
Registration Number:…..…../2020

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of

MASTER

In Computer Engineering

Option: Computer Engineering

Title:

Presented by:

- HAMRIT Yazid Taha

Supervisor:

 Dr. MAACHE Ahmed

FPGA-Based Phasor Measurement Unit

Prototype

Abstract

This report describes the design and implementation of an SoPC-based Pha-

sor Measurement unit which is required in electronic applications where a syn-

chronous relationship between the signals needs to be preserved, using the Field

Programmable Gate Array (FPGA). However, due to the constraints imposed by

the covid19 health crisis, the project only covered the evaluation usage of the FFT

core using an analogue input from a potentiometer. This signal is sampled using

the Analog to Digital Converters(ADC) on the FPGA board. The design then stores

digital data into a local FIFO, which is passed to a 1024-Point FFT hardware core

to get the spectrum of the signal and hence calculate the main frequency. The sys-

tem uses the Intel DE10 FPGA board (donated by the Intel University Program)

and the Quartus Prime suite to design and implement the system and the model

was synthesized using Quartus II and targeted at Cyclone-V FPGA. The design was

successfully implemented.

i

Dedication

This dissertation is dedicated to my family, which is without doubt,the greatest

wealth that I will ever possess. To my parents, Dad Lakhdar HAMRIT and Mom

Nabila DJEBBARI, for making me the person I am and supporting me all the way.

Words cannot describe my love for you. To my sister, the Princess Djalila, and my

two little cute brothers Zaki and Mahdi for shedding a soft glow on my life with their

truelove and innocent smiles. I love you and cherish you infinitely. To my brother

Hakim, his wife Meriem and their baby girl, you are the perfect family, because

whether it is the middle of a midst storm or calm as a sea, you will always be there

for each other and for me. To the superheroes, my sisters Rania and Sabrin who stood

by me from the very first beginnings. You fill my life with joy and your existence is

priceless. To all my wonderful family, particularly, To my friends and everyone else,

especially, my friend Anis Slimatni and my childhood friend and brother Mohamed

Elhadi MANSOUR.

ii

Acknowledgements

Firstly, I am grateful and thankful to Allah for the blessings and wellbeing that

were necessary for me to complete this work.

I place on record my sincere thanks and appreciation to my supervisor Dr. A.

Maache for sharing expertise and valuable guidelines which were of an extreme

help to me. We take this opportunity to express my deep and special thanks to

Slimatni and Khelifa for their continuing technical support in the implementation

of my project and their valuable support throughout this work. I am also grateful

to the teaching staff for their encouragement and support and to all members of

the Department of Electronics and everyone that belongs to the Institute.

Finally, a thank you to everyone else who, directly or indirectly, has contributed

and helped me accomplish my project.

