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Abstract 

An operating system is a set of software components that are used to manage the shared 

hardware resources between multiple programs, while maintaining an abstract interfacing layer 

to devices. This work discusses the approaches used to design the different components of such 

complex system, and how they are related to each other to construct layers for simple user 

programs to work in a secured system that is fair in sharing the CPU time and other hardware 

resources. 

Our work presents first the theory and the background on memory management, interrupts, 

multitasking and modes of execution. Then it describes how these components are implemented 

in our operating system named CyanOS, and explains how to setup Intel 32bit processer’s 

features and some other hardware buses and devices. At the end, it illustrates the way to how to 

modify and extend the functionality of the kernel, and how to write and compile a program 

running on this operating system. 
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General Introduction 

According to Moore’s law, it is observed that the number of transistors in a dense integrated 

circuit doubles every two years; this means faster hardware with more features, and also means 

more complex devices and harder to configure. In the meanwhile, a new programmer might need 

to read the immensely large datasheets of all the devices installed on his computer just to write a 

program with a simple task. This inconvenience imposed the need of an abstract interfacing layer 

that programmers will be using to write simpler programs that do not have to be aware of the 

underlaying hardware of the system, this interfacing layer is what is called an operating system. 

The first chapter of this report presents a theoretical background about the different operating 

system designs and concepts. Chapter 2 describes the implementation of our CyanOS operating 

system, and gives arguments why our followed approaches are superior to the ones used in other 

existing implementations. Chapter 3 discusses the obtained results and explains the way some 

user mode applications are compiled, linked and executed. Finally, the report is ended with a 

conclusion and some suggestions for future works. 
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Chapter 1:  Theory and Background 

1.1 Computers and Software 

Without its software, a computer is basically a useless lump of metal. With its software, a 

computer can store, process, and retrieve information; play music and videos; send e-mail, search 

the Internet; and engage in many other valuable activities to earn its keep. Computer software 

can be divided roughly into two kinds: system programs, which manage the operation of the 

computer itself, and application programs, which perform the actual work the user wants. The 

most fundamental system program is the operating system, whose job is to control all the 

computer's resources and provide a base upon which the application programs can be written.  A 

modern computer system consists of one or more processors, some main memory, disks, printers, 

a keyboard, a display, network interfaces, and other input/output devices. All in all, a complex 

system. Writing programs that keep track of all these components and use them correctly, let 

alone optimally, is an extremely difficult job. If every programmer had to be concerned with how 

disk drives work, and with all the dozens of things that could go wrong when reading a disk 

block, it is unlikely that many programs could be written at all. [1] 

Essentially, an operating system is a large and complex set of system programs that control the 

various operations of a computer system and provide a collection of services to user programs 

through an abstract interface of the underlying hardware resources. Since multiple programs can 

use these resources simultaneously, the operating system is also responsible for managing how 

resources are shared, i.e., sharing processor cores, RAM, hard disk, network interfaces, display 

device, keyboard, mouse… Therefore, any operating system should guarantee: 

1. Availability of a convenient, easy-to-use, and powerful set of services that are provided 

to the users and the application programs in the computer system 

2.  Management of the computer resources in the most efficient manner 

The services provided by an operating system are implemented as a large set of system functions 

e.g., scheduling of tasks, memory management, device management, file management, network 

management, and other more advanced services related to protection and security. Figure 1-1 
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shows a layered abstract view of the components of a complete computer system and the 

placement of the operating system in the latter. 

1.2 Computers before operating systems 

Before operating systems came to existence users and programmers used to directly interact with 

the bare computer’s hardware where they needed to write very low-level programs that run 

directly on the CPU and that did everything including managing all the hardware resources. 

Users also needed to know all the small details about the hardware components and how they 

work which meant that if the latter changes the programs also needed to change accordingly. 

Concepts of multiprogramming and time-sharing were not possible at the time where the 

hardware supported only one program at a time - each user must wait until the previous program 

is done to “share” the hardware with other users. In conclusion, writing programs was incredibly 

complex and expensive and certainly not accessible for the average user. 

 

Figure 1-1: Abstract view of the components of a computer system 

Each user had sole use of the machine for a scheduled period of time and would arrive at the 

computer with a program and data, often on punched paper cards and magnetic, paper tape or by 

setting a large set of on-off switches. The program would be loaded into the machine and the 
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machine would work until the program is completed or crashed. This really shows the 

importance of modern operating systems and the level of abstraction they provide for the user. 

1.3 Memory management 

Memory is the most important resource in a computer system thus; it must be carefully and 

wisely managed. 

The part of an operating system that handles this resource is called the memory manager, it is 

responsible of allocating portions of memory for processes when needed and de-allocating it to 

be reused by other processes when there is no longer necessity for it, while it keeps track of all 

used or free memory regions. It is also responsible of transferring some portion of a memory that 

is owned by a process to a secondary memory storage like hard disk, whenever this process 

seems reasonable. 

There are many memory management schemes from the primitive management like loading 

program directly to physical memory to the most sophisticated like paging and virtual memory. 

1.3.1 Primitive memory management 

The most primitive memory management is by loading all running programs directly into 

contiguous physical memory regions. When a program is no longer is used, the operating system 

will claim its memory and mark it as free to be used for the next problem. However, there are 

some flaws in this model; firstly, programs need to be aware about which address they will be 

loaded in at compile time. Secondly, there is a problem of fragmentation; when programs 

terminate and their memory is reclaimed, it may leave small portions of memory that another 

program may not fit in. Figure 1-2 shows some progression of creating and terminating processes 

that lefts the memory fragmented and cannot load a new program that its greater than 6 MB 

although there is enough total memory in the system. 
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Figure 1-2: Memory fragmentation 

1.3.2 Segmentation 

Segmentation is dividing the physical memory into several different sizes regions, one for each 

process. The program will use offsets in these segments and does not have to be aware of the 

where the segment is in physical memory. The operating system maintains a map of segments to 

physical memory in a segment table. Every entry of the table contains the base address and the 

size of physical memory that corresponds segment. Segmentation can be used to map segments 

to either contagious or non-contagious physical memory regions depending on the system and 

processor. Segmentation solves the first flaw of primitive memory management discussed 

previously. However, it still suffers from the fragmentation. Figure 1-3 illustrates how 

semination works. 
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Figure 1-3: Segmentation with non-contiguous physical memory. 

1.3.3 Paging 

In order to attempt to solve the problem of fragmentation and for better memory utilization, a 

transition to noncontiguous memory managements techniques needed to take place. One of these 

techniques is paging. Paging is a memory management technique in which the address space of a 

process is divided into small fixed-sized blocks of logical memory called pages, each page is 

mapped to a physical memory block called a frame, both pages and frames have the same size 

which is chosen by the operating system and usually power of two. The frames allocated to the 

pages of a process do not need to be contiguous; in general, the system can allocate any unused 

frame to map a page for a particular process.  

The operating system has a mapping table of page-frame for each process, making the address 

space of each process is independent while avoiding fragmentation. Figure 1-4 shows how 

paging works. 
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Figure 1-4: Paging 

On computers without paging, physical memory is directly addressed by processes which raises 

the possibility of a process accidently writing to another process’s data which may corrupt it. 

Whereas, with paging, each process has an independent address space that is mapped to unique 

physical frames. This provides a memory protection by guaranteeing that physical address spaces 

do not overlap and that processes do not overwrite each other's data. 

1.3.4 Virtual memory 

The primary motive of virtual memory is to allow for processes to access more memory than the 

amount physically available through the use of secondary memory (disk) and a noncontiguous 

memory allocation scheme (usually paging). The memory manager sets up the disk to an extra 

physical memory, when the physical memory is about to run out. Figure 1-5 illustrates the use 

both physical memory and secondary storage. 

In modern CPU’s a memory management unit (MMU) is implemented into the hardware and it is 

responsible for the mapping of virtual addresses into the physical ones as shown in Figure 1-6. 
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Figure 1-5: Virtual memory using physical and secondary memory 

 

Figure 1-6: Function of the MMU 

1.3.5 Page tables and address translation 

A page table is a data structure that keeps track of all the mappings between virtual and physical 

memory. Each entry in the table contains two pieces of information: the virtual page number and 

the corresponding frame (physical page) number. It can be thought of as function that takes a 
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page number as argument and returns the frame number as output. Figure 1-7 illustrates the use 

of page table in the virtual address translation. 

The virtual address is split into two fields, the high order bits represent the virtual page number 

for a virtual address and the low-order bits represent the offset of the address within the page 

itself. Figure 1-8 shows an example of address translation in the case of a 32-bit machine with 

256MB of RAM and 4kb sized pages. There are 32bit virtual address and 28bit physical address, 

a 12 bit is used as an offset in the page or frame. 

 

Figure 1-7: Address translation 

 

Figure 1-8: Address translation example 

Each time a virtual address is referenced, the system performs a look up in the page table that 

corresponds to that particular process and checks if the page is available in physical memory 
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(RAM) if this is the case then the physical address is formed by combining the frame address and 

offset value. This address now can be used to address the main memory. 

In the case where the page is unmapped and its corresponding frame is not in physical memory 

the CPU raises a Page Fault trap to the operating system which is an exception that requires the 

immediate attention of the OS which in turn will start a routine that swaps out a rarely used 

frame from the main memory  to the secondary memory and fetches (swaps in) the referenced 

page in place of the freed frame, updates the entry in the page table and restarts the instruction 

from which the page fault was raised. 

The concepts of extending the main memory using disk seems like a convenient solution to the 

problem of insufficient memory but reading from disk is significantly slower than accessing 

RAM. Consequently, handling a page fault can have a serious effect on performance especially 

in modern computers where CPUs are extremely faster than hard disks. An excessive rate of 

page faults puts the system into a state of thrashing where the system spends most of its time 

swapping pages rather than executing instructions. 

In addition, page tables are stored in main memory and this introduces other issues: 

1. Each reference to memory requires a virtual to physical memory mapping (several 

memory accesses on every reference). this process has an obvious effect on performance 

(bottleneck). 

2. Page tables can get extremely large in size and each process must have one i.e., a 32-bit 

address space and a 4-kb page size will result one million page table entry for each 

process. 

Even though these issues cannot be completely eliminated they can be reduced using some 

design considerations such as implementing translation lookaside buffers (TLB) to make 

mapping faster and designing smarter page replacement algorithms to reduce the problem of 

thrashing. 

