
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdès

Institute of Electrical and Electronic Engineering

Department of Electronics

Project Report Presented in Partial Fulfilment of

the Requirements of the Degree of

‘Master’

In Computer Engineering

Title:

Presented By:

- SEKHRI Aymen

- BOUDIAF Malek

Supervisor:

 Dr. NAMANE Rachid

Registration Number:............./2021

Design and Implementation of an

Operating System For IA-32 Processors

I

Abstract

An operating system is a set of software components that are used to manage the shared

hardware resources between multiple programs, while maintaining an abstract interfacing layer

to devices. This work discusses the approaches used to design the different components of such

complex system, and how they are related to each other to construct layers for simple user

programs to work in a secured system that is fair in sharing the CPU time and other hardware

resources.

Our work presents first the theory and the background on memory management, interrupts,

multitasking and modes of execution. Then it describes how these components are implemented

in our operating system named CyanOS, and explains how to setup Intel 32bit processer’s

features and some other hardware buses and devices. At the end, it illustrates the way to how to

modify and extend the functionality of the kernel, and how to write and compile a program

running on this operating system.

II

Dedication

“I would like to dedicate this report first and foremost to the sake of Allah our

creator, my source of wisdom, knowledge and understanding and to my beloved

parents, Mahfoud and Ourdia Benmalek for all their unconditional love , support

and continuous encouragement throughout this academic journey.

A special feeling of love to my two little sisters, Kaouthar and Tasnime whose

pure souls are my constant source of inspiration and to my uncle Ahcene who has

been like a second father to me.

I dedicate this dissertation to my amazing friends whom I consider the best thing

that happened to me throughout university. My roommate Hicham Alla one of the

funniest people I know with whom I shared so many sleepless nights, my partner in

this thesis Aymen who is the smartest person I know, my best friend Houssam Ait

Saadi with whom I had so many memories, Hamza Benrabah, Hicham

Sahbi, Hamza Belmadani and many others.”

Malek

“To my beloved parents, Fouad and Naima, and my little siblings for their constant support and

love throughout my journey to survive this tough long life…

To my friends Tayeb, Hicham, Malek and Zineddine who had a huge impact on the development

of my personality and cognition…

To the people and random events that made me find my passion in computers, to who helped me

find my Ikigai in an absurd world…

To who taught me how to be humble about what I know, and seek the endless journey to acquire

what I don’t know…

To who made me doubt my actions and be skeptical about my inner deep beliefs, for the sake of

continuous self-reevaluations…”

Aymen

III

Acknowledgements

First and foremost, we would like to sincerely thank our supervisor Dr. NAMANE Rachid for

his supervision and constant support. His valuable help of constructive comments and

suggestions have greatly contributed to the success of this thesis work.

We also would like to thank Andreas Kling a blogger and a youtuber who created SerenityOS

operating system, his work inspired the development of this project and his advices helped us

move to the right track. He made us overcome the fear of initiating big projects, and taught us

how divide and conquer complex tasks in programming effectively and with minimum efforts.

He showed us how can you put your heart to build something big, without being rewarded except

for the inspiration of many young programmers.

Finally, we acknowledge the work of Robert Cecil Martin, Scott Meyers and Jason Turner

for their books and talks in CppCon conferences. They taught us about most modern C++

features and they can be used effectively, and how we can design a clean, solid and scalable

software systems with a minimum technical debt.

IV

Content

Abstract .. I

Dedication ... II

Acknowledgements ... III

Content .. IV

List of Figures .. VII

List of Tables .. IX

List of Abbreviations ... X

General Introduction ... 1

Chapter 1: Theory and Background .. 2

1.1 Computers and Software ... 2

1.2 Computers before operating systems .. 3

1.3 Memory management .. 4

1.3.1 Primitive memory management.. 4

1.3.2 Segmentation .. 5

1.3.3 Paging ... 6

1.3.4 Virtual memory... 7

1.3.5 Page tables and address translation .. 8

1.4 Interrupts ... 12

1.4.1 Interrupts and polling.. 12

1.4.2 Types of interrupts .. 12

1.5 Scheduling Algorithms .. 13

1.5.1 First-Come, First-Served scheduler .. 13

1.5.2 Priority based scheduler .. 13

1.5.3 Round Robin scheduler .. 14

1.5.4 Multi-level Queueing scheduler ... 14

1.6 Modes of execution ... 14

1.7 x86 instruction set and IA-32 processors .. 15

Chapter 2: Design and Implementation .. 17

2.1 Setting up IA-32 Protected Mode Features ... 17

2.1.1 Segmentation .. 18

V

2.1.2 Interrupts ... 20

2.1.3 Virtual Memory .. 23

2.2 Device’s Drivers .. 28

2.2.1 Intel Programmable Interrupt Controller (PIC 8259) ... 28

2.2.2 PS/2 Keyboard .. 30

2.2.3 Peripheral Component Interconnect (PCI) bus ... 30

2.2.4 RTL8139 Ethernet Network Device ... 32

2.3 Multitasking .. 34

2.3.1 Kernel memory space ... 34

2.3.2 Processes and Threads .. 34

2.3.3 Task Synchronization ... 38

2.3.4 Interprocess Communication .. 40

2.4 User Mode ... 42

2.4.1 User mode and system calls .. 42

2.4.2 ELF executable loader .. 44

2.5 Heap Allocator .. 46

2.5.1 Fixed Partitioning ... 46

2.5.2 Dynamic Partitioning .. 46

2.5.3 Segregated Free List ... 48

2.6 Virtual File System.. 48

2.6.1 VFS Implementation... 49

2.6.2 FileDescription ... 49

2.6.3 Handles ... 50

2.7 Kernel Architecture ... 52

2.7.1 Monolithic Kernel Architecture.. 52

2.7.2 Microkernel Architecture ... 52

2.7.3 Micro vs Monolithic kernel .. 53

2.7.4 Hybrid Kernel Architecture .. 54

Chapter 3: Results and Discussion .. 55

3.1 User program discussion: shell ... 55

3.2 User program discussion: cat .. 57

Conclusion and Future Work .. 60

VI

Appendix A: Modern C++ Features ... 62

A.1 Templates ... 62

A.2 Lambda Expressions .. 62

Appendix B: Data Structures .. 64

B.1 Iterators... 64

B.2 Vector ... 64

B.3 List .. 66

B.4 String .. 67

B.5 Stack ... 67

B.6 CircularBuffer .. 68

B.7 Bitmap .. 68

B.8 Result .. 68

Appendix C: System Calls .. 70

Appendix D: How to Compile CyanOS .. 72

D.1 Building cross compiler gcc ... 72

D.2 Building the operating system .. 73

Bibliography ... 74

VII

List of Figures

Figure 1-1: Abstract view of the components of a computer system ... 3

Figure 1-2: Memory fragmentation .. 5

Figure 1-3: Segmentation with non-contiguous physical memory. .. 6

Figure 1-4: Paging... 7

Figure 1-5: Virtual memory using physical and secondary memory .. 8

Figure 1-6: Function of the MMU .. 8

Figure 1-7: Address translation ... 9

Figure 1-8: Address translation example .. 9

Figure 1-9: Implementing the translation lookaside buffer .. 11

Figure 1-10: Kernel mode and User mode .. 15

Figure 1-11: IA-32 Registers .. 16

Figure 2-1: IA-32 System-Level Registers and Data Structures .. 17

Figure 2-2: Flat Model .. 19

Figure 2-3: Segment Selector .. 20

Figure 2-4: Interrupt Procedure Call ... 21

Figure 2-5: Stack Usage on Transfers to Interrupt and Exception-Handling Routines 23

Figure 2-6: Segmentation and Paging ... 24

Figure 2-7: Virtual Address Translation to a 4-KByte Page using 32-Bit Paging........................ 25

Figure 2-8: Paging-Structure Entries with 32-Bit Paging ... 25

Figure 2-9: Identity mapping .. 27

Figure 2-10: Using page fault in swapping ... 28

Figure 2-11: PIC 8259 .. 29

Figure 2-12: Cascading two PICs ... 31

Figure 2-13: PCI structure .. 32

Figure 2-14: Enumerating all PCI devices .. 33

Figure 2-15: Higher Half Kernel model.. 34

Figure 2-16: Threads movement between scheduler lists ... 38

Figure 2-17: Spinlock pseudo code... 39

Figure 2-18: Pipe Handles between two processes ... 41

Figure 2-19: Domain Sockets flow chart .. 42

Figure 2-20: System call execution... 43

Figure 2-21: Sections and Segments ... 45

Figure 2-22: File in disk vs Program in memory .. 45

Figure 2-23: Dynamic allocation .. 47

Figure 2-24: Segregated free list ... 48

Figure 2-25: Virtual file system .. 49

Figure 2-26: Relationship between handlers and FileDescription .. 51

Figure 2-27: Monolithic kernel architecture ... 52

Figure 2-28:Microkernel architecture ... 53

Figure 3-1: Shell’s pseudo code .. 56

VIII

Figure 3-2: Another shell’s pseudo code .. 56

Figure 3-3: Navigate directories and execute programs in shell... 57

Figure 3-4: Code snippet from cat .. 58

Figure 3-5: Using cat to read text files.. 59

Figure A-1: Template function ... 62

Figure A-2: Lambda expression example ... 63

IX

List of Tables

Table 2-1: Protected-Mode Exceptions and Interrupts ... 22

Table 2-2: Format of a 32-Bit Page-Directory Entry that References a Page Table 26

Table 2-3: Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page 26

Table 2-4: Device connected to PIC ... 30

Table 2-5: Internal fields of a Process. ... 35

Table 2-6: Internal fields of a Thread. .. 35

Table 2-7: FSNode operations .. 50

X

List of Abbreviations

API Application Programming Interface

CPL Current Privilege Level

CPU Central Processing Unit

DLL Dynamic-link Library

FS File System

GDT Global Descriptor Table

GPU Graphics Processing Unit

GUI Graphical User Interface

IA-32 Intel Architecture 32-bit

IDT Interrupt Descriptor Table

IPC Inter Process Communication

LDT Local Descriptor Table

MMU Memory Management Unit

NIC Network Interface Controller

OS Operating System

PCI Peripheral Component Interconnect

PD Page Directory

PDE Page Directory Entry

PT Page Table

XI

PTE Page Table Entry

RAM Random Access Memory

RPL Requested Privilege Level

TLB Translation Lookaside Buffers

TLS Transport Layer Security

VFS Virtual File System

1

General Introduction

According to Moore’s law, it is observed that the number of transistors in a dense integrated

circuit doubles every two years; this means faster hardware with more features, and also means

more complex devices and harder to configure. In the meanwhile, a new programmer might need

to read the immensely large datasheets of all the devices installed on his computer just to write a

program with a simple task. This inconvenience imposed the need of an abstract interfacing layer

that programmers will be using to write simpler programs that do not have to be aware of the

underlaying hardware of the system, this interfacing layer is what is called an operating system.

The first chapter of this report presents a theoretical background about the different operating

system designs and concepts. Chapter 2 describes the implementation of our CyanOS operating

system, and gives arguments why our followed approaches are superior to the ones used in other

existing implementations. Chapter 3 discusses the obtained results and explains the way some

user mode applications are compiled, linked and executed. Finally, the report is ended with a

conclusion and some suggestions for future works.

