiling in the 

time-domain plane is shown. Figure 2.5(b) shows the tiling in frequency-domain plane, it does 

not give any time information. Similarly figure 2.5(c) shows the tiling in STFT and figure 2.5(d) 

shows the tiling in Wavelet Transform. Figure 2.5(c) and (d) show that STFT gives a fixed 

resolution at all times, whereas Wavelet Transform gives a variable resolution [39]. 

● Continuous Wavelet Transform 

 The Continuous Wavelet Transform (CWT) is a linear operation that decomposes a 

continuous signal, using a continuous wavelet function, into wavelet coefficients that are 

functions of scale and position [40]. To classify an analyzing function Ψ(t) as a wavelet, it must 

satisfy the following criteria [41]: 

a) A wavelet must have finite energy: 

 E= ∫ |
+∞

−∞
Ψ(t)2| dt <∞    (2.7) 

b) If Ψ(𝑓) is the Fourier transform of the wavelet  Ψ(t), the following condition must 

hold: 

 CΨ=∫
|Ψ(𝑓)|2

𝑓

+∞

0
 d 𝑓 < ∞            (2.8) 

This condition implies that the wavelet has no zero frequency component (Ψ(0) = 0), i.e. the 

mean of the wavelet Ψ(t) must be equal to zero. 
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c) For complex wavelets, the Fourier transform Ψ(𝑓) must be both real and vanish for 

negative frequencies. 

The CWT of a signal 𝑓(𝑡) ϵ L2(R) at scale 𝑎 and translation τ is given by [42]:  

 𝑊𝑓 (a, τ) = 𝜔(𝑎) ∫ 𝑓(𝑡)
+∞

−∞
 Ψ* (

𝑡− 𝜏

𝑎
)dt (2.9) 

The symbol * denotes the complex conjugation. 𝜔(𝑎) is a weighting function used for energy 

conservation purpose. 𝜔(𝑎) is set to 
1

√|𝑎|
 to ensure that the wavelet would have the same energy 

on all the scales. Equation (2.8) shows that the signal to be analyzed, 𝑓(𝑡), is correlated with 

stretched/dilated copies of the mother wavelet Ψ(t). For small values of a, the wavelet is 

contracted and the transform gives information about the finer details of f (t). For large values 

of a, the wavelet expands and the transform gives a coarse view of the signal [42]. However, 

the major weakness of CWT is that scaling parameter 𝑎 and translation parameter τ change 

continuously. Thus, the coefficients of the wavelet for all available scales after calculation will 

consume a lot of effort and yield a lot of unused information [43].   

● Discrete Wavelet Transform 

 In order to address the weakness of the CWT, discrete wavelet transform (DWT) has 

been defined. DWT is a kind of wavelets that restrict the value of scale and translation. The 

restriction is like the scale is increasing in the power of 2 (a = 1, 2, 4, 8,…) and the translation 

is the integer (τ = 1, 2, 3, 4, …). An efficient way to implement this is by passing the signal 

through a Low-Pass Filter (LPF) and a High-Pass Filter (HPF), dividing it into a lower and 

upper frequency bands. Then, the lower band is subsequently divided into a second level, lower 

and upper bands. The process is repeated, taking the form of a binary or “dyadic” tree. The 

lower band is referred to as the “Approximation” and the upper band as the “Detail”[44]. 

 

Figure 2.6 Three-level wavelet decomposition tree [39]. 

Figure 2.6 represents the procedure of the DWT decomposition for an input discrete time-

domain signal x[n]. The DWT is computed by successively passing x[n] through a series of 

a1[n] 

a2[n] 
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low-pass and high-pass filters. Each stage consists of two digital filters and two down-samplers 

by 2 to generate the digitized signal. The first filter, H0, is the discrete mother wavelet, which 

is a high-pass filter, and the second, G0, is a low-pass filter. The downsampled outputs of the 

first high-pass filter produce the detail information d1[n], while the downsampled outputs of the 

first low-pass filter produce the coarse approximation, a1[n]. The first approximation, a1[n], is 

again decomposed and this process is repeated at each stage [39].  The decomposition of the 

signal can be mathematically expressed as follows [45]: 

  yhigh[n] =∑ 𝑥[𝑘]. 𝐻0[2𝑛 − 𝑘]∞
𝑘=−∞  (2.10) 

  ylow[n] = ∑ 𝑥[𝑘]. 𝐺0[2𝑛 − 𝑘]∞
𝑘=−∞  (2.11) 

 Wavelet families 

In this section, we will present the six wavelet families used in our experiments. 

a. Haar wavelet 

    Haar wavelet was the first mother wavelet proposed by Alfred Haar, it has the shortest 

length of support among all orthogonal wavelets. This wavelet is conceptually simple and fast, 

however the technical disadvantage of the Haar wavelet is that it is not continuous, and 

therefore not differentiable. This property can, however, be an advantage for the analysis of 

signals with sudden transitions. Haar wavelet represents the Daubechies 1 wavelet function 

[46]. 

 

Figure 2.7 Haar wavelet (x axis is time and y axis is amplitude) [46]. 

b. Daubechies wavelets 

     Daubechies family of wavelets, abbreviated as db, is based on the work of Ingrid 

Daubechies. It is a family of orthogonal wavelets defining a DWT and characterized by a 

maximum number of vanishing moments for some predefined support length. With each 

wavelet, there is a corresponding scaling function generating an orthogonal multiresolution 

analysis [47]. The name of the Daubechies wavelet is represented as dbN where N gives its 

order. The order N refers to the number of vanishing moments which is equal to half the length 

of the support [48]. Wavelet functions of db2 to db9 are shown in figure 2.8. 

https://en.wikipedia.org/wiki/Continuous_function
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Ingrid_Daubechies
https://en.wikipedia.org/wiki/Ingrid_Daubechies
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 Figure 2.8 Wavelet functions of Daubechies family (x axis is time and y axis is amplitude) [47].  

c. Biorthogonal wavelets 

  A biorthogonal wavelet, abbreviated as bior, is a wavelet where the associated wavelet 

transform is invertible but not necessarily orthogonal. The advantage of biorthogonal wavelet 

transform is that it allows more degrees of freedom compared to the orthogonal wavelet [49]. 

A biorthogonal wavelet has two scaling functions and two wavelet functions. One 

scaling/wavelet function is for decomposition, the other is for reconstruction [47]. All the 

functions of bior2.2 wavelet are given in figure 2.9. 

 

Figure 2.9 Functions of the bior2.2 wavelet (x axis is time and y axis is amplitude) [47]. 

d. Coiflet wavelets 

 Coiflets, abbreviated as coif, are discrete wavelets designed by Ingrid Daubechies 

and Ronald Coifman, to have scaling functions with vanishing moments. Their scaling function 

has N/3−1 vanishing moments, and the wavelet function has N/3 vanishing moments [47].  

https://en.wikipedia.org/wiki/Wavelet
https://en.wikipedia.org/wiki/Discrete_wavelet_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform
https://en.wikipedia.org/wiki/Wavelet
https://en.wikipedia.org/wiki/Ingrid_Daubechies
https://en.wikipedia.org/wiki/Ronald_Coifman
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Figure 2.10 Wavelet functions of the Coiflet family (x axis is time and y axis is amplitude) [47]. 

 

e. Symlet wavelets 

     Symlets are also orthogonal and compactly supported wavelets. They are a modified 

version of Daubechies wavelets with increased symmetry. The associated scaling filters are 

near linear-phase filters. The properties of Symlets are nearly the same as those of the db 

wavelets [50]. The Symlet wavelets for orders 2 up to 8 are shown in figure 2.11. 

 

 

(a) Sym2                        (b) Sym3                        (c) Sym4                             (d) Sym5 

 

                                  (e) Sym6                           (f) Sym7                         (g) Sym8 

Figure 2.11 Wavelet functions of the Symlet family (x axis is time and y axis is amplitude) [50]. 

https://en.wikipedia.org/wiki/Daubechies_wavelet
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f. Discrete Meyer wavelet 

    Meyer wavelets are orthogonal wavelets proposed by Yves Meyer. Their scaling 

wavelet function is symmetric. Meyer is band limited and has infinite number of supports [48]. 

Discrete Meyer is a discrete approximation of the Meyer wavelet. 

 

 Figure 2.12 Discrete Meyer wavelet (x axis is time and y axis is amplitude). 

2.4 Summary 

 This chapter briefly described two steps of EEG signal analysis. First, a preprocessing 

of EEG signal using a low-pass filter has been introduced, then three feature extraction methods 

have been deeply presented. 
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3.1 Introduction 

 Signal classification means to analyze different characteristic features of a signal, and 

based on them, decide to which grouping or class the signal belongs. The resulting classification 

decision can be then mapped back into the physical world to reveal information about the 

physical process that created this signal. In order to have a broad understanding of classification, 

this chapter mainly provides an overview of machine learning and classification algorithms. 

3.2 Machine Learning 

 Machine Learning is a branch of artificial intelligence based on the idea that systems 

can automatically learn and improve from experience without being explicitly 

programmed. The process of learning begins with observations or training data in order to look 

for patterns in that data and make better decisions in the future based on the provided data [51]. 

There are three types of learning approaches, namely, supervised, unsupervised and 

reinforcement learning. In a nutshell, reinforcement learning is dynamic programming that 

trains algorithms using a system of reward and punishment. Unsupervised learning is when the 

model is given training based on unlabeled data without any guidance while in supervised 

learning, the machine learns from a labeled dataset with guidance. This latter is deeply 

explained in the following section. 

 Supervised machine learning 

 In supervised learning a training dataset which consists of inputs paired with their 

correct outputs is used to develop a prediction model. The model can then make predictions of 

the output values for a new dataset. The basic idea of supervised learning is to estimate a 

function f: x→ 𝑦 that maps inputs x to target values y, given a set of N training examples 

d={(xi,yi)}𝑖=1
𝑁 . The goal is to approximate the mapping function so well that output variable y 

can be predicted for a new input data x. The supervised approach is further divided into: 

 Regression: It is used to predict continuous values. The task of the Regression 

algorithm is to find the mapping function that maps the input variable x to the continuous 

output variable y [52]. 

 Classification: It is the process of finding a model (function) which separates the data 

into multiple categorical classes based on different parameters. Classification problems 

consist of taking input vectors and deciding which of N predefined classes they belong 

to, based on training from exemplars of each class. The most important point about the 

classification problem is that it is discrete, each example belongs to precisely one class, 

and the set of classes covers the whole possible output space [53]. Classification can be 

https://www.sas.com/en_us/insights/analytics/what-is-artificial-intelligence.html
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binary, where instances are classified into two groups, or multi-class where instances 

are classified into one of three or more classes.  

3.3 Some supervised learning algorithms 

 Supervised learning uses classification algorithms and regression techniques to develop 

predictive models. Several algorithms have been developed. In this section, the three algorithms 

used in the context of our study to perform binary classification are deeply explained.  

3.3.1 k-Nearest Neighbor (k-NN) 

A. k-NN Theory 

 The k-nearest neighbor’s algorithm is a non-parametric and supervised machine 

learning method used for classification and regression. In classification, k-NN is based on 

similarity measure among the training and test sets. Given a point 𝑥0 to be classified into one 

of N groups, the k nearest data points to 𝑥0 must be found. The classification rule is to 

assign 𝑥0 to the population that has the most observed data points out of the k nearest neighbors. 

Points for which there is no majority are either classified to one of the majority populations at 

random, or left unclassified. The illustration of the k-NN algorithm is given in figure 3.1. The 

green circle is the sample which is to be classified, blue squares and red triangles are two 

different classes in the training set. If k=3, then the 3 nearest neighbors, illustrated by the black 

circle with the solid line, will decide to which class the analyzed sample will be assigned. If 

k=5, then the 5 nearest neighbors will be considered (illustrated by the black circle with the 

dotted line) [54].  

 

Figure 3.1 Illustration of k-NN algorithm. 

The advantage of k-NN classification is its simplicity. There are only two important concepts 

that should be taken into consideration [55]:  

 The parameter k, which decides how many neighbors will be chosen for k-NN 

algorithm. The appropriate choice of k has significant impact on the diagnostic performance of 

k-NN algorithm. A large k reduces effect of the noise on the classification, but makes 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
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boundaries between classes less distinct [56]. The key to choose an appropriate k value is to 

strike a balance between overfitting and underfitting. In binary classification problems, k is 

generally chosen to be an odd number as this avoids tied votes [56]. 

 The choice of a method to measure the distance between the attributes in the testing set 

and the training set. The most significant ones are Euclidean distance and Manhattan distance. 

The mathematical formula for measuring the Euclidian distance between feature vectors 

X=(x1,x2,…, xn) and Y=(y1, y2,…, yn) is given below [54]: 

 d (x,y)  = d (y,x) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1  (3.1) 

 

B. k-NN classification steps 

The k-NN classification process is usually based on the following steps [57]: 

 Determine parameter k as the number of nearest neighbors. 