iii

Contents

Abstract i

Acknowledgements iii

List of Tables vi

List of figures vii

List of Abbreviations viii

1 Introduction 1

1.1 Overview . 1

1.2 Literature Review . 2

1.3 Motivation . 3

1.4 Project Objectives . 4

1.5 Organization of the Report . 4

2 Theoretical Background 5

2.1 Signal Model . 5

2.2 Phasor . 5

2.3 Fast Fourier Transform . 7

2.4 Phasor Calculation for 3-phase System 9

2.5 Field Programmable Gate Array . 10

2.5.1 Overview . 10

2.5.2 Applications of FPGAs . 11

2.5.3 DE10-Board . 11

2.5.4 Nios II Processor . 13

2.5.5 Quartus PRIME Software 14

2.6 Analog to Digital Converter . 14

iv

CONTENTS

2.6.1 Overview . 14

2.6.2 The LTC2308 . 15

2.7 Qsys Tool . 16

3 Hardware System Design 17

3.1 Overview . 18

3.2 Signal Acquisition and Sampling 18

3.3 System Implementation . 19

3.3.1 SoPC System . 19

3.3.2 Sopc Main Entity . 20

3.4 FFT BLOCK . 21

3.4.1 Streaming FFT . 22

3.4.2 Functional Description . 22

3.4.3 Using the Streaming FFT . 24

3.5 ADC Block . 25

3.6 ALTERA NIOS II JTAG DEBUG MODULE 27

3.7 PLL System Block . 27

4 Implementation and Results 29

4.1 Overview . 29

4.2 The Firmware . 29

4.3 Top Level File with RTL Viewer . 30

4.4 Top Level File Compilation . 30

4.5 Results of the Implemented System 31

4.5.1 Testing the ADC Block Reading 31

4.5.2 System Output . 32

4.6 Hardware Limitations . 33

Conclusion 34

References 36

v

List of Tables

2.1 Comparison of Nios II processor Versions 14

vi

List of Figures

1.1 PMU and SCADA response to a disturbance. 2

2.1 Phasor representation of a sinusoid. 6

2.2 Conceptual Structure of an FPGA Device. 11

2.3 DE10-Standard development board (top view). 13

2.4 LTC2308 block diagram. 15

2.5 The system contents tab of the Qsys tool. 16

3.1 Block diagram of our prototype PMU. 17

3.2 Overall system’s block diagram. 18

3.3 Connections between the FPGA, 2x5 header, and the A/D converter. 19

3.4 Overall System Components. 19

3.5 Overall Block Diagram of the System. 20

3.6 FFT core integrated inside Quartus’s platform designer. (Qsys) . . . 21

3.7 FIFO with Avalon-MM Input Interface and Avalon-ST Output Inter-

face. 22

3.8 FFT BLOCK interfacing design. 23

3.9 FFT block interface. 24

3.10 FFT Streaming Data Flow Simulation Waveform. 24

3.11 ADC state machine. 25

3.12 Overall system interconnection. 26

3.13 PLL intel FPGA IP used. 28

4.1 Overall Block Diagram of the On-Chip System. 30

4.2 Compilation Summary. 31

4.3 The sampling result captured by the ADC. 31

4.4 FIFO output generated level. 32

4.5 Connectivity warning message. 33

vii

List of Abbreviations

AC Analog Current

ADC Analog to Digital Convertor

ASIC Application Specific Integrated Circuit

ARM Acorn RISC Machine

CPU Central Processing Unit

DC Direct Current

DFT Discrete Fourier Transform

DE10 board Development and Education board Cyclone V

CT Current Transformer

EMS Energy Management System

EPROM Erasable Programmable Read Only Memory

FFT Fast Fourier Transform

FIFO First-In, First-Out

FPGA Field programmable gate array

FSM Finite State Machine

GPS Global Positioning System

GUI Graphical User Interface

HDL Hardware Description Language

viii

List of Abbreviations

HPS Hard Processor System

IC Integrated Circuit

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronic Engineers

PC Personal Computer

PDC Phasor Data Concentrator

PLD Programmable Logic Device

PMU Phasor Measurement Unit

PPS Pulse Per Second

PROM Programmable Read Only Memory

PT Potential Transformer

RAM Random Access Memory

ROM Read Only Memory

RTL Register Transfer Level

SCADA Supervisory Control And Data Acquisition System

SDRAM ynchronous Dynamic Random Access Memory

SoC System on Chip

SoPC System on Programmable Chip

SPI Serial Peripheral Interface

SRAM Static Random Access Memory

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

UTC Universal Coordinated Time

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

ix

Chapter 1
Introduction

1.1 Overview

Traditionally, analog and digital information (status of circuit breaker, power

flow and frequency) is measured at the substation level and transmitted to the

load dispatch center using supervisory control and data acquisition system (SCADA)

or energy management system (EMS). The major limitation of SCADA or EMS is

the inability to accurately calculate the phase angle between a pair of substa-

tions. In SCADA or EMS, phase angle is either estimated from available data or

is calculated offline. Phasor Measurement Units (PMU) overcome the limitations

of SCADA and EMS by accurately calculating the phase angle between a pair of

grids. Synchronized phasor measurement units were introduced in the mid-1980s

as a solution for the need of more efficient and safer monitoring devices for Elec-

tric Power Systems (EPS). SCADA had minor issues, it cannot deal with transient

response, it deals only with the magnitude. Also, it is for local monitoring. The

figure below shows a contrast between PMU and Old monitoring Systems.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: PMU and SCADA response to a disturbance.

Since then, measuring Electric Power System (EPS) parameters of voltage and

current in relatively distant buses has received great attention from researchers.

Such measurements are performed by phasor measurement units (PMUs), syn-

chronized by Global Positioning System (GPS) satellites. A commercial PMU mea-

sures the voltage and angle of a particular grid at 25 samples per second. The

phase information is synchronized with Global Positioning Systems (GPS) satel-

lite and is transmitted to Phasor Data Concentrator (PDC) through a high-speed

communication network. The time stamped phase information is called synchro

phasor.

The measurement of voltage and current in the remote bus allows the operator

to make a concrete decision about the maintenance and security of the system in

the face of various uncertainties [1].

1.2 Literature Review

The measurement of voltage phase angles using synchronized clocks for power

system applications dates back to the early 1980s when measurements of voltage

phase angles were carried out between Montreal and SEPT-ILES [2, 3], and par-

2

CHAPTER 1. INTRODUCTION

allel efforts by Bonanomi in 1981 [4]. However, the synchrophasor technology

available today emerged from the early efforts by Phadke et al. at Virginia Tech

as described in [5, 6]. Phadke demonstrated the first synchronized PMU in 1988,

and in 1991 Macrodyne Inc. launched the first commercial PMU product [7]. Due

to the cost of early PMU devices, PMU technology has historically been limited

to transmission system applications where the business case justified expensive

phasor analysis equipment.

One of the early applications that is important to mention is the implemen-

tation of the wide-area protection system Syclopes in France in the early 1990s,

which was the first functional application of early forms of PMUs [8]. The cost

of the components from which PMUs are assembled (such as GPS receivers, mi-

croprocessors, and storage devices) have dropped significantly due to recent de-

velopments across the electronics sector. As a consequence, PMUs have reached

price points that have made them an attractive tool for the distribution systems

and embedded generation. Many PMUs are sold as dedicated devices which offer

event recorder type functionality. Costs for such units vary between US $6000

and US $15000 depending on the specification. Many equipment vendors have

begun to offer PMU functionality a supplementary feature on other products in

their range, such as protection relays [9].

The standard for PMU devices is maintained by the IEEE C37.118 Working

Group. IEEE Std. C37.118 [1] was released in 2005 and subsequently updated

in 2011. The latest release comes in two parts; IEEE C37.118.1 -2011 [1] de-

scribes how synchrophasors should be estimated and gives certification require-

ments while IEEE C37.118.2-2011 [10] describes data representation and data

transfer. Concerns have been raised regarding the transient performance of PMUs

under the 2005 standard [1, 11, 12]. These concerns are addressed in the 2011

release of the standard. IEEE C37.118.1 -2011 states that it defines synchropha-

sors, frequency, and rate-of-change-of frequency measurement under all operating

conditions [1].

1.3 Motivation

Many researchers designed PMU based on microcontrollers, but microcon-

trollers are sequential in nature thereby degrading the efficiency of the system.

By using FPGA, we are capable of measuring currents and voltages with parallel

3

CHAPTER 1. INTRODUCTION

measurement, in other words the data for current and voltage will be read at the

same time and at the same clock. It’s different from a microcontroller that uses a

sequential programming language. In every task, it needs a couple of execution

times, from first to the last task must be done sequentially. Since there exists some

gap of measurement, it will give us an uncertainty of the accurate time between

compared values. It also takes longer to delay than FPGA has. The advantages of

using FPGA in phasor estimation is that the 1024-point FFT hardware core can be

pipelined. In other words, it can accept input data every clock cycle and generate

output data every clock cycle, after a certain time delay. These huge computations

can be handled well with a parallel processor such as FPGA. [11]

1.4 Project Objectives

The main goal of this project is to design and implement a Phasor Measure-

ment Unit (PMU) prototype using the DE10 Standard FPGA.