2

Chapter 1: Theory and Background

1.1 Computers and Software

Without its software, a computer is basically a useless lump of metal. With its software, a

computer can store, process, and retrieve information; play music and videos; send e-mail, search

the Internet; and engage in many other valuable activities to earn its keep. Computer software

can be divided roughly into two kinds: system programs, which manage the operation of the

computer itself, and application programs, which perform the actual work the user wants. The

most fundamental system program is the operating system, whose job is to control all the

computer's resources and provide a base upon which the application programs can be written. A

modern computer system consists of one or more processors, some main memory, disks, printers,

a keyboard, a display, network interfaces, and other input/output devices. All in all, a complex

system. Writing programs that keep track of all these components and use them correctly, let

alone optimally, is an extremely difficult job. If every programmer had to be concerned with how

disk drives work, and with all the dozens of things that could go wrong when reading a disk

block, it is unlikely that many programs could be written at all. [1]

Essentially, an operating system is a large and complex set of system programs that control the

various operations of a computer system and provide a collection of services to user programs

through an abstract interface of the underlying hardware resources. Since multiple programs can

use these resources simultaneously, the operating system is also responsible for managing how

resources are shared, i.e., sharing processor cores, RAM, hard disk, network interfaces, display

device, keyboard, mouse… Therefore, any operating system should guarantee:

1. Availability of a convenient, easy-to-use, and powerful set of services that are provided

to the users and the application programs in the computer system

2. Management of the computer resources in the most efficient manner

The services provided by an operating system are implemented as a large set of system functions

e.g., scheduling of tasks, memory management, device management, file management, network

management, and other more advanced services related to protection and security. Figure 1-1

3

shows a layered abstract view of the components of a complete computer system and the

placement of the operating system in the latter.

1.2 Computers before operating systems

Before operating systems came to existence users and programmers used to directly interact with

the bare computer’s hardware where they needed to write very low-level programs that run

directly on the CPU and that did everything including managing all the hardware resources.

Users also needed to know all the small details about the hardware components and how they

work which meant that if the latter changes the programs also needed to change accordingly.

Concepts of multiprogramming and time-sharing were not possible at the time where the

hardware supported only one program at a time - each user must wait until the previous program

is done to “share” the hardware with other users. In conclusion, writing programs was incredibly

complex and expensive and certainly not accessible for the average user.

Figure 1-1: Abstract view of the components of a computer system

Each user had sole use of the machine for a scheduled period of time and would arrive at the

computer with a program and data, often on punched paper cards and magnetic, paper tape or by

setting a large set of on-off switches. The program would be loaded into the machine and the

4

machine would work until the program is completed or crashed. This really shows the

importance of modern operating systems and the level of abstraction they provide for the user.

1.3 Memory management

Memory is the most important resource in a computer system thus; it must be carefully and

wisely managed.

The part of an operating system that handles this resource is called the memory manager, it is

responsible of allocating portions of memory for processes when needed and de-allocating it to

be reused by other processes when there is no longer necessity for it, while it keeps track of all

used or free memory regions. It is also responsible of transferring some portion of a memory that

is owned by a process to a secondary memory storage like hard disk, whenever this process

seems reasonable.

There are many memory management schemes from the primitive management like loading

program directly to physical memory to the most sophisticated like paging and virtual memory.

1.3.1 Primitive memory management

The most primitive memory management is by loading all running programs directly into

contiguous physical memory regions. When a program is no longer is used, the operating system

will claim its memory and mark it as free to be used for the next problem. However, there are

some flaws in this model; firstly, programs need to be aware about which address they will be

loaded in at compile time. Secondly, there is a problem of fragmentation; when programs

terminate and their memory is reclaimed, it may leave small portions of memory that another

program may not fit in. Figure 1-2 shows some progression of creating and terminating processes

that lefts the memory fragmented and cannot load a new program that its greater than 6 MB

although there is enough total memory in the system.

5

Figure 1-2: Memory fragmentation

1.3.2 Segmentation

Segmentation is dividing the physical memory into several different sizes regions, one for each

process. The program will use offsets in these segments and does not have to be aware of the

where the segment is in physical memory. The operating system maintains a map of segments to

physical memory in a segment table. Every entry of the table contains the base address and the

size of physical memory that corresponds segment. Segmentation can be used to map segments

to either contagious or non-contagious physical memory regions depending on the system and

processor. Segmentation solves the first flaw of primitive memory management discussed

previously. However, it still suffers from the fragmentation. Figure 1-3 illustrates how

semination works.

6

Figure 1-3: Segmentation with non-contiguous physical memory.

1.3.3 Paging

In order to attempt to solve the problem of fragmentation and for better memory utilization, a

transition to noncontiguous memory managements techniques needed to take place. One of these

techniques is paging. Paging is a memory management technique in which the address space of a

process is divided into small fixed-sized blocks of logical memory called pages, each page is

mapped to a physical memory block called a frame, both pages and frames have the same size

which is chosen by the operating system and usually power of two. The frames allocated to the

pages of a process do not need to be contiguous; in general, the system can allocate any unused

frame to map a page for a particular process.

The operating system has a mapping table of page-frame for each process, making the address

space of each process is independent while avoiding fragmentation. Figure 1-4 shows how

paging works.

7

Figure 1-4: Paging

On computers without paging, physical memory is directly addressed by processes which raises

the possibility of a process accidently writing to another process’s data which may corrupt it.

Whereas, with paging, each process has an independent address space that is mapped to unique

physical frames. This provides a memory protection by guaranteeing that physical address spaces

do not overlap and that processes do not overwrite each other's data.

1.3.4 Virtual memory

The primary motive of virtual memory is to allow for processes to access more memory than the

amount physically available through the use of secondary memory (disk) and a noncontiguous

memory allocation scheme (usually paging). The memory manager sets up the disk to an extra

physical memory, when the physical memory is about to run out. Figure 1-5 illustrates the use

both physical memory and secondary storage.

In modern CPU’s a memory management unit (MMU) is implemented into the hardware and it is

responsible for the mapping of virtual addresses into the physical ones as shown in Figure 1-6.

8

Figure 1-5: Virtual memory using physical and secondary memory

Figure 1-6: Function of the MMU

1.3.5 Page tables and address translation

A page table is a data structure that keeps track of all the mappings between virtual and physical

memory. Each entry in the table contains two pieces of information: the virtual page number and

the corresponding frame (physical page) number. It can be thought of as function that takes a

9

page number as argument and returns the frame number as output. Figure 1-7 illustrates the use

of page table in the virtual address translation.

The virtual address is split into two fields, the high order bits represent the virtual page number

for a virtual address and the low-order bits represent the offset of the address within the page

itself. Figure 1-8 shows an example of address translation in the case of a 32-bit machine with

256MB of RAM and 4kb sized pages. There are 32bit virtual address and 28bit physical address,

a 12 bit is used as an offset in the page or frame.

Figure 1-7: Address translation

Figure 1-8: Address translation example

Each time a virtual address is referenced, the system performs a look up in the page table that

corresponds to that particular process and checks if the page is available in physical memory

10

(RAM) if this is the case then the physical address is formed by combining the frame address and

offset value. This address now can be used to address the main memory.

In the case where the page is unmapped and its corresponding frame is not in physical memory

the CPU raises a Page Fault trap to the operating system which is an exception that requires the

immediate attention of the OS which in turn will start a routine that swaps out a rarely used

frame from the main memory to the secondary memory and fetches (swaps in) the referenced

page in place of the freed frame, updates the entry in the page table and restarts the instruction

from which the page fault was raised.

The concepts of extending the main memory using disk seems like a convenient solution to the

problem of insufficient memory but reading from disk is significantly slower than accessing

RAM. Consequently, handling a page fault can have a serious effect on performance especially

in modern computers where CPUs are extremely faster than hard disks. An excessive rate of

page faults puts the system into a state of thrashing where the system spends most of its time

swapping pages rather than executing instructions.

In addition, page tables are stored in main memory and this introduces other issues:

1. Each reference to memory requires a virtual to physical memory mapping (several

memory accesses on every reference). this process has an obvious effect on performance

(bottleneck).

2. Page tables can get extremely large in size and each process must have one i.e., a 32-bit

address space and a 4-kb page size will result one million page table entry for each

process.

Even though these issues cannot be completely eliminated they can be reduced using some

design considerations such as implementing translation lookaside buffers (TLB) to make

mapping faster and designing smarter page replacement algorithms to reduce the problem of

thrashing.

1.3.5.1 Translation Lookaside Buffers (TLB)

without the use of virtual memory, reading/writing data to physical memory needs only a single

memory reference. With paging several memory references are needed which will have

enormous impact on performance.

11

In real life systems, only a fraction of the page table entries is heavily used, whereas others are

rarely referenced. This gave motivation to implement the translation lookaside buffer which is

a hardware device that is similar to a cache memory and allows for mapping of frequently used

pages without the need to access the actual page table in the main memory. TLBs are usually

implemented in the MMU and they contain a small number of entries (no more than 64).

As illustrated in Figure 1-9 every time memory needs to be referenced the virtual page is first

checked for availability in the TLB. If the page is present (a TLB hit) then its corresponding

frame is read and used to form the physical address. Otherwise, a TLB miss will occur and

normal page table mapping will take place, this in fact is slower than directly performing a page

table mapping in the first place and this is the disadvantage of using the lookaside buffer.

Figure 1-9: Implementing the translation lookaside buffer

1.3.5.2 Page replacement algorithms

Each time a page fault occurs, a page has to be swapped out from main memory to make space

for the referenced page to be brought in. The decision of which page to remove from memory is

the operating system’s responsibility and it depends on the page replacement algorithm used.

12

The choice of which replacement algorithm to use is very important as it has direct relation to the

performance of the system. ideally the goal is to evict a page that is the least used, this will

decrease the chance of the system going into the Thrashing state and consequently a better

performance. Thrashing occurs when a computer's virtual memory resources are overused,

leading to a constant state of paging and page faults, inhibiting most application-level

processing. This causes the performance of the computer to degrade or collapse. The situation

can continue indefinitely until either the user closes some running applications or the active

processes free up additional virtual memory resources. [2]

The ideal replacement algorithm to swap out the page that will not be used or referenced for the

longest time, however, it is hard determine the behavior of the threads in the future. Therefore,

there some more practical algorithms used in modern operating systems such as:

• First In First Out (FIFO)

• Least recent used (LRU) page replacement algorithm

1.4 Interrupts

The operating system is event driven and relies heavily on interrupts. An interrupt is a signal to

the processor triggered by hardware or software indicating an event that needs immediate

attention. Whenever an interrupt occurs, the controller completes the execution of the current

instruction and starts the execution of an Interrupt Service Routine (ISR) or Interrupt Handler.

The ISR tells the processor what to do when the interrupt occurs. The interrupts can be either

hardware interrupts or software interrupts. [3]

1.4.1 Interrupts and polling

The state of continuous monitoring is known as polling. The processor keeps checking the status

of some devices; and while doing so, it does no other operation and consumes all its processing

time for monitoring. This problem can be solved by using interrupts [3]; in interrupts, the

processor responds only when the device triggers an interrupt. Therefore, the processor is not

required to regularly monitor the status (flags, signals etc.) of interfaced and inbuilt devices.

1.4.2 Types of interrupts

Interrupts are generally classified into three types:

13

1. Hardware Interrupts are generated by hardware devices to signal that they need some

attention from the OS. They may have just received some data (e.g., keystrokes on the

keyboard or a data on the ethernet card); or they have just completed a task which the

operating system previous requested, such as transferring data between the hard drive and

memory.

2. Traps or exceptions are generated by the CPU itself to indicate that some error or

condition occurred for which assistance from the operating system is needed.

1.5 Scheduling Algorithms

When a computer is multi-tasking, it frequently has multiple processes or threads competing for

the CPU at the same time. This situation occurs whenever two or more of them are

simultaneously in the ready state. If only one CPU is available, a choice has to be made which

process to run next. The part of the operating system that makes the choice is called the

scheduler, and the algorithm it uses is called the scheduling algorithm [4]. The unit of scheduling

is usually the threads, the scheduler chooses which thread to be executed next regardless of

which process it belongs to. An optimum scheduling algorithm should minimize the average time

that thread take to finish their job, while reducing the response time and keeping the CPU busy

as much as possible.