 Calculate the distance between each testing sample and all the training set element by 

element. 

 Sort the distances and determine the k nearest neighbors. 

 Determine the classes of each of the k nearest neighbors. 

 Apply majority voting to decide the class of the new data. 

  
                              (a)        (b) 

                               

        (c)                   (d) 

Figure 3.2 Illustration of 4-NN algorithm steps to classify the gray point [58]. 
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3.3.2 Support Vector Machine (SVM) 

 Support vector machine, or SVM, is a machine learning algorithm initiated by Vladimir 

Vapnik. It was developed to solve linear or non linear classification and regression problems. 

The basic idea of the SVM classification algorithms is to construct a hyperplane that separates 

two groups if possible. The optimal hyperplane must have the largest distance to the nearest 

training-data points of the two classes in order to reduce the misclassification error. These 

points are called support vectors and the distance between the hyperplane and the support 

vectors of each class is called the margin. The goal of the SVM algorithm is to find the optimal 

separating hyperplane which maximizes the margin [59]. There are two types of SVMs, namely 

linear SVM and non linear SVM. 

A. Linear SVM 

  Let’s assume that we have a training set S which contains N training samples, xi ϵ Rn  

with i=1,2,…,N. Each point xi belongs to either of two classes and thus is given a label                 

yi∈ {-1,1}. The training set is represented as {xi, yi}. The goal is to establish the equation of an 

optimal hyperplane that divides S leaving all the points of the same class on the same side [60]. 

The equation of the optimal hyperplane with a normal vector w and a bias b ϵ R is given by: 

 w.x +b=0 (3.2) 

The most important task of SVM is to find values of w and b of the hyperplane equation. 

 Hard margin case 

If the training data is linearly separable, two parallel hyperplanes that separate the two 

classes of data can be selected so that the distance between them is as large as possible. 

 

Figure 3.3 Optimal hyperplane in SVMs for linearly separable data [61]. 

 

  In order for the hyperplane H0 in figure 3.3 to correctly separate the two groups, the 

following two constraints which state that each data point must lie on the correct side of the 

margin must be satisfied [62].  

H0 

https://en.wikipedia.org/wiki/Linearly_separable


 

30 
 

 Chapter 3: EEG Signal Classification   

  xi .w + b ≥  +1, for all yi =+1 (3.3) 

 xi .w+ b ≤ -1   , for all yi =-1 (3.4) 

The margin between the two hyperplanes H1 and H2 is geometrically computed to be 
2

||𝑤||
  where 

||w|| is the Euclidian norm of the vector w. Therefore maximizing the margin is equivalent to 

minimizing 
1

2
||w||2, in order to perform Quadratic Programming (QP) optimization later on [62]. 

After combining equations (3.3) and (3.4) into a single equation, the optimization problem can 

be formulated in the following way [60]: 

  Minimize 
1

2
 ||w||2       (3.5) 

  subject to  yi (xi .w+b) ≥1,        ∀ i  

In order to cater for the constraints in this minimization, Lagrangian multipliers 𝛼𝑖, where       

𝛼𝑖 ≥ 0 ∀𝑖, are introduced, then the primal formulation of this optimization problem becomes 

[62]: 

 LP(w, b, α) = 
1

2
 ||w||2 – ∑ 𝛼𝑖

𝑁
𝑖=1 [yi (w.xi + b) -1]       (3.6) 

The objective is then to minimize (3.6) with respect to w and b, this simultaneously requires 

that the derivatives of LP(w, b, α) with respect to w and b vanish [60]. 

              
𝜕𝐿𝑃(𝑤,𝑏,𝛼)

𝜕𝑤
 = 0 ⇒ 𝑤 =  ∑ 𝛼𝑁

𝑖=1 i yi xi         (3.7) 

                                   
𝜕𝐿𝑃(𝑤,𝑏,𝛼)

𝜕𝑏
 = 0 ⇒ ∑ 𝛼𝑁

𝑖=1 i yi  = 0       (3.8) 

Substituting (3.7) and (3.8) into (3.6) leads to a dual formulation of the optimization problem 

as a function of 𝛼𝑖only, which is to be maximized along with the following constraints [63]: 

  Maximize LD(α) = ∑ 𝛼𝑁
𝑖=1 i  – 

1

2
 ∑ ∑ 𝛼𝑁

𝑗=1
𝑁
𝑖=1 i  αj  yi  yj  xi xj    (3.9) 

   Subject to ∑ 𝛼𝑁
𝑖=1 i yi =0   and      αi ≥ 0  ∀ i 

Thus, the dual optimization problem can be solved by QP solver, which will return the 

coefficients αi. Each αi > 0 indicates that the corresponding xi is a support vector. Then, the 

value of w will be determined from equation (3.7). Note that only instances with αi > 0 are 

needed to express the value of w [60].  As a final step, with the support vectors, the value of the 

bias b can be calculated [62]:  

    b = 
1

𝑁𝑠
 ∑  [𝑠∈𝑆𝑉  ys - ∑ 𝛼𝑖∈𝑆𝑉 i  yi xi xs ]               (3.10) 

Where SV is the set of the support vectors and Ns is the number of the support vectors. 
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Now that the optimal separating hyperplane is determined, the decision function is 

expressed as follows and its sign determines the predicted classification of 𝑥 [60]: 

f (x) = 𝑤. 𝑥 + 𝑏                            (3.11)    

 Soft margin case 

 When the data are not completely separable as in hard margin case, soft margin SVM 

allows some errors in the classification. SVM, in this case, will classify most of the data 

correctly, while allowing the model to misclassify a few points in the vicinity of the separating 

boundary.  

 

Figure 3.4 Optimal hyperplane in SVMs for linearly non separable data [61]. 

 

To handle linearly non separable data and allow for some of the samples to lie inside 

the margin or even cross further among the instances of the opposite class, positive slack 

variables 𝜉𝑖  , i= 1,2;…,N, that relaxes constraints in equations (3.3) and (3.4) are introduced. 

Based on these new criteria, the relaxed constraints with the slack variables then become [60]: 

xi .w+ b ≥  +1 –𝜉𝑖    for  yi =+1 

∀𝑖        xi .w+ b ≤  −1 +𝜉𝑖    for yi = -1                    (3.12)

   𝜉i  ≥ 0  

Now a point xi can satisfy the constraints even if it is on the wrong side of the decision boundary, as 

long as 𝜉𝑖 is large enough. Of course all constraints can be trivially satisfied this way. To prevent this, 

we penalize the sum of 𝜉i [63] and the optimization problem can be reformulated as follow:  

Minimize 
1

2
  ||w||2 + c ∑ 𝜉𝑖  𝑁

𝑖=1                  

Subject to yi  (xi .w+ b) ≥  +1 – 𝜉𝑖                        (3.13) 

and   𝜉𝑖    ≥ 0 ∀𝑖 

Where the cost coefficient c>0 is a hyperparameter that specifies the misclassification penalty 

and is tuned by the user based on the classification task and dataset characteristics [60].  

H0 
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 The process of optimization is going through the same steps as previous: Lagrangian, 

optimization of αi parameters, determining w and b values for classification hyperplane. The 

dual stays the same, but with additional constraints on αi parameters: 0 ≤αi ≤ c [57]. 

B. Non linear SVM 

 When a problem is not linearly separable in input space, soft-margin SVM cannot find 

an optimal separating hyperplane that minimizes the number of misclassified data points. For 

that, a mapping function 𝛷(𝑥) is used to map the data into a higher-dimensional feature space 

where data will be linearly separable. By use of a kernel function it is possible to compute the 

separating hyperplane without explicitly carrying out the mapping into feature space [61]. The 

equation of the kernel function is given by: 

K(x, y) = <𝛷(𝑥), 𝛷(y)>                (3.14) 

Several kernel functions exist, the two most widely used ones are the polynomial kernel and 

the Gaussian radial-basis function (RBF) kernel, their equations are given below respectively 

[60]: 

K(x, y) = (1+ x.y) d                 (3.15) 

K(x , y ) = exp ( - 
1

2𝜎2 ||x – y ||2 )               (3.16) 

Modified and enhanced SVM constructs an optimal separating hyperplane in the higher-

dimensional space. Hence, the optimization problem becomes [61]: 

                               Maximize LD(𝛼) = ∑ 𝛼𝑁
𝑖=1 i  − 

1

2
  ∑   ∑ 𝛼𝑁

𝑗=1
𝑁
𝑖=1 i  𝛼j yi yj K(xi , xj)           (3.17) 

Subject to ∑ 𝛼𝑁
𝑖=1 i yi = 0 and 0 ≤ 𝛼i  ≤ 𝑐  ∀𝑖   

Using kernel function, minimization of dual Lagrangian is performed in the feature space. Then, 

all margin parameters are determined, without representing points in this new space [57]. 

Finally, the decision function is given by [42]: 

f (x) = [ ∑ 𝛼𝑖∈𝑆𝑉 i  yi  K(xi , xj )+b]                        (3.18) 

Where SV is the set of the support vectors satisfying 0 <𝛼i <c. 

3.3.3 Artificial Neural Network (ANN) 

 Artificial neural networks are computing systems, in which a computer learns to perform 

tasks by analyzing training examples, generally without being programmed with task-specific 

rules [64]. ANNs take inspiration from the learning process of human brain. This latter is 

composed of cells called neurons interconnected with links (or axons). Similar to the brain, an 

ANN is composed of processing units called artificial neurons and interconnections. A graph 

of a network consists of a number of nodes connected through directional links. Each node 
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represents a processing unit, and the links between nodes specify the causal relationship 

between connected nodes [57].  

 

Figure 3.5 Analogy between biological neuron and artificial neuron [65]. 

A. Model of an artificial neuron 

 An artificial neuron is an information-processing unit that is the basic computational 

element of a neural network. It receives input from some other neurons, or perhaps from an 

external source, processes it, passes it through an activation function and returns the activated 

output. The block diagram in figure 3.6, which is a model of an artificial neuron, shows that it 

consists of three basic elements [57]:  

 

Figure 3.6 Model of an artificial neuron. 

 

- A set of inputs xi characterized by a weight wki. Weights may lie in a range that includes 

positive as well as negative values. 

- An adder for summing the weighted inputs and the bias bk. The bias has the effect of 

increasing or lowering the input of the activation function, depending on whether it is 

positive or negative. 
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- An activation function φ which determines the output yk according to the following 

equation 

 yk = φ ( ∑ 𝑥𝑖
𝑚
𝑖=1  wki + bk )               (3.19) 

Activation functions determine whether a neuron should be activated (“fired”) or not and help 

normalize the output of each neuron to a range between 1 and 0 or between -1 and 1. Several 

forms of activation functions exist; the ones used in our ANN classification method are defined 

below: 

 Sigmoid: It is a non-linear activation function, with a smooth gradient, used mostly in 

binary classification problems, as it takes the input and outputs another value between 0 and 1. 

Thus, the result can be predicted easily to be 1 if the value is greater than 0.5 and 0 otherwise 

[66]. This function has two major drawbacks, the first is that it saturates and kills gradients and 

the second is the fact that its outputs are not zero centered [67].  Sigmoid equation is defined as 

follows: 

Sigmoid(x) = 
1

1+𝑒−𝑥                (3.20) 

 Rectified Linear Unit (ReLU): It is the most widely used activation function within 

hidden layers of an ANN. It activates a single node if the input is above a certain 

threshold.  Compared to Sigmoid, this function rectifies vanishing gradient problem and is less 

computationally expensive [68], as its formula is very simple: 

 ReLU(x) = max (0, x)                 (3.21) 

B. Architecture of ANNs 

 A typical neural network has few dozen to hundreds, thousands, or even millions of 

artificial neurons arranged in a series of layers, each neuron is connected to the layers on either 

side. ANN normally consists of an input layer, hidden layer(s) and an output layer. An example 

of ANN structure is shown in figure 3.7. The first layer is the input layer; it receives the inputs 

provided by the programmer. Number of neurons in this layer corresponds to the number of 

inputs of the neuronal network. The last layer is the output layer, it contains the same number 

of neurons as the number of the output values of the network. Between input and output layer, 

one or several hidden layers may exist. The hidden layers perform all the calculations to find 

hidden features and patterns. 
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Figure 3.7 ANN architecture (feedforward network). 

Neural networks can be divided into two main types: 

  - Feedforward Networks: They are defined as all networks that do not gain feedback 

from the network itself. This means that there are no links between nodes in the same layer and 

the input data flows in one direction, from the input nodes through 0 to n hidden nodes to the 

output nodes [69]. The most common and basic feedforward networks are Multi Layer 

Perceptrons (MLPs). 

- Recurrent Networks: They are defined as all networks that contain a feedback loop; 

therefore data from later stages are used for the learning process in earlier stages [69]. 