1.5 Organization of the Report

The report is divided into four chapters. The first chapter is the introduc-

tion to the project and the report. The second chapter deals with the theoretical

background where it describes all the used materials, terms and components with

their principle of operation. The third chapter titled the Hardware System Design

where it shows the design and the implementation of the project’s hardware in de-

tail. The fourth chapter deals with the software part of the project including the

firmware. At the end of the report, a general conclusion is added to summarize

and provide suggestions for further work.

4

Chapter 2
Theoretical Background

2.1 Signal Model

Electrical power is traditionally delivered from the generators to the end users

through an infrastructure that is mainly composed by AC power systems. As a

consequence, during normal operating conditions of the power system, voltage

and current waveforms are usually modeled as signals characterized by a single

sinusoidal component with constant parameters:

y(t) = Ym cos(ωt+ φ) (2.1)

2.2 Phasor

For a detailed analysis of an AC circuit, it is useful to measure the magnitude,

frequency and phase angle of the time-varying quantities during a specific inter-

val. Phasors allow us to easily accomplish it.

Let us consider equation 2.1, where Ym represents the maximum value or peak

amplitude; ω = 2πf0 is the angular frequency of the signal in radians per second

(f0 f0 is the fundamental frequency); and φ is the phase angle in radians. Keeping

in mind the Euler’s identity (ejx = cos x + j sinx), one can observe that equation

2.1 can also be rewritten as:

y(t) = Re[Yme
j(ωt+φ)] = Re[(ej2πf0t)Yme

jφ] (2.2)

When the system frequency is known, the term ej2πf0t can be neglected. There-

5

CHAPTER 2. THEORETICAL BACKGROUND

fore equation 2.2 may be represented by a complex number V given by:

y(t)⇐⇒ V = Yme
jφ = Ym[cosφ+ j sinφ] (2.3)

Assuming that both voltage and current signals are given by equation 2.3, one

can observe that this representation is at odds with the calculation of average

power, therefore the RMS quantities must be taken into account for the correct

phasor representation of sinusoidal signals, as illustrated by the complex number

Y that follows.

The phase angle of a phasor brings the information about the fraction of the

sinusoid’s period in which the time, or the angular displacement ωt, is advanced

or delayed to an arbitrary reference. It is very important to correlate different

alternating-waves between them, thus, the phasors represent an equilibrium point

or the steady-state condition of the AC circuit.

Figure 2.1: Phasor representation of a sinusoid. [13]

In practical situations, however, to perform the phasor calculation, a time in-

terval must be considered. This time interval is often referred to as a "data win-

dow" or "observation interval," which is essential for practical waveform phasor

estimation. In essence, the phasor representation is related to a pure sinusoidal

signal, but harmonics can distort the existing signals in electric power systems.

In this way, it is recommended that the envisaged frequency component(s) of the

signal be extracted to be represented by phasor notation as well. These tasks have

been properly performed by the classical Fourier’s theory. Due to the fact , in

the later sections, the main key points regarding phasor representation using the

aforementioned theory are presented and discussed in greater detail.

6

CHAPTER 2. THEORETICAL BACKGROUND

2.3 Fast Fourier Transform

We should mention that the Fourier transform is a very important part of many

engineering applications. FFTs are an important part of any digital spectrum an-

alyzer. FFTs can also be used when implementing a spectrogram. Such spectro-

grams make it easier to understand artifacts of speech and other sounds, or even

radio frequency waveforms, by visual inspection [14].

Convolutions and/or correlations can often be implemented much faster and

cheaper using an FFT implementation of the Fourier transform. This means that

digital filters can be implemented with Fourier transform enabled convolutions

faster/better/cheaper. Fourier transforms are used to understand and analyze

control systems. Fourier transforms are used not only in filter implementations,

but they are also used in the filter design process. And finally, like we used it in our

design Fourier transform can be used to evaluate phasor measurements. The Fast

Fourier Transform (FFT) is a specific implementation of the Fourier transform,

that drastically reduces the cost of implementing the Fourier transform Prior to

the invention of the FFT, a Discrete Fourier transform could only be calculated the

hard way with N2 multiplication operations per transform of N points. Since Coo-

ley and Tukey published their algorithmic implementation of the Discrete Fourier

transform, they can now be calculated with O(N(N)) multiplies. Needless to say,

the invention of the FFT immediately started to transform signal processing. But

before talking about the FFT we should understand a little more about what a

Fourier transform is first [14]. A Fourier transform is a linear operator that de-

composes a signal from a representation in time, to a time-less representation in

frequency.

X(f) =

∫ +∞

−∞
x(t)e−j2πft dt (2.4)

This is the definition we will first come across when studying Fourier trans-

form. This form above is easy to work with mathematically with just pen and

paper. There are two problems with this mathematical definition when it comes

to working with an engineering reality. The first problem is that digital algo-

rithms do not operate upon continuous signals very well. Computers and other

digital signal processors do a much better job with sampled signals. Hence, we’ll

switch from discussing the pure Fourier transform shown above and examine the

Discrete-time Fourier transform instead. For this, we will switch from a continu-

ous incoming signal, x(t) to its sampled representation, x[n]. The Discrete-time

7

CHAPTER 2. THEORETICAL BACKGROUND

Fourier transform can then be applied to our signal.

X(ej2πf) =
∞∑

n=−∞

x[n]e−j2πfn (2.5)

While this discrete-time transform works well for representing the response of

certain digital filters, but it is not practical. This brings us to the second problem:

Computers can’t handle an infinite number of samples, nor can they handle an

infinite number of potential frequencies. Both of these need to be sampled and

finite. Fixing this second problem brings us to the Discrete Fourier transform.

X(
k

N
) =

N−1∑
n=0

x[n]e−j2π
k
N
n (2.6)

Now, not only is the x[n] used in this transform discrete, but the frequency

index, k
N

, is as well. All three of these representations are very tightly related.

Mathematically, there are major and significant differences between these trans-

forms. Practically, however, only this last transform can ever be computed digi-

tally. Therefore, the first two expressions of the Fourier transform and then the

discrete time Fourier transform can only be digitally approximated by the Discrete

Fourier transform [14].

