
Registration Number:…..…../2021 

 

People’s Democratic Republic of Algeria 

Ministry of Higher Education and Scientific Research 

University M’Hamed BOUGARA – Boumerdes 

 
Institute of Electrical and Electronic Engineering 

Department of Electronics  

 

Final Year Project Report Presented in Partial Fulfilment of  

the Requirements for the Degree of  

MASTER 

In Electronics  

Option: Computer Engineering 

Title: 

 

IoT Asset Tracking Based on GPS and LoRa 

Wireless Technology 

Presented by: 

HAMDI Abdelkhalek 

Supervisor: 

Pr. KHOUAS Abdelhakim  

                                               



i 

 

Abstract 

 

 

 

 

Asset tracking is the process of collecting location data regarding valuable items within an 

organization. The Internet of Things (IoT) stands for connecting physical objects wirelessly, 

for the purpose of exchanging data over the internet. IoT asset tracking defines the use of IoT 

enabling technologies in order to collect, store, and visualize location data of assets in real-

time, which allows better and more reliable decision making. Technologies such as Wi-Fi and 

cellular are widely used to enable IoT wireless connection of physical objects; however, when 

dealing with use cases in large industrial environments where assets are spread randomly 

indoor and outdoor, the network coverage problem arises. This report proposes an IoT solution 

to the asset tracking use case in which Global Positioning System (GPS) is used to acquire 

real-time location data and LoRa communication technology is used to allow wireless data 

transmission over long ranges. A tracker and a gateway embedded systems were designed and 

implemented based on microcontrollers and System-on-Chip (SoC) modules. The tracker was 

designed to acquire and send location data wirelessly over long ranges; the gateway on the 

other hand receives data then forwards it to a web application for storing and visualization. 

Different software drivers were written using C programming language to allow interfacing 

the GPS and LoRa modules. By the end of this report, we were able to visualize real-time 

locations of a moving vehicle with 1-3 meters accuracy in localizing the asset, and a wireless 

signal reach of 293 meters. Our solution is used to track outdoor moving assets within 

industrial environments. 

 

 

 

 



ii 

 

Dedication 

 

 

 

 

 

 

 

 

 

 

“To my beloved mother and father.” 

                                                                         ∞ Abdelkhalek ∞ 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Acknowledgment 

 

 

 

 

 

 

 

First and foremost, I would like to praise and thank God, the almighty, who has granted 

countless blessings, knowledge, and opportunity that allowed me to complete this work. 

Secondly, I would like to express my deepest appreciation to all institute teachers for their help 

during the whole five academic years. A special gratitude I give to my final year project 

supervisor, Pr. Abdelhakim Khouas, whose contribution in stimulating suggestions and 

encouragement, helped me to realize my project and to complete this report. My appreciation 

is also extended to Mr. Christian Baumgaertel who was my supervisor during my internship at 

Roche Diagnostics in Germany, and who had the credit to introduce me to the techniques that I 

used in this report. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Table of Contents 

Abstract ................................................................................................................................... i 

Dedication .............................................................................................................................. ii 

Acknowledgment .................................................................................................................. iii 

Table of Contents .................................................................................................................. iv 

List of Figures ....................................................................................................................... vi 

List of Tables ....................................................................................................................... vii 

List of Abbreviations .......................................................................................................... viii 

Introduction ............................................................................................................................ 1 

Chapter 1: IoT and Asset Tracking ........................................................................................ 3 

1.1. The Internet of Things ................................................................................................ 3 

1.2. IoT wireless technologies ........................................................................................... 5 

1.2.1. LPWAN ............................................................................................................... 6 

1.2.2. Cellular (3G/4G/5G) ............................................................................................ 6 

1.2.3. Zigbee and Other Mesh Protocols ....................................................................... 6 

1.2.4. Bluetooth and BLE .............................................................................................. 7 

1.2.5. Wi-Fi .................................................................................................................... 7 