1.3.5.1 Translation Lookaside Buffers (TLB) 

without the use of virtual memory, reading/writing data to physical memory needs only a single 

memory reference. With paging several memory references are needed which will have 

enormous impact on performance. 
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In real life systems, only a fraction of the page table entries is heavily used, whereas others are 

rarely referenced. This gave motivation to implement the translation lookaside buffer which is 

a hardware device that is similar to a cache memory and allows for mapping of frequently used 

pages without the need to access the actual page table in the main memory. TLBs are usually 

implemented in the MMU and they contain a small number of entries (no more than 64). 

As illustrated in Figure 1-9 every time memory needs to be referenced the virtual page is first 

checked for availability in the TLB. If the page is present (a TLB hit) then its corresponding 

frame is read and used to form the physical address. Otherwise, a TLB miss will occur and 

normal page table mapping will take place, this in fact is slower than directly performing a page 

table mapping in the first place and this is the disadvantage of using the lookaside buffer. 

 

 

Figure 1-9: Implementing the translation lookaside buffer 

1.3.5.2 Page replacement algorithms 

Each time a page fault occurs, a page has to be swapped out from main memory to make space 

for the referenced page to be brought in. The decision of which page to remove from memory is 

the operating system’s responsibility and it depends on the page replacement algorithm used. 
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The choice of which replacement algorithm to use is very important as it has direct relation to the 

performance of the system. ideally the goal is to evict a page that is the least used, this will 

decrease the chance of the system going into the Thrashing state and consequently a better 

performance. Thrashing occurs when a computer's virtual memory resources are overused, 

leading to a constant state of paging and page faults, inhibiting most application-level 

processing. This causes the performance of the computer to degrade or collapse. The situation 

can continue indefinitely until either the user closes some running applications or the active 

processes free up additional virtual memory resources. [2] 

The ideal replacement algorithm to swap out the page that will not be used or referenced for the 

longest time, however, it is hard determine the behavior of the threads in the future. Therefore, 

there some more practical algorithms used in modern operating systems such as: 

• First In First Out (FIFO) 

• Least recent used (LRU) page replacement algorithm 

1.4 Interrupts 

The operating system is event driven and relies heavily on interrupts. An interrupt is a signal to 

the processor triggered by hardware or software indicating an event that needs immediate 

attention. Whenever an interrupt occurs, the controller completes the execution of the current 

instruction and starts the execution of an Interrupt Service Routine (ISR) or Interrupt Handler. 

The ISR tells the processor what to do when the interrupt occurs. The interrupts can be either 

hardware interrupts or software interrupts. [3] 

1.4.1 Interrupts and polling 

The state of continuous monitoring is known as polling. The processor keeps checking the status 

of some devices; and while doing so, it does no other operation and consumes all its processing 

time for monitoring. This problem can be solved by using interrupts [3]; in interrupts, the 

processor responds only when the device triggers an interrupt. Therefore, the processor is not 

required to regularly monitor the status (flags, signals etc.) of interfaced and inbuilt devices. 

1.4.2 Types of interrupts 

Interrupts are generally classified into three types: 
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1. Hardware Interrupts are generated by hardware devices to signal that they need some 

attention from the OS. They may have just received some data (e.g., keystrokes on the 

keyboard or a data on the ethernet card); or they have just completed a task which the 

operating system previous requested, such as transferring data between the hard drive and 

memory. 

2. Traps or exceptions are generated by the CPU itself to indicate that some error or 

condition occurred for which assistance from the operating system is needed. 

1.5 Scheduling Algorithms 

When a computer is multi-tasking, it frequently has multiple processes or threads competing for 

the CPU at the same time. This situation occurs whenever two or more of them are 

simultaneously in the ready state. If only one CPU is available, a choice has to be made which 

process to run next. The part of the operating system that makes the choice is called the 

scheduler, and the algorithm it uses is called the scheduling algorithm [4]. The unit of scheduling 

is usually the threads, the scheduler chooses which thread to be executed next regardless of 

which process it belongs to. An optimum scheduling algorithm should minimize the average time 

that thread take to finish their job, while reducing the response time and keeping the CPU busy 

as much as possible. 

1.5.1 First-Come, First-Served scheduler 

It is scheduling algorithm that uses queuing system to schedule threads. With this algorithm, 

processes are assigned the CPU in the order they request it; therefore, there is one queue for 

ready processes and the scheduler chooses one to be executed until it finishes and moves to the 

second earliest thread. This algorithm is non-preemptive; meaning that the scheduler allows a 

thread to be executed until it finishes, without interruption even if it is blocked waiting for IO, or 

there is another higher priority thread is waiting in the queue. This algorithm has a lot of flaws; 

First, the IO bounded threads will spend most of their time blocking waiting for IO, while 

preventing other threads from using the CPU. This results, higher waiting time and poor efficient 

use of the CPU. 

1.5.2 Priority based scheduler 

Another non-preemptive algorithm in which each thread has a priority, the scheduler chooses the 

higher priority thread to be executed next. This algorithm suffers from the same flaw as the 
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previous one, and it will bit put the CPU in a good use if an IO bounded thread has high priority. 

Another flaw is starvation, if more high priority threads are created, the lower priority one may 

not be executed ever. 

1.5.3 Round Robin scheduler 

A fair preemptive scheduling algorithm that allows each a thread to be executed for a fixed 

amount of time called time splice, and if a thread is blocked waiting for an IO, the scheduler will 

schedule another thread. This scheduling algorithm fixes the flaws of both previous algorithms, 

but it does not have a priority system, so a kernel thread that should be executed as soon as 

possible will wait its turn like any other thread. 

1.5.4 Multi-level Queueing scheduler 

This algorithm makes use of the previous two algorithms; it has multiple queues with different 

priorities, the threads in the same are scheduled using Round Robin. The scheduler does not 

process to schedule certain threads in a queue unless all the higher priority queues are empty. 

Threads can move to higher priority queues if they block and wait for IO operations, and does 

not use much CPU; this will minimize the response time and decrease the average waiting time 

in generally for all threads. 

1.6 Modes of execution 

Modern operating systems generally have two modes, kernel mode and user mode. The kernel 

mode has full unrestricted access to the hardware, privileged instructions, physical memory and 

virtual memory of all processes. While the user mode has a restricted access to some non-

privileged level instructions and the virtual memory of the current process. Only few trusted 

programs must run in the kernel mode, including most of the operating system functions, because 

any faults may corrupt the memory, misconfigure the attached hardware, or even crash the whole 

system. However, in the user mode, any fault may cause damage only to the faulted process, and 

the system may terminate it at worst case.  

When a process running the user mode wants to interact with hardware or any privileged 

operations, it will execute a system call through a set of APIs provided by the operating system. 

The system call will switch the execution flow from the user mode to a piece of program in 
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operating system running in the kernel mode. Figure 1-10 illustrates the interaction between the 

user mode and the kernel mode. 

 

Figure 1-10: Kernel mode and User mode 

1.7 x86 instruction set and IA-32 processors 

x86 is a family of instruction set architectures initially developed by Intel based on the Intel 8086 

microprocessor and its 8088 variants. The 8086 was introduced in 1978 as a fully 16-bit 

extension of Intel's 8-bit 8080 microprocessor, with memory segmentation as a solution for 

addressing more memory than can be covered by a plain 16-bit address. Many additions and 

extensions have been added to the x86 instruction set over the years, almost consistently with full 

backward compatibility. And instruction set later was extended to be a CISC design. It has Byte-

addressing enabled and words are stored in memory with little-endian byte order. Memory access 

to unaligned addresses is allowed for all valid word sizes. The largest native size for integer 

arithmetic and memory addresses (or offsets) is 16, 32 or 64 bits depending on architecture 

generation. [5] 
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IA-32 (short for Intel Architecture, 32-bit) is the 32-bit version of the x86 instruction set family, 

designed by Intel and first implemented in the 80386 microprocessor in 1985 and currently used 

in all 32bit Intel processors. IA-32 is the first incarnation of x86 that supports 32-bit computing; 

as a result, the "IA-32" term may be used as a metonym to refer to all x86 versions that support 

32-bit computing [6]. In some other contexts, certain iterations of the IA-32 ISA are sometimes 

labelled i486, i586 and i686, referring to the instruction supersets offered by the 80486, the P5 

and the P6 microarchitectures respectively. The newer processors that work under IA-64 like 

Intel i3, i5 ,i7, i9 do emulate the older architecture like IA-32 and IA-16, which enables them to 

run the any 16bit or 32bit operating system. Figure 1-11 shows a list of the 32, 16, and 8 bit 

registers in IA-32. 

 

Figure 1-11: IA-32 Registers 

Besides the 32bit registers, the IA-32 added few features to the x86 instruction set. Firstly , more 

addressing modes; all general-purpose registers can be used as base register, while all general-

purpose registers except ESP can be used as an index register and can be multiplied by 1, 2, 4, or 

8 before being added to the base register value and displacement. This allowed instructions like  

“ MOV ECX, [EAX+EBX*4] ”. Secondly, it extended the address space to 48-bit using 

segmentation, combining 16-bit segment number and a 32-bit offset within the segment. Thirdly, 

it supports virtual memory with different protection using paging with two level tables, which 

will be discussed in more details in the next chapter. 
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Chapter 2:  Design and Implementation 

2.1 Setting up IA-32 Protected Mode Features 

In order to use the full capabilities of IA-32 processors, the programmer has to setup few features 

such as memory segments, paging, interrupt and exceptions. These features were probably 

initialized by the boot loader to execute the first few instructions of the operating system; 

however, the programmer needs to modify the settings according to operating system needs. 

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit 

modes.  

 

Figure 2-1: IA-32 System-Level Registers and Data Structures 

Adapted from [7]. 
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2.1.1 Segmentation 

Segmentation is a memory management technique used to divide the virtual memory into 

multiple regions; an identifier and an offset in that segment are used to reference a specific 

address. Originally, the segmentation was used to access the different parts of the program like 

code, read-only data, and writable data, because of the limited memory address bus size in the 

old Intel processors. However, in modern processors, the 32bit or 64bit bus size is more than 

enough for most applications, and the need of segmentation has vanished, though IA-32 

processor still supports this feature as backward compatibility and enforces it to be able to enter 

the protected mode. Thus, most modern operating systems that support IA-32 will setup all 

memory segments to be identical and cover the whole memory. 