It is this third representation of the Fourier transform, known as the Discrete

Fourier transform, that we will be discussing the implementation. We are also

going to argue that this is the only representation of the Fourier transform that

can be numerically computed for any sampled finite sequence.

If we look at equation 2.6, we can see it takes as input N data samples, x[n],

and calculates one summation across those inputs for every value of k to produce

N samples out, X[k
N

]. Given that there’s a complex multiplication required for ev-

ery term in that of N numbers, and that there are N relevant outputs, this will cost

N2 painful multiplications to calculate. If we just left things there, this transform

would be so hard to calculate that no one would ever use it. Cooley and Tukey,

however, described a way that the Discrete Fourier transform can be decomposed

into two transforms, each of them being half the size of the original, for the cost

of only N multiplies. If you then repeat this log 2(N) times, you’ll get to a one-

point transform, for a total cost of Nlog2(N) multiplies. At this cost point, the

Discrete Fourier transform becomes relevant. Indeed, it becomes significant and

a fundamental DSP operation. An FFT rapidly computes such transformations by

8

CHAPTER 2. THEORETICAL BACKGROUND

factorizing the DFT matrix into a product of sparse (mostly zero) factors [10]. As

a result, it manages to reduce the complexity of computing the DFT from O(N2),

which arises if one simply applies the definition of DFT, to O(n log n), where n is

the data size. The difference in speed can be enormous, especially for long data

sets where N may be in the thousands or millions. In the presence of round-off

error, many FFT algorithms are much more accurate than evaluating the DFT defi-

nition directly. There are many different FFT algorithms based on a wide range of

published theories, from simple complex-number arithmetic to group theory and

number theory [14].

2.4 Phasor Calculation for 3-phase System

Consider a balanced 3-phase power system operating at a nominal frequency

of f0, then the voltage waveform can be represented as:
x1(t) = Xm cos(2πf0t+ φ1)

x2(t) = Xm cos(2πf0t+ φ2)

x3(t) = Xm cos(2πf0t+ φ3)

(2.7)

Here Xm represents the maximum amplitude of the signal and φ represents

the phase angle. The phase angles are 120 degrees or 2π
3

radians apart. The time

domain sample of the power system can be represented as:
xn1(t) = Xm cos(2πn

N
+ φ1)

xn2(t) = Xm cos(2πn
N

+ φ2)

xn3(t) = Xm cos(2πn
N

+ φ3)

(2.8)

Here N is the number of samples, which is an integer multiple of fundamental

frequency f0 and n represents the sample index in the array which ranges from 0

to N − 1.

The generalized expression for N-point can be represented as:

X =
1

N
+

N−1∑
n=0

xn(cos
2πn

N
− j sin

2πn

N
) (2.9)

N-point DFT of the signal can be found out using:

Xk =

√
2

N

N−1∑
0

xn(cos
2πn

N
− j sin

2πn

N
) (2.10)

9

CHAPTER 2. THEORETICAL BACKGROUND

Xnominal =

√
2

N

N−1∑
0

xn(cos
2πn

N
− j sin

2πn

N
) (2.11)

The real and imaginary part of the above expression can be rewritten as:

Xreal =

√
2

N

N−1∑
0

xn(cos
2πn

N
) (2.12)

Ximg = −j
√

2

N

N−1∑
0

xn(sin
2πn

N
) (2.13)

The phasor estimate at nominal frequency is represented by this complex quan-

tity Xnominal , whose magnitude ‖Xnominal‖ =
√
X2
real +X2

img gives the RMS mag-

nitude of the signal. The phase angle can be computed using the trigonometric

property, φnominal = tan−1 Xreal

Ximg
.

2.5 Field Programmable Gate Array

2.5.1 Overview

A field-programmable gate array (FPGA) is a logic device that contains a twodi-

mensional array of generic logic cells and programmable switches. The conceptual

structure of an FPGA device is shown in figure 2.2. A logic cell can be configured

(i.e., programmed) to perform a simple function, and a programmable switch can

be customized to provide interconnections among the logic cells. Once the design

and synthesis are completed, a simple adaptor cable has to be used to download

the desired logic cell and switch configuration to the FPGA device and obtain the

custom circuit [15].

10

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.2: Conceptual Structure of an FPGA Device. [16]

An FPGA can be used to solve any problem which is computable. This is triv-

ially proven by the fact FPGA can be used to implement a soft microprocessor,

such as the Xilinx MicroBlaze or Altera Nios II. Their advantage lies in that they

are sometimes significantly faster for some applications because of their parallel

nature and optimality in terms of the number of gates used for a certain process

[17].

2.5.2 Applications of FPGAs

Specific applications of FPGAs include digital signal processing, software de-

fined radio, ASIC prototyping, medical imaging, computer vision, speech recogni-

tion, cryptography, bioinformatics, computer hardware emulation, radio astron-

omy, metal detection and a growing range of other areas [17].

2.5.3 DE10-Board

The DE10-Standard Development Kit presents a robust hardware design plat-

form built around the Intel System-on-Chip (SoC) FPGA, which combines the

latest dual-core Cortex-A9 embedded cores with industry-leading programmable

logic for ultimate design flexibility. Altera’s SoC integrates an ARM-based hard

11

CHAPTER 2. THEORETICAL BACKGROUND

processor system (HPS) consisting of processor, peripherals and memory inter-

faces tied with the FPGA fabric using a high-bandwidth interconnect backbone.

The DE10-Standard development as shown in figure 2.3 board includes hardware

such as high-speed DDR3 memory, video and audio capabilities, Ethernet net-

working, and much more. [18] The following hardware is provided on the board:

• Intel Cyclone V SE 5CSXFC6D6F31C6N device

• Serial configuration device - EPCS128

• USB-Blaster II onboard for programming; JTAG Mode

• 64 MBSDRAM (16-bit data bus)

• 4 push-buttons

• 10 slide switches

• 10 red user LEDs

• Six 7-segment displays

• Four 50MHz clock sources from the clock generator

• VGA DAC (8-bit high-speed triple DACs) with VGA-out connector

• PS/2 mouse/keyboard connector

• IR receiver and IR emitter

• One HSMC with Configurable I/O standard 1.5/1.8/2.5/3.3

• A/D converter, 4-pin SPI interface with FPGA

12

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3: DE10-Standard development board (top view). [18]

2.5.4 Nios II Processor

Nios II processor is the most widely used soft processor in the FPGA industry.