1.2.6. RFID .................................................................................................................... 7 

1.3. Asset tracking technologies and applications ............................................................. 7 

1.3.1. Outdoor asset tracking ......................................................................................... 8 

1.3.2. Indoor asset tracking ............................................................................................ 9 

Chapter 2: Theoretical Background ..................................................................................... 10 

2.1. Global Positioning System........................................................................................ 10 

2.1.1. NMEA Standard ................................................................................................ 10 

2.2. LPWAN and LoRa .................................................................................................... 12 

2.2.1. What is LoRa? ................................................................................................... 13 

2.2.2. LoRa characteristics ........................................................................................... 14 

2.2.3. LoRa modulation technique ............................................................................... 15 

2.2.4. LoRa parameters ................................................................................................ 16 

2.3. Embedded system development ................................................................................ 18 

2.3.1. Embedded system components .......................................................................... 18 

2.3.2. Microcontroller unit ........................................................................................... 20 

2.3.3. Embedded solution design ................................................................................. 21 

2.4. Data management ..................................................................................................... 21 



v 

 

2.4.1. Time series database .......................................................................................... 22 

Chapter 3: Design and Implementation ............................................................................... 24 

3.1. Hardware design of the gateway and tracker node ................................................... 24 

3.2. Hardware implementation of the gateway and tracker node .................................... 26 

3.2.1. Atmel ATmega328P .......................................................................................... 26 

3.2.2. Espressif ESP8266 ............................................................................................. 29 

3.2.3. NEO-6M U-blox GPS module ........................................................................... 31 

3.2.4. SX1278 LoRa Transceiver ................................................................................. 32 

3.2.5. Tracker node prototype implementation ............................................................ 34 

3.2.6. Gateway prototype implementation ................................................................... 35 

3.3. Software design of the gateway and tracker node .................................................... 37 

3.4. Software implementation of the gateway and tracker node ...................................... 39 

3.4.1. Tracker node firmware implementation ............................................................ 40 

3.4.2. Web application installation .............................................................................. 46 

3.4.3. Gateway firmware implementation ................................................................... 48 

3.5. Results and discussion .............................................................................................. 50 

Conclusion ........................................................................................................................... 53 

Bibliography 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

List of Figures 

Figure 1.1: A top level overview of IoT components. ........................................................... 3 

Figure 1.2: Internet of Things major applications [1]. ........................................................... 5 

Figure 1.3: Wireless technologies comparison in terms of range, data rate, and cost [6]. .... 5 

Figure 2.1: GPS localization illustration using four satellites [13]. ..................................... 11 

Figure 2.2: Example of the―ZDA‖NMEAsentencewithitsfield‘sdescription[16]. ....... 12 

Figure 2.3: OSI seven-layer network model [23]. ............................................................... 13 

Figure 2.4: LoRa gateway and end node architectures. ....................................................... 14 

Figure 2.5: Up-chirp graphical representation [25]. ............................................................ 15 

Figure 2.6: Message encoded on a chirp signal [25]. .......................................................... 16 

Figure 2.7: Chips representation [25]. ................................................................................. 16 

Figure 2.8: Hardware elements in embedded systems [27]. ................................................ 19 

Figure 2.9: Microcontroller detailed architecture [27]. ....................................................... 20 

Figure 2.10: Embedded solution design work flow based on COTS parts [27]. ................. 22 

Figure 2.11: Database management systems popularity over the last two years [31]. ........ 23 

Figure 3.1: Block diagram of the tracker node functionality. .............................................. 25 

Figure 3.2: Block diagram of the gateway functionality. .................................................... 25 

Figure 3.3: Tracker node and Gateway hardware designs. .................................................. 26 

Figure 3.4: ATmega328P pinout and SMD chip [34]. ........................................................ 27 

Figure 3.5: SPI Master-slave interconnection between MCU and peripheral [34]. ............ 28 