When operating in protected mode, all memory accesses pass through either the global 

descriptor table (GDT) or an optional local descriptor table (LDT) as shown in Figure 2-1. 

These tables contain entries called segment descriptors. Segment descriptors provide the base 

address of segments as well as access rights, type, and usage information. 

Each segment descriptor has an associated segment selector. A segment selector provides the 

software that uses it with an index into the GDT or LDT (the offset of its associated segment 

descriptor), a global/local flag (determines whether the selector points to the GDT or the LDT), 

and access rights information. 

To access a byte in a segment, a segment selector and an offset must be supplied. The segment 

selector provides access to the segment descriptor for the segment (in the GDT or LDT). From 

the segment descriptor, the processor obtains the base address of the segment in the linear 

address space. The offset then provides the location of the byte relative to the base address. This 

mechanism can be used to access any valid code, data, or stack segment, provided that the 

segment is accessible from the current privilege level (CPL) at which the processor is operating. 

The CPL is defined as the protection level of the currently executing code segment. 

The solid arrows in Figure 1-1 indicate a linear address, dashed lines indicate a segment 

selector, and the dotted arrows indicate a physical address. For simplicity, many of the segment 

selectors are shown as direct pointers to a segment. However, the actual path from a segment 

selector to its associated segment is always through a GDT or LDT [8]. 
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The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear 

address of the LDT is contained in the LDT register (LDTR), and the instruction lldt r/m16 is 

used for that. 

The mode where all segments cover the whole memory is called flat mode, in which the 

operating system and application programs have access to a continuous, unsegmented address 

space. To the greatest extent possible, this basic flat model hides the segmentation mechanism 

of the architecture from both the system designer and the application programmer. 

To implement a basic flat memory model with the IA-32 architecture, at least two segment 

descriptors must be created; one for referencing a code segment and one for referencing a data 

segment (see Figure 2-2). Both of these segments, however, are mapped to the entire linear 

address space: that is, both segment descriptors have the same base address value of 0 and the 

same segment limit of 4 GBytes [8]. 

 

Figure 2-2: Flat Model 

Adapted from [9]. 

2.1.1.1 Segment Selectors and Privilege Levels 

A segment selector is a 16-bit identifier for a segment (see Figure 2-3). It does not point directly 

to the segment, but instead points to the segment descriptor that defines the segment. A segment 

selector contains the following fields. 

Index: Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies the index 

value by 8 (the number of bytes in a segment descriptor) and adds the result to the base address 

of the GDT or LDT (from the GDTR or LDTR register, respectively). 

TI (table indicator) flag: Specifies the descriptor table to use: clearing this flag selects the GDT; 

setting this flag selects the current LDT. 
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RPL (Requested Privilege Level): Specifies the privilege level of the selector. The privilege level 

can range from 0 to 3, with 0 being the most privileged level. See section 2.4 for a description of 

how this field is used to switch between execution modes. 

 

Figure 2-3: Segment Selector 

Adapted from [10]. 

The segment selectors in IA-32 are: cs, ds, es, ss, fs and gs, the first four usually have the same 

index value in all processes and threads, but PRL field will differ depending on the privilege 

level that the current task is on. The use of selectors ss and fs very varries between operating 

systems, though the majority will use them for storing information related to the current process 

and thread. 

 

2.1.2 Interrupts 

In IA-32, Interrupt Descriptor Table (IDT) is the responsible of handling hardware interrupts, 

software interrupts and internal exceptions, and to aid the handling of exceptions and interrupts, 

each architecturally defined exception and each interrupt condition requiring special handling by 

the processor is assigned to unique identification number, called a vector number. The processor 

uses the vector number assigned to an exception or interrupt as an index into the entries of 

interrupt descriptor table (IDT). See Table 2-1 for the list of indices and their corresponding 

interrupts. 

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 through 31 

are reserved by the Intel 64 and IA-32 architectures for architecture-defined exceptions and 

interrupts. While, vector numbers in the range 32 to 255 are designated as user-defined interrupts 

and are not reserved by the Intel 64 and IA-32 architecture. These interrupts are generally 

assigned to external I/O devices to enable those devices to send interrupts to the processor 

through one of the external hardware interrupt mechanisms. 
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Note that the difference between an interrupt and exception in the current context is that an 

interrupt is triggered by an external hardware, whereas an exception is a fault in the program or 

the processor configuration. All interrupts and exception can be manually triggered by the 

instruction int n, n is the interrupt number. 

Similarly to GDT, IA-32 has a special instruction lidt /m16 which is used to load the address of 

IDT into IDTR register.  

2.1.2.1 Interrupt handlers 

After an interrupt is triggered, the processor tries to translate the handler address from both IDT 

and GDT (see Figure 2-4). If it encounters any misconfigured entry in both tables, the processor 

will trigger double fault exception, if another fault is encountered while translating the double 

fault exception, a triple fault exception is triggered which will cause a system reset. 

 

Figure 2-4: Interrupt Procedure Call 

Adapted from [11]. 

During an interrupt handler call, if there is no privilege level change between the interrupt 

handler and the original code e.g., code is running in ring0 (kernel mode) and an interrupt is 

triggered to be executed in same privilege level, the processor pushes to the stack some 
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information about interrupt and how to return to the original interrupted code. However, when 

there is privilege level change e.g., code is running in ring3 (user mode) and an interrupt is 

triggered to be executed in ring0 (kernel mode), the processor uses a new stack memory for the 

handler to store the interrupt information. 

Interrupt 

index  

Description 

0x00 Division by zero 

0x01 Single-step interrupt 

0x02 Non Maskable Interrupt 

0x03 Breakpoint 

0x04 Overflow 

0x05 Bound Range Exceeded 

0x06 Invalid Opcode 

0x07 Coprocessor not available 

0x08 Double Fault 

0x09 Coprocessor Segment Overrun (386 or earlier only) 

0x0A Invalid Task State Segment 

0x0B Segment not present 

0x0C Stack Segment Fault 

0x0D General Protection Fault 

0x0E Page Fault 

0x0F Reserved 

0x10 x87 Floating Point Exception 

0x11 Alignment Check 

0x12 Machine Check 

0x13 SIMD Floating-Point Exception 

0x14 Virtualization Exception 

0x15 Control Protection Exception 

Table 2-1: Protected-Mode Exceptions and Interrupts 
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Figure 2-5: Stack Usage on Transfers to Interrupt and Exception-Handling Routines 

Adapted from [12]. 

2.1.3 Virtual Memory 

The memory management facilities of the IA-32 are divided into two parts: segmentation and 

paging. Segmentation provides a mechanism of isolating individual code, data, and stack 

modules so that multiple programs (or tasks) can run on the same processor without interfering 

with one another, however in flat mode as discussed before, the processor makes segmentation 

transparent. Paging on the other hand, provides a mechanism for implementing a conventional 

demand-paged, virtual-memory system where sections of a program’s execution environment are 

mapped into physical memory as needed. Paging can also be used to provide isolation between 

multiple tasks. When operating in protected mode, some form of segmentation must be used. 

There is no mode bit to disable segmentation. The use of paging, however, is optional. The 

paging mechanism can be configured to support simple single-program systems, multitasking 

systems, or multiple-processor systems that uses shared memory. When paging is enabled, all the 

addresses in the system (including the addresses in IDT and GDT) will be considered as virtual 

addresses, and need to be translated into actual physical addresses by the memory management 

unit (MMU), as shown in Figure 2-6.  
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Figure 2-6: Segmentation and Paging 

Adapted from [13]. 

2.1.3.1 Paging Setup 

The MMU translates addresses through a series of two tables, page directory (PD), and paging 

table (PT), both contain 1024 entries of 4 bytes. Each page directory entry (PDE) points to a 

page table, while each page table entry (PTE) points to a physical memory page; a memory 

frame, which is typically 4kb in size. This gives up to 4GB virtual address space accessible to the 

processor. Figure 2-7 Illustrates the translation process of a 32-bit address into a memory frame, 

the most significant ten bits of any virtual address represent an index in the page directory, 

whereas the next ten bits represents an index in the corresponding page table, the last twelve bits 

are an offset in the 4kb memory frame.  

Besides the pointers to PT or frame, PDE and PTE contain some important information about the 

pages they point to. Figure 2-8, Table 2-2, and Table 2-3 give details of each field. 
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Figure 2-7: Virtual Address Translation to a 4-KByte Page using 32-Bit Paging 

Adapted from [14]. 

 

Figure 2-8: Paging-Structure Entries with 32-Bit Paging 

Adapted from [15]. 

2.1.3.2 Identity Mapping 

Enabling the paging in IA-32 architecture can be tricky. At first all addresses are physical 

address including the address of the current instruction in EIP and the address of the stack in 

ESP, and at the moment of enabling paging, all these addresses will be invalid in virtual 

memory. A simple solution to this problem is identity mapping, which is mapping physical 

addresses of some pages to the same virtual addresses so the switching code does not encounter 

invalid addresses after enabling paging. 
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Table 2-2: Format of a 32-Bit Page-Directory Entry that References a Page Table 

Adapted from [16]. 

 

Table 2-3: Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page 

Adapted from [16]. 

The identity mapping has to cover only few pages of the operating system that are responsible of 

enabling paging, after that it is possible to jump into a page where the it is not identity mapped. 

Figure 2-9 illustrates the identity mapping. 
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Figure 2-9: Identity mapping 

2.1.3.3 Memory Page Allocator 

Each page table is 4kb in size, with 1024 one of it, they will take roughly 4Mb to map all 4Gb 

space of virtual memory, and since each process has its own virtual space, hence page tables, 

huge chunks of memory will be used for the sole reason of mapping. A more reliable approach is 

to only map a page when it is needed, so at first only one page directory and page table exist, and 

they grow by the need of more memory. 

A memory allocator is a convenient technique to allocate 4Kb pages whenever the kernel (or 

user applications) needs. It works by keeping track of all used and free physical and virtual 

pages, CyanOS uses a simple bitmap which is initialized to 0 at first, and each allocated page its 

bit will be set to one. A small optimization is implemented by a variable that keeps the index of 

the last allocated page, the next time a page is required, the allocator start searching starting from 

that variable. 