1.5.1 First-Come, First-Served scheduler

It is scheduling algorithm that uses queuing system to schedule threads. With this algorithm,

processes are assigned the CPU in the order they request it; therefore, there is one queue for

ready processes and the scheduler chooses one to be executed until it finishes and moves to the

second earliest thread. This algorithm is non-preemptive; meaning that the scheduler allows a

thread to be executed until it finishes, without interruption even if it is blocked waiting for IO, or

there is another higher priority thread is waiting in the queue. This algorithm has a lot of flaws;

First, the IO bounded threads will spend most of their time blocking waiting for IO, while

preventing other threads from using the CPU. This results, higher waiting time and poor efficient

use of the CPU.

1.5.2 Priority based scheduler

Another non-preemptive algorithm in which each thread has a priority, the scheduler chooses the

higher priority thread to be executed next. This algorithm suffers from the same flaw as the

14

previous one, and it will bit put the CPU in a good use if an IO bounded thread has high priority.

Another flaw is starvation, if more high priority threads are created, the lower priority one may

not be executed ever.

1.5.3 Round Robin scheduler

A fair preemptive scheduling algorithm that allows each a thread to be executed for a fixed

amount of time called time splice, and if a thread is blocked waiting for an IO, the scheduler will

schedule another thread. This scheduling algorithm fixes the flaws of both previous algorithms,

but it does not have a priority system, so a kernel thread that should be executed as soon as

possible will wait its turn like any other thread.

1.5.4 Multi-level Queueing scheduler

This algorithm makes use of the previous two algorithms; it has multiple queues with different

priorities, the threads in the same are scheduled using Round Robin. The scheduler does not

process to schedule certain threads in a queue unless all the higher priority queues are empty.

Threads can move to higher priority queues if they block and wait for IO operations, and does

not use much CPU; this will minimize the response time and decrease the average waiting time

in generally for all threads.

1.6 Modes of execution

Modern operating systems generally have two modes, kernel mode and user mode. The kernel

mode has full unrestricted access to the hardware, privileged instructions, physical memory and

virtual memory of all processes. While the user mode has a restricted access to some non-

privileged level instructions and the virtual memory of the current process. Only few trusted

programs must run in the kernel mode, including most of the operating system functions, because

any faults may corrupt the memory, misconfigure the attached hardware, or even crash the whole

system. However, in the user mode, any fault may cause damage only to the faulted process, and

the system may terminate it at worst case.

When a process running the user mode wants to interact with hardware or any privileged

operations, it will execute a system call through a set of APIs provided by the operating system.

The system call will switch the execution flow from the user mode to a piece of program in

15

operating system running in the kernel mode. Figure 1-10 illustrates the interaction between the

user mode and the kernel mode.

Figure 1-10: Kernel mode and User mode

1.7 x86 instruction set and IA-32 processors

x86 is a family of instruction set architectures initially developed by Intel based on the Intel 8086

microprocessor and its 8088 variants. The 8086 was introduced in 1978 as a fully 16-bit

extension of Intel's 8-bit 8080 microprocessor, with memory segmentation as a solution for

addressing more memory than can be covered by a plain 16-bit address. Many additions and

extensions have been added to the x86 instruction set over the years, almost consistently with full

backward compatibility. And instruction set later was extended to be a CISC design. It has Byte-

addressing enabled and words are stored in memory with little-endian byte order. Memory access

to unaligned addresses is allowed for all valid word sizes. The largest native size for integer

arithmetic and memory addresses (or offsets) is 16, 32 or 64 bits depending on architecture

generation. [5]

16

IA-32 (short for Intel Architecture, 32-bit) is the 32-bit version of the x86 instruction set family,

designed by Intel and first implemented in the 80386 microprocessor in 1985 and currently used

in all 32bit Intel processors. IA-32 is the first incarnation of x86 that supports 32-bit computing;

as a result, the "IA-32" term may be used as a metonym to refer to all x86 versions that support

32-bit computing [6]. In some other contexts, certain iterations of the IA-32 ISA are sometimes

labelled i486, i586 and i686, referring to the instruction supersets offered by the 80486, the P5

and the P6 microarchitectures respectively. The newer processors that work under IA-64 like

Intel i3, i5 ,i7, i9 do emulate the older architecture like IA-32 and IA-16, which enables them to

run the any 16bit or 32bit operating system. Figure 1-11 shows a list of the 32, 16, and 8 bit

registers in IA-32.

Figure 1-11: IA-32 Registers

Besides the 32bit registers, the IA-32 added few features to the x86 instruction set. Firstly , more

addressing modes; all general-purpose registers can be used as base register, while all general-

purpose registers except ESP can be used as an index register and can be multiplied by 1, 2, 4, or

8 before being added to the base register value and displacement. This allowed instructions like

“ MOV ECX, [EAX+EBX*4] ”. Secondly, it extended the address space to 48-bit using

segmentation, combining 16-bit segment number and a 32-bit offset within the segment. Thirdly,

it supports virtual memory with different protection using paging with two level tables, which

will be discussed in more details in the next chapter.

17

Chapter 2: Design and Implementation

2.1 Setting up IA-32 Protected Mode Features

In order to use the full capabilities of IA-32 processors, the programmer has to setup few features

such as memory segments, paging, interrupt and exceptions. These features were probably

initialized by the boot loader to execute the first few instructions of the operating system;

however, the programmer needs to modify the settings according to operating system needs.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit

modes.

Figure 2-1: IA-32 System-Level Registers and Data Structures

Adapted from [7].

18

2.1.1 Segmentation

Segmentation is a memory management technique used to divide the virtual memory into

multiple regions; an identifier and an offset in that segment are used to reference a specific

address. Originally, the segmentation was used to access the different parts of the program like

code, read-only data, and writable data, because of the limited memory address bus size in the

old Intel processors. However, in modern processors, the 32bit or 64bit bus size is more than

enough for most applications, and the need of segmentation has vanished, though IA-32

processor still supports this feature as backward compatibility and enforces it to be able to enter

the protected mode. Thus, most modern operating systems that support IA-32 will setup all

memory segments to be identical and cover the whole memory.

When operating in protected mode, all memory accesses pass through either the global

descriptor table (GDT) or an optional local descriptor table (LDT) as shown in Figure 2-1.

These tables contain entries called segment descriptors. Segment descriptors provide the base

address of segments as well as access rights, type, and usage information.

Each segment descriptor has an associated segment selector. A segment selector provides the

software that uses it with an index into the GDT or LDT (the offset of its associated segment

descriptor), a global/local flag (determines whether the selector points to the GDT or the LDT),

and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied. The segment

selector provides access to the segment descriptor for the segment (in the GDT or LDT). From

the segment descriptor, the processor obtains the base address of the segment in the linear

address space. The offset then provides the location of the byte relative to the base address. This

mechanism can be used to access any valid code, data, or stack segment, provided that the

segment is accessible from the current privilege level (CPL) at which the processor is operating.

The CPL is defined as the protection level of the currently executing code segment.

The solid arrows in Figure 1-1 indicate a linear address, dashed lines indicate a segment

selector, and the dotted arrows indicate a physical address. For simplicity, many of the segment

selectors are shown as direct pointers to a segment. However, the actual path from a segment

selector to its associated segment is always through a GDT or LDT [8].

19

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear

address of the LDT is contained in the LDT register (LDTR), and the instruction lldt r/m16 is

used for that.

The mode where all segments cover the whole memory is called flat mode, in which the

operating system and application programs have access to a continuous, unsegmented address

space. To the greatest extent possible, this basic flat model hides the segmentation mechanism

of the architecture from both the system designer and the application programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment

descriptors must be created; one for referencing a code segment and one for referencing a data

segment (see Figure 2-2). Both of these segments, however, are mapped to the entire linear

address space: that is, both segment descriptors have the same base address value of 0 and the

same segment limit of 4 GBytes [8].

Figure 2-2: Flat Model

Adapted from [9].

2.1.1.1 Segment Selectors and Privilege Levels

A segment selector is a 16-bit identifier for a segment (see Figure 2-3). It does not point directly

to the segment, but instead points to the segment descriptor that defines the segment. A segment

selector contains the following fields.

Index: Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies the index

value by 8 (the number of bytes in a segment descriptor) and adds the result to the base address

of the GDT or LDT (from the GDTR or LDTR register, respectively).

TI (table indicator) flag: Specifies the descriptor table to use: clearing this flag selects the GDT;

setting this flag selects the current LDT.

20

RPL (Requested Privilege Level): Specifies the privilege level of the selector. The privilege level

can range from 0 to 3, with 0 being the most privileged level. See section 2.4 for a description of

how this field is used to switch between execution modes.

Figure 2-3: Segment Selector

Adapted from [10].

The segment selectors in IA-32 are: cs, ds, es, ss, fs and gs, the first four usually have the same

index value in all processes and threads, but PRL field will differ depending on the privilege

level that the current task is on. The use of selectors ss and fs very varries between operating

systems, though the majority will use them for storing information related to the current process

and thread.

2.1.2 Interrupts

In IA-32, Interrupt Descriptor Table (IDT) is the responsible of handling hardware interrupts,

software interrupts and internal exceptions, and to aid the handling of exceptions and interrupts,

each architecturally defined exception and each interrupt condition requiring special handling by

the processor is assigned to unique identification number, called a vector number. The processor

uses the vector number assigned to an exception or interrupt as an index into the entries of

interrupt descriptor table (IDT). See Table 2-1 for the list of indices and their corresponding

interrupts.

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 through 31

are reserved by the Intel 64 and IA-32 architectures for architecture-defined exceptions and

interrupts. While, vector numbers in the range 32 to 255 are designated as user-defined interrupts

and are not reserved by the Intel 64 and IA-32 architecture. These interrupts are generally

assigned to external I/O devices to enable those devices to send interrupts to the processor

through one of the external hardware interrupt mechanisms.

21

Note that the difference between an interrupt and exception in the current context is that an

interrupt is triggered by an external hardware, whereas an exception is a fault in the program or

the processor configuration. All interrupts and exception can be manually triggered by the

instruction int n, n is the interrupt number.

Similarly to GDT, IA-32 has a special instruction lidt /m16 which is used to load the address of

IDT into IDTR register.

2.1.2.1 Interrupt handlers

After an interrupt is triggered, the processor tries to translate the handler address from both IDT

and GDT (see Figure 2-4). If it encounters any misconfigured entry in both tables, the processor

will trigger double fault exception, if another fault is encountered while translating the double

fault exception, a triple fault exception is triggered which will cause a system reset.

Figure 2-4: Interrupt Procedure Call

Adapted from [11].

During an interrupt handler call, if there is no privilege level change between the interrupt

handler and the original code e.g., code is running in ring0 (kernel mode) and an interrupt is

triggered to be executed in same privilege level, the processor pushes to the stack some

22

information about interrupt and how to return to the original interrupted code. However, when

there is privilege level change e.g., code is running in ring3 (user mode) and an interrupt is

triggered to be executed in ring0 (kernel mode), the processor uses a new stack memory for the

handler to store the interrupt information.

Interrupt

index

Description

0x00 Division by zero

0x01 Single-step interrupt

0x02 Non Maskable Interrupt

0x03 Breakpoint

0x04 Overflow

0x05 Bound Range Exceeded

0x06 Invalid Opcode

0x07 Coprocessor not available

0x08 Double Fault

0x09 Coprocessor Segment Overrun (386 or earlier only)

0x0A Invalid Task State Segment

0x0B Segment not present

0x0C Stack Segment Fault

0x0D General Protection Fault

0x0E Page Fault

0x0F Reserved

0x10 x87 Floating Point Exception

0x11 Alignment Check

0x12 Machine Check

0x13 SIMD Floating-Point Exception

0x14 Virtualization Exception

0x15 Control Protection Exception

Table 2-1: Protected-Mode Exceptions and Interrupts

23

Figure 2-5: Stack Usage on Transfers to Interrupt and Exception-Handling Routines

Adapted from [12].