Figure 3.6: UART circuit interconnection between MCU and peripheral. ......................... 29 

Figure 3.7: ESP8266 chip pinout and SMD chip [35]. ........................................................ 30 

Figure 3.8: NEO-6M GPS module with antenna [32]. ........................................................ 31 

Figure 3.9: SX1278 LoRa Transceiver pin configuration [33]. ........................................... 32 

Figure 3.10: LoRa modem connectivity [33]. ...................................................................... 33 

Figure 3.11: SX1278 internal memory mapping [33]. ......................................................... 33 

Figure 3.12: Tracker prototype circuit connections. ............................................................ 34 

Figure 3.13: Tracker prototype implementation. ................................................................. 35 

Figure 3.14: Gateway prototype circuit connections. .......................................................... 36 

Figure 3.15: Gateway prototype implementation. ............................................................... 36 

Figure 3.16: Tracker software design flowchart. ................................................................. 38 

Figure 3.17: Gateway software design flowchart. ............................................................... 38 

Figure 3.18: GPS data received by the host computer via UART. ...................................... 41 

Figure 3.19: Data communication between LoRa modules using the ATmega328P. ......... 45 

Figure 3.20: InfluxDB local server status. ........................................................................... 46 

Figure 3.21: InfluxDB local server user interface. .............................................................. 47 

Figure 3.22: Grafana local server status. ............................................................................. 47 

Figure 3.23: Grafana local server user interface. ................................................................. 48 

Figure 3.24: LoRa packets received using the ESP8266. .................................................... 49 

Figure 3.25: ESP8266 Wi-Fi connection and data transmission. ........................................ 50 

Figure 3.26: Tracking map test results from Grafana user interface. .................................. 51 

Figure 3.27: The acquired location vs the real location. ...................................................... 52 



vii 

 

List of Tables 

Table 1.1: IoT applications vs wireless technologies [6]. ...................................................... 6 

Table 2.1 : LoRa approximate ranges [25]. ......................................................................... 15 

Table 3.1: Gateway height vs LoRa range. .......................................................................... 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

List of Abbreviations 

ADC    Analog-to-Digital 

ASIC    Application-Specific Integrated Circuits 

BLE   Bluetooth Low-Energy 

BW   Band Width 

CSS   Chirp Spread Spectrum 

CR   Code Rate 

CPU    Central Processing Unit 

CF   Carrier Frequency 

CRC    Cyclic Redundancy Check 

COTS    Commercial Off-the-Shelf 

DAC    Digital-to-Analog 

DBMS   Database Management System 

DR   Data Rate 

FPGA    Field Programmable Gate Arrays 

FEC   Forward Error Correction 

FIFO   First In First Out 

GNSS   Global Navigation Satellite System 

GNU   GNU's Not Unix 

GPS   Global Positioning System 

Hz   Hertz    

IIoT   Industrial Internet of Things 

IoT   Internet of Things 

IO   Input/Output 

I
2
C    Inter-Integrated Circuit 

IP   Internet Protocol 

IEEE   Institute of Electrical and Electronics Engineers 

IDE   Integrated Development Environment 

LPWAN  Low-Power Wide-Area Network 

LoRa   Long Range 

M2M   Machine to Machine 

MCU   Microcontroller 

MISO   Master-In Slave-Out 

MOSI   Master-Out Slave-In 

https://www.oracle.com/database/what-is-database/#WhatIsDBMS


ix 

 

MIPS   Microprocessor without Interlocked Pipelined Stages 

mW   Milliwatts 

NFC   Near field communication 

NB-IoT  Narrow-Band Internet of Things 

OSI   Open Systems Interconnection 

OOP   Object-Oriented Programming 

PNT   Positioning, Navigation and Timing 

QR   Quick Response 

RTOS    Real-Time Operating Systems 

RFID   Radio Frequency Identification 

RF   Radio Frequency 

RAM   Random Access Memory 

SDK    Software Development Kit 

SF   Spreading Factor 

SoC    System-on-Chip 

SPI   Serial Peripheral Interface 

TP   Transmission Power 

TSDB   Time Series Database 

TCP   Transmission Control Protocol 

UART   Universal Asynchronous Receiver and Transmitter 

WSN   Wireless Sensor Networks 

 