2.1.3.4 Page Faults and Memory Swapping 

A page fault is an exception generated by the processor when the program tries to access a page 

that does not exist, has higher privilege level, or to write to read-only page. One use of the page 

faults is to detect an access to certain page specially in memory swapping; when a page is 

swapped out of memory, the kernel sets its present bit in PTE to zero (see Table 2-3), this way 

the page is not present and will trigger a page fault whenever a program tries to access it, the 
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exception handler will decide then whether to put the process to sleep or swaps in the required 

page from the disk. Figure 2-10 illustrates the process of swapping. 

 

 

 

Figure 2-10: Using page fault in swapping 

2.2 Device’s Drivers 

2.2.1 Intel Programmable Interrupt Controller (PIC 8259) 

The Intel 8259 is a Programmable Interrupt Controller (PIC) designed for the Intel 8085 and 

Intel 8086 microprocessors to manage hardware interrupts and send them to the appropriate 

system interrupt. The 8259 combines multiple interrupt input sources into a single interrupt 

output to the host microprocessor, extending the interrupt levels available in a system beyond the 

one or two levels found on the processor chip. The 8259A was the interrupt controller for the 

ISA bus in the original IBM PC and IBM PC AT. The 8259 has coexisted with the Intel APIC 

Architecture since its introduction in Symmetric Multi-Processor PCs. Modern PCs have begun 

to phase out the 8259A in favor of the Intel APIC Architecture. However, while not anymore a 
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separate chip, the 8259A interface is still provided by the Platform Controller Hub or 

Southbridge chipset on modern x86 motherboards [17].  Figure 2-11  shows how the devices are 

connected to CPU through PIC.  

 

Figure 2-11: PIC 8259 

To start receiving hardware interrupts from the PIC, it must be configured first using the 

following steps: 

1- Remap the interrupts. The PIC uses interrupts 0 - 15 for hardware interrupts by default, 

which conflicts with the CPU interrupts. Therefore, the PIC interrupts must be remapped 

to another interval. 

2- Select which interrupts to receive. You probably do not want to receive interrupts from 

all devices since you do not have code that handles these interrupts anyway. 

3- Set up the correct mode for the PIC. 

Since a PIC is capable of handling just 8 devices, the need of more devices made motherboard 

designers to cascade two PICs so it is possible to handle 15 devices. Figure 2-12 shows how two 

PICs are cascaded, while Table 2-4 lists the different devices that are connected to PIC. 
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Refer to PIC 8259 manual to find the different control words to initialize and configure the 

different devices on PIC. 

Interrupt Number Device 

0 CMOS real-time clock 

1 Free for peripherals / legacy SCSI / NIC 

2 Free for peripherals / SCSI / NIC 

3 Free for peripherals / SCSI / NIC 

4 PS2 Mouse 

5 FPU / Coprocessor / Inter-processor 

6 Primary ATA Hard Disk 

7 Secondary ATA Hard Disk 

8 CMOS real-time clock 

9 Free for peripherals / legacy SCSI / NIC 

10 Free for peripherals / SCSI / NIC 

11 Free for peripherals / SCSI / NIC 

12 PS2 Mouse 

13 FPU / Coprocessor / Inter-processor 

14 Primary ATA Hard Disk 

15 Secondary ATA Hard Disk 

Table 2-4: Device connected to PIC 

2.2.2 PS/2 Keyboard 

The PS/2 Keyboard is a device that talks to a PS/2 controller using serial communication. The 

PS/2 controller has an input port to read the scan codes of the pressed key (scan code is different 

than ASCII code). It also generates an interrupt at IRQ1 in PIC. 

2.2.3 Peripheral Component Interconnect (PCI) bus  

Peripheral Component Interconnect (PCI) is a local computer bus for attaching hardware devices 

in a computer and is part of the PCI Local Bus standard. The PCI bus supports the functions 

found on a processor bus but in a standardized format that is independent of any given 

processor's native bus. Devices connected to the PCI bus appear to a bus master to be connected 

directly to its own bus and are assigned addresses in the processor's address space. It is a parallel 



31 

 

bus, synchronous to a single bus clock. Attached devices can take either the form of an integrated 

circuit fitted onto the motherboard (called a planar device in the PCI specification) or an 

expansion card that fits into a slot. [18] 

 

Figure 2-12: Cascading two PICs 

The PCI specification provides for totally software driven initialization and configuration of each 

device. Therefore, each one provides a 256-byte configuration registers. These registers can 

provide information about the device such as device id, vendor id and device class, and some 

information about its functionality such as the interrupt line or the base address of device’s IO 

(either memory mapped or ports). Refer to [19] for a detailed explanation on each field of the 

configuration space.  
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Figure 2-13: PCI structure 

PCI has 256 buses, each bus has 32 slots, and each slot has 8 functions. Obviously not all these 

buses, slots, and functions will be filled with a physical hardware. Therefore, one way to 

enumerate the PCI devices in the system is by scanning only the first 8 buses, and scan the slots 

in each bus, then scanning the function in each slot. If a function has the type of PCIBridge, its 

secondary bus number will point to a bus that has more slots and functions that will be scanned 

recursively too. Figure 2-13 shows the structure of PCI devices, whereas Figure 2-14 shows a 

code snippet on how to enumerate these devices. 

2.2.4 RTL8139 Ethernet Network Device 

Realtek RTL8139 has the simplest interface among NICs (Network interface controller) devices 

and it is emulated by a software like Qemu or Bochs, for these reasons it was the chosen driver to 

implement networking in CyanOS. 

Since RTL8139 is connected to PCI, it needs to be detected by the previously discussed method 

(The PCI vendor ID is 0x10EC and the device ID is 0x8139), and the configuration space will 

provide the command addresses, MAC address, interrupt line of this device. RTL8139 is 

configured to write the received data to a specific address of buffer in the memory, and then it 

will trigger an interrupt. For transmitting packets, The RTL8139 NIC uses a round robin style for 

transmitting packets. It has four transmit buffer registers to hold the address of the buffer 

containing the data of the packet to be sent. It should be noted, that all addresses provided to 
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RTL8139 must be physical addresses instead of virtual, so virtual_to_physical_address is used 

to convert. Refer to RTL8139 for detailed information about the process.  

void PCI::scan_pci(Function<void(PCIDevice&)> callback){ 

    for (size_t bus = 0; bus < 8; bus++) { 

        scan_bus(callback, bus); 

    } 

} 

void PCI::scan_bus(Function<void(PCIDevice&)>& callback, u8 bus){ 

    for (size_t slot = 0; slot < 32; slot++) { 

        scan_slot(callback, bus, slot); 

    } 

} 

void PCI::scan_slot(Function<void(PCIDevice&)>& callback, u8 bus, u8 slot){ 

    PCIDevice slot_device{bus, slot, 0}; 

    if (slot_device.does_exist()) { 

        scan_function(callback, bus, slot, 0); 

        if (slot_device.has_multiple_functions()) { 

            for (size_t function = 1; function < 8; function++) { 

                scan_function(callback, bus, slot, function); 

            } 

        } 

    } 

} 

void PCI::scan_function(Function<void(PCIDevice&)>& callback, u8 bus, u8 slot, u8 function){ 

    PCIDevice function_device{bus, slot, function}; 

    if (function_device.does_exist()) { 

        callback(function_device); 

        if (PCIDevice{bus, slot, function}.header_type() == PCIDevice::HeaderType::PCIBridge) { 

            scan_bus(callback, PCIBridge{bus, slot, function}.secondary_bus_number()); 

        } 

    } 

} 

Figure 2-14: Enumerating all PCI devices 
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2.3 Multitasking 

After discussing how the kernel initializes the required features in IA-32, this part describes a 

higher level overview of the different components of CyanOS to achieve multitasking, that 

includes processes, threads, context switch, synchronization, interprocess communication and the 

user space. 

2.3.1 Kernel memory space 

As many modern operating systems, CyanOS uses the higher half kernel model; meaning all 

processes share the same kernel in their virtual space which is from 0xC0000000 to 

0xFFFFFFFF, and independent in the rest of the virtual space. This implies that the values of 

PDEs in page directory from 768 to 1023 are identical in all page directories of all processes in 

the system, which all marked as supervisor (refer to Table 2-3) to disallow any access to these 

pages from the user space. Figure 2-15 shows the mapping of virtual spaces of two processes to 

the physical memory. 

 

Figure 2-15: Higher Half Kernel model 

2.3.2 Processes and Threads 

As any other modern kernel, CyanOS has processes and threads; process is a running program 

loaded from the file system that has its own virtual address space (page directory and tables) and 
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set of resource like handles (see section 2.6.3 for more details), it also contains set of threads. A 

thread on the other hand has its own stack, execution flow and may share some data on the heap. 

Table 2-5 and Table 2-6 Illustrate the different internal information fields stored in the kernel 

about processes and threads in CyanOS. 

Field Description 

id A unique identifier to the process. 

name Process’s name 

path The location of the loaded program on the file system. 

privilege_level The privilege level of the process which can be either Kernel or User. 

parent A reference to the parent process. 

state The state of the process which can be either Ready, Blocked, Suspended or 

Zombie. 

handles_list The list of the handles in the process (check 2.6.3 for more details). 

threads_list The list of the threads in the process. 

page_directory The physical address of the page directory of the process’s virtual space. 

Table 2-5: Internal fields of a Process. 

Field Description 

id A unique identifier to the thread. 

privilege_level The privilege level of the thread what can be either Kernel or User. 

parent_process A reference to the processes holding this thread. 

entry_point The address of the first instruction to be executed by the thread. 

stack_pointer The address of the stack for the thread. 

state The state of the process which can be either Ready, BlockedSleep, 

BlockedQueue, BlockedQueueTimed or Suspended. 

blocker_waitqueue If the process is blocked, this field contains a reference to the blocking 

waitqueue. (See section 2.3.3.2 for details) 

Table 2-6: Internal fields of a Thread. 
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2.3.2.1 Life Time of a Process 

When the kernel takes control from the bootloader, it initializes some internal data structures and 

devices then it creates the first process in the system which called “Adam” and has the id of zero. 

This process is a special since it has no parent and no actual associated program in the file 

system; it is also responsible of spawning some programs like the shell or a desktop GUI 

manger. 