As opposed to a fixed prefabricated processor, a soft-core processor is described

by HDL codes and then mapped onto FPGA’s generic logic cells. This approach of-

fers more flexibility. A soft-core processor can be configured and tuned by adding

or removing features on a system-by-system basis to meet performance or cost

goals. The Nios II processor follows the basic design principles of a RISC (Re-

duced Instruction Set Computer) architecture and uses a small, optimized set of

instructions [20].

Nios II embedded processors provide an ideal embedded solution offering flex-

ibility, high performance, low cost, and a long-life cycle [?]. There are three basic

versions of Nios II:

• Nios II/f: The fast core is designed for optimal performance. It has a 6-stage

pipeline, instruction cache, data cache, and dynamic branch prediction.

13

CHAPTER 2. THEORETICAL BACKGROUND

• Nios II/s: The standard core is designed for small size while maintaining

good performance. It has a 5-stage pipeline, instruction cache, and static

branch prediction.

• Nios II/e: The economy core is designed for optimal size. It is not pipelined

and contains no cache. These processors’ key characteristics are summarized

on the top of table 2.1 and their sizes and performances (which are based

on the Cyclone II family) are listed on the bottom [20].

Table 2.1: Comparison of Nios II processor Versions

Nios II/f Nios II/s Nios II/e
Processor Pipeline 6 stages 5 stages 1 stage
Branch prediction dynamic static -
Multiplication 1-cycle multiplier 3-cycle multiplier software
Shift 1-cycle barrel shifter 3-cycle barrel shifter software
Instruction cache 0.5 KB to 64 KB 0.5 KB to 64 KB -
Data cache 0.5 KB to 64 KB - -
MMU/MPU optional - -
Circuit size 1600 LEs 1030 LEs 540 LEs
Max clock rate 140 MHz 110 MHz 195 MHz
Performance 145 MIPS 55 MIPS 18 MIPS

2.5.5 Quartus PRIME Software

Quartus prime is a software development suit tool developed by Intel FPGA

(former Altera) Company. It provides a graphic interface for users to access tools

and display relevant files. Some differences may exist between different versions.

2.6 Analog to Digital Converter

2.6.1 Overview

Analog to digital converter converts continuous analog signal to discrete dig-

ital numbers. ADC’s differ from each other through two main parameters, the

resolution which indicates the number of discrete values it can produce over the

range of analog values and the step size (quantization value) which is based on

the reference voltages of the ADC and it can be found as:

∆V =
Vref+ − Vref−

2nbits − 1
(2.14)

14

CHAPTER 2. THEORETICAL BACKGROUND

2.6.2 The LTC2308

The DE-10 Board FPGA has a 12 Bit ADC, The LTC2308 is a low noise, 500ksps,

8-channel, 12-bit successive approximation register (SAR) A/D converter (fig-

ure 2.4). The LTC2308 includes a precision internal reference, a configurable

8-channel analog input multiplexer (MUX) and an SPI-compatible serial port for

easy data transfers. The ADC may be configured to accept single-ended or differ-

ential signals and can operate in either unipolar or bipolar mode. A sleep mode

option is also provided to save power during inactive periods. Conversions are ini-

tiated by a rising edge on the CONVST input. Once a conversion cycle has begun,

it cannot be restarted until the current conversion is complete. The time taken by

each conversion for each channel is 13µs [19].

It is configured as 8 signal-end channels in the Verilog code. Users can change

SW [2:0] to measure the corresponding channel. The default reference voltage is

4.096V. The formula of the sample voltage is:

Sample Voltage = ADC Data / full scale Data * Reference Voltage.

Figure 2.4: LTC2308 block diagram. [19]

15

CHAPTER 2. THEORETICAL BACKGROUND

2.7 Qsys Tool

The Qsys tool is used in conjunction with the Quartus II software. It allows the

user to easily create an SoPC system based on the Nios II processor which enables

you to define and generate a complete system-on-a-programmable-chip (SOPC)

in much less time than using traditional, manual integration methods.

By Simply selecting the desired functional units and specifying their param-

eters. The Qsys tool allows a designer to choose the components that are de-

sired in the system as processors, memories, input/output interfaces, timers..., by

selecting these components in a graphical user interface. It then automatically

generates the hardware system that connects all of the components [21].

Figure 2.5: The system contents tab of the Qsys tool.

The System Contents tab of the Qsys tool appears as shown in figure 2.5, which

is used to add components to the system and configure the selected components

to meet the design requirements. The available components are listed on the left

side of the window [21].

16

Chapter 3
Hardware System Design

This chapter describes the design and implementation of a part of a Phasor

Measurement Unit using FPGA. The block diagram of such a unit is shown in fig-

ure 3.1.

Figure 3.1: Block diagram of our prototype PMU.

17

CHAPTER 3. HARDWARE SYSTEM DESIGN

3.1 Overview

The hardware system of this project is divided into two parts, the off-chip

and the on-chip systems. As shown in the block diagram of the system in figure

3.2 The ON-chip hardware system is composed of two parts; The SoPC system

implemented using Qsys tool, which includes the Nios II processor, the on-chip

memory, the ADC IP block, the FFT block and I/O peripherals. And the non SoPC

system, which is a set of custom VHDL blocks.

Figure 3.2: Overall system’s block diagram.

3.2 Signal Acquisition and Sampling

For the calculation of a phasor, the data (i.e. the sampled voltage signal) must

be acquired. When the PMU is tested in real-world scenarios a means of getting

the signals from the transmission lines is necessary, which is accomplished using

a Potential Transformer (PT) and a Current Transformer (CT) in the substations.

This signal is further stepped down using the Hall Effect voltage sensors. In our

laboratory setup, we were planning to use a function generator to generate sinu-

soidal input signals to mimic the signals read from voltage and current sensors.