 

 

 

 

 



1 

 

Introduction 

The Internet of Things, abbreviated IoT, is the new approach of connecting everything to the 

internet for the purpose of monitoring, controlling, and digitalizing physical objects to 

minimize human-to-human or human-to-machine interaction. For data acquisition, IoT uses 

mainly physical sensors to capture data from any process or environment, this data is collected 

then sent to centralized hubs for further analysis and processing. IoT sensors are built on top of 

embedded systems and they mostly provide wireless communication for data transmission. 

The Industrial Internet of Things (IIoT) refers to the extension and use of IoT in industrial 

sectors and applications. With a strong focus on machine-to-machine (M2M) communication, 

IIoT enables industries to have better efficiency and reliability in their operations. IoT 

incorporates thousands of industrial applications, among which IoT asset tracking is a 

fundamental use case that is highly needed due to the precious information that it provides 

regarding different processes within industrial environments. Asset tracking provides reliable 

and efficient monitoring of physical assets, thus enabling users to keep close track of items as 

they move throughout the workplace and between sites which increasingly enables better 

decision-making. IoT asset tracking refers to the method of localizing physical assets in real-

time, either by scanning barcode labels attached to the assets or by using other localization 

techniques such as Global Positioning System (GPS). Location data is broadcast to the user 

through wireless communication technologies like Wi-Fi. When it comes to wireless data 

communication in industrial environments, a set of constraints arise as these environments are 

not considered to host such technologies. In large industries where processes are distributed 

everywhere indoor and outdoor, it is hard to cover most of the processes with wireless 

communication technologies such as Wi-Fi and Bluetooth. Furthermore, if one of the Cellular 

technologies like 4G is to be used to connect a considerable amount of objects that may reach 

thousands in a single firm, the price becomes significantly expensive. 

This work introduces a cost-effective solution to the IoT asset tracking use case, the aim of 

which is to design and implement embedded systems that allow outdoor mobile assets 

localization within industrial environments. The project is based on a long-range wireless 

communication approach for the reason to solve the issue of network coverage; it consists of 

three main parts: a tracker node which can be attached to mobile assets for localization, a 

network-connected gateway to receive data from trackers over long ranges, and a web 

application which allows storing and visualizing location data received from the gateway in an 

interactive graphical map. The advantage of such an approach appears from the network 



2 

 

coverage perspective, as only the gateway should have Internet access, meanwhile, the rest of 

the tracker nodes can move freely and still be able to send location data wirelessly over long 

ranges to the gateway. 

The report is structured as follow: chapter one provides a global overview of IoT, wireless 

communication, and asset tracking use case; the theoretical background with all needed 

techniques is explained in chapter two; chapter three contains a detailed design and 

implementation steps of the asset tracking solution; chapter four illustrates and discusses the 

acquired results. At the end of the report, a general conclusion is added to summarize and 

provide suggestions for further work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

Chapter 1: IoT and Asset Tracking 

1.1. The Internet of Things 

IoT defines a connected network of physical objects with embedded sensors and actuators, 

which can communicate through a wired or wireless communication network. IoT includes the 

process of sensing environmental data from one side and interacting with the physical world 

(control/actuation) from another side with minimal human intervention; this logic is built on 

top of the existing communication technologies. J. Gubbi et al. stated in [1] that from a top-

level perspective, there exit three components included in most IoT systems: Hardware—made 

up of sensors, actuators, and embedded communication hardware; Middleware—on-demand 

storage and computing tools for data analysis; Presentation—easy to understand visualization 

and interpretation tools that can be widely accessed on different platforms and which can be 

designed for different applications. Figure 1.1 illustrates a top-level overview of the IoT 

components along with data path between different blocks. 