Creating a new process is done by CreateProcess system call, the kernel initiates the internal 

information about this process and creates a page directory for it. Next, an ELF file is loaded 

from the file system to the executable loader (See section 2.4.2 for details), if the file is invalid it 

will clean the allocated data and CreateProcess will return an error. Finally, the kernel creates a 

new thread that starts from the entry point of the executable file, the path of the current process 

and its arguments will be passed to the main function. 

When CreateProcess system call succeeds it returns a Handle, which is a wrapper for a 

ProcessDescription. ProcessDescription is kernel’s object that references a process, which 

allows the kernel to do operations on this process including (wait, suspend, terminate). Similarly, 

A foreign process can obtain a Handle for another process using OpenProcess system call. 

Nevertheless, All Handle-s of the process must be closed by CloseHandle after use, otherwise 

the kernel assumes that the process resources are still needed. 

A program can use SuspendProcess to suspend all the threads in a process, which can be 

resumed later by ResumeProcess. Moreover, TerrminateProcess is used to close a certain 

process and release all its resources as well as its threads’ if there is no ProcessDescription 

referencing it. However, if one or more ProcessDescription is still not closed, the kernel marks 

this process’s state as Zombie and waits until all the ProcessDescription to be closed so it 

releases the resources. Furthermore, WaitSignal system call is used to wait until a process is 

terminated and returns the error code that process returned. 

2.3.2.2 Life Time of a Thread 

Similarly to a process, a thread has CreateThread, OpenThread, SuspendThread, and 

TerminateThread which work exactly like the operations on a process. Additionally, the kernel 

provides Sleep and Yield system calls, Sleep will suspend the execution flow of a thread for a 
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certain duration, while Yield allows the thread to voluntarily give up its time slot of the 

scheduler. 

2.3.2.3 Context Switch 

In CyanOS, the unit of scheduling is threads; the kernel chooses which thread to be scheduled 

regardless of which process it belongs to. The scheduler divides all threads in the system into 

five lists: ready, sleeping, blocking, timed_blocking and suspended. Ready list contains any 

thread that is ready to run and its time slot has expired, sleeping list contains threads that 

executed Sleep system call and waiting for a specific time duration to pass, blocking list on the 

other hand are threads which are blocked waiting in a waitqueue (see section 2.3.3.2 for more 

details about waitqueue), and finally timed_blocking is a list of threads blocked in a waitqueue 

but have a time out. Figure 2-16 shows the FSM of these transactions. 

The kernel starts the scheduler by initializing the Intel 8253 Programmable Interval Timer that is 

responsible of generating interrupts at 1ms intervals; these interrupts will invoke the scheduler to 

processes the five lists of threads accordingly. Starting with sleeping and timed_blocking lists, 

the scheduler enumerates every element of these lists and checks if their waiting time has been 

elapsed, if so, the thread will be moved to ready list. Furthermore, the scheduler chooses a thread 

form the ready list to be executed next, there are plenty of scheduling algorithms as discussed 

earlier in chapter 1, but for the sake of simplicity CyanOS currently uses a simple preemptive 

Round-Robin algorithm to make debugging the kernel much easier since the next thread to be 

executed can be easily predicted (this helps much with debugging bugs related to deadlocks and 

race conditions). 

When the scheduler chooses the next thread to be executed, it saves the context (registers 

including the stack and instruction pointers) of the current executing thread, and preparing to 

load the context of the next thread after exiting the scheduler’s interrupt routine. The scheduler 

also checks whether the current thread’s parent process is different from the next thread’s, if so, 

it loads the page directory of the next process which will switch to the new process’s virtual 

space. 
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Figure 2-16: Threads movement between scheduler lists 

2.3.3 Task Synchronization 

Synchronization is an important part of the operating system; it insures mutual exclusion, 

fairness and non-starvation between threads. It can be done through six primitives: Spinlock, 

WaitQueue, Mutex, Semaphore, MessagingWaitQueue and MultiWaitQueue. 

2.3.3.1 Spinlock 

Spinlocks are low-level primitive since they do not rely on the scheduler infrastructure, they 

work by disabling all interrupts in the current processor core (it is more relevant in multi-core 

processor), and keep checking a flag until it is set (spinning in a loop). Checking and setting the 

flag should be an atomic operation, that is why xchg instruction is used in IA-32 processors. 

Spinlocks can be used anywhere in the kernel including interrupt handlers; however, they should 

be used wisely, a poor used spinlock can lead to severe performance issues, therefore it is 

recommended to use spinlocks only where the critical section is very short. It can be noted that 

kernel components rely heavily on the use of the spinlocks to protect any shared data. Figure 

2-17 shows a pseudo code for a spinlock. 

2.3.3.2 WaitQueue 

WaitQueue is a higher level primitive that allows a thread to be blocked until some condition is 

met or a certain timeout has elapsed. It has four operations: wait, wait_on_event, wake_up and 

wake_up_all. wait operation is used to block the current thread until it is woken by another 
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thread using wake or the timeout has elapsed, while wait_on_event is similar to wake but a 

condition is passed to it as a C++ template function (see Appendix A.1), this function operation 

is blocked until the condition is satisfied after waking up or the timeout is passed. Moreover, 

wake_up and wake_up_all are used to wake up a single thread and all blocked thread 

respectively.  

void StaticSpinlock::initialize() 

{ 

 m_value = 0; 

} 

void StaticSpinlock::acquire() 

{ 

 DISABLE_INTERRUPTS(); 

 while (test_and_set(&m_value) != 0) { // atomic operation 

 } 

} 

void StaticSpinlock::release() 

{ 

 ASSERT(m_value != 0); 

 m_value = 0; 

 ENABLE_INTERRUPTS(); 

} 

Figure 2-17: Spinlock pseudo code 

And to describe how these operation work internally... wait moves the current thread from ready 

list of the scheduler to timed_blocking list if a timeout is provided, if not, the thread is moved to 

blocking list. wait_on_event uses wait internal in a loop until the condition is met or the timeout 

is passed, WaitQueue also saves a reference to the blocked thread in internal list. wake_up and 

wake_up_all enumerate the threads in the internal list and move them from timed_blocking or 

blocking lists to ready list. 

WaitQueue is heavily used in almost all blocking functions in the kernel, especially the virtual 

file system which will be discussed in VFS Implementation. 

2.3.3.3 Mutex and Semaphore 

Semaphores are another synchronization primitive which are wrappers around WaitQueue with 

few restrictions. The semaphores are initialized with value to be in the internal counter, acquire 

operation is used to decrease the counter and block the current thread if the value is less than 
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zero, using WaitQueue’s wait, release operation increases the value of the internal counter and 

wake up the blocking threads if the value is less or equal to zero, using WaitQueue’s wake_up. 

A Mutex is a semaphore with an internal counter of one (i.e., binary semaphore). 

2.3.3.4 MessagingWaitQueue 

MessagingWaitQueue is similar to WaitQueue, but its wait operation returns any data type 

passed to it by the other thread in the wake_up operation. This primitive utilizes C++’s templates 

to achieve its purpose which might lead to larger binaries size if it was overused, however it is 

still an efficient technique to pass data between threads after completion a task, without much 

code to be written. 

2.3.3.5 MultiWaitQueue 

Another primitive that is similar to WaitQueue, but allows a thread to be waiting in multiple 

queues and it will be unblocked only after being waken up by all the queues. It is useful when a 

task needs to start only after few other threads completed their tasks. 

2.3.4 Interprocess Communication 

Interprocess communication is the mechanism provided by the operating system that allows 

processes to communicate with each other by sharing data in a synchronous way. CyanOS 

provides IPC using Pipes and Domain Sockets. 

2.3.4.1 Pipes 

Pipes allow two processes to communicate in standard producer–consumer fashion: the producer 

writes to one end of the pipe (the write end) and the consumer reads from the other end (the read 

end). As a result, ordinary pipes are unidirectional, allowing only one-way communication. If 

two-way communication is required, two pipes must be used, with each pipe sending data in a 

different direction [20]. A pipe can be either named; has a name and path in the file system, or 

can be anonymous. In both cases, creating a pipe or opening an existing one returns a Handle 

that is used to perform a synchronous read and write operation, both operations will block until a 

data is available to read, and data has been written, respectively. Figure 2-18 shows shared pipe 

handles between two processes. 
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Figure 2-18: Pipe Handles between two processes 

Internally, a pipe consists of a CircularBuffer (see Appendix B.6) and a WaitQueue and they 

work as a reader-writer problem. read operation will try to read any data available in the buffer, 

if no data is found, it will block until some other thread writes more data. While write will try to 

write data to the buffer, and it will block if it is full, until some other thread reads the data. 

2.3.4.2 Domain Socket 

Domain Socket on the other hand is bidirectional and can allow multiple readers and writers. it 

consists of client that initiates the socket, and a server that accepts it, while socket can be with 

multiple clients, only one server is allowed. To start a socket connection, the server initiates a 

socket with a name to be installed in the file system and calls listen to mark the socket as passive 

and can accept incoming connection requests, then it calls accept which will block until an 

incoming connection has come from the client using connect, accept will return a handle to the 

newly created connection. After establishing the connection, the server and the clients can use 

the handles to write and read data from both ends. The flowchart in Figure 2-19 illustrates this 

process. 

The internal design of domain socket is similar to pipes; however, it has two CircularBuffers and 

two WaitQueues for both incoming and outgoing data. 
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Figure 2-19: Domain Sockets flow chart 

 

2.4 User Mode 

2.4.1 User mode and system calls 

As discussed in 2.3.1 , the virtual space of a process divided into user space and shared kernel 

space. After user thread or process is created and the execution flow is about to switch to user 

mode, the kernel loads 3 in RPL field of the segment selectors CS, DS, ES and SS (see section 
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2.1.1.1 ), GS will point to a block of data contains information about the current process (e.g., 

pid, path, arguments), while FS points to a block of data contains information about the current 

thread (e.g., tid). 

When a thread enters the user mode, it cannot access any address that is in the kernel space; any 

access will lead to page fault which will terminate the current process. However, the user mode 

is very limited in its privileges and cannot deal with interrupts or IO operation for example, that 

is why system calls are provided to requests a service from the kernel to be executed. A system 

call can be performed in CyanOS using `int 0x80` which will trigger an interrupt that is designed 

by the kernel to handle system calls, the system call number is loaded into EAX register, whereas 

the arguments of the system call are loaded in ECX, EDX, EBX, ESI, EDI. And since each system 

call has a unique number, the kernel calls the required system call with the appropriate 

arguments. List of all possible system calls are mentioned in Appendix C. Figure 2-20 illustrates 

the execution of a system call. 