However, due to the access constraints imposed by the COVID19 health crisis, we

only used a potentiometer for this purpose.

18

CHAPTER 3. HARDWARE SYSTEM DESIGN

The data acquisition unit, built around the 12-bit analog to digital converter

LTC2308CUF which is connected to the FPGA through an SPI-interface is seen in

figure 3.3.

Figure 3.3: Connections between the FPGA, 2x5 header, and the A/D converter.
[19]

3.3 System Implementation

The on-chip hardware system is implemented using the Cyclone V FPGA and

it is composed around the SoPC system.

3.3.1 SoPC System

The SoPC system is built using the Qsys tool provided in Quartus II software,

where the components of the system were selected as shown in figure 3.4.

Figure 3.4: Overall System Components.

The system consists of the clock source clk_50, Nios II processor, on-chip mem-

ory, GPIO port connected to Switches, an IP block to control the on-board ADC,

19

CHAPTER 3. HARDWARE SYSTEM DESIGN

the FFT IP core, and two interfacing IP core to interface between the NIOS II and

the FFT core which we will talk about more later. The system needs jtag_UART

to exchange data serially with the PC. The system ID peripheral (sysid_qsys) also

must be added to maintain the consistency between the hardware configuration

file and software image.

The Overall Block Diagram of the System is shown in figure 3.5.

Figure 3.5: Overall Block Diagram of the System.

3.3.2 Sopc Main Entity

The SoC system main entity has the following inputs and outputs:

• Data-in: 1-bit input port connected to the ADC block, which represents the

serial digital data coming-in from the LTC2308 ADC to the FPGA.

• Data-out: 12-bit output port coming out of the ADC block, which represents

the sampled parallel data.

• Data ready: 1-bit output ports from the ADC to tell if the Data in the output

register is valid or not. It is also used for handshaking with the FIFO block.

• Convst: 1 -bit output used to send the start of conversion signal to the ADC.

• Sclk: 1-bit output used to provide slower serial data clock for the ADC.

• Reset : 1-bit input asynchronous reset connected to the ADC and FFT block.,

to reset the hardware.

20

CHAPTER 3. HARDWARE SYSTEM DESIGN

• clk: 1-bit input port which represents the 50MHz clock input used as the

overall design clock source.

• SW: 3-bit input port used to select the ADC channel for conversion.

3.4 FFT BLOCK

The FFT unit is used to calculate the spectrum of the input signal. Altera_fft_ii

core shown in figure 3.6 represents the best solution in terms of efficiency and

reliability. Data could be sent from the processor to the FFT block for processing

via the bus.

Figure 3.6: FFT core integrated inside Quartus’s platform designer. (Qsys)

21

CHAPTER 3. HARDWARE SYSTEM DESIGN

3.4.1 Streaming FFT

The streaming FFT allows continuous processing of input data, and outputs a

continuous complex data stream without the need to halt the data flow in or out

of the FFT IP core.

The streaming FFT generates a design with a quad output FFT engine and the

minimum number of parallel FFT engines for the required throughput. A single

FFT engine provides enough performance for up to a 1,024-point streaming I/O

data flow FFT.

To implement the phasor calculation unit, the DE10-board FPGA has been

used as the computational unit. For a 3-phase system, the voltage samples must

be stored in FIFOs which are updated every time a new sample comes in. Here ,

we used The Intel FPGA Avalon FIFO memory core (figure 3.7) that buffers data

and provides flow control in the Platform Designer system. The core can operate

with a single clock or with separate clocks for the input and output ports.

Figure 3.7: FIFO with Avalon-MM Input Interface and Avalon-ST Output Interface.
[22]

3.4.2 Functional Description

The input interface to the Intel FPGA Avalon FIFO memory core may be an

Avalon Memory Mapped (Avalon-MM) write slave or an Avalon Streaming (Avalon-

22

CHAPTER 3. HARDWARE SYSTEM DESIGN

ST) sink. The output interface can be an Avalon-ST source or an Avalon-MM read

slave. The data is delivered to the output interface in the same order that it was

received at the input interface. See figure 3.8 which shows such design.

Figure 3.8: FFT BLOCK interfacing design.

We used two FIFO memory cores to interface with the FFT, ie. the sink and

the source data streaming:

• Avalon-MM Write Slave to Avalon-ST Source:

In this mode, the FIFO’s input is an Avalon-MM write slave with a width of

32 bits. The Avalon-ST output (source) data width must also be 32 bits.

• Avalon-ST Sink to Avalon-MM Read Slave:

The FIFO’s input is an Avalon-ST sink and the output is an Avalon-MM read

slave with a width of 32 bits. The Avalon-ST input (sink) data width must

also be 32 bits.

Figure 3.9 shows the successful parameters matching.

We can configure output interface parameters, including: bits per symbol, sym-

bols per beat, and the width of the channel and error signals. The FIFO performs

the endian conversion to conform to the output interface protocol.

23

CHAPTER 3. HARDWARE SYSTEM DESIGN

Figure 3.9: FFT block interface.

3.4.3 Using the Streaming FFT

The data source asserts sink_valid to indicate to the FFT function that valid

data is available for input. Assert both the sink_valid and the sink_ready for a

successful data transfer.

When the data transfer is complete, the FFT desserts sink_sop and loads the data

samples in natural order.

The simulation waveform below in figure 3.10 shows the process.

Figure 3.10: FFT Streaming Data Flow Simulation Waveform. [23]

When the final sample loads, the source asserts sink_eop and sink_valid for

the last data transfer.

24

CHAPTER 3. HARDWARE SYSTEM DESIGN

3.5 ADC Block

Since the ADC in the DE-10 board FPGA is a 12-bit ADC, it gives a data read-

ing of 0 to 212−1 for an input voltage range of 0 volt to 4.096 volt. Hence, it is

necessary to map the digital data readings with the actual measured values using

the linear relationship between them.

Once the data is sampled, it needs to be stored temporarily in order to be

processed by the FFT. The storage process begins once the ADC sends to the FIFO

a "dataready" signal. The FIFO block used was initially generated from the IP core

library in Quartus Prime. It was configured to accept a 12-bit width and 1024

words depth. This block is also provided with full and empty signals which are

used to enable the FFT block. Once the data is available, This IP block is clocked at

the same clock as the ADC. The sampling process then begins as the state machine

in figure 3.11 depicts.