 

Figure 1.1: A top level overview of IoT components. 

IoT incorporates a huge number of connected objects such that for large scaling purposes, 

different technologies and approaches have been developed to enable successful IoT devices 

deployment, among which the following are widely used nowadays [1]: 

1) Wireless Sensor Networks (WSN) 

Recent advances in wireless communications and digital electronics have enabled the 

development of low-cost, low-power, multifunctional sensor nodes that can communicate 

upon short/long distances. A sensor node consists of sensing, data processing, and 



4 

 

communicating components. Sensor data are shared among sensor nodes and sent to a 

distributed or centralized system for analysis [2]. 

2) Addressing schemes 

Theability touniquelyidentify‗Things‘iscriticalfor thesuccess of IoT. This allows to 

uniquely identify billions of devices and to control remote devices through the Internet. The 

few most critical features of creating a valid address are: uniqueness, reliability, persistence, 

and scalability [1]. 

3) Data storage and analysis 

As a result of the massive spread of IoT-enabled devices, a huge amount of data is sourced 

every second, this leads to critical challenges on how to store and use this data in the most 

efficient way. The data have to be stored and used intelligently for smart monitoring and 

actuation in conjunction with intelligent algorithms that make sense of the data collected in 

order to achieve automated decision-making [1]. 

4) Visualization 

Data visualization is the graphical representation of information and data. By using visual 

elements like charts, graphs, and maps; data visualization tools provide an accessible way to 

see and understand trends, outliers, and patterns in data [3]. Visualization in IoT applications 

allows the interaction of the end-user with the environment in an intuitive and easy-to-

understand way and helps to perform effective and immediate decision-making. 

Theterm―Internet of Things‖wasfirstintroducedbyKevinAshtonin1999inthecontextof

supply chain management [4]. However, in the last few years, this definition has covered a 

wide range of applications like healthcare, agriculture, transport, etc. From production line and 

warehousing to retail delivery and store shelving, IoT is transforming business processes by 

providing more accurate and real-time visibility into the flow of materials and products. Firms 

will invest in IoT to redesign factory workflows, improve tracking of materials, and optimize 

distribution costs. For example, some shipping companies are already using IoT-enabled fleet 

tracking technologies to cut costs and improve supply efficiency. In industry, IoT monitoring 

and control systems collect data about equipment performance, energy usage, and 

environmental conditions, which allow end-users to constantly track the overall performance 

of different processes in real-time. The resulting data allow information sharing and 

collaboration that enhance situational awareness and avoid information delay and 

distortion [5]. Figure 1.2 shows the major application domains tackled by IoT. 



5 

 

 

Figure 1.2: Internet of Things major applications [1]. 

1.2. IoT wireless technologies 

Connectivity is the key enabler for successful IoT deployment. However, with innumerable 

IoT use cases and applications, multiple communication solutions vary depending on every 

use case. Each communication technology is characterized in terms of range, scalability, cost, 

and network requirements as presented in Figure 1.3; this provides a wide range of choices for 

developers and end-users and covers most of application fields and their scenarios as shown in 

Table 1.1. Albert Behr introduces in [6] the leading wireless communication technologies used 

in IoT and their applications, these are summarized in subsections bellow: 

 

Figure 1.3: Wireless technologies comparison in terms of range, data rate, and cost [6]. 



6 

 

Table 1.1: IoT applications vs wireless technologies [6]. 

 

1.2.1. LPWAN 

Low-Power Wide-Area Network (LPWAN) is a new phenomenon in IoT. Providing long-

range communication on small, inexpensive batteries that last for years, this technology best 

fits large-scale industrial IoT applications. LPWANs can connect several types of IoT sensors 

and facilitate numerous applications from remote monitoring and worker safety to building 

controls and facility management. However, LPWANs can only send small blocks of data at a 

low rate, and therefore are better suitedforusecasesthatdon‘trequirehighbandwidthandare

not time-sensitive. 