2.1.3 Virtual Memory

The memory management facilities of the IA-32 are divided into two parts: segmentation and

paging. Segmentation provides a mechanism of isolating individual code, data, and stack

modules so that multiple programs (or tasks) can run on the same processor without interfering

with one another, however in flat mode as discussed before, the processor makes segmentation

transparent. Paging on the other hand, provides a mechanism for implementing a conventional

demand-paged, virtual-memory system where sections of a program’s execution environment are

mapped into physical memory as needed. Paging can also be used to provide isolation between

multiple tasks. When operating in protected mode, some form of segmentation must be used.

There is no mode bit to disable segmentation. The use of paging, however, is optional. The

paging mechanism can be configured to support simple single-program systems, multitasking

systems, or multiple-processor systems that uses shared memory. When paging is enabled, all the

addresses in the system (including the addresses in IDT and GDT) will be considered as virtual

addresses, and need to be translated into actual physical addresses by the memory management

unit (MMU), as shown in Figure 2-6.

24

Figure 2-6: Segmentation and Paging

Adapted from [13].

2.1.3.1 Paging Setup

The MMU translates addresses through a series of two tables, page directory (PD), and paging

table (PT), both contain 1024 entries of 4 bytes. Each page directory entry (PDE) points to a

page table, while each page table entry (PTE) points to a physical memory page; a memory

frame, which is typically 4kb in size. This gives up to 4GB virtual address space accessible to the

processor. Figure 2-7 Illustrates the translation process of a 32-bit address into a memory frame,

the most significant ten bits of any virtual address represent an index in the page directory,

whereas the next ten bits represents an index in the corresponding page table, the last twelve bits

are an offset in the 4kb memory frame.

Besides the pointers to PT or frame, PDE and PTE contain some important information about the

pages they point to. Figure 2-8, Table 2-2, and Table 2-3 give details of each field.

25

Figure 2-7: Virtual Address Translation to a 4-KByte Page using 32-Bit Paging

Adapted from [14].

Figure 2-8: Paging-Structure Entries with 32-Bit Paging

Adapted from [15].

2.1.3.2 Identity Mapping

Enabling the paging in IA-32 architecture can be tricky. At first all addresses are physical

address including the address of the current instruction in EIP and the address of the stack in

ESP, and at the moment of enabling paging, all these addresses will be invalid in virtual

memory. A simple solution to this problem is identity mapping, which is mapping physical

addresses of some pages to the same virtual addresses so the switching code does not encounter

invalid addresses after enabling paging.

26

Table 2-2: Format of a 32-Bit Page-Directory Entry that References a Page Table

Adapted from [16].

Table 2-3: Format of a 32-Bit Page-Table Entry that Maps a 4-KByte Page

Adapted from [16].

The identity mapping has to cover only few pages of the operating system that are responsible of

enabling paging, after that it is possible to jump into a page where the it is not identity mapped.

Figure 2-9 illustrates the identity mapping.

27

Figure 2-9: Identity mapping

2.1.3.3 Memory Page Allocator

Each page table is 4kb in size, with 1024 one of it, they will take roughly 4Mb to map all 4Gb

space of virtual memory, and since each process has its own virtual space, hence page tables,

huge chunks of memory will be used for the sole reason of mapping. A more reliable approach is

to only map a page when it is needed, so at first only one page directory and page table exist, and

they grow by the need of more memory.

A memory allocator is a convenient technique to allocate 4Kb pages whenever the kernel (or

user applications) needs. It works by keeping track of all used and free physical and virtual

pages, CyanOS uses a simple bitmap which is initialized to 0 at first, and each allocated page its

bit will be set to one. A small optimization is implemented by a variable that keeps the index of

the last allocated page, the next time a page is required, the allocator start searching starting from

that variable.

2.1.3.4 Page Faults and Memory Swapping

A page fault is an exception generated by the processor when the program tries to access a page

that does not exist, has higher privilege level, or to write to read-only page. One use of the page

faults is to detect an access to certain page specially in memory swapping; when a page is

swapped out of memory, the kernel sets its present bit in PTE to zero (see Table 2-3), this way

the page is not present and will trigger a page fault whenever a program tries to access it, the

28

exception handler will decide then whether to put the process to sleep or swaps in the required

page from the disk. Figure 2-10 illustrates the process of swapping.

Figure 2-10: Using page fault in swapping

2.2 Device’s Drivers

2.2.1 Intel Programmable Interrupt Controller (PIC 8259)

The Intel 8259 is a Programmable Interrupt Controller (PIC) designed for the Intel 8085 and

Intel 8086 microprocessors to manage hardware interrupts and send them to the appropriate

system interrupt. The 8259 combines multiple interrupt input sources into a single interrupt

output to the host microprocessor, extending the interrupt levels available in a system beyond the

one or two levels found on the processor chip. The 8259A was the interrupt controller for the

ISA bus in the original IBM PC and IBM PC AT. The 8259 has coexisted with the Intel APIC

Architecture since its introduction in Symmetric Multi-Processor PCs. Modern PCs have begun

to phase out the 8259A in favor of the Intel APIC Architecture. However, while not anymore a

29

separate chip, the 8259A interface is still provided by the Platform Controller Hub or

Southbridge chipset on modern x86 motherboards [17]. Figure 2-11 shows how the devices are

connected to CPU through PIC.

Figure 2-11: PIC 8259

To start receiving hardware interrupts from the PIC, it must be configured first using the

following steps:

1- Remap the interrupts. The PIC uses interrupts 0 - 15 for hardware interrupts by default,

which conflicts with the CPU interrupts. Therefore, the PIC interrupts must be remapped

to another interval.

2- Select which interrupts to receive. You probably do not want to receive interrupts from

all devices since you do not have code that handles these interrupts anyway.

3- Set up the correct mode for the PIC.

Since a PIC is capable of handling just 8 devices, the need of more devices made motherboard

designers to cascade two PICs so it is possible to handle 15 devices. Figure 2-12 shows how two

PICs are cascaded, while Table 2-4 lists the different devices that are connected to PIC.

30

Refer to PIC 8259 manual to find the different control words to initialize and configure the

different devices on PIC.

Interrupt Number Device

0 CMOS real-time clock

1 Free for peripherals / legacy SCSI / NIC

2 Free for peripherals / SCSI / NIC

3 Free for peripherals / SCSI / NIC

4 PS2 Mouse

5 FPU / Coprocessor / Inter-processor

6 Primary ATA Hard Disk

7 Secondary ATA Hard Disk

8 CMOS real-time clock

9 Free for peripherals / legacy SCSI / NIC

10 Free for peripherals / SCSI / NIC

11 Free for peripherals / SCSI / NIC

12 PS2 Mouse

13 FPU / Coprocessor / Inter-processor

14 Primary ATA Hard Disk

15 Secondary ATA Hard Disk

Table 2-4: Device connected to PIC

2.2.2 PS/2 Keyboard

The PS/2 Keyboard is a device that talks to a PS/2 controller using serial communication. The

PS/2 controller has an input port to read the scan codes of the pressed key (scan code is different

than ASCII code). It also generates an interrupt at IRQ1 in PIC.

2.2.3 Peripheral Component Interconnect (PCI) bus

Peripheral Component Interconnect (PCI) is a local computer bus for attaching hardware devices

in a computer and is part of the PCI Local Bus standard. The PCI bus supports the functions

found on a processor bus but in a standardized format that is independent of any given

processor's native bus. Devices connected to the PCI bus appear to a bus master to be connected

directly to its own bus and are assigned addresses in the processor's address space. It is a parallel

31

bus, synchronous to a single bus clock. Attached devices can take either the form of an integrated

circuit fitted onto the motherboard (called a planar device in the PCI specification) or an

expansion card that fits into a slot. [18]

Figure 2-12: Cascading two PICs

The PCI specification provides for totally software driven initialization and configuration of each

device. Therefore, each one provides a 256-byte configuration registers. These registers can

provide information about the device such as device id, vendor id and device class, and some

information about its functionality such as the interrupt line or the base address of device’s IO

(either memory mapped or ports). Refer to [19] for a detailed explanation on each field of the

configuration space.

32

Figure 2-13: PCI structure

PCI has 256 buses, each bus has 32 slots, and each slot has 8 functions. Obviously not all these

buses, slots, and functions will be filled with a physical hardware. Therefore, one way to

enumerate the PCI devices in the system is by scanning only the first 8 buses, and scan the slots

in each bus, then scanning the function in each slot. If a function has the type of PCIBridge, its

secondary bus number will point to a bus that has more slots and functions that will be scanned

recursively too. Figure 2-13 shows the structure of PCI devices, whereas Figure 2-14 shows a

code snippet on how to enumerate these devices.

2.2.4 RTL8139 Ethernet Network Device

Realtek RTL8139 has the simplest interface among NICs (Network interface controller) devices

and it is emulated by a software like Qemu or Bochs, for these reasons it was the chosen driver to

implement networking in CyanOS.

Since RTL8139 is connected to PCI, it needs to be detected by the previously discussed method

(The PCI vendor ID is 0x10EC and the device ID is 0x8139), and the configuration space will

provide the command addresses, MAC address, interrupt line of this device. RTL8139 is

configured to write the received data to a specific address of buffer in the memory, and then it

will trigger an interrupt. For transmitting packets, The RTL8139 NIC uses a round robin style for

transmitting packets. It has four transmit buffer registers to hold the address of the buffer

containing the data of the packet to be sent. It should be noted, that all addresses provided to

33

RTL8139 must be physical addresses instead of virtual, so virtual_to_physical_address is used

to convert. Refer to RTL8139 for detailed information about the process.

void PCI::scan_pci(Function<void(PCIDevice&)> callback){

 for (size_t bus = 0; bus < 8; bus++) {

 scan_bus(callback, bus);

 }

}

void PCI::scan_bus(Function<void(PCIDevice&)>& callback, u8 bus){

 for (size_t slot = 0; slot < 32; slot++) {

 scan_slot(callback, bus, slot);

 }

}

void PCI::scan_slot(Function<void(PCIDevice&)>& callback, u8 bus, u8 slot){

 PCIDevice slot_device{bus, slot, 0};

 if (slot_device.does_exist()) {

 scan_function(callback, bus, slot, 0);

 if (slot_device.has_multiple_functions()) {

 for (size_t function = 1; function < 8; function++) {

 scan_function(callback, bus, slot, function);

 }

 }

 }

}

void PCI::scan_function(Function<void(PCIDevice&)>& callback, u8 bus, u8 slot, u8 function){

 PCIDevice function_device{bus, slot, function};

 if (function_device.does_exist()) {

 callback(function_device);

 if (PCIDevice{bus, slot, function}.header_type() == PCIDevice::HeaderType::PCIBridge) {

 scan_bus(callback, PCIBridge{bus, slot, function}.secondary_bus_number());

 }

 }

}

Figure 2-14: Enumerating all PCI devices

34

2.3 Multitasking

After discussing how the kernel initializes the required features in IA-32, this part describes a

higher level overview of the different components of CyanOS to achieve multitasking, that

includes processes, threads, context switch, synchronization, interprocess communication and the

user space.

2.3.1 Kernel memory space

As many modern operating systems, CyanOS uses the higher half kernel model; meaning all

processes share the same kernel in their virtual space which is from 0xC0000000 to

0xFFFFFFFF, and independent in the rest of the virtual space. This implies that the values of

PDEs in page directory from 768 to 1023 are identical in all page directories of all processes in

the system, which all marked as supervisor (refer to Table 2-3) to disallow any access to these

pages from the user space. Figure 2-15 shows the mapping of virtual spaces of two processes to

the physical memory.