Figure 3.11: ADC state machine.

The previous blocks interconnection design is further shown in figure 3.12. It

also includes JTAG IP for communication which we will discuss later.

25

CHAPTER 3. HARDWARE SYSTEM DESIGN

Figure 3.12: Overall system interconnection.

26

CHAPTER 3. HARDWARE SYSTEM DESIGN

3.6 ALTERA NIOS II JTAG DEBUG MODULE

The Nios II a supports a JTAG debug module which gives on-chip emulation

features to control the processor from a host PC. PC-based software debugging

tools communicate with the JTAG debug module and provide facilities, such as

the following features:

• Downloading programs to memory

• Starting and stopping execution

• Setting breakpoints and watchpoints

• Analyzing registers and memory

3.7 PLL System Block

The core takes an Platform Designer system clock as its input and generates

PLL output clocks locked to that reference clock .The main frequencies generated

by this block were: 100Mhz which was supplied to the processor and the FIFO

block, the 40 Mhz sampling frequency which was supplied to the slow clock of

the ADC as shown in figure 3.13.

27

CHAPTER 3. HARDWARE SYSTEM DESIGN

Figure 3.13: PLL intel FPGA IP used.

28

Chapter 4
Implementation and Results

4.1 Overview

Software design is the process of envisioning and defining software solutions

to one or more sets of problems. In embedded systems, after building the hard-

ware system, the software takes its roles to manipulate the data and take decisions

accordingly. The software part of this project The firmware. which is a hard-coded

program, or set of instructions, in the on-chip memory of the FPGA system, pro-

vides the necessary instructions for how the device communicates with the other

computer hardware (It can be thought of as the software that allows hardware to

run). It is programmed using the C language.

4.2 The Firmware

In any microprocessor-based system, the hardware interconnections on their

own cannot provide the functionality of the system. In order for the system to be

fully operational, a firmware must be included. The Firmware is the software that

provides control and monitoring of the system and manages all the communica-

tions and data manipulation between the processor and the peripherals. It can be

programmed using Nios II Assembly language or high-level language, containing

multiple routines shared between different tasks.

The firmware function of this project depends on the received converted data

From FFT.

29

CHAPTER 4. IMPLEMENTATION AND RESULTS

4.3 Top Level File with RTL Viewer

Using the RTL Viewer is a good way to view your initial synthesis results to

determine whether you have created the necessary logic, and that the logic and

connections have been interpreted correctly by the software. it allows you to view

a register transfer level (RTL) graphical representation of your Quartus II inte-

grated synthesis results or your third-party netlist file in the Quartus II software.

The top-level file containing the SoC overall project is illustrated in figure 4.1.

Figure 4.1: Overall Block Diagram of the On-Chip System.

4.4 Top Level File Compilation

The compilation of the whole system was successful and the summary of the

compilation is shown in figure 4.2. The entire system uses 8% of the total logic

elements, 6580 registers, 3% of the total pins and 8% of the total memory bits

with one PLL because of the use of PLL system ip.

The top-level file containing the SoPC system is illustrated in figure 3.5.

30

CHAPTER 4. IMPLEMENTATION AND RESULTS

Figure 4.2: Compilation Summary.

4.5 Results of the Implemented System

4.5.1 Testing the ADC Block Reading

After the design has been compiled, To prove if the implementation is working

on the right track, an experiment to sampling voltage is applied to the circuit with

peak 5.0V and altered with a potentiometer. On power-up, channel 0 is selected

with SW switches. The sampling result is shown in figure 4.3.

Figure 4.3: The sampling result captured by the ADC.

31

CHAPTER 4. IMPLEMENTATION AND RESULTS

4.5.2 System Output

Figure 4.4: FIFO output generated level.

As seen in the output generated in figure 4.4 I am getting some data inputs

from the interfaced FFT block which is connected to the data acquisition unit

(ADC), hence the data from the ADC is well received. Also, these fields which are

described below produced the processed data from the FFT..

LEVEL - The instantaneous fill level of the FIFO

STATUS - A 6-bit register that shows the FIFO’s instantaneous status

ienabl - the value to write to the interrupt enable register

ALMOSTEMPTY - the value for the almost empty threshold level

ALMOSTFULL - the value for the almost full threshold level

32

CHAPTER 4. IMPLEMENTATION AND RESULTS

4.6 Hardware Limitations

After we generate an IP for FFT from mega wizard.sof is not generated. The

Compiler only generates a time-limited device programming file (<projectname>

_time_limited.sof) that expires at the time limit.

We are assuming that this problem is due to the unavailability of the licensed

version. When the evaluation time expires for any licensed Intel FPGA IP in the

design, the design stops functioning. All IP cores that use the Intel FPGA IP Eval-

uation Mode time out simultaneously when any IP core in the design times out.

Therefore we could not verify our proposed architecture. But individually we

could verify many components of our proposed architecture as for example, if the

data could be saved in the SD-RAM and FFT core is working. See figure 4.5 below.

Figure 4.5: Connectivity warning message.

33

Conclusion

The design and implementation of a Nios II-based system for the operation of

the phase measurement unit system has been realized in this project. The FPGA-

based PMU was based on the Cyclone V Assembly, VHDL, Verilog HDL. Hence, the

overall implementation is low cost and can be easily configured.

Although the problems and obstacles that I faced, especially with the health

conditions that the world is going through and the effect of it on me when it

reached my family , It can be concluded that SoC-based PMU was designed and

implemented and the objectives of this work have been successfully met and they

are as follows:

- Implementation of a part of a Phasor Measurement Unit System based on FPGA

by exchanging and processing the data received from the system.

- Apply every single knowledge of Hardware design and computer engineering

that was acquired during the past five years.

Effort and time were spent to debug software bugs and hardware problems to

improve the system and make it operational .However, the project still lacks many

features that can be added to improve its performance and make it suitable to be

realized on the ground.