1.2.2. Cellular (3G/4G/5G) 

Cellular networks offer reliable broadband communication for voice and video streaming 

applications. On the downside, they impose very high operational costs and power 

requirements. While cellular networks are not viable for the majority of battery-operated IoT 

devices, they fit well in use cases such as connected cars and fleet management. 

1.2.3. Zigbee and Other Mesh Protocols 

Zigbee is a short-range, low-power, wireless standard (IEEE 802.15.4), commonly deployed in 

a mesh topology to extend coverage by relaying sensor data over multiple sensor nodes. 

Compared to LPWAN, Zigbee provides higher data rates, but at the same time, much less 

power-efficiency due to mesh configuration. This technology is best-suited for medium-range 

IoT applications with an even distribution of nodes in close range. 



7 

 

1.2.4. Bluetooth and BLE  

Bluetooth is a short-range wireless technology standard used for exchanging data between 

fixed and mobile devices over short distances. The new Bluetooth Low-Energy (BLE), also 

known as Bluetooth Smart, is further optimized for IoT applications with low power 

capabilities. In retail contexts, BLE can be coupled with beacon technology for enhanced 

customer services like in-store navigation, personalized promotions, and content delivery. 

1.2.5. Wi-Fi 

Except for few applications like digital signage and indoor security cameras, Wi-Fi is not often 

a feasible solution for connecting IoT devices because of its major limitations in coverage, 

scalability, and power consumption. Instead, the technology can perform as a back-end 

network for offloading aggregated data from a central IoT hub to the cloud, especially in smart 

home applications. Critical security issues often prevent its adoption in industrial and 

commercial use cases. 

1.2.6. RFID 

Radio Frequency Identification (RFID) uses radio waves to transmit small amounts of data 

from an RFID tag to a reader within a very short distance. Until now, this technology has 

promoted a major revolution in retail and logistics. By attaching an RFID tag to various 

products and equipment, businesses can track inventory and assets in real-time enabling better 

stock and production planning as well as optimized supply chain management. Alongside 

increasing Industrial IoT adoption, RFID continues to be established in the retail sector, 

enabling applications like smart shelves and self-checkout. 

1.3. Asset tracking technologies and applications 

An asset is an item, thing or entity that has potential or actual value to an organization [7], this 

includes equipment, stock, vehicles, plant and machinery etc. For all asset-intensive businesses 

that rely heavily on equipment to generate revenue, effective asset tracking is crucial. 

Traditionally, the purpose of asset tracking was to answer the question: ―howmuch of

(something)doIhave?‖but,withthehugeadvanceintechnologyanddigitaltransformation,

more meaningful data can be acquired to give better insights into the status, location, 

maintenance schedule, and other information related to physical assets. Modern tracking 

technologies come in the form of Asset Tracking Software, which digitalizes data into one 

easy-to-access database; also known as a fixed asset register. A fixed register consists of all 

types of data including purchase costs, real-time locations and status, location history, user 



8 

 

history, and maintenance history [8]. Missing equipment and improperly maintained 

equipment can directly affect business profit, thus, finding and replacing any lost or missing 

physical assets is a keen responsibility. Taking an example of constantly moving vehicle like a 

forklift, tracking such an asset provides overall visibility of the current fleet, not only by 

knowing the exact location of each vehicle in real-time but also by having the ability to track 

their historical locations, distance traveled by each forklift, fuel volume, current speed, run 

time versus stop time, the ratio of loaded and unloaded time, the time needed to complete a 

task and even more. Given these insights, logistic managers can improve processes and the 

overall efficiency and utilization of their fleet. 