 

Figure 2-20: System call execution 
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2.4.2 ELF executable loader 

Executable and Linkable Format (ELF) is a common standard file format for executable files, 

object code, shared libraries, and core dumps. First published in the specification for the 

application binary interface (ABI) of the Unix operating system version named System V 

Release 4 (SVR4) [21], and later in the Tool Interface Standard [22], it was quickly accepted 

among different vendors of Unix systems and even non-Unix systems like PlayStation 4, 

PlayStation 5 and Wii.  

By design, the ELF format is flexible, extensible, and cross-platform. For instance, it supports 

different endiannesses and address sizes so it does not exclude any particular central processing 

unit (CPU) or instruction set architecture [23]. This is what allowed it to be adopted by many 

different operating systems and compilers including gcc and clang. 

An ELF file consists of ELF header, section headers and program headers. The ELF header is 

32 bytes long, and identifies the format of the file. It starts with a sequence of four unique bytes 

that are 0x7F followed by 0x45, 0x4c, and 0x46 which translates into the three letters E, L, and 

F. Among other values, the header also indicates whether it is an ELF file for 32 or 64-bit 

format, uses little or big endianness, shows the ELF version as well as for which operating 

system the file was compiled for in order to interoperate with the right application binary 

interface (ABI) and CPU instruction set. Furthermore, section headers describe the different 

regions of the binary file (i.e., section’s name, offset, size, type, flags…). Whereas program 

headers describe the segments that are used at run-time, and tells the system how to create a 

memory image of the program in the process. It is important to note that some sections may not 

be a segment and will not be mapped to memory (i.e., section that contains symbols and 

debugging information), while some segments may not have a section in disk (i.e., segments that 

contain uninitialized data) as shown in Figure 2-21 and Figure 2-22. 
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Figure 2-21: Sections and Segments 

 

When a process being executed, the ELF loader in the kernel starts by verifying the different 

fields ELF header to ensure that this executable file is supported by the processor and the 

operating system. Afterwards, it uses program headers to allocate a memory space for each 

segment, then writing the corresponding data to it form the binary file.  

 

Figure 2-22: File in disk vs Program in memory 
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2.5 Heap Allocator 

As discussed in Memory Page Allocator, the kernel provides a memory allocator that reserves 

memory blocks for the program, however this memory blocks are always page aligned i.e., they 

are always multiple of 4kb pages. This can be inconvenient and wasteful of precious resources 

since most programs needs to allocate memory of relatively small sizes, a more suitable tool for 

this is the heap allocator. There are several techniques for this purpose and the following parts 

will discuss the advantage and disadvantages of each one. 

2.5.1 Fixed Partitioning 

The simplest scheme for managing the heap memory is to partition it into equal-sized regions 

with fixed boundaries e.g., 1024 bytes each. Any requested memory whose size is less than or 

equal to the partition size can be loaded into any available partition. However, there are two 

difficulties with the use of equal-size fixed partitions: 

1- A requested memory may be too big to fit into a partition. In this case, the 

programmer must design the program with the use of overlays so it must allocate 

multiple blocks with the same size.  

 

2- Main memory utilization is extremely inefficient. Any requested memory, no matter 

how small it  is, occupies an entire partition. In our example, there may be a memory 

request whose length is less than 100 bytes; yet it occupies a 1-kbyte partition. This 

phenomenon, in which there is wasted space internal to a partition due to the fact that 

the block of data loaded is smaller than the partition, is referred to as internal 

fragmentation. [24] 

2.5.2 Dynamic Partitioning 

To overcome some of the difficulties with fixed partitioning, an approach known as dynamic 

partitioning was developed. With dynamic partitioning, the partitions are of variable length and 

number. When a heap memory is requested, the allocator reserves exactly as much memory as it 

requires and no more. An example, using 64 Mbytes of main memory, is shown in  Figure 2-23. 

Initially, main memory is empty, except for the OS’s memory. The first three memory requests 

are allocated, starting where the operating system ends and occupying just enough space for each 
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block (see Figure 2-23b, c, d). This leaves a “hole” at the end of memory that is too small for a 

fourth memory allocation. Suppose Block 2 is freed from memory and a fourth allocation was 

placed in the place of Block 2 previously (see Figure 2-23e, f), then Block 1 is freed and a fifth 

allocation taken its place (see Figure 2-23g, h). Now there is two 6mb holes and one 1mb, the 

allocator cannot allocate any memory greater than 6mb anymore, although there is clearly 18mb 

left in total. 

this example shows that this method starts out well, but eventually it leads to a situation in which 

there are a lot of small holes in memory. As time goes on, memory becomes more and more 

fragmented, and memory utilization declines. This phenomenon is referred to as external 

fragmentation, indicating the memory that is external to all partitions becomes increasingly 

fragmented. This is in contrast to internal fragmentation, referred to earlier. [25] 

 

Figure 2-23: Dynamic allocation 
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2.5.3 Segregated Free List 

To compromise between the previous techniques, the Segregated free list allocator uses a pool of 

multiple fixed sized regions (e.g., 1kb, 2kb 4kb 8kb) and when a certain size is requested, the 

allocator reserves a block from the smallest fit of fixed sized regions (e.g., 3kb will be reserved 

in 4kb region). This technique has no external fragmentation, while minimizing the internal 

fragmentation. Another advantage of this allocator is reserving similar memory objects in 

physically close locations, which will help the cache to fasten the memory access.  That is why it 

is implemented in CyanOS. Figure 2-24 illustrates the structure of segregated free list. 

 

Figure 2-24: Segregated free list 

2.6 Virtual File System 

A virtual file system (VFS) or virtual filesystem switch is an abstract layer on top of a more 

concrete file system, device driver, network sockets or virtual kernel modules. The purpose of a 

VFS is to allow client applications to access different types of objects in the kernel in a uniform 

way. A VFS can, for example, be used to access local and network storage devices transparently 

without the client application noticing the difference. It can be used to bridge the differences in 

Windows, classic Mac OS/macOS and Unix filesystems, so that applications can access files on 

local file systems of those types without having to know what type of file system they are 

accessing. A VFS specifies an interface (or a "contract") between the kernel and a concrete file 

system. Therefore, it is easy to add support for new file system types to the kernel simply by 

fulfilling the contract [26]. Figure 2-25 shows how the VFS is used by multiple units. 
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Figure 2-25: Virtual file system 

It is important to note that the design of the VFS is an important factor to determine the 

flexibility of the system, a well constructer VFS can help the programmer to port any new file 

system or device driver to the new operating system with minimum work. 

2.6.1 VFS Implementation 

CyanOS has a virtual class called FSNode that contains 13 virtual function which are used to 

interact with a certain node in the VFS, see Table 2-7 for the complete list of this functions. If a 

programmer needs to add his own driver or FS into the VFS, he needs to inherit from FSNode 

and implement the functions he needs. if a function from the base class (i.e., FSNode) is not 

implemented in the derived class, it will be considered as unused, and if the user calls it for the 

certain node, it will return an error stating that the operation is invalid. The first node must be 

mounted to the VFS, then it can have multiple child nodes, which they can have child nodes too.  

Examples of VFS nodes in the system are USTAR filesystem, Pipes, Domain Sockets, IP Sockets, 

keyboard driver, VGA driver. 

2.6.2 FileDescription 

FileDescription is a kernel object that is wrapper around FSNode to describe the current state of 

an opened FSNode. It contains mode, flags, and permission of the opened node as well as the 

current reading/writing offset. The operations on FileDescription are the same as the ones on 
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FSNode in Table 2-7 with slightly different parameters, and with addition to seek operation 

which is used repositions the file offset of the opened FSNode reading/writing position. 

E.g., If a file with the size 1000 byte is opened by a program, the FileDescription will have zero 

as the current offset, when reading/writing some data; say 50 bytes, the offset will be increased 

by 50. 

Besides FileDescription, the kernel has ProcessDescriptions and ThreadDescriptions which are 

used to describe the state of an opened process or thread. 

Function Description 

open Inform that node that it has been opened.  

close Inform that node that it has been closed. 

create Create a child node inside this node. 

remove Remove a child node from this node. 

link Create a symbolic link to this node. 

unlink Delete a symbolic link to this node. 

connect Connect to a server. 

listen Mark the server as passive to the incoming connections. 

accept Accept a given connection. 

read Read a number of bytes from the node. 

write Write a number of bytes to the node. 

dir_lookup Get a child node from its name. 

dir_query Enumerate all child nodes 

Table 2-7: FSNode operations 

2.6.3 Handles 

Handles are integers that are used in the user applications to reference the FileDescriptions, 

ProcessDescriptions and ThreadDescriptions, and uniquely identify them in a process. Handle is 

always a first parameter to system calls that are dealing with kernel objects such as files, 

processes, threads. Each process has table of Descriptions, and a handle is basically an index in 

that table, and closed Handle does not delete an its entry in the table; it will be marked as closed 

instead. Figure 2-26 shows the relationship between handles and FileDescriptions. 
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Figure 2-26: Relationship between handlers and FileDescription 
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2.7 Kernel Architecture 

2.7.1 Monolithic Kernel Architecture 

Monolithic operating system services are compiled as single, monolithic process that runs in a 

single memory address space in kernel mode, whereas applications run in user mode and can 

request system services from the kernel. Thus, the kernel has two tasks; resource management 

and a driver for devices, examples of monolithic operating systems are SerenityOS, Unix and 

Linux. Figure 2-27 shows high-level perspective, a monolithic kernel structure. 

 

Figure 2-27: Monolithic kernel architecture 

2.7.2 Microkernel Architecture 

The microkernel architecture provides the minimum of functionality and services needed to run 

in the kernel while the rest of the OS services run as separate processes with different address 

spaces outside the kernel. They communicate by different IPC mechanisms such as message 

parsing. The kernel’s job is to handle IPC, interrupt, multitasking and virtual memory, while the 

device drivers and other services are in the user mode as separate processes. This architecture is 

illustrated in Figure 2-28. Examples of microkernel operating systems are Minix 3, AmigaOS 

and beOS. 
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Figure 2-28:Microkernel architecture 

2.7.3 Micro vs Monolithic kernel 

The two approaches differ primarily in the implementation where in the monolithic architecture 

all the kernel and OS services run in a single address space whereas, in the microkernel only 

minimum kernel services are kept within a single address space and the rest are run as different 

processes with separate address spaces. Each design has its advantages and disadvantages which 

will be discussed below. 