C. ANN training process 

 Among the many interesting properties of a neural network is its ability to learn from 

its environment and to improve its performance through learning. An ANN learns about its 

environment by adjusting the weights and biases values of its neurons to minimize the 

discrepancy between the network output and the desired output. This adjustment process is 

called training. The most common algorithm in supervised learning is the backpropagation 

algorithm. Basically, this algorithm consists of two phases performed through the different 

layers of the network: a forward pass and a backward pass [57]. In the forward pass, weights 

are initiated to random values and training data are applied to the input nodes of the network. 

These training data are propagated through the network layer by layer till reaching the output 

layer where a set of outputs is produced as the actual response of the network. Then, a cost 

function is used to calculate the error by comparing the actual outputs of the network with the 
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estimated ones. The cost function used in binary classification is Cross-entropy because its 

output layer is a probability value between 0 and 1[70]. During the forward phase, the synaptic 

weights of the network are all fixed. During the backward phase, on the other hand, the weights 

are all adjusted to make the actual response of the network closer to the desired response [57].  

3.4 Summary 

 This chapter briefly introduced some concepts of machine learning and classification 

process.  Then three supervised machine learning algorithms used in this study have been 

deeply described. 
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4.1 Introduction 

This chapter describes and compares the performance of three methods, at the level of 

the feature extraction stage, proposed for Epilepsy detection from EEG signals during both ictal 

and interictal intervals. The raw EEG signal goes through a preprocessing step, then feature 

extraction and finally the classification. Figure 4.1 depicts a block diagram, which illustrates 

the three used methods in more details. The same procedures are used for both experiments. 

The difference lies in the way we divide the data. All the details are provided later on. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Data set description 

The used data set was developed by the Department of Epileptology, University of 

Bonn, Germany. It is made publicly available in [71]. The database consists of five separate

Figure 4.1 The proposed methods for epilepsy and seizure detection. 
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sets denoted set A, B, C, D and E. Each containing 100 single-channel EEG samples of length 

23.6s and sampled at 173.6 Hz using 12-bit resolution, resulting in 4097 data points per each 

signal. The amplitude is in microvolts. All the recordings were made with the same 128-channel 

amplifier system. Set A and set B were collected from surface EEG recordings of five healthy 

subjects with eyes open and eyes closed respectively. Sets C, D and E correspond to EEG 

records of five epileptic patients. The samples in the first two sets are collected during seizure-

free intervals (interictal), from the hippocampal formation of the opposite hemisphere of the 

brain and from within the epileptogenic zone respectively. Set E samples are collected during 

seizure activity (ictal). The properties of each set are summarized in table 4.1. 

Table 4.1 Summary of the main properties of each set within the database. 

 Set A Set B Set C Set D Set E 

Subject 

state 

Healthy 

Eyes open 

Healthy 

Eyes closed 

Epileptic 

Interictal 

Epileptic 

Interictal 

Epileptic 

Ictal 

Electrode 

type 
Surface Surface Intracranial Intracranial Intracranial 

Electrode 

placement 

International 

10-20 system 

International 

10-20 system 

Opposite to 

epileptogenic 

zone 

Within 

epileptogenic 

zone 

Within 

epileptogenic 

zone 

 

 

Figure 4.2 Example of an EEG signal from (a) set A (b) set B (c) set C (d) set D (e) set E [72]. 

(a) 

(b) 

(c) 

(d) 

(e) 
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Figure 4.2 depicts five samples of the EEG recordings from the five different sets in the Bonn 

database. The y-axis corresponds to the amplitude in microvolts and the x-axis corresponds to 

the time in seconds.  

4.3 Methodology and procedures 

Three methods are proposed for two experiments. In the first experiment, Epilepsy is 

detected mainly from the interictal intervals and the implemented scenario is healthy vs. 

epileptic. Therefore, all the samples in the dataset fall in two classes: healthy, for sets A and B, 

and epileptic for sets C, D and E. In the second experiment, Epilepsy is detected from ictal 

intervals and the implemented scenario is seizure-free vs. seizure. Since the database has only 

one set with ictal samples, sets A, B, C and D fall in the first class which is seizure-free 

(regardless of whether the subject is healthy or epileptic) while set E samples belong to the 

second class, ictal. For simplicity, we will refer to the first experiment as Epilepsy detection 

and the second as seizure detection throughout the whole chapter.  

In order to have good training and validate the results with a test dataset, the Bonn 

database is quite limited. To tackle this issue an augmentation scheme is proposed. Each EEG 

signal is divided into 8 signals using a window length of 512 data points with no overlap, as 

shown in figure 4.3. The resulting samples are treated as independent instances. Therefore, the 

augmented database has 800 signals per each set, which sums up to a total of 4000 signals.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Augmentation scheme illustrated in a sample from set A. 
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4.3.1 Feature extraction 

The choice of the right features plays a major role in classification problems. In the first 

method, eight statistical features are extracted directly from the signal to summarize the relevant 

information contained in it. Hence, this method relies only on time-domain information. The 

used statistical features are maximum amplitude, mean, mode, median, standard deviation, first 

quartile, third quartile and interquartile. The second method relies solely on frequency domain 

information using the DCT, which is a widely used data compression technique. Since energy 

is concentrated in low frequencies, as shown in figure 4.4, we keep only the first 150 

coefficients (29.3% of the signal after the transformation). Then, we extract four features, which 

are mean of the absolute value of the coefficients, interquartile, energy and entropy. We will 

later show that further reduction is possible on the number of input features. 

 

                                     (a)                                          (b)                                          (c) 

 

                                                                 (d)                                           (e) 

Figure 4.4 DCT of a signal from (a) set A (b) set B (c) set C (d) set D (e) set E. 

The third method is based on the DWT, which captures both frequency and location in time 

information. The first three decomposition levels are tested separately. Figure 4.5 shows the 

frequency band covered by each level. Both detail and approximation coefficients are taken into 

account. Figure 4.6 illustrates the plots of detail (in red) and approximation (in blue) 

coefficients, using the Haar wavelet on a sample from set A. Instead of directly feeding the 

coefficients to the classifier, we summarize the relevant information in 16 statistical features, 8 

for the detail coefficients and 8 for the approximation coefficients. These features are 

maximum, mean of the absolute value of the coefficients, mode, median, standard deviation, 

first quartile, third quartile and interquartile. 
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Figure 4.5 The different frequency bands covered by the first three levels of DWT. 

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

 

Figure 4.6 Discrete Haar wavelet coefficients on a set A signal at (a) level 1 (b) level 2 (c) level 3. 
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4.3.2 Classification 

After extracting the selected features depending on the used method, they are fed to 

three different classifiers to compare their performances. The first classifier is k-NN, the second 

is SVM, and the last is ANN. To train both k-NN and SVM models, we used the software 

Matlab R2018b. The two classifiers are already implemented in the Statistics and Machine 

Learning Toolbox as the two functions fitcknn and fitcsvm. To train the ANN classifier, the 

model was built with Python 3.6. It is made exclusively of dense layers from the Keras library 

as we are using a simple MLP. The model consists of four hidden layers; the first layer has 30 

neurons, while the remaining three were implemented with 20 neurons each. The ReLU 

activation function was used for the hidden layers, and the sigmoid activation function was 

chosen for the output layer. 

4.3.3 Evaluation 

The data is divided into 75% for the training and 25% for testing. The performance 

metrics used for the evaluation of the model are accuracy, sensitivity, and specificity.  

The accuracy (acc) of a classifier is its ability to differentiate between positive and negative 

cases correctly. Mathematically, it is expressed as follows: 

                                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                            (4.1) 

Where TP (true positive): the number of cases correctly identified as positive (unhealthy). 

            TN (true negative): the number of cases correctly identified as negative (healthy). 

            FP (false positive): the number of cases incorrectly identified as positive. 

            FN (false negative): the number of cases incorrectly identified as negative. 

The sensitivity (sen) of a binary classification model is its ability to determine the positive cases 

correctly, whereas, the specificity (spe) measures its ability to identify negative cases correctly. 

They are calculated as follows: 

                                         𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                   (4.2) 

                                        𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                    (4.3) 
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4.4 Results and discussions 

4.4.1 Experiment 1: Epilepsy detection 

   In this experiment, the goal is to identify whether a subject has Epilepsy or not mainly 

from interictal intervals. Several data samples of the Bonn database are tested. First, a pair from 

the four sets (excluding set E) is taken each time (a healthy set and an epileptic set) resulting in 

four combinations: A-C, A-D, B-C, and B-D. Then, sets A and B are grouped to form the 

healthy class while sets C and D form the epileptic class. Finally, set E is added to the latter. 

For each pair, 1200 samples are used for the training, and 400 samples for the testing. In each 

train and test dataset the positive and negative cases are equal. The data sample AB-CD is 

divided into 2400 samples for the training and 800 samples for the testing. Here again, the 

epileptic portion and the healthy portion are of equal size. The last data sample, which includes 

the whole database, is divided into 3000 samples for training, from which 1200 are healthy 

cases and 1800 are epileptic cases, and 1000 samples for testing, where 400 are negative cases 

and the remaining 600 are positive cases.    

4.4.1.a Method 1: Feature extraction using statistical parameters 

As mentioned before, the first method is based on the extraction of statistical features 

directly from the original signal in the time domain. The results are recorded in table 4.2, table 

4.3 and table 4.4 for the k-NN classifier, SVM classifier and ANN classifier, respectively. 

Table 4.2 The obtained results for Epilepsy detection with the k-NN classifier using the first method (statistical 

features applied on the original signal). 

  A-C A-D B-C B-D AB-CD AB-CDE 

 

k = 3 

Acc (%) 74.75 74.75 67.75 72 66.12 69.8 

Sen (%) 67 69 49 62.5 56.5 67.17 

Spe (%) 82.5 80.5 86.5 81.5 75.75 73.75 

 

k = 5 

Acc (%) 77 76.25 70 71.25 68 71.2 

Sen (%) 70 67 51 60 55.25 65.67 

Spe (%) 84 85.5 89 82.5 80.75 79.5 

 

k = 8 

Acc (%) 78.25 76.25 70.5 74.75 68.12 72.3 

Sen (%) 73.5 71 54 67 60.5 62 

Spe (%) 83 81.5 87 82.5 75.75 87.75 
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Table 4.3 The obtained results for Epilepsy detection with the SVM classifier using the first method           

(statistical features applied on the original signal). 

 A-C A-D B-C B-D AB-CD AB-CDE 

Acc (%) 82.75 81.75 73 78.75 74.87 75.2 

Sen (%) 80.5 71.5 56.5 69 66.25 75 

Spe (%) 85 92 89.5 88.5 83.5 75.5 

 

Table 4.4 The obtained results for Epilepsy detection with the ANN classifier using the first method      

(statistical features applied on the original signal). 

 A-C A-D B-C B-D AB-CD AB-CDE 

Acc (%) 72.5 78.5 71 74.75 69.5 76 

Sen (%) 65 66 63.5 74 55 79.33 

Spe (%) 80 91 78.5 75 84 75.5 

 

When using the k-NN classifier, changing the parameter k affects the accuracy, such 

that it increases when we increase the number of nearest neighbors. The average accuracy is 

73.36% for k = 8, which makes the k-NN classifier the least performing in this case, followed 

by ANN with an average accuracy of 73.7%. The SVM classifier has the best performance with 

an average accuracy of 77.72%. Generally, the pairs with set A as the healthy set give better 

results than with set B. It is worth noting that the two resting states eyes-open and eyes-closed 

have different impacts on the brain activity, which results in the observed difference. Mostly, 

the recorded specificity is higher than the sensitivity. In other words, the three models tend to 

misclassify the epileptic cases more than the healthy cases. The first method resulted in poor 

performance. The time-domain information alone is far from enough for Epilepsy detection. 

Figure 4.7 shows the different features used for four samples from set A, set B, set C and set D. 

There is no obvious distinction between the healthy and epileptic cases, which would explain 

the confusion of the classifiers. However, since set E signals are recorded during the seizure, 

they are distinguishable from the rest as shown in figure 4.8. 
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Figure 4.7 An example of four different input signals from sets A, B, C and D used in the training for the first 

method. 

 

 

Figure 4.8 An example of different input signals from the five sets used in the training for the first method. 
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4.4.1.b Method 2: Feature extraction using DCT 

Since extracting the statistical features directly from the original signal resulted in a bad 

performance, we moved to the frequency domain with the DCT to see if that leads to any 

improvement. Using the four features mentioned in section 4.4.1, the results are recorded in 

table 4.5 and table 4.6 for the classifiers k-NN and SVM respectively. 

Table 4.5 The obtained results for Epilepsy detection with the k-NN classifier using the second method (four 

statistical features applied on the DCT coefficients). 