Figure 2-15: Higher Half Kernel model

2.3.2 Processes and Threads

As any other modern kernel, CyanOS has processes and threads; process is a running program

loaded from the file system that has its own virtual address space (page directory and tables) and

35

set of resource like handles (see section 2.6.3 for more details), it also contains set of threads. A

thread on the other hand has its own stack, execution flow and may share some data on the heap.

Table 2-5 and Table 2-6 Illustrate the different internal information fields stored in the kernel

about processes and threads in CyanOS.

Field Description

id A unique identifier to the process.

name Process’s name

path The location of the loaded program on the file system.

privilege_level The privilege level of the process which can be either Kernel or User.

parent A reference to the parent process.

state The state of the process which can be either Ready, Blocked, Suspended or

Zombie.

handles_list The list of the handles in the process (check 2.6.3 for more details).

threads_list The list of the threads in the process.

page_directory The physical address of the page directory of the process’s virtual space.

Table 2-5: Internal fields of a Process.

Field Description

id A unique identifier to the thread.

privilege_level The privilege level of the thread what can be either Kernel or User.

parent_process A reference to the processes holding this thread.

entry_point The address of the first instruction to be executed by the thread.

stack_pointer The address of the stack for the thread.

state The state of the process which can be either Ready, BlockedSleep,

BlockedQueue, BlockedQueueTimed or Suspended.

blocker_waitqueue If the process is blocked, this field contains a reference to the blocking

waitqueue. (See section 2.3.3.2 for details)

Table 2-6: Internal fields of a Thread.

36

2.3.2.1 Life Time of a Process

When the kernel takes control from the bootloader, it initializes some internal data structures and

devices then it creates the first process in the system which called “Adam” and has the id of zero.

This process is a special since it has no parent and no actual associated program in the file

system; it is also responsible of spawning some programs like the shell or a desktop GUI

manger.

Creating a new process is done by CreateProcess system call, the kernel initiates the internal

information about this process and creates a page directory for it. Next, an ELF file is loaded

from the file system to the executable loader (See section 2.4.2 for details), if the file is invalid it

will clean the allocated data and CreateProcess will return an error. Finally, the kernel creates a

new thread that starts from the entry point of the executable file, the path of the current process

and its arguments will be passed to the main function.

When CreateProcess system call succeeds it returns a Handle, which is a wrapper for a

ProcessDescription. ProcessDescription is kernel’s object that references a process, which

allows the kernel to do operations on this process including (wait, suspend, terminate). Similarly,

A foreign process can obtain a Handle for another process using OpenProcess system call.

Nevertheless, All Handle-s of the process must be closed by CloseHandle after use, otherwise

the kernel assumes that the process resources are still needed.

A program can use SuspendProcess to suspend all the threads in a process, which can be

resumed later by ResumeProcess. Moreover, TerrminateProcess is used to close a certain

process and release all its resources as well as its threads’ if there is no ProcessDescription

referencing it. However, if one or more ProcessDescription is still not closed, the kernel marks

this process’s state as Zombie and waits until all the ProcessDescription to be closed so it

releases the resources. Furthermore, WaitSignal system call is used to wait until a process is

terminated and returns the error code that process returned.

2.3.2.2 Life Time of a Thread

Similarly to a process, a thread has CreateThread, OpenThread, SuspendThread, and

TerminateThread which work exactly like the operations on a process. Additionally, the kernel

provides Sleep and Yield system calls, Sleep will suspend the execution flow of a thread for a

37

certain duration, while Yield allows the thread to voluntarily give up its time slot of the

scheduler.

2.3.2.3 Context Switch

In CyanOS, the unit of scheduling is threads; the kernel chooses which thread to be scheduled

regardless of which process it belongs to. The scheduler divides all threads in the system into

five lists: ready, sleeping, blocking, timed_blocking and suspended. Ready list contains any

thread that is ready to run and its time slot has expired, sleeping list contains threads that

executed Sleep system call and waiting for a specific time duration to pass, blocking list on the

other hand are threads which are blocked waiting in a waitqueue (see section 2.3.3.2 for more

details about waitqueue), and finally timed_blocking is a list of threads blocked in a waitqueue

but have a time out. Figure 2-16 shows the FSM of these transactions.

The kernel starts the scheduler by initializing the Intel 8253 Programmable Interval Timer that is

responsible of generating interrupts at 1ms intervals; these interrupts will invoke the scheduler to

processes the five lists of threads accordingly. Starting with sleeping and timed_blocking lists,

the scheduler enumerates every element of these lists and checks if their waiting time has been

elapsed, if so, the thread will be moved to ready list. Furthermore, the scheduler chooses a thread

form the ready list to be executed next, there are plenty of scheduling algorithms as discussed

earlier in chapter 1, but for the sake of simplicity CyanOS currently uses a simple preemptive

Round-Robin algorithm to make debugging the kernel much easier since the next thread to be

executed can be easily predicted (this helps much with debugging bugs related to deadlocks and

race conditions).

When the scheduler chooses the next thread to be executed, it saves the context (registers

including the stack and instruction pointers) of the current executing thread, and preparing to

load the context of the next thread after exiting the scheduler’s interrupt routine. The scheduler

also checks whether the current thread’s parent process is different from the next thread’s, if so,

it loads the page directory of the next process which will switch to the new process’s virtual

space.

38

Figure 2-16: Threads movement between scheduler lists

2.3.3 Task Synchronization

Synchronization is an important part of the operating system; it insures mutual exclusion,

fairness and non-starvation between threads. It can be done through six primitives: Spinlock,

WaitQueue, Mutex, Semaphore, MessagingWaitQueue and MultiWaitQueue.

2.3.3.1 Spinlock

Spinlocks are low-level primitive since they do not rely on the scheduler infrastructure, they

work by disabling all interrupts in the current processor core (it is more relevant in multi-core

processor), and keep checking a flag until it is set (spinning in a loop). Checking and setting the

flag should be an atomic operation, that is why xchg instruction is used in IA-32 processors.

Spinlocks can be used anywhere in the kernel including interrupt handlers; however, they should

be used wisely, a poor used spinlock can lead to severe performance issues, therefore it is

recommended to use spinlocks only where the critical section is very short. It can be noted that

kernel components rely heavily on the use of the spinlocks to protect any shared data. Figure

2-17 shows a pseudo code for a spinlock.

2.3.3.2 WaitQueue

WaitQueue is a higher level primitive that allows a thread to be blocked until some condition is

met or a certain timeout has elapsed. It has four operations: wait, wait_on_event, wake_up and

wake_up_all. wait operation is used to block the current thread until it is woken by another

39

thread using wake or the timeout has elapsed, while wait_on_event is similar to wake but a

condition is passed to it as a C++ template function (see Appendix A.1), this function operation

is blocked until the condition is satisfied after waking up or the timeout is passed. Moreover,

wake_up and wake_up_all are used to wake up a single thread and all blocked thread

respectively.

void StaticSpinlock::initialize()

{

 m_value = 0;

}

void StaticSpinlock::acquire()

{

 DISABLE_INTERRUPTS();

 while (test_and_set(&m_value) != 0) { // atomic operation

 }

}

void StaticSpinlock::release()

{

 ASSERT(m_value != 0);

 m_value = 0;

 ENABLE_INTERRUPTS();

}

Figure 2-17: Spinlock pseudo code

And to describe how these operation work internally... wait moves the current thread from ready

list of the scheduler to timed_blocking list if a timeout is provided, if not, the thread is moved to

blocking list. wait_on_event uses wait internal in a loop until the condition is met or the timeout

is passed, WaitQueue also saves a reference to the blocked thread in internal list. wake_up and

wake_up_all enumerate the threads in the internal list and move them from timed_blocking or

blocking lists to ready list.

WaitQueue is heavily used in almost all blocking functions in the kernel, especially the virtual

file system which will be discussed in VFS Implementation.

2.3.3.3 Mutex and Semaphore

Semaphores are another synchronization primitive which are wrappers around WaitQueue with

few restrictions. The semaphores are initialized with value to be in the internal counter, acquire

operation is used to decrease the counter and block the current thread if the value is less than

40

zero, using WaitQueue’s wait, release operation increases the value of the internal counter and

wake up the blocking threads if the value is less or equal to zero, using WaitQueue’s wake_up.

A Mutex is a semaphore with an internal counter of one (i.e., binary semaphore).

2.3.3.4 MessagingWaitQueue

MessagingWaitQueue is similar to WaitQueue, but its wait operation returns any data type

passed to it by the other thread in the wake_up operation. This primitive utilizes C++’s templates

to achieve its purpose which might lead to larger binaries size if it was overused, however it is

still an efficient technique to pass data between threads after completion a task, without much

code to be written.

2.3.3.5 MultiWaitQueue

Another primitive that is similar to WaitQueue, but allows a thread to be waiting in multiple

queues and it will be unblocked only after being waken up by all the queues. It is useful when a

task needs to start only after few other threads completed their tasks.

2.3.4 Interprocess Communication

Interprocess communication is the mechanism provided by the operating system that allows

processes to communicate with each other by sharing data in a synchronous way. CyanOS

provides IPC using Pipes and Domain Sockets.

2.3.4.1 Pipes

Pipes allow two processes to communicate in standard producer–consumer fashion: the producer

writes to one end of the pipe (the write end) and the consumer reads from the other end (the read

end). As a result, ordinary pipes are unidirectional, allowing only one-way communication. If

two-way communication is required, two pipes must be used, with each pipe sending data in a

different direction [20]. A pipe can be either named; has a name and path in the file system, or

can be anonymous. In both cases, creating a pipe or opening an existing one returns a Handle

that is used to perform a synchronous read and write operation, both operations will block until a

data is available to read, and data has been written, respectively. Figure 2-18 shows shared pipe

handles between two processes.

41

Figure 2-18: Pipe Handles between two processes

Internally, a pipe consists of a CircularBuffer (see Appendix B.6) and a WaitQueue and they

work as a reader-writer problem. read operation will try to read any data available in the buffer,

if no data is found, it will block until some other thread writes more data. While write will try to

write data to the buffer, and it will block if it is full, until some other thread reads the data.

2.3.4.2 Domain Socket

Domain Socket on the other hand is bidirectional and can allow multiple readers and writers. it

consists of client that initiates the socket, and a server that accepts it, while socket can be with

multiple clients, only one server is allowed. To start a socket connection, the server initiates a

socket with a name to be installed in the file system and calls listen to mark the socket as passive

and can accept incoming connection requests, then it calls accept which will block until an

incoming connection has come from the client using connect, accept will return a handle to the

newly created connection. After establishing the connection, the server and the clients can use

the handles to write and read data from both ends. The flowchart in Figure 2-19 illustrates this

process.

The internal design of domain socket is similar to pipes; however, it has two CircularBuffers and

two WaitQueues for both incoming and outgoing data.

42

Figure 2-19: Domain Sockets flow chart

2.4 User Mode

2.4.1 User mode and system calls

As discussed in 2.3.1 , the virtual space of a process divided into user space and shared kernel

space. After user thread or process is created and the execution flow is about to switch to user

mode, the kernel loads 3 in RPL field of the segment selectors CS, DS, ES and SS (see section

43

2.1.1.1), GS will point to a block of data contains information about the current process (e.g.,

pid, path, arguments), while FS points to a block of data contains information about the current

thread (e.g., tid).

When a thread enters the user mode, it cannot access any address that is in the kernel space; any

access will lead to page fault which will terminate the current process. However, the user mode

is very limited in its privileges and cannot deal with interrupts or IO operation for example, that

is why system calls are provided to requests a service from the kernel to be executed. A system

call can be performed in CyanOS using `int 0x80` which will trigger an interrupt that is designed

by the kernel to handle system calls, the system call number is loaded into EAX register, whereas

the arguments of the system call are loaded in ECX, EDX, EBX, ESI, EDI. And since each system

call has a unique number, the kernel calls the required system call with the appropriate

arguments. List of all possible system calls are mentioned in Appendix C. Figure 2-20 illustrates

the execution of a system call.