Size: the size of monolithic kernel is comparatively larger than microkernel because all OS 

services are all compiled into single file that will be loaded to the memory. However, in the 

microkernel, the bare minimum services are contained in the compiled kernel which makes its 

size smaller. 

Speed: the execution of the monolithic kernel is notably faster as communication between OS 

services in the same address space does not require any context switch nor switching the virtual 

address space, unlike with the micro architecture where these services communicate through 

heavy use of IPC mechanisms which introduces substantial amount of overhead in the system. 

Extendibility: adding new features to microkernel is as simple as adding a new process for that 

feature. Whereas for a monolithic kernel, new features require modification and recompilation of 

the whole kernel. 

Security: the fact that OS services reside in different address spaces for a microkernel means 

that if a failure occurs in any of these services, the operating system and other services remain 

unaffected. On the other hands, if a service fails in monolithic kernel, the entire system will fail. 



54 

 

2.7.4 Hybrid Kernel Architecture 

Hybrid kernel is based on a combination of both architectures; it combines the speed and simpler 

design of monolithic kernel with the modularity and execution safety of microkernel. This is why 

it is the architecture implemented in CyanOS. 

A hybrid kernel runs some of its important services in the kernel space to reduce the performance 

overhead of a traditional microkernel, while still running some other services in the user space. 

For instance, a hybrid kernel design may keep the bus controllers like PCI or USB inside the 

kernel, whereas the individual drivers of the devices attached to these busses as user mode 

programs outside the kernel. This allows bus controllers to be fast and reliable while keeping the 

device drivers in a safer environment, and can be easily modified and added.  
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Chapter 3:  Results and Discussion 

This chapter will discuss some user mode programs and how they can be compiled, executed and 

interact with the operating system. 

To compile a user program in CyanOS, a cross compiler must be present in your host system 

which is used to build executable code for a platform other than the host it is running in (e.g., 

Windows or Linux). In contrast to normal compilers, cross compilers will not assume any 

configuration about the current environment, and it does not use any libraries or headers that are 

not built-in in the C++ language itself. Appendix D.2 discusses how to build a cross compiler 

gcc. 

In addition to a cross compiler, user programs need to be linked with a library called systemlib; 

this library contains the important functions needed for a program to work in CyanOS. It 

initializes some information fields about the current process and thread before calling main 

function of the program, manages the IO operations like printf, get_char and scanf, and has all 

system call functions. The actual entry point of a program is in systemlib, then it calls the main 

function. 

3.1 User program discussion: shell 

The shell is the first user mode program to be executed by the operating system; like Linux, it is 

a simple interface to explore the file system and execute other programs and view their output. 

As shown in Figure 3-1 and Figure 3-2, the shell is merely a super loop that keeps waiting for 

input characters from the keyboard and parses the corresponding commands. It starts by calling 

get_char from systemlib, this function opens a handle to the keyboard driver in 

/devices/keyboard using OpenFile system call, and then it tries to read a character using 

ReadFile system call which will block the current thread until a key is pressed in the keyboard. 

The shell saves the entered characters in buffer, and when the enter key is pressed; it tries to 

parse the given command.  

If the given command is recognized by the shell, like ls (list all files in the current directory), cd 

(change the current directory), cwd (displays the current directory full path), it will be performed,  
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otherwise, the shell assumes that the user tries to execute a program.  

char input_char; 

const size_t max = 1000; 

char buff[max]; 

int index = 0; 

while ((input_char = get_char())) { 

    if (index < max) { 

        if (input_char == '\n') { 

            printf("\n"); 

            buff[index] = 0; 

            execute_command(buff); 

            index = 0; 

        } else if (input_char == '\b') { 

            if (index > 0) { 

                printf("\b"); 

                index--; 

            } 

        } else { 

            buff[index++] = input_char; 

            putchar(input_char); 

        } 

    } else { 

        printf("\ncommand is too long!"); 

        index = 0; // command is too long 

    } 

} 

Figure 3-1: Shell’s pseudo code 

 

Handle child = CreateProcess(working_directory + input_command, args, 0); 

if (!child) { 

    printf("Undefined command.\n"); 

    return; 

} 

WaitSignal(child, 0); 

CloseHandle(child); 

Figure 3-2: Another shell’s pseudo code 
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To start a new process, CreateProcess is called with the path of the program, if it fails it returns 

zero (like all system calls) and the error code can be read using GetLastError. After that, the 

shell calls WaitSignal system call which will block until the process of the given handle is 

terminated. Finally, CloseHandle is used to release the kernel resources of the handle. Figure 3-3 

shows how some of shell’s commands can be used. 

 

Figure 3-3: Navigate directories and execute programs in shell 

3.2 User program discussion: cat 

Cat is another simple program similar to Linux’s, it is used to read text files and print them to the 

screen. 

As shown in the code snippet in Figure 3-4, Cat starts by opening a file handle to the file passed 

to it as an argument, then it uses QueryFileInformation system call to get information about the 

opened file and saves it in a structure FileInfo. An important information needed for this 

structure is the size of the file, which is used to create a heap buffer that fits and avoids buffer 

overflow. Then the system call ReadFile is called to read the file and fill the given buffer. Next, 

the text file is printed using printf that writes to a device driver /devices/console which is used to 
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control the text mode screen. And finally, the program frees the heap memory and the kernel 

resources of the handle using  delete[] and CloseHandle respectively. Figure 3-5 shows how cat 

can be used to read text files 

Handle fd = OpenFile(argv[1], OM_WRITE | OM_READ, OF_OPEN_EXISTING); 

if ((result = GetLastError())) { 

    return result; 

} 

FileInfo info; 

QueryFileInformation(fd, &info); 

if ((result = GetLastError())) { 

    CloseHandle(fd); 

    return result; 

} 

char* buff = new char[info.size + 1]; 

memset(buff, 0, info.size + 1); 

ReadFile(fd, buff, info.size); 

if ((result = GetLastError())) { 

    CloseHandle(fd); 

    return result; 

} 

printf(buff); 

printf("\n"); 

delete[] buff; 

CloseHandle(fd); 

Figure 3-4: Code snippet from cat 
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Figure 3-5: Using cat to read text files  
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Conclusion and Future Work 

In this report we have presented the theory, design and the implementation of the different 

components of an operating system kernel. We discussed the design of various approaches 

suggested by books and papers, as well as the ones implemented mature operating systems. And 

it also argued why the approach chosen was the most suitable for this operating system.   

It should be stressed on the importance of the design scheduler, the context switch and the 

interprocess communication to have good performance, while the hybrid kernel architecture and 

the design of the virtual file system helps to maintain a scalable system.  

And although this operating system is initially designed for IA-32 processors, the project’s code 

is organized in a such way that makes the architecture-related functions are collected in files 

within the same directory while they are called by other higher-level functions. This makes it 

easier to port the operating system to other architecture since minimum code will be rewritten 

which mainly related to paging and interrupts. 

Due the limited time, not all of the planned features were implemented in this project, thus, we 

will discuss some of them, and explains how can you contribute to this open source project. The 

first important feature is the networking stack. Although CyanOS has fully functional 

networking stack (with protocols IPv4, ICMP, TCP, UDP, DHCP, ARP and DNS), it wasn’t 

really mentioned in this report due the number of pages constraint while this topic needed huge 

discussion. Our network stack implementation was good enough for the most part specially in 

the primitive protocols like IPv4, UDP, DHCP, ARP and DNS, however, more complex 

protocols like TCP need a better error handling and optimization specially with the internal 

buffer. Additionally, another layer can be added for handling HTTP requests and maybe even 

requests through Transport Layer Security (TLS) encryptions. 

Currently, the main display is text mode, so the next important feature is the graphical user 

interface (GUI). It works by having multiple layers on top of each other; at the lowest layer there 

will be a GPU driver that manages the GPU configurations and writes pixels on the screen. After 

that, the OS should provide a higher layer to draw particular shapes on the screen and manages 

input devices like mouse clicks and keyboard strokes. The final layer is a library provided to user 
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mode applications, its purpose is to manage high level GUI components like textboxes, labels, 

buttons and windows, and handle any events like moving windows, clicking on the button or 

writing on a textbox. 

And the last feature is using dynamic shared libraries instead of static libraries; currently, 

libraries like systemlib are statically linked with every user application, which means that all 

executable files have an identical part which is the code of that library. A better mechanism is to 

have libraries dynamically linked like Dynamic-link library (DLL) in windows; the executable 

will have just the name of the library, the operating system then loads the library in a shared 

memory between all processes. This way, the same library code will be not be in multiple 

executable files nor will be loaded into the memory of multiple processes. 
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Appendix A:  Modern C++ Features 

A.1 Templates 
Templates are the foundation of generic programming, which involves writing code in a way that 

is independent of any particular type. A template is a blueprint or formula for creating a generic 

class or a function. The library containers like iterators and algorithms are examples of generic 

programming and have been developed using template concept. There is a single definition of 

each container, such as vector, but we can define many different kinds of vectors for example, 

vector <int> or vector <string>. [27] 

template <typename T> T add(T num1, T num2) // template function that has a template T. 

{ 

    return num1 + num2; 

} 

void main() 

{ 

    char result1 = add<char>(1, 5);       // Returns the addition of two char variables. 

    char result2 = add<int>(1, -2);       // Returns the addition of two int variables. 

    char result3 = add<double>(1.2, 4.3); // Returns the addition of two double variables. 

} 

 

Figure A-1: Template function 

As shown in the example in Figure A-1, the function add is a blue print for the addition 

operation that works on multiple data types. the function later is called by specifying the type of 

the variable T. 

A.2 Lambda Expressions 
Lambda is an object that is a wrapper around an anonymous function, that can be invoked, stored 

or passed as an argument. They are usually used to encapsulate few lines of code are passed to 

algorithms or asynchronous methods.  