  A-C A-D B-C B-D AB-CD AB-CDE 

 

k = 3 

Acc (%) 91.5 90.75 81.5 89.75 85.25 88 

Sen (%) 85.5 86.5 65.5 84 78 84.83 

Spe (%) 91.5 95 97.5 95.5 92.5 92.75 

 

k = 5 

Acc (%) 91.5 92 81 91.5 87 88.8 

Sen (%) 85.5 87.5 64 86.5 80 86 

Spe (%) 97.5 96.5 98 96.5 94 93 

 

k = 8 

Acc (%) 91.75 92.75 84.25 91 87.87 88.7 

Sen (%) 86 91 70.5 87 82.75 84.33 

Spe (%) 97.5 94.5 98 95 93 95.25 

 

Table 4.6 The obtained results for epilepsy detection with the SVM classifier using the second method (four 

statistical features applied on the DCT coefficients). 

 A-C A-D B-C B-D AB-CD AB-CDE 

Acc (%) 94.25 92.25 81.5 91.5 87.87 89.2 

Sen (%) 90 86.5 64 84 77 84.83 

Spe (%) 98.5 98 99 99 98.75 95.75 

The best average accuracy with the k-NN classifier, 89.39%, was again achieved with 

parameter k=8. The SVM model performed barely better with an average accuracy of 89.43%. 

The performance was especially bad with data sample B-C compared to the other pairs where 

the accuracy was greater than 90%. The correctly classified cases are not equally distributed 

over the two classes with both models, as they tend to “favor” the healthy class. The specificity 

recorded with the SVM classifier was generally greater than 98% (except with data sample AB-

CDE), unlike the sensitivity, which was quite low. k-NN was slightly better, as it offers more 

balance between the two metrics.  
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To see if there were any redundant features in the input vector, we removed one feature 

at a time and observed the results. We concluded that the dimensionality could be reduced to 

half the original one. Both energy and entropy were redundant and therefore removed. The 

results are shown in table 4.7, table 4.8 and table 4.9 for the classifiers k-NN, SVM and ANN, 

respectively. 

Table 4.7 The obtained results for Epilepsy detection with the k-NN classifier (k=8) using the second method 

after the dimensionality reduction of the input vector. 

 A-C A-D B-C B-D AB-CD AB-CDE 

Acc (%) 93.5 92 86.75 91.75 88.75 89.1 

Sen (%) 90.5 88.5 75 85.5 82.5 84.17 

Spe (%) 96.5 95.5 98.5 98 95 96.5 

 

Table 4.8 The obtained results for Epilepsy detection with the SVM classifier using the second method after the 

dimensionality reduction of the input vector. 

 A-C A-D B-C B-D AB-CD AB-CDE 

Acc (%) 94.25 92.25 84 90.75 87.75 89.3 

Sen (%) 90.5 87 69 82.5 77.5 85.33 

Spe (%) 98 97.5 99 99 98 95.25 

 

Table 4.9 The obtained results for Epilepsy detection with the ANN classifier using the second method after the 

dimensionality reduction of the input vector. 

 A-C A-D B-C B-D AB-CD AB-CDE 

Acc (%) 93 92 87.75 88.75 89.37 90.1 

Sen (%) 88.5 86 76 78.5 80.75 85 

Spe (%) 97.5 98 99.5 99 98 97.75 

 

After reducing the size of the input vector, the best average accuracy recorded is 90.30% 

with the k-NN classifier (a gain of almost 1%), followed by ANN with an average accuracy of 

90.16%, then SVM with an average accuracy of 89.72%. Relying on the frequency domain 

information with the DCT improved the performance considerably compared to the first 

method. The gain is 16.94% with k-NN, 16.46% with ANN and 12% with SVM. Nevertheless, 

the results for some data samples are still not satisfying, especially the sensitivity, which is quite 

low in most cases. 
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 4.4.1.c Method 3: Feature extraction using DWT 

As an attempt to farther improve the performance for Epilepsy detection, we have used 

a powerful mathematical tool, which is the DWT, to extract the statistical features from the 

generated approximation and detail coefficients. We have recorded the results for 37 wavelets 

from six different families, which are Haar, Daubechies, biorthogonal, Coiflet, Symlet and 

discrete Meyer. We tested the three first decomposition levels separately, but only the best 

accuracy was recorded with the corresponding level. The complete tables for SVM and k-NN 

are shown in the appendix, whereas table 4.10 and table 4.11 show only 6 wavelets for which 

the accuracy was highest with k-NN and SVM classifiers respectively. Table 4.12 refers to the 

results achieved with ANN.  

Table 4.10 The obtained results for epilepsy detection with the k-NN classifier using the third method 

(extracting statistical features from the DWT coefficients). 

Data sample Wavelet Level Acc (%) Sen (%) Spe (%) 

 

 

A-C 

 

Db5 2 92 84.5 99.5 

Db7 1 93 88.5 97.5 

Bior2.4 1 92.5 86 99 

Bior2.6 1 91.75 85 98.5 

Bior5.5 2 91.75 84.5 99 

Coif4 2 92.75 87.5 98 

 

 

A-D 

Db10 3 93 88.5 97.5 

Bior2.4 3 93.25 88 98.5 

Bior3.3 3 93 86.5 99.5 

Bior4.4 3 93.25 88.5 98 

Bior5.5 3 93 89 97 

Sym5 3 92.75 86.5 99 

 

 

B-C 

Db3 3 93.75 87.5 100 

Db5 3 93 87 99 

Db7 3 93 86 100 

Db9 3 93.5 87.5 99.5 

Db10 3 93.75 88 99.5 

Sym3 3 93.75 87.5 100 

 

 

B-D 

Db6 3 97.75 95.5 100 

Db10 3 98 96 100 

Bior4.4 3 97.75 95.5 100 

Bior5.5 3 97.75 97 98.5 

Coif4 3 97.75 96.5 99 

Sym8 3 98.75 97.5 100 

 

 

AB-CD 

Db5 3 91 84 98 

Db7 3 91.37 84.5 98.25 

Db10 3 92.25 86.25 98.25 

Bior6.8 3 91.5 84.5 98.5 

Coif4 3 91.62 85 98.25 

Sym5 3 91.12 83 99.25 

 

 

AB-CDE 

Db3 3 92 88.5 97.25 

Db5 3 91.7 87 98.75 

Db10 3 91.8 89 96 

Coif3 3 91.6 86.83 98.75 

Sym3 3 92 88.5 97.25 

Sym5 3 92.3 88.5 98 
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Table 4.11 The obtained results for Epilepsy detection with the SVM classifier using the third method  

(extracting statistical features from the DWT coefficients). 

Data sample Wavelet Level Acc (%) Sen (%) Spe (%) 

 

A-C 

 

Db2 2 95.75 93 98.5 

Bior1.3 1 94.75 93.5 96 

Bior2.4 1 94.5 94 95 

Bior2.6 1 94.5 94 95 

Sym2 1 95.75 94 97.5 

Sym6 1 94.5 93 96 

A-D 

Db3 3 93.5 90.5 96.5 

Db5 2 93.75 88.5 99 

Bior2.4 3 93.5 92.5 94.5 

Bior2.8 3 93.75 91 96.5 

Bior5.5 3 93.5 89.5 97.5 

Sym3 3 93.5 90.5 96.5 

B-C 

Db1 2 84.25 68.5 100 

Db2 3 83.5 67 100 

Db3 3 84.5 69 100 

Sym2 3 83.5 67 100 

Sym3 3 84.5 69 100 

Sym7 3 83.5 67 100 

B-D 

Db1 2 95.25 93.5 97 

Db10 3 93.75 87.5 100 

Bior1.3 1 95.75 94 97.5 

Bior1.5 1 96.5 94.5 98.5 

Coif4 3 94 88 100 

Sym8 3 93.25 86.5 100 

AB-CD 

Db1 1 91 84.75 97.25 

Db3 3 88.25 77.75 98.75 

Bior1.3 1 89.37 79.75 97 

Bior1.5 1 89.5 81.25 97.75 

Coif3 3 88 76.75 99.25 

Sym3 3 88.25 77.75 98.75 

AB-CDE 

Db3 3 94.6 92 98.5 

Db5 3 94.3 90.83 99.5 

Bior1.3 1 93.8 90 99.5 

Sym3 3 94.6 92 98.5 

Sym4 3 93.9 90.83 98.5 

Sym5 3 94.1 91 98.75 

 

Table 4.12 The obtained results for Epilepsy detection with ANN classifier using the third method       

(extracting statistical features from the DWT coefficients). 

Data sample Wavelet Level Acc (%) Sen (%) Spe (%) 

A-C Bior2.4 1 90.5 83 98 

A-D Bior2.4 3 93.75 88.5 99 

B-C Db3 3 94.5 90.5 98.5 

B-D Coif4 3 98 96 100 

AB-CD Db10 3 94 90 98 

AB-CDE Db3 3 93.5 91.17 97 
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We observe from the obtained results that there is no “best wavelet” for EEG data, which 

would give the highest accuracy for all cases. It depends on both the data sample and the 

selected classifier. However, the db10 wavelet achieved the best average accuracy of 93.26% 

with k-NN. SVM was especially sensitive to the change in the training data such that the 

performance drops drastically with the sample B-C. It is also the least performing classifier 

with an average accuracy of 92.68%. k-NN was more stable and the least sensitive to data 

change, wavelet and level change.  The average accuracies for the two classifiers, k-NN and 

ANN were 93.88% and 94.04% respectively. Probably, better results could be obtained with 

the latter since we tested the model with only one wavelet for each data sample. The choice of 

the wavelet for ANN was based on the results obtained with the two other classifiers. We choose 

one with which the accuracy was high for both classifiers. The DWT has indeed improved the 

overall performance. All the samples have a higher accuracy than 90% (except with SVM). The 

sensitivity is still lower than the specificity, but considerably high compared to the previous 

method. 

 

● After carrying on the experiment with the whole EEG signals and deducing that the DWT 

based method has the best accuracy for Epilepsy detection, we decided to test the performance 

on the separate EEG rhythms and see whether we can achieve close results with only one 

rhythm. The rhythms were obtained from filtering the original signal using a second-order 

Butterworth filter. The wavelet used throughout the whole experiment is db7 (Daubechies order 

7). The wavelet choice was not random, it was obtained empirically, but there is no guarantee 

that this is the best choice. It is worth noting that unlike when using the whole signal, changing 

the wavelet when dealing with the rhythms separately could lead to very different results (up to 

20% difference in the accuracy was observed when testing different wavelets). The used 

classifiers are SVM and k-NN; however, since the latter achieved better results with all rhythm, 

which are shown in table 4.13, we included the results obtained with SVM in the appendix. 
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Table 4.13  The obtained results for Epilepsy detection with the k-NN classifier using the DWT coefficients 

after decomposing the EEG signal into 5 rhythms. 

 A-C A-D B-C B-D AB-CD AB-CDE 

Delta 

Rhythm 

Acc (%) 92.75 93.25 94.25 96.75 93.12 92.9 

Sen (%) 86 87.5 91 94 88.25 90.17 

Spe (%) 99.5 99 97.5 99.5 98 97 

Theta 

Rhythm 

Acc (%) 87.5 87.25 88.5 91.5 88.12 90.8 

Sen (%) 79 78.5 85.5 89.5 83 88.17 

Spe (%) 96 96 91.5 93.5 93.25 97.75 

Alpha 

Rhythm 

Acc (%) 76.5 84.25 88.5 91.75 82.12 82.1 

Sen (%) 64 76 78.5 84.5 73 78.5 

Spe (%) 89 92.5 98.5 99 91.25 87.5 

Beta 

Rhythm 

Acc (%) 78 81.25 84.25 91.25 81.62 83 

Sen (%) 63.5 69 71 83.5 70.5 77 

Spe (%) 92.5 93.5 97.5 99 92.75 92 

Gamma 

Rhythm 

Acc (%) 80 83.5 88.5 85.5 81.12 83.1 

Sen (%) 71 72.5 78.5 77.5 70.75 78.17 

Spe (%) 89 94.5 98.5 93.5 91.5 90.5 

        

       We observe from the obtained results that Epilepsy is better detected in low frequency 

elements (<8Hz). The best performance was recorded with the Delta rhythm, which has the 

lowest frequency band (<4Hz), and the highest average accuracy, 93.84%, followed by the theta 

rhythm (4Hz< frequency <8Hz) with an average accuracy of 88.95%. Then, Alpha, Gamma 

and Beta rhythms with average accuracies 84.20%, 83.62% and 83.23% respectively. The best 

accuracy was achieved with data sample B-D, 96.75%, which also has the highest sensitivity 

and specificity, 94% and 99.5% respectively. Using only the Delta rhythm instead of the whole 

EEG signal leads to almost the same results, with a loss of only 0.04% in accuracy, a gain of 

0.03% in sensitivity and a loss of 0.2% in specificity.  Using a different method does not forcibly 

lead to the same conclusions.  

4.4.2 Experiment 2: Seizure detection 

This experiment aims to identify epileptic seizures from EEG data. Several samples of 

the Bonn database are tested. First, we take set E, which represents the ictal class, with one of 

the remaining four sets each time, resulting in four combinations: A-E, B-E, C-E and D-E. 
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Then, we use the whole database where sets A, B, C and D form the seizure-free class and set 

E the ictal class. Table 4.14 shows how the data was divided between training and testing the 

models. 