Figure 2-20: System call execution

44

2.4.2 ELF executable loader

Executable and Linkable Format (ELF) is a common standard file format for executable files,

object code, shared libraries, and core dumps. First published in the specification for the

application binary interface (ABI) of the Unix operating system version named System V

Release 4 (SVR4) [21], and later in the Tool Interface Standard [22], it was quickly accepted

among different vendors of Unix systems and even non-Unix systems like PlayStation 4,

PlayStation 5 and Wii.

By design, the ELF format is flexible, extensible, and cross-platform. For instance, it supports

different endiannesses and address sizes so it does not exclude any particular central processing

unit (CPU) or instruction set architecture [23]. This is what allowed it to be adopted by many

different operating systems and compilers including gcc and clang.

An ELF file consists of ELF header, section headers and program headers. The ELF header is

32 bytes long, and identifies the format of the file. It starts with a sequence of four unique bytes

that are 0x7F followed by 0x45, 0x4c, and 0x46 which translates into the three letters E, L, and

F. Among other values, the header also indicates whether it is an ELF file for 32 or 64-bit

format, uses little or big endianness, shows the ELF version as well as for which operating

system the file was compiled for in order to interoperate with the right application binary

interface (ABI) and CPU instruction set. Furthermore, section headers describe the different

regions of the binary file (i.e., section’s name, offset, size, type, flags…). Whereas program

headers describe the segments that are used at run-time, and tells the system how to create a

memory image of the program in the process. It is important to note that some sections may not

be a segment and will not be mapped to memory (i.e., section that contains symbols and

debugging information), while some segments may not have a section in disk (i.e., segments that

contain uninitialized data) as shown in Figure 2-21 and Figure 2-22.

45

Figure 2-21: Sections and Segments

When a process being executed, the ELF loader in the kernel starts by verifying the different

fields ELF header to ensure that this executable file is supported by the processor and the

operating system. Afterwards, it uses program headers to allocate a memory space for each

segment, then writing the corresponding data to it form the binary file.

Figure 2-22: File in disk vs Program in memory

46

2.5 Heap Allocator

As discussed in Memory Page Allocator, the kernel provides a memory allocator that reserves

memory blocks for the program, however this memory blocks are always page aligned i.e., they

are always multiple of 4kb pages. This can be inconvenient and wasteful of precious resources

since most programs needs to allocate memory of relatively small sizes, a more suitable tool for

this is the heap allocator. There are several techniques for this purpose and the following parts

will discuss the advantage and disadvantages of each one.

2.5.1 Fixed Partitioning

The simplest scheme for managing the heap memory is to partition it into equal-sized regions

with fixed boundaries e.g., 1024 bytes each. Any requested memory whose size is less than or

equal to the partition size can be loaded into any available partition. However, there are two

difficulties with the use of equal-size fixed partitions:

1- A requested memory may be too big to fit into a partition. In this case, the

programmer must design the program with the use of overlays so it must allocate

multiple blocks with the same size.

2- Main memory utilization is extremely inefficient. Any requested memory, no matter

how small it is, occupies an entire partition. In our example, there may be a memory

request whose length is less than 100 bytes; yet it occupies a 1-kbyte partition. This

phenomenon, in which there is wasted space internal to a partition due to the fact that

the block of data loaded is smaller than the partition, is referred to as internal

fragmentation. [24]

2.5.2 Dynamic Partitioning

To overcome some of the difficulties with fixed partitioning, an approach known as dynamic

partitioning was developed. With dynamic partitioning, the partitions are of variable length and

number. When a heap memory is requested, the allocator reserves exactly as much memory as it

requires and no more. An example, using 64 Mbytes of main memory, is shown in Figure 2-23.

Initially, main memory is empty, except for the OS’s memory. The first three memory requests

are allocated, starting where the operating system ends and occupying just enough space for each

47

block (see Figure 2-23b, c, d). This leaves a “hole” at the end of memory that is too small for a

fourth memory allocation. Suppose Block 2 is freed from memory and a fourth allocation was

placed in the place of Block 2 previously (see Figure 2-23e, f), then Block 1 is freed and a fifth

allocation taken its place (see Figure 2-23g, h). Now there is two 6mb holes and one 1mb, the

allocator cannot allocate any memory greater than 6mb anymore, although there is clearly 18mb

left in total.

this example shows that this method starts out well, but eventually it leads to a situation in which

there are a lot of small holes in memory. As time goes on, memory becomes more and more

fragmented, and memory utilization declines. This phenomenon is referred to as external

fragmentation, indicating the memory that is external to all partitions becomes increasingly

fragmented. This is in contrast to internal fragmentation, referred to earlier. [25]

Figure 2-23: Dynamic allocation

48

2.5.3 Segregated Free List

To compromise between the previous techniques, the Segregated free list allocator uses a pool of

multiple fixed sized regions (e.g., 1kb, 2kb 4kb 8kb) and when a certain size is requested, the

allocator reserves a block from the smallest fit of fixed sized regions (e.g., 3kb will be reserved

in 4kb region). This technique has no external fragmentation, while minimizing the internal

fragmentation. Another advantage of this allocator is reserving similar memory objects in

physically close locations, which will help the cache to fasten the memory access. That is why it

is implemented in CyanOS. Figure 2-24 illustrates the structure of segregated free list.

Figure 2-24: Segregated free list

2.6 Virtual File System

A virtual file system (VFS) or virtual filesystem switch is an abstract layer on top of a more

concrete file system, device driver, network sockets or virtual kernel modules. The purpose of a

VFS is to allow client applications to access different types of objects in the kernel in a uniform

way. A VFS can, for example, be used to access local and network storage devices transparently

without the client application noticing the difference. It can be used to bridge the differences in

Windows, classic Mac OS/macOS and Unix filesystems, so that applications can access files on

local file systems of those types without having to know what type of file system they are

accessing. A VFS specifies an interface (or a "contract") between the kernel and a concrete file

system. Therefore, it is easy to add support for new file system types to the kernel simply by

fulfilling the contract [26]. Figure 2-25 shows how the VFS is used by multiple units.

49

Figure 2-25: Virtual file system

It is important to note that the design of the VFS is an important factor to determine the

flexibility of the system, a well constructer VFS can help the programmer to port any new file

system or device driver to the new operating system with minimum work.

2.6.1 VFS Implementation

CyanOS has a virtual class called FSNode that contains 13 virtual function which are used to

interact with a certain node in the VFS, see Table 2-7 for the complete list of this functions. If a

programmer needs to add his own driver or FS into the VFS, he needs to inherit from FSNode

and implement the functions he needs. if a function from the base class (i.e., FSNode) is not

implemented in the derived class, it will be considered as unused, and if the user calls it for the

certain node, it will return an error stating that the operation is invalid. The first node must be

mounted to the VFS, then it can have multiple child nodes, which they can have child nodes too.

Examples of VFS nodes in the system are USTAR filesystem, Pipes, Domain Sockets, IP Sockets,

keyboard driver, VGA driver.

2.6.2 FileDescription

FileDescription is a kernel object that is wrapper around FSNode to describe the current state of

an opened FSNode. It contains mode, flags, and permission of the opened node as well as the

current reading/writing offset. The operations on FileDescription are the same as the ones on

50

FSNode in Table 2-7 with slightly different parameters, and with addition to seek operation

which is used repositions the file offset of the opened FSNode reading/writing position.

E.g., If a file with the size 1000 byte is opened by a program, the FileDescription will have zero

as the current offset, when reading/writing some data; say 50 bytes, the offset will be increased

by 50.

Besides FileDescription, the kernel has ProcessDescriptions and ThreadDescriptions which are

used to describe the state of an opened process or thread.

Function Description

open Inform that node that it has been opened.

close Inform that node that it has been closed.

create Create a child node inside this node.

remove Remove a child node from this node.

link Create a symbolic link to this node.

unlink Delete a symbolic link to this node.

connect Connect to a server.

listen Mark the server as passive to the incoming connections.

accept Accept a given connection.

read Read a number of bytes from the node.

write Write a number of bytes to the node.

dir_lookup Get a child node from its name.

dir_query Enumerate all child nodes

Table 2-7: FSNode operations

2.6.3 Handles

Handles are integers that are used in the user applications to reference the FileDescriptions,

ProcessDescriptions and ThreadDescriptions, and uniquely identify them in a process. Handle is

always a first parameter to system calls that are dealing with kernel objects such as files,

processes, threads. Each process has table of Descriptions, and a handle is basically an index in

that table, and closed Handle does not delete an its entry in the table; it will be marked as closed

instead. Figure 2-26 shows the relationship between handles and FileDescriptions.

51

Figure 2-26: Relationship between handlers and FileDescription

52

2.7 Kernel Architecture

2.7.1 Monolithic Kernel Architecture

Monolithic operating system services are compiled as single, monolithic process that runs in a

single memory address space in kernel mode, whereas applications run in user mode and can

request system services from the kernel. Thus, the kernel has two tasks; resource management

and a driver for devices, examples of monolithic operating systems are SerenityOS, Unix and

Linux. Figure 2-27 shows high-level perspective, a monolithic kernel structure.

Figure 2-27: Monolithic kernel architecture

2.7.2 Microkernel Architecture

The microkernel architecture provides the minimum of functionality and services needed to run

in the kernel while the rest of the OS services run as separate processes with different address

spaces outside the kernel. They communicate by different IPC mechanisms such as message

parsing. The kernel’s job is to handle IPC, interrupt, multitasking and virtual memory, while the

device drivers and other services are in the user mode as separate processes. This architecture is

illustrated in Figure 2-28. Examples of microkernel operating systems are Minix 3, AmigaOS

and beOS.

53

Figure 2-28:Microkernel architecture

2.7.3 Micro vs Monolithic kernel

The two approaches differ primarily in the implementation where in the monolithic architecture

all the kernel and OS services run in a single address space whereas, in the microkernel only

minimum kernel services are kept within a single address space and the rest are run as different

processes with separate address spaces. Each design has its advantages and disadvantages which

will be discussed below.

Size: the size of monolithic kernel is comparatively larger than microkernel because all OS

services are all compiled into single file that will be loaded to the memory. However, in the

microkernel, the bare minimum services are contained in the compiled kernel which makes its

size smaller.

Speed: the execution of the monolithic kernel is notably faster as communication between OS

services in the same address space does not require any context switch nor switching the virtual

address space, unlike with the micro architecture where these services communicate through

heavy use of IPC mechanisms which introduces substantial amount of overhead in the system.

Extendibility: adding new features to microkernel is as simple as adding a new process for that

feature. Whereas for a monolithic kernel, new features require modification and recompilation of

the whole kernel.

Security: the fact that OS services reside in different address spaces for a microkernel means

that if a failure occurs in any of these services, the operating system and other services remain

unaffected. On the other hands, if a service fails in monolithic kernel, the entire system will fail.

54

2.7.4 Hybrid Kernel Architecture

Hybrid kernel is based on a combination of both architectures; it combines the speed and simpler

design of monolithic kernel with the modularity and execution safety of microkernel. This is why

it is the architecture implemented in CyanOS.

A hybrid kernel runs some of its important services in the kernel space to reduce the performance

overhead of a traditional microkernel, while still running some other services in the user space.

For instance, a hybrid kernel design may keep the bus controllers like PCI or USB inside the

kernel, whereas the individual drivers of the devices attached to these busses as user mode

programs outside the kernel. This allows bus controllers to be fast and reliable while keeping the

device drivers in a safer environment, and can be easily modified and added.