As shown in the example in Figure A-2, a lambda object check_even_lambda is created which 

holds the few lines of code that checks that the passed number is even. Later in the loop the 

lambda object is invoked by passing a number to it and returns a boolean result.  
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    auto check_even_lambda = [](int number) { 

        if (number % 2 == 0) 

            return true; 

        else 

            return false; 

    }; 

 

    for (size_t i = 0; i < 100; i++) { 

        if (check_even_lambda(i)) { 

            printf("number %d is even!", i); 

        } 

    } 

 

Figure A-2: Lambda expression example 
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Appendix B:  Data Structures 

This part contains some data structures that used in CyanOS and acts like the standard library 

equivalent in C++20. It discussed some the data structure containers and their main functions. 

B.1 Iterators 
Iterators are not data structure containers per say, but more like pointers to elements of data 

structure containers. Each container has its own iterator but they all share the same interface 

functions. 

Function Description 

operator++ () Moves the iterator to the next element in the 

container. 

operator++ () Moves the iterator to the previous element in the 

container. 

operator+ (int count) Advances the iterator by count elements from 

the current one. 

operator- (int count) Advances the iterator by count elements from 

the current one. 

T operator* () Returns the value of the element pointed by this 

iterator. 

bool operator== (const Iterator& other) Checks whether two iterators point to the same 

element.  

bool operator!= (const Iterator & other) Checks whether two iterators point to the 

different elements.  

 

B.2 Vector 
A data container that stores elements in contiguous memory locations, thus, can be accessed by 

their index. The storage of the vector is handled automatically, being expanded and contracted as 

needed. Vectors usually occupy more space than static arrays, because more memory is allocated 

to handle future growth. This way a vector does not need to reallocate each time an element is 

inserted, but only when the additional memory is exhausted. 
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Function Description 

Iterator begin() Returns an iterator that points to the first 

element of the container. 

Iterator end() Returns an iterator that indicates that the last 

element has been passed. 

Iterator insert(Iterator element, U&& 

new_node) 

Adds a new element in the position of the 

iterator node. 

Iterator push_front(U&& new_data) Adds an element new_data to the start of the 

container. 

Iterator push_back(U&& new_data) Adds an element new_data to the end of the 

container. 

void reserve(size_t size) Reserves a new size for the internal storage, it 

must be greater than the current capacity. 

void pop_front() Removes the first element of the container. 

void pop_back() Removes the last element of the container. 

void clear() Removes all elements of the container. 

void remove(Iterator element); Removes an element pointed by the iterator. 

This will invalidate the iterator, so it must be 

obtained again. 

bool remove_if(Predicate predicate) Removes all elements that satisfy the condition 

that are checked in the lambda function 

predicate. 

Iterator find(const T& element) Returns an iterator of an element if it is found in 

the container. 

T& operator[](size_t index) Returns an element pointed by the provided 

index. 

size_t size() Returns the number of elements of that are 

actually in the container. 

size_t capacity() Returns the maximum capacity of element that 

the internal storage can hold. It can be increased 
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by reserve function. 

 

B.3 List 
A data container that is very similar to Vector, but it stores the elements in doubly linked list, 

however since the element are not in contiguous locations, elements can not be accessed by their 

index. 

Function Description 

Iterator begin() Returns an iterator that points to the first 

element of the container. 

Iterator end() Returns an iterator that indicates that the last 

element has been passed. 

Iterator insert(Iterator element, U&& 

new_node) 

Adds a new elemtent in the position of the 

iterator node. 

Iterator push_front(U&& new_data) Adds a new element to the start of the 

container. 

Iterator push_back(U&& new_data) Adds a new element to the end of the 

container. 

void reserve(size_t size) Reserves a new size for the internal storage, it 

must be greater than the current capacity. 

void pop_front() Removes the first element of the container. 

void pop_back() Removes the last element of the container. 

void clear() Removes all elements of the container. 

void remove(Iterator element); Removes an element pointed by the iterator. 

This will invalidate the iterator, so it must be 

obtained again. 

bool remove_if(Predicate predicate) Removes all elements that satisfy the 

condition that are checked in the lambda 

function predicate. 

Iterator find(const T& element) Returns an iterator of an element if it is found 

in the container. 



67 

 

size_t size() Returns the number of elements of that are 

actually in the container. 

 

B.4 String 
A container that manages the ascii strings i.e., sequences of char-like objects. It stores is as a 

pointer of an array and a size. 

Function Description 

String& operator+= (const String& other) Concatenates a string with another string. 

String operator+ (const String& other) Creates a new string container with 

concatenation of the current string and another 

string. 

String substr(size_t pos, size_t len) Creates a new string that is part of the current 

string by a position and a size. 

size_t find(const String& str, size_t pos = 0) Finds the position of a substring in this string. 

String& push_front(char c) Adds a character to the start of the string. 

String& push_back(char c) Adds a character to the end of the string. 

String& insert(size_t pos, const String& str) Adds a string in a position.. 

void erase(size_t pos, size_t len) Removes part of the string specified by a 

position and a size. 

char operator[] (size_t index) Returns a character from an index. 

size_t length() Returns the length of the string. 

 

B.5 Stack 
A container stores elements in contiguous memory region but gives the functionality of a stack 

i.e., LIFO (last-in, first-out) 

Function Description 

void push(U&&) Pushes an element to the stack. 

T pop() Returns and removes the last element from the stack. 

size_t size(); Returns the number of elements in the stack. 
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B.6 CircularBuffer 
A container that uses a fixed-size buffer as if it were connected end-to-end in a circle. gives the 

functionality of a queue i.e., FIFO (first-in, first-out) 

Function Description 

void queue(U&&) Pushes an element to the queue. 

T dequeue(); Returns and removes the first element of the 

queue. 

size_t size(); Returns the number of elements in the buffer. 

size_t capacity() Returns the total number of elements that the 

container can hold 

bool is_full() Checks whether the buffer is full. 

 

B.7 Bitmap 
A container that holds a list of bits in contiguous memory region. 

Function Description 

void set(size_t position) Sets a bit a certain position to one. 

void set_range(size_t position, size_t count) Sets a range of bit in a certain position to one. 

void clear(size_t position) Sets a bit a certain position to zero. 

void clear_range(size_t position, size_t count) Sets a range of bit in a certain position to zero. 

bool check_set(size_t position) Checks a certain bit if it is set to one. 

bool check_clear(size_t position) Checks a certain bit if it is set to zero. 

 

B.8 Result 
A container to handle errors in the operating system. It either contains a type returned by a 

function or an error. A function may return Result<T> with T is a type of the data to be returned 

if no error happened. 

Function Description 

bool is_error() Checks whether the retuned function has an 

error. 
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unsigned error() Returns the error code if there is an error, 

otherwise it returns zero. 

T& value() Returns the original data from the function if 

there is no error. 
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Appendix C:  System Calls 

OpenFile Creates a new file/device or opens an existing one, and returns the 

file handle pointing the FileDescription of that file. 

Socket creates a new socket either domain socket or network IP socket (TCP 

or UDP), it returns a handle to the newly created socket. 

Pipe Creates a new pipe, and return handle to it. 

ReadFile Reads a file/device and fills a user buffer provided to it. This system 

call may block the current thread when the file/device is not ready to 

be read. 

WriteFile Write a file/device from a user buffer provided to it. This system call 

may block the current thread when the file/device is not ready to be 

written into. 

QueryDirectory Lists of all the files in given directory, the information is filled in 

FileInfo structure. 

QueryFileInformation Gives information about the a given file (e.g., its size), the 

information is filled in FileInfo structure. 

CloseHandle Closes a handle and releases the kernel resources reserved for it and 

the linked FileDescription. 

Sleep Blocks the current thread a given amount of time. 

Yield Gives up the current thread’s time slice and schedule another thread. 

CreateThread Creates a new thread that executes a certain address, and returns its 

handle. 

SuspendThread Suspends a thread from execution. 

ResumeThread Resumes a suspended thread to execution. 

TerminateThread Terminates a thread. 

CreateProcess Creates a new process from a give file in file system, and returns its 

handle. 

SuspendProcess Suspends all threads in a process. 

ResumeProcess Resumes all suspended thread in a process. 
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TerminateProcess Terminates a process. 

WaitSignal Blocks the current thread until the thread or process of given handle 

terminates.  

VirtualAlloc Allocates a block of memory, the memory will be aligned to the page 

size i.e., 4kb 

VirtualFree Frees a block of memory and allows it to be reused in the future. 
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Appendix D:  How to Compile CyanOS 

The normal compilers cannot compile this operating system correctly due their assumptions of 

the environment by compiler since no headers or libraries of the host operating system can be 

used. That is why the only way to compile is using a cross-compiler, we will be using gcc 10 for 

its popularity and its support to the latest features of C++. 

D.1 Building cross compiler gcc 
Before starting the process of building the compiler a regular gcc compiler (not cross-compiler) 

is required. In addition to that, few dependencies must exist in the host machine; assuming it is 

Linux (you can use a Linux environment in Windows 10 using WSL2). The packages can be 

installed using the commands: 

make install 

sudo apt-get update    

sudo apt install build-essential bison flex libgmp3-dev libmpc-dev libmpfr-dev texinfo 

 

Then download and extract the latest version of binutils from ftp.gnu.org/gnu/binutils/ . Then 

enter to the extracted directory and use the following commands to build it. 

export PREFIX="$HOME/opt/cross" 

export TARGET=i686-elf 

export PATH="$PREFIX/bin:$PATH" 

 

mkdir build-binutils 

cd build-binutils 

../configure --target=$TARGET --prefix="$PREFIX" --with-sysroot --disable-nls  

          --disable-werror 

make 

make install 

ftp://ftp.gnu.org/gnu/binutils/
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Now after building binutils, you need to build gcc. Download the latest version from 

ftp.gnu.org/gnu/gcc . Then enter the extracted directory and use the following commands to build 

it. 

mkdir build-gcc 

cd build-gcc 

../configure --target=$TARGET --prefix="$PREFIX" --disable-nls --enable-languages=c,c++  

             --without-headers 

make all-gcc 

make all-target-libgcc 

make install-gcc 

make install-target-libgcc 

 

D.2 Building the operating system 
Now to build the operating system, follow the commands to download the dependencies: 

sudo apt-get install gcc-multilib g++-multilib build-essential nasm python3 cmake  

                 grub2 xorriso mtools qemu 

Then build the system 

git clone --recursive https://github.com/AymenSekhri/CyanOS.git 

cd ./CyanOS 

mkdir build && cd build 

cmake .. -G "Unix Makefiles" 

make 

 

  

ftp://ftp.gnu.org/gnu/gcc
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