Table 4.14 Data division to train and test the models for seizure detection. 

Data sample purpose EEG recordings Seizure-free cases Ictal cases 

Pairs (A-E, B-E, 

C-E and D-E) 

Training 1200 600 600 

Testing 400 200 200 

ABCD-E 
Training 3000 2400 600 

Testing 1000 800 200 

 

 4.4.2.a Method 1: Feature extraction using statistical parameters 

After extracting the features from the original signal in time-domain, the results are 

recorded in table 4.15 with the k-NN classifier, table 4.16 with the SVM classifier, and table 

4.17 with the ANN classifier. 

Table 4.15 The obtained results for seizure detection with the k-NN classifier using the first method     

(statistical features applied on the original signal). 

  A-E B-E C-E D-E ABCD-E 

 

k = 3 

Acc (%) 99.75 96 97.75 94.25 97.1 

Sen (%) 99.5 93 98.5 94.5 90.5 

Spe (%) 100 99 97 94 98.75 

 

k = 5 

Acc (%) 99.75 96.25 97.75 95.5 97.2 

Sen (%) 99.5 93 98 96 89.5 

Spe (%) 100 99.5 97.5 95 99.12 

 

k = 8 

Acc (%) 99.75 95.75 98.25 94.25 96.5 

Sen (%) 99.5 92.5 99 96 90 

Spe (%) 100 99 97.5 92.5 98.12 

 

Table 4.16 The obtained results for seizure detection with the SVM classifier using the first method      

(statistical features applied on the original signal). 

 A-E B-E C-E D-E ABCD-E 

Acc (%) 100 95.25 98.5 93.75 95.8 

Sen (%) 100 93 99 95 89.5 

Spe (%) 100 97.5 98 92.5 97.37 
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Table 4.17 The obtained results for seizure detection with the ANN classifier using the first method      

(statistical features applied on the original signal). 

 A-E B-E C-E D-E ABCD-E 

Acc (%) 99.75 95.75 98.5 94.75 96.8 

Sen (%) 99.5 92.5 99 96 89.5 

Spe (%) 100 99 98 93.5 98.62 

 

The performance of the three classifiers was quite good, unlike the obtained results for 

Epilepsy detection. This is due to the remarkably high peaks in the EEG data, which results 

from the hyper-activity of the brain during seizure intervals. Figure 4.8 illustrates clearly the 

big difference in statistical features between set E samples and the other sets. It also justifies 

why we obtained the lowest accuracy with the data sample D-E. The best set used with set E in 

the training was set A, which represents the EEG recordings of healthy subjects with eyes open. 

It resulted in an accuracy of 100% with SVM and 99.75% with both k-NN and ANN. The effect 

of varying the parameter k in the k-NN model is barely noticeable. The best average accuracy 

of 97.29%, was recorded with k=5. The least performing classifier was SVM with an average 

accuracy of 96.66% followed by ANN with an average accuracy of 97.11%. When using the 

whole database, the sensitivity was especially lower than the specificity compared to the values 

obtained with the pairs. This is probably due to the unbalance of the positive and negative cases 

in the training data set. The negative class was 4 times bigger than the positive class, which 

resulted in lower sensitivity.  

4.4.2.b Method 2: Feature extraction using DCT  

In the previous experiment, Epilepsy detection, the two features, energy and entropy, 

were proved redundant in the input vector. However, since we did not want to generalize the 

observation to this experiment, we observed the results with both 2 and 4 features with the SVM 

classifier. Once again, the energy and entropy were found to be unnecessary. Therefore, table 

4.18, table 4.19, and table 4.20 refer to the obtained results with 2 features, mean and 

interquartile, with k-NN, SVM and ANN classifiers, respectively. 
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Table 4.18 The obtained results for seizure detection with the k-NN classifier using the second method          

(two statistical features applied on the DCT coefficients). 

  A-E B-E C-E D-E ABCD-E 

 

k = 3 

Acc (%) 100 97.5 96.5 95.25 96.7 

Sen (%) 100 97.5 98.5 97 92.5 

Spe (%) 100 97.5 94.5 93.5 97.75 

 

k = 5 

Acc (%) 100 97.75 97 96 97.1 

Sen (%) 100 98.5 99.5 98.5 95.5 

Spe (%) 100 97 94.5 93.5 97.5 

 

k = 8 

Acc (%) 100 97.5 97.25 95.75 97.3 

Sen (%) 100 98.5 99.5 99 97 

Spe (%) 100 96.5 95 92.5 97.37 

 

Table 4.19 The obtained results for seizure detection with the SVM classifier using the second method  

(two statistical features applied on the DCT coefficients). 

 

 A-E B-E C-E D-E ABCD-E 

Acc (%) 99.75 96.75 98.25 96 96.9 

Sen (%) 99.5 96 99 98 92 

Spe (%) 100 97.5 97.5 94 98.12 

 

Table 4.20 The obtained results for seizure detection with the ANN classifier using the second method 

(two statistical features applied on the DCT coefficients). 

 

 A-E B-E C-E D-E ABCD-E 

Acc (%) 99.75 97.25 98.25 96.25 97.5 

Sen (%) 100 97 99.5 97.5 96.5 

Spe (%) 99.5 97.5 97 95 97.75 

 

Relying on the frequency domain information slightly improved the overall 

performance. The recorded accuracies for data samples B-E and D-E are higher compared to 

the previous method. Although, the best data combination is still A-E and the worst is still D-

E. The best classifier was ANN with an average accuracy of 97.8% followed by k-NN and SVM 

with an average accuracy of 97.57% (k=5) and 97.53%, respectively. The main advantage of 

applying the DCT to the original signal before feature extraction over the previous method is 

the high sensitivity recorded when using the whole database, such that both sensitivity and 

specificity are greater than 96% with the best classifier ANN. 
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 4.4.2.c Method 3: Feature extraction using DWT 

       As in the previous experiment, Epilepsy detection, 37 different wavelets from 6 families 

were tested with k-NN and SVM. The complete tables are shown in the appendix. Table 4.21 

and table 4.22 refer to the obtained results, using the DWT coefficients, with the best 6 

performing wavelets in each data sample, with k-NN and SVM, respectively. Table 4.23 refers 

to the results obtained with the ANN classifier using only a single wavelet per data sample. 

 

Table 4.21 The obtained results for seizure detection with the k-NN classifier using the third method  (extracting 

statistical features from the DWT coefficients). 

Data sample Wavelet Level Acc (%) Sen (%) Spe (%) 

 

 

A-E 

 

Db1 3 100 100 100 

Db4 3 100 100 100 

Bior2.2 3 100 100 100 

Coif1 3 100 100 100 

Sym2 3 100 100 100 

Dmey 3 100 100 100 

 

 

B-E 

Db1 2 97 94 100 

Db2 1 97 94 100 

Bior2.2 2 97 94 100 

Bior2.4 3 96.75 94 99.5 

Sym2 1 97 94 100 

Sym4 3 96.75 93.5 100 

 

 

C-E 

Bior2.2 3 99.5 100 99 

Bior2.8 3 99.25 99 99.5 

Bior3.3 2 99.75 99.5 100 

Bior3.7 2 99.5 99 100 

Coif1 3 99.25 99.5 99 

Sym4 2 99.25 99 99.5 

 

 

D-E 

Db1 2 98.25 97.5 99 

Db3 3 98.5 99 98 

Db5 3 98.25 98.5 98 

Coif2 3 98.25 99.5 97 

Sym3 3 98.5 99 98 

Sym5 3 99 99.5 98.5 

 

 

ABCD-E 

Db3 3 97.8 91.5 99.37 

Bior2.2 2 97.9 92.5 99.25 

Bior5.5 2 97.9 91 99.62 

Coif1 1 97.8 91.5 99.37 

Sym3 3 97.8 91.5 99.37 

Sym5 3 98 92 99.5 
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Table 4.22 The obtained results for seizure detection with the SVM classifier using the third method    

(extracting statistical features from the DWT coefficients). 

Data sample Wavelet Level Acc (%) Sen (%) Spe (%) 

 

 

A-E 

 

Db1 3 100 100 100 

Db5 3 100 100 100 

Bior2.6 3 100 100 100 

Coif2 3 100 100 100 

Sym5 3 100 100 100 

Dmey 3 100 100 100 

 

 

B-E 

Db1 2 97.75 95.5 100 

Db2 3 97.75 96 99.5 

Bior2.4 2 98 96.5 99.5 

Bior2.6 2 98.25 96.5 100 

Coif4 3 97.75 95.5 100 

Sym2 3 97.75 96 99.5 

 

 

C-E 

Bior2.2 1 99.5 100 94 

Bior2.4 1 99.75 100 99.5 

Bior2.6 1 99.5 100 99 

Bior2.8 2 99.5 99.5 99.5 

Bior3.1 3 99.5 100 99 

Coif1 1 99.5 100 99 

 

 

D-E 

Db1 3 96.5 100 93 

Db7 3 96.75 99.5 94 

Bior2.6 3 96.75 99.5 94 

Bior3.1 3 97 99 95 

Coif1 3 97.25 100 94.5 

Coif5 3 96.5 99.5 93.5 

 

 

ABCD-E 

Db1 1 97.5 95.5 98 

Bior2.6 1 97.4 94.5 98.12 

Coif1 1 97.6 95.5 98.12 

Coif2 3 97.6 94.5 98.37 

Sym2 2 97.4 95.5 97.87 

Sym5 2 98 97.5 98.12 
 

Table 4.23 The obtained results for seizure detection with ANN classifier using the third method         

(extracting statistical features from the DWT coefficients). 

Data sample Wavelet Level Acc (%) Sen (%) Spe (%) 

A-E Db1 3 100 100 100 

B-E Db1 2 97.25 94.5 100 

C-E Bior3.3 2 98.75 97.5 100 

D-E Coif2 3 97.25 95 99.5 

ABCD-E Sym5 3 98.2 91.5 99.87 

 

  All three classifiers have led to perfect accuracy (100%) with data sample A-E. The 

wavelet choice with the latter is quite irrelevant as can be seen in the complete tables (refer to 

the appendix). The best performing classifier was k-NN with an average accuracy of 98.75%, 
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followed by SVM with an average accuracy of 98.65%, then ANN with an average accuracy of 

98.29%. Again, it is worth noting that only one wavelet was tested with the ANN classifier for 

each data sample. Therefore, it is highly possible to record better accuracy with different 

wavelets, and the order is not final. The DWT based method has resulted in the best 

performance for seizure detection, such that all accuracies, regardless of the data sample and 

the classifier, were greater than 97%. However, the bior2.2 wavelet achieved the best average 

accuracy, 98.48% with k-NN. The lowest sensitivity recorded with the best classifier (k-NN) 

was 92% when using the whole database. Whereas, the specificity did not drop below 

98.5%.For all three methods, it is safe to generalize that for the negative class, using set A 

instead of set B (healthy sets) and set C instead of set D (epileptic interictal sets) during the 

training leads to higher accuracy in seizure detection. 

● As it was done in the previous experiment, Epilepsy detection, we tested the DWT based 

method with the separate EEG rhythms to see if we can narrow down the input to only one 

rhythm instead of the whole signal. The wavelet used is db7, and again, there is no guarantee 

that this is the best choice. Two classifiers were tested, SVM and k-NN. The former has the 

best performance with all rhythms except Gamma. Table 4.24 refer to the results obtained with 

the SVM classifier, whereas the recorded results with k-NN can be seen in the appendix. 

Table 4.24 The obtained results for seizure detection with the SVM classifier using the DWT coefficients after 

decomposing the EEG signal into 5 rhythms. 

 A-E B-E C-E D-E ABCD-E 

Delta 

Rhythm 

Acc (%) 92.75 93.25 94.25 96.75 92.9 

Sen (%) 86 87.5 91 94 90.17 

Spe (%) 99.5 99 97.5 99.5 97 

Theta 

Rhythm 

Acc (%) 99.75 99 96.5 95.75 97.9 

Sen (%) 99.5 98.5 96 93.5 91.5 

Spe (%) 100 99.5 97 98 99.5 

Alpha 

Rhythm 

Acc (%) 100 91.5 98.25 98.5 96 

Sen (%) 100 88.5 99 98 86 

Spe (%) 100 94.5 97.5 99 98.5 

Beta 

Rhythm 

Acc (%) 98.5 96 98.25 98.75 97.6 

Sen (%) 99 94.5 100 98 94 

Spe (%) 98 97.5 96.5 99.5 98.5 

Gamma 

Rhythm 

Acc (%) 96.75 88.25 94.5 96 92.3 

Sen (%) 94.5 98 98 97.5 91 

Spe (%) 99 78.5 91 94.5 92.62 
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Generally, the overall performance was good with all five rhythms. The highest average 

accuracies were achieved with the Beta and Theta rhythms, 97.82% and 97.78% respectively, 

followed by Alpha with an average accuracy of 96.85%. Then, Delta and Gamma rhythms with 

average accuracies 95.86% and 93.56%, respectively. The detection of epileptic seizures is 

higher in the frequency band 4 Hz to 30 Hz. The main difference between the results recorded 

with Theta and Beta rhythms is that higher accuracies (≥99%) were achieved with the Theta 

rhythm with the healthy sets (A and B) whereas, the results achieved with the interictal sets  (C 

and D) were better with the Beta rhythm (≥98.25%). Also, the latter has the best average 

sensitivity, 97.1%, which is 1.3% higher than the sensitivity recorded with the Theta rhythm. 