Tracking physical assets in different environments is a challenging problem. A wide range of 

tracking technologies is available to cover all use cases, thus, choosing the right technology for 

a specific application depends mainly on the environment where assets are deployed. There 

exist three basic technology types that can be used for localization [10]: 

 Presence-Based systems: the location of a reading device is predefined, so whenever 

the reader detects a tag it gives the information that the object is present at this point. It 

makes no further measurement about the exact location of that tag. Examples of 

presence-based systems are RFID and Bluetooth tags. 

 Proximity-Based systems: similar to presence-based however the reader can 

determine how close a tag is to the predefined location based on the received power. 

Examples of proximity-based systems are Wi-Fi and Bluetooth beacons. 

 Time-Based systems: they are more complex and rely on the measurement of time 

and thus distance between the tag and the reader based on the transmitted signals. GPS 

for example is a time-based localization system. 

1.3.1. Outdoor asset tracking 

Outdoor tracking deals with assets that operate in open spaces like vehicles. Businesses such 

as construction, gas and oil, logistics and delivery, implement outdoor positioning for their 

assets due to the valuable information that it provides. Satellite-based positioning technology - 

Global Navigation Satellite System (GNSS) and GPS - is most commonly used for outdoor 

asset tracking. Essentially, it employs receivers to collect radio signals that are transmitted 

through a collection of satellites that circle the Earth, these signals are used to accurately 

calculate and identify an outdoor location that is expressed as latitude and longitude [11]. 

 

 

https://www.airfinder.com/blog/rtls-use-cases/ble-vs-rfid-how-to-select-asset-location-technology
https://www.airfinder.com/blog/rtls-use-cases/ble-vs-rfid-how-to-select-asset-location-technology


9 

 

1.3.2. Indoor asset tracking 

Indoor tracking is a technique that provides a continuous and real-time location of objects 

within a closed space. It is primarily used in retail floors, warehouses, factories, and offices to 

monitor and track people, equipment, and merchandise. Unlike outdoor positioning systems 

where 1-3 meter accuracies can be achieved using GNSS, indoor positioning cannot 

effectively use GNSS for location detection [12]; instead, indoor positions are calculated using 

the information transmitted by mobile tags using technologies like RFID Tags, QR Codes, 

NFC Tags, Bluetooth beacons, …etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

Chapter 2: Theoretical Background 

2.1. Global Positioning System 

GPS is a U.S.-owned utility that provides users with positioning, navigation, and timing 

services (PNT services). This system consists of three segments: the space segment, the 

control segment, and the user segment [13]. The space segment consists of a constellation of 

satellites transmitting radio signals to users. GPS satellites fly in medium Earth orbit at an 

altitude of approximately 20,200 km. Initially, satellites were arranged into six equally-spaced 

orbital planes surrounding the Earth. Each plane contains four "slots" occupied by baseline 

satellites. This 24-slot arrangement ensures users can view at least four satellites from virtually 

any point on the planet. As of January 9, 2021, there were a total of 31 operational satellites in 

the GPS constellation on-orbit spares [13].  

The control segment consists of a global network of ground facilities that track the GPS 

satellites, monitor their transmissions, perform analyses, and send commands and data to the 

constellation. Monitor Stations track GPS satellites as they pass overhead, collect navigation 

signals, range/carrier measurements, and atmospheric data then feed observations to the master 

control station. Master Control Station provides command and control of the GPS 

constellation, uses global monitor station data to compute the precise locations of the satellites, 

and generates navigation messages for upload to the satellites. Ground Antennas send 

commands, navigation data uploads, and processor program loads to the satellites [13].  

The user segment consists of the GPS receiver equipment, which receives the signals from the 

satellites and uses the transmitted information to calculate the user's three-dimensional 

position and time [13]. To calculate location, a GPS device must be able to read the signal 

from at least four satellites. The receiver uses the signals it receives to determine the transit 

time of each message and computes the distance to each satellite using the velocity of light, 

the measured distance is called Pseudorange. Figure 2.1 illustrates how location is determined 

based on four satellite readings. 