34

Conclusion

Future Work

The project was designed using an analogue input from a potentiometer for

study purpose, for wide area monitoring purpose, the prototype can be imple-

mented using function generator with some modifications, for example, by testing

the system with 3 phases, increasing the sampling rate for better accuracy, attach-

ing a GPS module in the system for time stamping etc.

In the future scope of research, the prototype is to be used in studying the

effects of faults on the Phasor estimates, power monitoring system, and other

benefits that could be gained from the phasor measurement unit.

35

References

[1] IEEE Standard for Synchrophasor Measurements for Power Systems, IEEE

Std. C37.118.1 -2011. [Online]. Available: http://standards.ieee.org/

findstds/standard/C37.118.1-2011.html.

[2] IEEE Standard for Synchrophasor Data Transfer for Power Systems,IEEE Std.

C37.118.2- 2011. [Online]. Available: http://standards.ieee.org/findstds/

standard/C37.118.2-2011.html

[3] G. Missout and P. Girard, Measurement of bus voltage angle between mon-

treal and SEPT-ILES, IEEE Trans. Power App. Syst., vol. PAS-99, no. 2, pp.

536-539, Mar. 1980

[4] G. Missout, J. Beland, G. Bedard, and Y. Lafleur, Dynamic measurement of

the absolute voltage angle on long transmission lines, IEEE Trans. Power App.

Syst., vol. PAS-100, no. 11, pp. 4428-4434, Nov. 1981.

[5] P. Bonanomi, Phase angle measurements with synchronized clocks principle

and applications, IEEE Trans. Power App. Syst., vol. PAS-100, no. 12, pp.

5036-5043, Dec. 1981.

[6] A. G. Phadke and J. S. Thorp, History and applications of phasor measure-

ments, in Proc. IEEE PES PSCE, 2006, pp. 331-335.

[7] A. G. Phadke, Synchronized phasor measurements A historical overview, in

Proc. IEEE/PES Transmiss. Distrib. Conf. Exhib. Asia Pacific, Oct. 6-10, 2002,

vol. 1, pp. 476-479.

[8] A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and Their

Applications. New York, NY, USA: Springer-Verlag, 2008.

36

http://standards.ieee.org/findstds/standard/C37.118.1 -2011.html
http://standards.ieee.org/findstds/standard/C37.118.1 -2011.html
http://standards.ieee.org/findstds/standard/C37.118.2- 2011.html
http://standards.ieee.org/findstds/standard/C37.118.2- 2011.html

References

[9] P. Denys, C. Counan, L. Hossenlopp, and C. Holweck, Measurement of voltage

phase for the French future defence plan against losses of synchronism, IEEE

Trans. Power Del., vol. 7, no. 1, pp. 62-69, Jan. 1992.

[10] Paolo Castello, Algorithms for the synchrophasor measurement in steadys-

tate and dynamic conditions, University of Cagliari, March 2014.

[11] A.Agarwal, N.Verma, H. Tiwari, J. Singh, Varun Maheshwari Design and

Development of Phasor Measurement Unit on FPGA, December 2016.

[12] B. Kasztenny and M. Adamiak, Implementation and performance of syn-

chrophasor function within microprocessor based relays, in Proc. 61st Annu.

Georgia Tech. Protect. Relaying Conf., Atlanta, GA, USA, May 2-4, 2007, pp.

1-43.

[13] Bogdan Vicol, modern technologies for power systems monitoring, ELS In-

ternational Symposium, September 2013.

[14] A. J. Roscoe, I. F. Abdulhadi, and G. M. Burt, P-class phasor measurement

unit algorithms using adaptive filtering to enhance accuracy at offnominal

frequencies, in Proc. IEEE Int. Conf. SMFG, Nov. 14-16, 2011, pp. 51 -58.

[15] Open source FFT core, [Online]: https://zipcpu.com/dsp/2018/10/02/fft.

html. Accessed on 30-06-2019

[16] Own Work, Xilinx Inc., 29 October 2012, 15:30:46.

[17] R. Wisniewski, in Synthesis of compositional microprogram control units for

programmable devices, Zielona Góra: University of Zielona Góra, 2009, p.

153.

[18] Intel FPGA, DE10 Standard User Manual, 2017.

[19] Linear Technology, LTC2308 ADC datasheet, 2007.

[20] P. P. Chu, “ Embedded SoPC design with Nios II processor and VHDL exam-

ples”, A JOHN WILEY & SONS, INC., PUBLICATION, 2011.

[21] Altera, “Introduction to the Altera Qsys System Integration Tool”.

[22] Intel Corporation, Embedded Peripherals IP User Guide, Updated for In-

tel®Quartus®Prime Design Suite: 20.2, UG-01085 | 2020.09.21

[23] Intel Corporation, FFT IP core user guide, UG-FFT | 2017.11.06

37

https://zipcpu.com/dsp/2018/10/02/fft.html
https://zipcpu.com/dsp/2018/10/02/fft.html

References

38

	Abstract
	Acknowledgements
	List of Tables
	List of figures
	List of Abbreviations
	Introduction
	Overview
	Literature Review
	Motivation
	Project Objectives
	Organization of the Report

	Theoretical Background
	Signal Model
	Phasor
	Fast Fourier Transform
	Phasor Calculation for 3-phase System
	Field Programmable Gate Array
	Overview
	Applications of FPGAs
	DE10-Board
	Nios II Processor
	Quartus PRIME Software

	Analog to Digital Converter
	Overview
	The LTC2308

	Qsys Tool

	Hardware System Design
	Overview
	Signal Acquisition and Sampling
	System Implementation
	SoPC System
	Sopc Main Entity

	FFT BLOCK
	Streaming FFT
	Functional Description
	Using the Streaming FFT

	ADC Block
	ALTERA NIOS II JTAG DEBUG MODULE
	PLL System Block

	Implementation and Results
	Overview
	The Firmware
	Top Level File with RTL Viewer
	Top Level File Compilation
	Results of the Implemented System
	Testing the ADC Block Reading
	System Output

	Hardware Limitations

	Conclusion
	References