However, the average specificity of the latter, 98.8% is 0.8% greater than the recorded average 

specificity with the Beta rhythm. The results achieved with the Beta rhythm are very close to 

those achieved with the whole signal. There is a loss of 0.93% in accuracy, a gain of 0.1% in 

sensitivity, and a loss of 1.6% in specificity. Here again, the drawn conclusions concern only 

this method. The fact that epileptic seizures were best detected with the Beta rhythm cannot be 

generalized to other researches with different methods.  

4.5 Summary 

In this chapter, we presented three methods for two types of problems concerning 

Epilepsy. The first one is the detection of the disease during seizure-free intervals from EEG 

data. The second is the identification of the epileptic seizures from the same data. The difference 

between the presented methods lies in the features extraction stage. In the first method, we 

directly used the original signal to extract 8 statistical features. In the second and third methods, 

an extra step is added. In the former, we first obtained the DCT coefficients then summarized 

the relevant information in 2 features, whereas in the latter, we used the DWT transformation 

on the signal then we extracted 16 features. We preferred to perform the classification with 

more than one model. Hence, we used three classifiers k-NN, SVM, and ANN. Several data 

samples were tested.  

For Epilepsy detection, the first method was proved to be the worst with the best 

accuracy achieved, 82.75%, for the A-C data sample. But, in most cases, the accuracy was less 

than 80%. The second method, based on the DCT, performed better. The accuracy was greater 

than 90% for three data samples and greater than 80% for the remaining three. The best overall 

performance was achieved with the last method based on the DWT. For all data samples, with 

the k-NN classifier, the minimum accuracy recorded was 92.25%, the minimum sensitivity was 

86.25%, and the minimum specificity was 97.5%.  
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For seizure detection, all three methods had a good performance. Although, the order 

was the same as in the first experiment. The least average accuracy recorded was 97.29% using 

the first method (with the k-NN classifier). The DCT slightly improved the results with an 

average gain of 0.51% in the accuracy (with the ANN classifier). The best performance was 

recorded with the DWT based method, where the average accuracy was 98.75%, the average 

sensitivity was 97%, and the average specificity was 99.6% (with the k-NN classifier). 

The last step in both experiments was to test the DWT based method on the five rhythms 

extracted from the EEG signal. We observed that for Epilepsy detection, almost the same 

performance could be achieved from only the Delta rhythm. Whereas for seizure detection, very 

close results to those recorded with the whole signal were achieved from the Beta rhythm. 
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 General conclusion 

General conclusion 

 

The EEG test gives information about the electrical activity carried out in the brain. It 

is the most suitable test for Epilepsy diagnosis since epileptic seizures are characterized by the 

abnormal brain activity and the unnaturally high spikes of voltage recorded during seizure.  

        Many researches were carried out in order to automatize the diagnosis using machine 

learning. Most of them are based on seizure detection for Epilepsy diagnosis. Our contributions 

in this study are that we worked on the diagnosis during both ictal (during seizure) and interictal 

(seizure-free) activities in two different experiments; we have used three techniques for the 

feature extraction stage and three different classifiers to compare their performance, and we 

decomposed the EEG signal into five rhythms to deduce the best rhythm for the diagnosis. The 

first technique is based on the time domain information only, the second on the frequency 

domain information only and the third is based on both.  

Extracting statistical features directly form the time domain signal was the least 

performing technique especially during interictal intervals. Using the DCT on the signal then 

extracting statistical features from the coefficients improved considerably the performance 

compared to the previous technique. As a last method, we used a powerful analysis tool in the 

feature extraction stage, which is the DWT. The best performance was recorded with this 

technique. However, the experimental results showed that the choice of the mother wavelet, the 

order and the level of decomposition might be very difficult and no prior assumption over what 

is the best choice may be made before carrying out the experiment. In the classification stage, 

we used three different classifiers with each method, k-NN, SVM and ANN. With the DWT 

based method, k-NN had a better overall performance than SVM and was more stable to the 

wavelet, order and level changes.  

      The last step in our study was to separate the five rhythms from the EEG signals by 

filtering to see if we could use only one rhythm as input before the feature extraction stage 

instead of the whole signal. The results showed that the Delta rhythm, which has the lowest 

frequency band is enough for Epilepsy detection from interictal intervals. Whereas, the Beta 

rhythm had the best performance among the five rhythms for seizure detection. However, these 

findings do not go beyond the database used which is the Bonn database with an augmentation 

scheme, and the method used which is the DWT based method.  

 



 

62 
 

 General conclusion 

For further work, we suggest: 

 The Bonn database used throughout this study is a general database. We would like to obtain 

a more specific dataset where we will be able to study the effect of gender and age on the 

EEG recordings of epileptic patients. 

 

 The statistical features extracted from the DWT were not proven to be all necessary. 

Therefore, we suggest using a dimensionality reduction technique such as PCA, in order to 

get rid of any possible redundant features. 

 

  The deep learning branch of machine learning and the more sophisticated neural networks 

were not explored in this study. The obtained results might be further improved using the 

prestigious Recurrent Neural Network- Long Short Term Memory (RNN-LSTM) model 

which allows the neural network to retain memory through its feedback connections and 

smart neurons. The feature extraction stage might be skipped altogether and the signals can 

be directly fed to the classifier as LSTM is a very suited tool for sequence problems. 

 

 In this study and all the previous research carried out about the current topic, the seizures 

are detected after their occurrence. In the future, it will be interesting to investigate these 

findings in order to build a forecasting model able to detect the seizures before their 

occurrence.  
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Table 1. The obtained results for Epilepsy detection with the k-NN classifier using the third method (extracting 

statistical features from the DWT coefficients of 37 different wavelets) with data samples A-C, A-D and B-C. 

 A-C A-D B-C 

wavelet level acc sen spe level acc sens spe level acc sen spe 

Db1 1 89.5 81 98 2 90.75 83 98.5 3 92.5 86 99 

Db2 1 90.75 83 98.5 2 92.75 87.5 98 3 91.25 82.5 100 

Db3 1 90 82 98 3 91.5 84.5 98.5 3 93.75 87.5 100 

Db4 2 91 83 99 2 91.75 84 99.5 3 92.25 84.5 100 

Db5 2 92 84.5 99.5 3 92.5 86.5 98.5 3 93 87 99 

Db6 2 91.25 84 98.5 3 91 85.5 96.5 3 91.5 83.5 99.5 

Db7 1 93 88.5 97.5 3 92 86 98 3 93 86 100 

Db8 2 88.75 80 97.5 3 91.5 86 97 3 91.25 82.5 100 

Db9 2 90.5 81.5 99.5 3 91 85 97 3 93.5 87.5 99.5 

Db10 2 90.75 83 98.5 3 93 88.5 97.5 3 93.75 88 99.5 

Bior1.3 1 89.75 80 99.5 1 89.75 80.5 99 1 91.75 84.5 99 

Bior1.5 1 89 79.5 98.5 2 90.25 82 98.5 2 91.75 83.5 100 

Bior2.2 1 91.25 84 98.5 3 91.25 83.5 99 3 92.25 84.5 100 

Bior2.4 1 92.5 86 99 3 93.25 88 98.5 3 92 84.5 99.5 

Bior2.6 1 91.75 85 98.5 3 91.75 86 97.5 3 91.25 82.5 100 

Bior2.8 1 91 84 98 3 92.5 86 99 3 89.5 81 98 

Bior3.1 3 91.25 86.5 96 3 91.25 85 97.5 3 86.25 74 98.5 

Bior3.3 1 89 80.5 97.5 3 93 86.5 99.5 3 87.75 77 98.5 

Bior3.5 1 89.75 81.5 98 3 91.25 83.5 99 3 85.25 72.5 98 

Bior3.7 1 89.75 82.5 97 3 90.5 83 98 3 87.75 77 98.5 

Bior3.9 1 89.25 81 97.5 3 90 82 98 3 86 75 97 

Bior4.4 3 91.25 84 98.5 3 93.25 88.5 98 3 92.25 86 98.5 

Bior5.5 2 91.75 84.5 99 3 93 89 97 3 92.25 86 98.5 

Bior6.8 3 90.25 82 98.5 3 92.25 86 98.5 3 89.75 80.5 99 

Coif1 1 91 83.5 98.5 1 91.75 87 96.5 3 90.75 82.5 99 

Coif2 1 90.75 84.5 97 2 92 84.5 99.5 3 91.5 83.5 99.5 

Coif3 2 91.25 83 99.5 3 90.5 84.5 96.5 3 91.75 83.5 100 

Coif4 2 92.75 87.5 98 3 90.75 85 96.5 3 90.75 82 99.5 

Coif5 1 90.75 86.5 95 3 92.25 86 98.5 3 92 84 100 

Sym2 1 90.75 83 98.5 2 92.75 87.5 98 3 91.25 82.5 100 

Sym3 1 90 82 98 3 91.5 84.5 98.5 3 93.75 87.5 100 

Sym4 1 90.5 84 97 3 92 86.5 97.5 3 91.5 83.5 99.5 

Sym5 2 90.75 82 99.5 3 92.75 86.5 99 3 91.75 83.5 100 

Sym6 1 89.75 83 96.5 3 91 85 97 3 91 83 99 

Sym7 2 90.5 82 99 3 91 83.5 98.5 3 90.75 81.5 100 

Sym8 1 91.25 87.5 95 3 91.5 85 98 3 90.75 81.5 100 

Dmey  1 91.5 85.5 97.5 3 90.5 85.5 95.5 3 90.25 80.5 100 
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Table 2. The obtained results for Epilepsy detection with the k-NN classifier using the third method (extracting 

statistical features from the DWT coefficients of 37 different wavelets) with data samples B-D, AB-CD and AB-

CDE. 

 B-D AB-CD AB-CDE 

wavelet level acc sen spe level acc sens spe level acc sen spe 

Db1 2 96 82 100 2 90 81.75 98.75 2 90.2 85.33 97.5 

Db2 3 97.25 94.5 100 2 89.87 81 98.75 3 90.7 86.33 97.25 

Db3 3 95.75 92.5 99 3 90.75 83.75 97.75 3 92 88.5 97.25 

Db4 3 97 95 99 3 90.25 83.5 97 3 91 86.67 97.5 

Db5 3 96.75 94 99.5 3 91 84 98 3 91.7 87 98.75 

Db6 3 97.75 95.5 100 3 90.5 83.75 97.25 3 91.3 86.67 98.25 

Db7 3 96.25 93 99.5 3 91.37 84.5 98.25 3 91.5 87 98.25 

Db8 3 97 94.5 99.5 3 91 83 99 3 91.6 87.33 98 

Db9 3 96.75 94.5 99 3 89.37 82 96.75 3 91.1 86.83 97.5 

Db10 3 98 96 100 3 92.25 86.25 98.25 3 91.8 89 96 

Bior1.3 3 95.25 92.5 98 1 89.37 79.75 99 1 89.6 83.83 98.25 

Bior1.5 2 95.75 92.5 99 2 89.62 80.25 99 2 89.2 84.33 96.5 

Bior2.2 3 95 90 100 3 89.5 80.25 98.75 3 89.3 83 98.75 

Bior2.4 3 95.75 92.5 99 3 89.62 81 98.25 3 90.5 85.67 97.75 

Bior2.6 3 94.75 90 99.5 3 89 79.75 98.25 3 89.3 84 97.25 

Bior2.8 3 96.75 93.5 100 3 90.37 82.25 98.5 3 89.7 83.67 98.75 

Bior3.1 3 95.25 91 99.5 3 89.12 79.75 98.5 3 87 80.83 96.25 

Bior3.3 3 91.75 84.5 99 3 87.25 77.5 97 3 86.1 79.5 96 

Bior3.5 3 93.75 88.5 99 3 88 79 97 3 86.4 80.83 94.75 

Bior3.7 3 94 88 100 3 88.87 78.75 99 3 86.5 81.33 94.25 

Bior3.9 3 93.25 88.5 98 3 87.37 77.75 97 3 86.9 82.17 94 

Bior4.4 3 97.75 95.5 100 3 90.12 82.75 97.5 3 90.9 86.5 97.5 

Bior5.5 3 97.75 97 98.5 3 90.75 83.5 98 3 90.2 85.67 97 

Bior6.8 3 97.75 95.5 100 3 91.5 84.5 98.5 3 90.6 85.17 98.75 

Coif1 3 95.75 92 99.5 3 90 82.75 97.25 3 90.4 86 97 

Coif2 3 97.25 94.5 100 3 90.62 83 98.25 3 91 86.17 98.25 

Coif3 3 97 94 100 3 89.75 81.5 98 3 91.6 86.83 98.75 

Coif4 3 97.75 96.5 99 3 91.62 85 98.25 3 91.2 87 97.5 

Coif5 3 97.25 95 99.5 3 90.75 83.5 98 3 91.2 87.17 97.25 

Sym2 3 97.25 94.5 100 2 89.87 81 98.75 3 90.7 86.33 97.25 

Sym3 3 95.75 92.5 99 3 90.75 83.75 97.75 3 92 88.5 97.25 

Sym4 3 96.75 93.5 100 3 90 82.5 97.5 3 91.2 87.17 97.25 

Sym5 3 97 95 99 3 91.12 83 99.25 3 92.3 88.5 98 

Sym6 3 97.5 95.5 99.5 3 90.87 84.25 97.5 3 91.3 86.83 98 

Sym7 3 96.25 92.5 100 3 90.5 82 99 3 91.5 86.83 98.5 

Sym8 3 98.75 97.5 100 3 90.87 84.25 97.5 3 90.2 86.17 96.25 

Dmey  3 97 94 100 3 90.12 83.5 96.75 3 91.1 87 97.25 
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Table 3. The obtained results for Epilepsy detection with the SVM classifier using the third method (extracting 

statistical features from the DWT coefficients of 37 different wavelets) with data samples A-C, A-D and B-C. 