55

Chapter 3: Results and Discussion

This chapter will discuss some user mode programs and how they can be compiled, executed and

interact with the operating system.

To compile a user program in CyanOS, a cross compiler must be present in your host system

which is used to build executable code for a platform other than the host it is running in (e.g.,

Windows or Linux). In contrast to normal compilers, cross compilers will not assume any

configuration about the current environment, and it does not use any libraries or headers that are

not built-in in the C++ language itself. Appendix D.2 discusses how to build a cross compiler

gcc.

In addition to a cross compiler, user programs need to be linked with a library called systemlib;

this library contains the important functions needed for a program to work in CyanOS. It

initializes some information fields about the current process and thread before calling main

function of the program, manages the IO operations like printf, get_char and scanf, and has all

system call functions. The actual entry point of a program is in systemlib, then it calls the main

function.

3.1 User program discussion: shell

The shell is the first user mode program to be executed by the operating system; like Linux, it is

a simple interface to explore the file system and execute other programs and view their output.

As shown in Figure 3-1 and Figure 3-2, the shell is merely a super loop that keeps waiting for

input characters from the keyboard and parses the corresponding commands. It starts by calling

get_char from systemlib, this function opens a handle to the keyboard driver in

/devices/keyboard using OpenFile system call, and then it tries to read a character using

ReadFile system call which will block the current thread until a key is pressed in the keyboard.

The shell saves the entered characters in buffer, and when the enter key is pressed; it tries to

parse the given command.

If the given command is recognized by the shell, like ls (list all files in the current directory), cd

(change the current directory), cwd (displays the current directory full path), it will be performed,

56

otherwise, the shell assumes that the user tries to execute a program.

char input_char;

const size_t max = 1000;

char buff[max];

int index = 0;

while ((input_char = get_char())) {

 if (index < max) {

 if (input_char == '\n') {

 printf("\n");

 buff[index] = 0;

 execute_command(buff);

 index = 0;

 } else if (input_char == '\b') {

 if (index > 0) {

 printf("\b");

 index--;

 }

 } else {

 buff[index++] = input_char;

 putchar(input_char);

 }

 } else {

 printf("\ncommand is too long!");

 index = 0; // command is too long

 }

}

Figure 3-1: Shell’s pseudo code

Handle child = CreateProcess(working_directory + input_command, args, 0);

if (!child) {

 printf("Undefined command.\n");

 return;

}

WaitSignal(child, 0);

CloseHandle(child);

Figure 3-2: Another shell’s pseudo code

57

To start a new process, CreateProcess is called with the path of the program, if it fails it returns

zero (like all system calls) and the error code can be read using GetLastError. After that, the

shell calls WaitSignal system call which will block until the process of the given handle is

terminated. Finally, CloseHandle is used to release the kernel resources of the handle. Figure 3-3

shows how some of shell’s commands can be used.

Figure 3-3: Navigate directories and execute programs in shell

3.2 User program discussion: cat

Cat is another simple program similar to Linux’s, it is used to read text files and print them to the

screen.

As shown in the code snippet in Figure 3-4, Cat starts by opening a file handle to the file passed

to it as an argument, then it uses QueryFileInformation system call to get information about the

opened file and saves it in a structure FileInfo. An important information needed for this

structure is the size of the file, which is used to create a heap buffer that fits and avoids buffer

overflow. Then the system call ReadFile is called to read the file and fill the given buffer. Next,

the text file is printed using printf that writes to a device driver /devices/console which is used to

58

control the text mode screen. And finally, the program frees the heap memory and the kernel

resources of the handle using delete[] and CloseHandle respectively. Figure 3-5 shows how cat

can be used to read text files

Handle fd = OpenFile(argv[1], OM_WRITE | OM_READ, OF_OPEN_EXISTING);

if ((result = GetLastError())) {

 return result;

}

FileInfo info;

QueryFileInformation(fd, &info);

if ((result = GetLastError())) {

 CloseHandle(fd);

 return result;

}

char* buff = new char[info.size + 1];

memset(buff, 0, info.size + 1);

ReadFile(fd, buff, info.size);

if ((result = GetLastError())) {

 CloseHandle(fd);

 return result;

}

printf(buff);

printf("\n");

delete[] buff;

CloseHandle(fd);

Figure 3-4: Code snippet from cat

59

Figure 3-5: Using cat to read text files

60

Conclusion and Future Work

In this report we have presented the theory, design and the implementation of the different

components of an operating system kernel. We discussed the design of various approaches

suggested by books and papers, as well as the ones implemented mature operating systems. And

it also argued why the approach chosen was the most suitable for this operating system.

It should be stressed on the importance of the design scheduler, the context switch and the

interprocess communication to have good performance, while the hybrid kernel architecture and

the design of the virtual file system helps to maintain a scalable system.

And although this operating system is initially designed for IA-32 processors, the project’s code

is organized in a such way that makes the architecture-related functions are collected in files

within the same directory while they are called by other higher-level functions. This makes it

easier to port the operating system to other architecture since minimum code will be rewritten

which mainly related to paging and interrupts.

Due the limited time, not all of the planned features were implemented in this project, thus, we

will discuss some of them, and explains how can you contribute to this open source project. The

first important feature is the networking stack. Although CyanOS has fully functional

networking stack (with protocols IPv4, ICMP, TCP, UDP, DHCP, ARP and DNS), it wasn’t

really mentioned in this report due the number of pages constraint while this topic needed huge

discussion. Our network stack implementation was good enough for the most part specially in

the primitive protocols like IPv4, UDP, DHCP, ARP and DNS, however, more complex

protocols like TCP need a better error handling and optimization specially with the internal

buffer. Additionally, another layer can be added for handling HTTP requests and maybe even

requests through Transport Layer Security (TLS) encryptions.

Currently, the main display is text mode, so the next important feature is the graphical user

interface (GUI). It works by having multiple layers on top of each other; at the lowest layer there

will be a GPU driver that manages the GPU configurations and writes pixels on the screen. After

that, the OS should provide a higher layer to draw particular shapes on the screen and manages

input devices like mouse clicks and keyboard strokes. The final layer is a library provided to user

61

mode applications, its purpose is to manage high level GUI components like textboxes, labels,

buttons and windows, and handle any events like moving windows, clicking on the button or

writing on a textbox.

And the last feature is using dynamic shared libraries instead of static libraries; currently,

libraries like systemlib are statically linked with every user application, which means that all

executable files have an identical part which is the code of that library. A better mechanism is to

have libraries dynamically linked like Dynamic-link library (DLL) in windows; the executable

will have just the name of the library, the operating system then loads the library in a shared

memory between all processes. This way, the same library code will be not be in multiple

executable files nor will be loaded into the memory of multiple processes.

62

Appendix A: Modern C++ Features

A.1 Templates
Templates are the foundation of generic programming, which involves writing code in a way that

is independent of any particular type. A template is a blueprint or formula for creating a generic

class or a function. The library containers like iterators and algorithms are examples of generic

programming and have been developed using template concept. There is a single definition of

each container, such as vector, but we can define many different kinds of vectors for example,

vector <int> or vector <string>. [27]

template <typename T> T add(T num1, T num2) // template function that has a template T.

{

 return num1 + num2;

}

void main()

{

 char result1 = add<char>(1, 5); // Returns the addition of two char variables.

 char result2 = add<int>(1, -2); // Returns the addition of two int variables.

 char result3 = add<double>(1.2, 4.3); // Returns the addition of two double variables.

}

Figure A-1: Template function

As shown in the example in Figure A-1, the function add is a blue print for the addition

operation that works on multiple data types. the function later is called by specifying the type of

the variable T.

A.2 Lambda Expressions
Lambda is an object that is a wrapper around an anonymous function, that can be invoked, stored

or passed as an argument. They are usually used to encapsulate few lines of code are passed to

algorithms or asynchronous methods.

As shown in the example in Figure A-2, a lambda object check_even_lambda is created which

holds the few lines of code that checks that the passed number is even. Later in the loop the

lambda object is invoked by passing a number to it and returns a boolean result.

63

 auto check_even_lambda = [](int number) {

 if (number % 2 == 0)

 return true;

 else

 return false;

 };

 for (size_t i = 0; i < 100; i++) {

 if (check_even_lambda(i)) {

 printf("number %d is even!", i);

 }

 }

Figure A-2: Lambda expression example

64

Appendix B: Data Structures

This part contains some data structures that used in CyanOS and acts like the standard library

equivalent in C++20. It discussed some the data structure containers and their main functions.

B.1 Iterators
Iterators are not data structure containers per say, but more like pointers to elements of data

structure containers. Each container has its own iterator but they all share the same interface

functions.

Function Description

operator++ () Moves the iterator to the next element in the

container.

operator++ () Moves the iterator to the previous element in the

container.

operator+ (int count) Advances the iterator by count elements from

the current one.

operator- (int count) Advances the iterator by count elements from

the current one.

T operator* () Returns the value of the element pointed by this

iterator.

bool operator== (const Iterator& other) Checks whether two iterators point to the same

element.

bool operator!= (const Iterator & other) Checks whether two iterators point to the

different elements.

B.2 Vector
A data container that stores elements in contiguous memory locations, thus, can be accessed by

their index. The storage of the vector is handled automatically, being expanded and contracted as

needed. Vectors usually occupy more space than static arrays, because more memory is allocated

to handle future growth. This way a vector does not need to reallocate each time an element is

inserted, but only when the additional memory is exhausted.

65

Function Description

Iterator begin() Returns an iterator that points to the first

element of the container.

Iterator end() Returns an iterator that indicates that the last

element has been passed.

Iterator insert(Iterator element, U&&

new_node)

Adds a new element in the position of the

iterator node.

Iterator push_front(U&& new_data) Adds an element new_data to the start of the

container.

Iterator push_back(U&& new_data) Adds an element new_data to the end of the

container.

void reserve(size_t size) Reserves a new size for the internal storage, it

must be greater than the current capacity.

void pop_front() Removes the first element of the container.

void pop_back() Removes the last element of the container.

void clear() Removes all elements of the container.

void remove(Iterator element); Removes an element pointed by the iterator.

This will invalidate the iterator, so it must be

obtained again.

bool remove_if(Predicate predicate) Removes all elements that satisfy the condition

that are checked in the lambda function

predicate.

Iterator find(const T& element) Returns an iterator of an element if it is found in

the container.

T& operator[](size_t index) Returns an element pointed by the provided

index.

size_t size() Returns the number of elements of that are

actually in the container.

size_t capacity() Returns the maximum capacity of element that

the internal storage can hold. It can be increased

66

by reserve function.

B.3 List
A data container that is very similar to Vector, but it stores the elements in doubly linked list,

however since the element are not in contiguous locations, elements can not be accessed by their

index.

Function Description

Iterator begin() Returns an iterator that points to the first

element of the container.

Iterator end() Returns an iterator that indicates that the last

element has been passed.

Iterator insert(Iterator element, U&&

new_node)

Adds a new elemtent in the position of the

iterator node.

Iterator push_front(U&& new_data) Adds a new element to the start of the

container.

Iterator push_back(U&& new_data) Adds a new element to the end of the

container.

void reserve(size_t size) Reserves a new size for the internal storage, it

must be greater than the current capacity.

void pop_front() Removes the first element of the container.

void pop_back() Removes the last element of the container.

void clear() Removes all elements of the container.

void remove(Iterator element); Removes an element pointed by the iterator.

This will invalidate the iterator, so it must be

obtained again.

bool remove_if(Predicate predicate) Removes all elements that satisfy the

condition that are checked in the lambda

function predicate.

Iterator find(const T& element) Returns an iterator of an element if it is found

in the container.

67

size_t size() Returns the number of elements of that are

actually in the container.

B.4 String
A container that manages the ascii strings i.e., sequences of char-like objects. It stores is as a

pointer of an array and a size.

Function Description

String& operator+= (const String& other) Concatenates a string with another string.

String operator+ (const String& other) Creates a new string container with

concatenation of the current string and another

string.

String substr(size_t pos, size_t len) Creates a new string that is part of the current

string by a position and a size.

size_t find(const String& str, size_t pos = 0) Finds the position of a substring in this string.

String& push_front(char c) Adds a character to the start of the string.

String& push_back(char c) Adds a character to the end of the string.

String& insert(size_t pos, const String& str) Adds a string in a position..

void erase(size_t pos, size_t len) Removes part of the string specified by a

position and a size.

char operator[] (size_t index) Returns a character from an index.

size_t length() Returns the length of the string.

B.5 Stack
A container stores elements in contiguous memory region but gives the functionality of a stack

i.e., LIFO (last-in, first-out)

Function Description

void push(U&&) Pushes an element to the stack.

T pop() Returns and removes the last element from the stack.

size_t size(); Returns the number of elements in the stack.

68

B.6 CircularBuffer
A container that uses a fixed-size buffer as if it were connected end-to-end in a circle. gives the

functionality of a queue i.e., FIFO (first-in, first-out)

Function Description

void queue(U&&) Pushes an element to the queue.

T dequeue(); Returns and removes the first element of the

queue.

size_t size(); Returns the number of elements in the buffer.

size_t capacity() Returns the total number of elements that the

container can hold

bool is_full() Checks whether the buffer is full.

B.7 Bitmap
A container that holds a list of bits in contiguous memory region.

Function Description

void set(size_t position) Sets a bit a certain position to one.

void set_range(size_t position, size_t count) Sets a range of bit in a certain position to one.

void clear(size_t position) Sets a bit a certain position to zero.

void clear_range(size_t position, size_t count) Sets a range of bit in a certain position to zero.

bool check_set(size_t position) Checks a certain bit if it is set to one.

bool check_clear(size_t position) Checks a certain bit if it is set to zero.

B.8 Result
A container to handle errors in the operating system. It either contains a type returned by a

function or an error. A function may return Result<T> with T is a type of the data to be returned

if no error happened.

Function Description

bool is_error() Checks whether the retuned function has an

error.

69

unsigned error() Returns the error code if there is an error,

otherwise it returns zero.

T& value() Returns the original data from the function if

there is no error.

70

Appendix C: System Calls

OpenFile Creates a new file/device or opens an existing one, and returns the

file handle pointing the FileDescription of that file.

Socket creates a new socket either domain socket or network IP socket (TCP

or UDP), it returns a handle to the newly created socket.

Pipe Creates a new pipe, and return handle to it.

ReadFile Reads a file/device and fills a user buffer provided to it. This system

call may block the current thread when the file/device is not ready to

be read.

WriteFile Write a file/device from a user buffer provided to it. This system call

may block the current thread when the file/device is not ready to be

written into.

QueryDirectory Lists of all the files in given directory, the information is filled in

FileInfo structure.

QueryFileInformation Gives information about the a given file (e.g., its size), the

information is filled in FileInfo structure.

CloseHandle Closes a handle and releases the kernel resources reserved for it and

the linked FileDescription.

Sleep Blocks the current thread a given amount of time.

Yield Gives up the current thread’s time slice and schedule another thread.

CreateThread Creates a new thread that executes a certain address, and returns its

handle.

SuspendThread Suspends a thread from execution.

ResumeThread Resumes a suspended thread to execution.

TerminateThread Terminates a thread.

CreateProcess Creates a new process from a give file in file system, and returns its

handle.

SuspendProcess Suspends all threads in a process.

ResumeProcess Resumes all suspended thread in a process.

71

TerminateProcess Terminates a process.

WaitSignal Blocks the current thread until the thread or process of given handle

terminates.

VirtualAlloc Allocates a block of memory, the memory will be aligned to the page

size i.e., 4kb

VirtualFree Frees a block of memory and allows it to be reused in the future.

72

Appendix D: How to Compile CyanOS

The normal compilers cannot compile this operating system correctly due their assumptions of

the environment by compiler since no headers or libraries of the host operating system can be

used. That is why the only way to compile is using a cross-compiler, we will be using gcc 10 for

its popularity and its support to the latest features of C++.

D.1 Building cross compiler gcc
Before starting the process of building the compiler a regular gcc compiler (not cross-compiler)

is required. In addition to that, few dependencies must exist in the host machine; assuming it is

Linux (you can use a Linux environment in Windows 10 using WSL2). The packages can be

installed using the commands:

make install

sudo apt-get update

sudo apt install build-essential bison flex libgmp3-dev libmpc-dev libmpfr-dev texinfo

Then download and extract the latest version of binutils from ftp.gnu.org/gnu/binutils/ . Then

enter to the extracted directory and use the following commands to build it.

export PREFIX="$HOME/opt/cross"

export TARGET=i686-elf

export PATH="$PREFIX/bin:$PATH"

mkdir build-binutils

cd build-binutils

../configure --target=$TARGET --prefix="$PREFIX" --with-sysroot --disable-nls

 --disable-werror

make

make install

ftp://ftp.gnu.org/gnu/binutils/

73

Now after building binutils, you need to build gcc. Download the latest version from

ftp.gnu.org/gnu/gcc . Then enter the extracted directory and use the following commands to build

it.

mkdir build-gcc

cd build-gcc

../configure --target=$TARGET --prefix="$PREFIX" --disable-nls --enable-languages=c,c++

 --without-headers

make all-gcc

make all-target-libgcc

make install-gcc

make install-target-libgcc

D.2 Building the operating system
Now to build the operating system, follow the commands to download the dependencies:

sudo apt-get install gcc-multilib g++-multilib build-essential nasm python3 cmake

 grub2 xorriso mtools qemu

Then build the system

git clone --recursive https://github.com/AymenSekhri/CyanOS.git

cd ./CyanOS

mkdir build && cd build

cmake .. -G "Unix Makefiles"

make

ftp://ftp.gnu.org/gnu/gcc

74

Bibliography

[1] A. Tanenbaum and A. Woodhull, Operating Systems Design Implementation, 1992, p. 1.

[2] P. Denning, Thrashing: Its causes and prevention, 1968.

[3] "Embedded Systems - Interrupts," [Online]. Available:

https://www.tutorialspoint.com/embedded_systems/es_interrupts.htm.

[4] A. Tanenbaum, Modern Operating Systems, 4th, Ed., 1992, p. 149.

[5] "x86 - Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/X86.

[6] R. W. Green, "What do IA-32, Intel 64 and IA-64 Architecture mean?," May 5, 2009.

[Online]. Available: https://software.intel.com/en-us/articles/ia-32-intelr-64-ia-64-

architecture-mean/.

[7] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, p. 64.

[8] Intel, "Intel® 64 and IA-32 Architectures Software Developer Manuals," 2021. [Online].

Available: Intel® 64 and IA-32 Architectures Software Developer's Manual Combined

Volumes 3A, 3B, 3C, and 3D: System Programming Guide.

[9] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, p. 91.

[10] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, p. 95.

[11] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, p. 203.

[12] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, p. 204.

[13] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, p. 90.

[14] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, p. 114.

[15] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, p. 115.

[16] Intel, Intel® 64 and IA-32 Architectures Software Developer’s Manual, p. 117.

[17] "Intel 8259," [Online]. Available: https://en.wikipedia.org/wiki/Intel_8259.

[18] V. C. Hamacher, Z. G. Vranesic and S. G. Zaky, Computer Organization (5th ed.), 2002.

[19] "Peripheral Component Interconnect," [Online]. Available: https://wiki.osdev.org/PCI.

75

[20] G. G. a. P. B. G. Avi Silberschatz, Operating System Concepts, 2002, p. 140.

[21] " System V Application Binary Interface," 1997.

[22] "Executable and Linking Format (ELF) Specification," 1995.

[23] "Executable and Linkable Format," [Online]. Available:

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format.

[24] W. Stallings, Operating Systems: Internals and Design Principles, 1992, p. 344.

[25] W. Stallings, Operating Systems: Internals and Design Principles, 1992, p. 349.

[26] "Virtual file system," [Online]. Available: en.wikipedia.org/wiki/Virtual_file_system.

[27] "C++ Templates," [Online]. Available:

https://www.tutorialspoint.com/cplusplus/cpp_templates.htm.

	Abstract
	Dedication
	Acknowledgements
	Content
	List of Figures
	List of Tables
	List of Abbreviations
	General Introduction
	Chapter 1: Theory and Background
	1.1 Computers and Software
	1.2 Computers before operating systems
	1.3 Memory management
	1.3.1 Primitive memory management
	1.3.2 Segmentation
	1.3.3 Paging
	1.3.4 Virtual memory
	1.3.5 Page tables and address translation
	1.3.5.1 Translation Lookaside Buffers (TLB)
	1.3.5.2 Page replacement algorithms

	1.4 Interrupts
	1.4.1 Interrupts and polling
	1.4.2 Types of interrupts

	1.5 Scheduling Algorithms
	1.5.1 First-Come, First-Served scheduler
	1.5.2 Priority based scheduler
	1.5.3 Round Robin scheduler
	1.5.4 Multi-level Queueing scheduler

	1.6 Modes of execution
	1.7 x86 instruction set and IA-32 processors

	Chapter 2: Design and Implementation
	2.1 Setting up IA-32 Protected Mode Features
	2.1.1 Segmentation
	2.1.1.1 Segment Selectors and Privilege Levels

	2.1.2 Interrupts
	2.1.2.1 Interrupt handlers

	2.1.3 Virtual Memory
	2.1.3.1 Paging Setup
	2.1.3.2 Identity Mapping
	2.1.3.3 Memory Page Allocator
	2.1.3.4 Page Faults and Memory Swapping

	2.2 Device’s Drivers
	2.2.1 Intel Programmable Interrupt Controller (PIC 8259)
	2.2.2 PS/2 Keyboard
	2.2.3 Peripheral Component Interconnect (PCI) bus
	2.2.4 RTL8139 Ethernet Network Device

	2.3 Multitasking
	2.3.1 Kernel memory space
	2.3.2 Processes and Threads
	2.3.2.1 Life Time of a Process
	2.3.2.2 Life Time of a Thread
	2.3.2.3 Context Switch

	2.3.3 Task Synchronization
	2.3.3.1 Spinlock
	2.3.3.2 WaitQueue
	2.3.3.3 Mutex and Semaphore
	2.3.3.4 MessagingWaitQueue
	2.3.3.5 MultiWaitQueue

	2.3.4 Interprocess Communication
	2.3.4.1 Pipes
	2.3.4.2 Domain Socket

	2.4 User Mode
	2.4.1 User mode and system calls
	2.4.2 ELF executable loader

	2.5 Heap Allocator
	2.5.1 Fixed Partitioning
	2.5.2 Dynamic Partitioning
	2.5.3 Segregated Free List

	2.6 Virtual File System
	2.6.1 VFS Implementation
	2.6.2 FileDescription
	2.6.3 Handles

	2.7 Kernel Architecture
	2.7.1 Monolithic Kernel Architecture
	2.7.2 Microkernel Architecture
	2.7.3 Micro vs Monolithic kernel
	2.7.4 Hybrid Kernel Architecture

	Chapter 3: Results and Discussion
	3.1 User program discussion: shell
	3.2 User program discussion: cat

	Conclusion and Future Work
	Appendix A: Modern C++ Features
	A.1 Templates
	A.2 Lambda Expressions

	Appendix B: Data Structures
	B.1 Iterators
	B.2 Vector
	B.3 List
	B.4 String
	B.5 Stack
	B.6 CircularBuffer
	B.7 Bitmap
	B.8 Result

	Appendix C: System Calls
	Appendix D: How to Compile CyanOS
	D.1 Building cross compiler gcc
	D.2 Building the operating system

	Bibliography