 A-C A-D B-C 

wavelet level acc sen spe level acc sens spe level acc sen spe 

Db1 1 94.5 92.5 96.5 1 92 86 98 2 84.25 68.5 100 

Db2 2 95.75 93 98.5 1 93 88 98 3 83.5 67 100 

Db3 1 94.25 92 96.5 3 93.5 90.5 96.5 3 84.5 69 100 

Db4 1 93.5 91 96 2 91.25 87 95.5 3 81 62 100 

Db5 1 93.75 91 96.5 2 93.75 88.5 99 3 83.25 66.5 100 

Db6 1 93.75 93 94.5 2 91.5 84 99 3 81.25 62.5 100 

Db7 1 93.5 93 94 1 91.5 85.5 97.5 3 83.25 66.5 100 

Db8 1 92.25 90.5 94 2 92.25 87.5 97 3 82 64 100 

Db9 1 93 93 93 3 92 89 95 3 82.75 65.5 100 

Db10 1 92.5 92.5 92.5 3 92.5 90.5 94.5 3 82 64 100 

Bior1.3 1 94.75 93.5 96 1 91 85 97 1 80.5 61 100 

Bior1.5 1 93.5 92.5 94.5 1 92 88.5 95.5 2 81.75 63.5 100 

Bior2.2 1 94 93 95 2 93 89 97 3 81.5 63 100 

Bior2.4 1 94.5 94 95 3 93.5 92.5 94.5 3 81.5 63 100 

Bior2.6 1 94.5 94 95 2 93.25 89.5 97 3 79.5 59 100 

Bior2.8 1 94.5 94 95 3 93.75 91 96.5 3 80.75 61.5 100 

Bior3.1 1 92.5 89.5 95.5 3 91.25 87.5 95 3 80.25 60.5 100 

Bior3.3 1 91 86 96 3 91.75 89 94.5 3 78.75 57.5 100 

Bior3.5 1 90.25 84 96.5 3 91.75 88.5 95 3 76.75 54.5 99 

Bior3.7 1 91.75 87 96.5 3 92.25 90 94.5 3 77.75 55.5 100 

Bior3.9 1 92.25 89 95.5 3 90.5 86.5 94.5 3 79 58 100 

Bior4.4 1 93.5 91.5 95.5 3 92.25 92 92.5 3 82.5 65.5 99.5 

Bior5.5 2 92.5 86 99 3 93.5 89.5 97.5 3 82.75 65.5 100 

Bior6.8 1 93 93.5 92.5 3 92.5 90 95 3 82 64 100 

Coif1 1 93.25 91.5 95 2 92.75 87.5 98 3 83.25 66.5 100 

Coif2 1 94.25 92.5 96 2 92.25 87 97.5 3 82.25 64.5 100 

Coif3 1 94 94.5 93.5 3 91.75 86.5 97 3 82 64 100 

Coif4 1 94 93 95 3 91.25 89 93.5 3 80.75 61.5 100 

Coif5 1 93.25 93 93.5 3 92 88.5 95.5 3 82.5 65 100 

Sym2 1 95.75 94 97.5 1 93 88 98 3 83.5 67 100 

Sym3 1 94.25 92 96.5 3 93.5 90.5 96.5 3 84.5 69 100 

Sym4 1 93.25 89.5 97 2 93.25 88 98.5 3 83 66 100 

Sym5 1 94.25 92.5 96 3 92.25 89.5 95 3 83.25 66.5 100 

Sym6 1 94.5 93 96 3 93 91 95 3 81.5 63.5 99.5 

Sym7 1 93.5 93.5 93.5 3 93 89.5 96.5 3 83.5 67 100 

Sym8 1 92.5 92.5 92.5 3 91.75 90 93.5 3 80.75 61.5 100 

Dmey  1 93 92 94 1 92.5 88.5 96.5 3 82 64 100 
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Table 4. The obtained results for Epilepsy detection with the SVM classifier using the third method (extracting 

statistical features from the DWT coefficients of 37 different wavelets) with data samples B-D, AB-CD and AB-

CDE. 

 B-D AB-CD AB-CDE 

wavelet level acc sen spe level acc sens spe level acc sen spe 

Db1 2 95.25 93.5 97 1 91 84.75 97.25 1 93.7 90 99.25 

Db2 3 93 86.5 99.5 2 87.37 75.5 99.25 3 92.9 89.83 97.5 

Db3 3 91 82 100 3 88.25 77.75 98.75 3 94.6 92 98.5 

Db4 3 92.75 86 99.5 3 87.87 77 98.75 3 93.3 90 98.25 

Db5 3 90.5 81 100 3 87.62 75.75 99.5 3 94.3 90.83 99.5 

Db6 3 92.25 84.5 100 3 87.62 76.25 99 3 93.7 90.33 98.75 

Db7 3 92 84 100 3 87.37 76 98.75 3 93.3 90.5 97.5 

Db8 3 91.25 83 99.5 3 87.12 75.25 99 3 93.4 90 98.5 

Db9 3 92.25 85 99.5 3 87 76 98 3 92.7 89.5 97.5 

Db10 3 93.75 87.5 100 3 87.87 77.5 98.25 3 93.1 89.67 98.25 

Bior1.3 1 95.75 94 97.5 1 89.37 9.75 97 1 93.8 90 99.5 

Bior1.5 1 96.5 94.5 98.5 1 89.5 81.25 97.75 1 93.1 89.17 99 

Bior2.2 2 89.5 79 100 1 85.75 73.25 98.25 3 92.2 87.83 98.75 

Bior2.4 3 90.5 82 99 3 86.37 73.25 99.5 3 92.8 89.33 98 

Bior2.6 1 90 80 100 1 85. 5 70.25 98.75 3 91.3 86.83 98 

Bior2.8 3 91 82 100 1 86.12 74 98.25 3 91.9 87 99.25 

Bior3.1 3 89.5 79 100 3 83.5 67.5 99.5 3 89.4 84.33 97 

Bior3.3 3 86.75 74 99.5 3 82 64.25 99.75 3 89.4 83.83 97.75 

Bior3.5 3 86.75 74 99.5 1 81.62 66.5 96.75 3 89 84.33 96 

Bior3.7 3 87.25 74.5 100 3 82.12 64.75 99.5 3 89.6 85.33 96 

Bior3.9 3 87.75 76 99.5 3 83.12 67 99.25 3 90.1 86.17 96 

Bior4.4 3 92.5 85 100 3 85.87 73.25 98.5 3 93.5 90.17 98.5 

Bior5.5 3 93 86.5 100 3 87.5 76 99 3 93.4 90.33 98 

Bior6.8 3 91.5 83 100 3 87.12 74.75 99.5 3 92.8 89 98.5 

Coif1 2 92.5 85 100 2 87.5 75. 5 99.5 3 93.3 89.83 98.5 

Coif2 3 91.75 84 99.5 3 87.25 75.5 99 3 92.8 89 98.5 

Coif3 3 92.5 85 100 3 88 76.75 99.25 3 93.1 89.17 99 

Coif4 3 94 88 100 3 86.75 75 98.5 3 92.9 90.33 96.75 

Coif5 3 92.5 85 100 3 87.75 76.5 99 3 93 89.5 98.25 

Sym2 3 93 86.5 99.5 2 87.37 75.5 99.25 3 92.9 89.93 97.5 

Sym3 3 91 82 100 3 88.25 77.75 98.75 3 94.6 92 98.5 

Sym4 3 92 84 100 3 87.87 76 99.75 3 93.9 90.83 98.5 

Sym5 3 92.75 85.5 100 3 87.12 75 99.25 3 94.1 91 98.75 

Sym6 3 92.25 85.5 99 3 86.5 74.75 98.25 3 93.8 90.83 98.25 

Sym7 3 92 84 100 3 87.25 74.75 99.75 3 93.5 90.33 98.25 

Sym8 3 93.25 86.5 100 3 87.2 75.5 98.75 3 92.7 89.5 97.5 

Dmey  3 91.5 83 100 3 86.62 74.5 98.75 3 93.1 89.67 98.25 
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Table 5. The obtained results for seizure detection with the k-NN classifier using the third method (extracting 

statistical features from the DWT coefficients of 37 different wavelets) with data samples A-E, B-E and C-E. 

 A-E B-E C-E 

wavelet level acc sen spe level acc sens spe level acc sen spe 

Db1 3 100 100 100 2 97 94 100 3 99 99.5 98.5 

Db2 3 100 100 100 1 97 94 100 2 99 99.5 98.5 

Db3 3 100 100 100 2 96.5 93 100 2 98.5 98.5 98.5 

Db4 3 100 100 100 1 96 92.5 99.5 2 98.5 97.5 99.5 

Db5 2 100 100 100 3 96 92 100 3 98.75 99.5 98 

Db6 3 99.75 99.5 100 3 96.25 92.5 100 3 98.5 99.5 97.5 

Db7 3 99.75 99.5 100 3 96.75 93.5 100 1 98.5 97.5 99.5 

Db8 3 99.75 99.5 100 3 95.75 91.5 100 1 98.25 97 99.5 

Db9 3 99.75 99.5 100 3 95.5 91 100 2 98.75 99 98.5 

Db10 3 100 100 100 3 96.5 93 100 1 98.25 96.5 100 

Bior1.3 2 100 100 100 1 95.75 91.5 100 2 98.5 99 98 

Bior1.5 3 99.75 99.5 100 1 96 92 100 1 98.5 97.5 99.5 

Bior2.2 3 100 100 100 2 97 94 100 3 99.5 100 99 

Bior2.4 3 100 100 100 3 96.75 94 99.5 3 99 99.5 98.5 

Bior2.6 2 100 100 100 2 96.75 93.5 100 2 99 98 100 

Bior2.8 3 100 100 100 2 96.25 92.5 100 3 99.25 99 99.5 

Bior3.1 3 100 100 100 1 96.25 93 99.5 3 98.5 98.5 98.5 

Bior3.3 3 99.75 99.5 100 2 95.75 92.5 99 2 99.75 99.5 100 

Bior3.5 3 100 100 100 2 95.5 92 99 1 98.5 97 100 

Bior3.7 3 100 100 100 2 95.5 92 99 2 99.5 99 100 

Bior3.9 3 99.5 99 100 2 95 91.5 98.5 2 98.5 97 100 

Bior4.4 2 100 100 100 3 96.75 93.5 100 2 98.75 98 99.5 

Bior5.5 3 99.5 99 100 1 96.25 93.5 99 1 98.25 96.5 100 

Bior6.8 3 99.75 99.5 100 3 96.25 92.5 100 2 98.25 97 99.5 

Coif1 3 100 100 100 2 96.5 93 100 3 99.25 99.5 99 

Coif2 2 100 100 100 2 96.5 93.5 99.5 2 98.75 98 98.5 

Coif3 3 99.75 99.5 100 2 96.5 93 100 3 99 99.5 98.5 

Coif4 3 99.75 99.5 100 2 96.5 93 100 2 98.5 97.5 99.5 

Coif5 3 99.75 99.5 100 3 96.5 93 100 3 98.75 99.5 98 

Sym2 3 100 100 100 1 97 94 100 2 99 99.5 98.5 

Sym3 3 100 100 100 2 96.5 93 100 2 98.5 98.5 98.5 

Sym4 2 100 100 100 3 96.75 93.5 100 2 99.25 99 99.5 

Sym5 3 100 100 100 2 96.5 93 100 3 98.5 99 98 

Sym6 3 100 100 100 3 96.75 93.5 100 3 98.75 99.5 98 

Sym7 3 99.75 99.5 100 3 96.75 93.5 100 3 98.75 99 98.5 

Sym8 3 99.75 99.5 100 3 96.5 93 100 1 98.75 97.5 100 

Dmey  3 100 100 100 3 96.5 93 100 3 98 99 97 
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Table 6. The obtained results for seizure detection with the k-NN classifier using the third method (extracting 

statistical features from the DWT coefficients of 37 different wavelets) with data samples D-E and ABCD-E. 

 D-E ABCD-E 

wavelet level acc sen spe level acc sens spe 

Db1 2 98.25 97.5 99 2 97.5 90.5 99.25 

Db2 1 97 98 96 2 97.4 90 99.25 

Db3 3 98.5 99 98 3 97.8 91.5 99.37 

Db4 3 97.25 96.5 98 1 97.2 91 98.75 

Db5 3 98.25 98.5 98 3 97.7 90 99.62 

Db6 3 96.5 98 95 3 97.4 90.5 99.12 

Db7 3 97.75 98 97.5 3 97.3 90.5 99 

Db8 2 97.75 98 97.5 2 97.3 89.5 99.25 

Db9 3 98 99.5 96.5 2 97.5 91 99.12 

Db10 3 97.25 98.5 96 2 97.4 90.5 99.12 

Bior1.3 3 96.75 96 97.5 3 97.2 88.5 99.37 

Bior1.5 1 97.5 96.5 98.5 2 97.4 89.5 99.37 

Bior2.2 3 98 98 98 2 97.9 92.5 99.25 

Bior2.4 3 97.75 98.5 97 3 97.7 92.5 99 

Bior2.6 3 97.25 98 96.5 2 97.7 92 99.12 

Bior2.8 2 97.5 97 98 1 97.4 89.5 99.37 

Bior3.1 3 97.25 98 96.5 2 97.2 90 99 

Bior3.3 3 97.5 97.5 97.5 1 97.1 89.5 99 

Bior3.5 1 98 99 97 1 97.2 90 99 

Bior3.7 2 97 97.5 96.5 1 97.1 90.5 98.75 

Bior3.9 3 97 98 96 2 97.2 89.5 99.12 

Bior4.4 2 97.25 96.5 98 2 97.6 90 99.5 

Bior5.5 2 97.5 97 98 2 97.9 91 99.62 

Bior6.8 2 98 98 98 3 97.6 91 99.25 

Coif1 3 98 98 98 1 97.8 91.5 99.37 

Coif2 3 98.25 99.5 97 3 97.7 91.5 99.25 

Coif3 3 97.5 99 96 3 97.5 91 99.12 

Coif4 3 97.5 98 97 2 97.5 90 99.37 

Coif5 3 97 98 96 2 97.3 90 99.12 

Sym2 1 97 98 96 2 97.4 90 99.25 

Sym3 3 98.5 99 98 3 97.8 91.5 99.37 

Sym4 2 97.75 98.5 97 3 97.4 91 99 

Sym5 3 99 99.5 98.5 3 98 92 99.5 

Sym6 2 97.5 97.5 97.5 3 97.7 92.5 99 

Sym7 3 97.75 99 96.5 3 97.6 91 99.25 

Sym8 3 97.5 98 97 2 97.7 92 99.12 

Dmey  3 97.5 98.5 96.5 3 97.3 91 98.87 
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Table 7. The obtained results for seizure detection with the SVM classifier using the third method (extracting 

statistical features from the DWT coefficients of 37 different wavelets) with data samples A-E, B-E and C-E. 

 A-E B-E C-E 

wavelet level acc sen spe level acc sens spe level acc sen spe 

Db1 3 100 100 100 2 97.75 95.5 100 1 99 100 98 

Db2 3 100 100 100 3 97.75 96 99.5 1 99 100 98 

Db3 3 100 100 100 3 97.25 95 99.5 2 99.25 100 98.5 

Db4 3 100 100 100 3 97.25 95 99.5 2 99 99.5 98.5 

Db5 3 100 100 100 2 97 95 99 2 98 99 97 

Db6 3 100 100 100 3 96.75 94 99.5 2 98.25 100 96.5 

Db7 3 100 100 100 3 97.5 95.5 99.5 1 97.75 98.5 97 

Db8 3 100 100 100 3 97.25 94.5 100 2 98.25 99 97.5 

Db9 3 100 100 100 3 96.75 94.5 99 2 97.5 99.5 95.5 

Db10 3 100 100 100 3 97.5 95 100 1 98.25 98.5 98 

Bior1.3 3 100 100 100 2 97.25 94.5 100 1 98.5 99.5 97.5 

Bior1.5 3 100 100 100 3 97 95 99 1 98.25 99.5 97 

Bior2.2 3 100 100 100 2 97.75 95.5 100 1 99.5 100 94 

Bior2.4 3 100 100 100 2 98 96.5 99.5 1 99.75 100 99.5 

Bior2.6 3 100 100 100 2 98.25 96.5 100 1 99.5 100 99 

Bior2.8 3 100 100 100 2 97.5 95.5 99.5 2 99.5 99.5 99.5 

Bior3.1 3 100 100 100 1 95. 5 96 95 3 99.5 100 99 

Bior3.3 3 100 100 100 3 95 93.5 96.5 2 99 99.5 98.5 

Bior3.5 3 100 100 100 2 95.75 93 98.5 2 98.25 99.5 97 

Bior3.7 3 100 100 100 2 95.75 93.5 98 2 99 99 99 

Bior3.9 3 100 100 100 2 96 93.5 98.5 2 98.75 99.5 98 

Bior4.4 3 100 100 100 3 97.5 95 100 2 98.5 99 98 

Bior5.5 3 100 100 100 2 97.75 95.5 100 2 97.25 97 97.5 

Bior6.8 3 100 100 100 3 96.5 93.5 99.5 2 98.5 99 98 

Coif1 3 100 100 100 2 97.25 94.5 100 1 99.5 100 99 

Coif2 3 100 100 100 3 97.5 95 100 2 98 100 96 

Coif3 3 100 100 100 3 97 94 100 1 98 98 98 

Coif4 3 100 100 100 3 97.75 95.5 100 2 98.5 99.5 97.5 

Coif5 3 100 100 100 3 96.75 94 99.5 2 98.25 99 97.5 

Sym2 3 100 100 100 3 97.75 96 99.5 1 99 100 98 

Sym3 3 100 100 100 3 97.25 95 99.5 2 99.25 100 98.5 

Sym4 3 100 100 100 3 96.75 95 98.5 2 98.75 100 97.5 

Sym5 3 100 100 100 3 97.5 95.5 99.5 2 98.25 100 96.5 

Sym6 3 100 100 100 3 97.25 95 99.5 3 98.75 100 97.5 

Sym7 2 100 100 100 3 96.75 94.5 99 3 98 100 96 

Sym8 3 100 100 100 3 97.5 95.5 99.5 2 98.75 100 97.5 

Dmey  2 100 100 100 3 97.5 95 100 3 98.25 100 96.5 
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Table 8. The obtained results for seizure detection with the SVM classifier using the third method (extracting 

statistical features from the DWT coefficients of 37 different wavelets) with data samples D-E and ABCD-E. 

 D-E ABCD-E 

wavelet level acc sen spe level acc sens spe 

Db1 3 96.5 100 93 1 97.5 95.5 98 

Db2 3 96.25 99 93.5 2 97.4 95.5 97.87 

Db3 3 96 99 93 3 97.2 94 98 

Db4 3 96.5 99.5 93.5 2 97.2 94 98 

Db5 3 96.5 99 94 3 97.3 95 97.87 

Db6 3 96 98.5 93.5 3 97.4 93.5 98.37 

Db7 3 96.75 99.5 94 3 97.1 95.5 97.5 

Db8 3 96 99 93 3 97.1 95 97.62 

Db9 3 96.5 99.5 93.5 3 96.9 94 97.62 

Db10 3 96.25 99 93.5 3 97 94 97.75 

Bior1.3 3 95.5 98 93 2 97.4 94 98.25 

Bior1.5 3 96 98.5 93.5 1 97.2 92.5 98.97 

Bior2.2 3 96.5 99 94 2 97.3 94 98.12 

Bior2.4 3 96.5 99 94 3 97.3 93.5 98.25 

Bior2.6 3 96.75 99.5 94 1 97.4 94.5 98.12 

Bior2.8 3 96 98.5 93.5 1 97.3 94.5 98 

Bior3.1 3 97 99 95 3 96.7 92 97.87 

Bior3.3 3 95.5 98 93 3 96.3 91.5 97.5 

Bior3.5 3 95.75 98 93.5 3 96.4 93.5 97.12 

Bior3.7 3 96.25 99 93.5 2 96.2 92.5 97.12 

Bior3.9 2 96.5 98.5 94.5 2 96.5 91 97.87 

Bior4.4 3 96.5 99.5 93.5 2 97.4 94.5 98.12 

Bior5.5 3 96.5 99 94 2 97.3 94.5 98 

Bior6.8 3 96 99 93 3 97 94 97.75 

Coif1 3 96 99 93 1 97.6 95.5 98.12 

Coif2 3 97.25 100 94.5 3 97.6 94.5 98.37 

Coif3 3 96 99.5 92.5 3 97.3 94.5 98 

Coif4 3 96.25 99 93.5 3 97.3 94 98.12 

Coif5 3 96.5 99.5 93.5 3 97.2 94.5 97.87 

Sym2 3 96.25 99 93.5 2 97.4 95.5 97.87 

Sym3 3 96 99 93 3 97.2 94 98 

Sym4 3 95.75 98.5 93 3 96.7 93.5 97.5 

Sym5 3 96 100 92 2 98 97.5 98.12 

Sym6 3 96 99 93 3 97.1 93.5 98 

Sym7 3 96.25 99.5 93 3 96.9 94 97.62 

Sym8 3 96.25 99 93.5 3 96.7 92.5 97.75 

Dmey  3 95.75 98 93.5 3 96.8 93 97.75 
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Table 9. The obtained results for Epilepsy detection with the SVM classifier using the DWT coefficients (db7 

wavelet) after decomposing the EEG signal into five rhythms. 

 A-C A-D B-C B-D AB-CD AB-CDE 

Delta 

rhythm 

Acc (%) 92.5 93.5 83 95 92 94.3 

Sen (%) 91.5 90 66 96 90.5 92 

Spe (%) 93.5 97 100 94 93.5 97.75 

Theta 

rhythm 

Acc (%) 88 87.5 83.75 89.5 87.5 92.2 

Sen (%) 87.5 86 68 84.5 85.25 90.67 

Spe (%) 88.5 89 99.5 94.5 89.75 94.5 

Alpha 

rhythm 

Acc (%) 76.75 78 85.75 90.25 81.87 83.6 

Sen (%) 55 63 71.5 80.5 66.5 77.33 

Spe (%) 98.5 93 100 100 97.25 93 

Beta 

rhythm 

Acc (%) 78.75 80 82.5 87.5 80.75 83.5 

Sen (%) 58 60.5 65 75 62 74.33 

Spe (%) 99.5 99.5 100 100 99.5 97.25 

Gamma 

rhythm 

Acc (%) 78.25 80.25 83.75 84.75 80 79.9 

Sen (%) 58.5 61.5 67.5 69.5 61.25 78.67 

Spe (%) 98 99 100 100 98.75 81.75 

 

Table 10. The obtained results for seizure detection with the k-NN classifier using the DWT coefficients (db7 

wavelet) after decomposing the EEG signal into five rhythms. 

  A-E B-E C-E D-E ABCD-E 

Delta 

rhythm 

Acc (%) 98.25 94.25 92.75 94.25 95.4 

Sen (%) 96.5 90.5 92.5 94.5 87 

Spe (%) 100 98 93 94 97.5 

Theta 

rhythm 

Acc (%) 99.5 98.25 95.75 94.75 96.9 

Sen (%) 99 96.5 95 93 89 

Spe (%) 100 100 96.5 96.5 98.87 

Alpha 

rhythm 

Acc (%) 99.5 88.5 97.25 97.75 94.9 

Sen (%) 99 87.5 98.5 97.5 84.5 

Spe (%) 100 89.5 96 98 97.5 

Beta 

rhythm 

Acc (%) 97 93.5 96.25 96.75 96.9 

Sen (%) 96.5 91 97.5 97 89.5 

Spe (%) 97.5 96 95 96.5 98.75 

Gamma 

rhythm 

Acc (%) 94.5 97 91.75 94.75 96.3 

Sen (%) 90.5 96.5 95.5 96 86 

Spe (%) 98.5 97.5 88 93.5 98.87 
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