2.1.1. NMEA Standard 

NMEA is an acronym for the National Marine Electronics Association. NMEA existed well 

before GPS was invented. According to the NMEA website [14], the association was formed 

in 1957 by a group of electronic dealers to create better communications with manufacturers. 

Today in the world of GPS, NMEA is a standard data format supported by all GPS 

manufacturers, much like ASCII is the standard for digital computer characters in the 



11 

 

computer world. NMEA standard uses a simple serial communications protocol that defines 

how data is transmitted in a "sentence" from one "talker" to multiple "listeners" at a time, this 

data can be transmitted via different types of communications interfaces such as RS-232, USB, 

Bluetooth, Wi-Fi, and many others. Most computer programs that provide real-time position 

information understand and expect data in the NMEA format, this data includes the complete 

PVT (position, velocity, time) solution computed by the GPS receiver [15]. 

 

Figure 2.1: GPS localization illustration using four satellites [13]. 

The idea of NMEA is to send a line of data called a sentence that is self-contained and 

independent from other sentences. There are standard sentences for each device category and 

there is also the ability to define proprietary sentences for use by manufacturing companies. 

Each NMEA sentence includes an identifier to distinguish it from other messages in the data 

stream, one or more fields of data separated by a comma, and a checksum preceded by an 

asterisk symbol (*) to validate the data. NMEA messages always begin with a dollar sign ($) 

followed by a talker ID code, for example ―GP‖ for GPS devices, and a message ID code, for 

example ―GGA‖ for GPS Data Fix. Figure 2.2 shows an example of the―ZDA‖ NMEA 

sentence [16]. 



12 

 

 

Figure 2.2: Example of the “ZDA”NMEA sentence with its field’s description [16]. 

2.2. LPWAN and LoRa 

LPWAN is a type of wireless communication that is designed for sending small data packages 

such as sensor data over long distances. There are several competing technologies in the 

LPWAN space from which Narrowband IoT (NB-IoT), Sigfox, LoRa are widely used. 

LPWAN Network is an emerging network technology for IoT that offers long-range and wide-

area communication at low power. In contrast to traditional short-range wireless sensor 

networks, the design goal of LPWANs is to offer wide-area coverage at low power, and low 

cost. Most non-cellular LPWANs operate on low frequencies (sub-GHz band) that provide a 

long communication range, from few kilometers in urban areas to tens of kilometers in rural 

areas. Lower frequencies have better propagation characteristics through obstacles. These 

properties made the sub-GHz band attractive for LPWANs technologies [18]. 

IoT devices are expected to operate for a very long time (several years) without the need for 

battery replacement. LPWANs achieve low-power operation through the use of the star 

topology, which eliminates the energy consumed through packet routing in multihop networks. 

Second, they keep the node design simple by offloading the complexities to the gateway, as 

they use narrowband channels to decrease the noise level and extend the transmission 

range [18]. A major factor that contributed to the rise of LPWANs is its low cost. Non-cellular 

LPWANs require no (or limited) infrastructure and operate on an unlicensed spectrum, 

providing an excellent alternative to the cellular network. In addition, the advances in the 

hardware design and the simplicity of LPWAN end-devices makes LPWANs economically 

viable [19]. LPWANs are designed to provide reliable and robust communications. Most 

LPWANs adopt robust modulation techniques and spread-spectrum techniques to increase the 

signal resistance to interference and provide a level of security. In spread-spectrum, the 

narrowband signal is spread in the frequency domain with the same power density resulting in 

a wider bandwidth signal [20]. 



13 

 

2.2.1. What is LoRa? 

Lora is a wireless technology that offers long-range, low-power, and secure data transmission 

for M2M and IoT applications. Technically, it is a radio modulation scheme; that is a way of 

manipulating radio waves to encode information using a technique derived from Chirp Spread 

Spectrum modulation [21]. According to the OSI seven-layer Network Model, Lora can be 

considered as a physical layer implementation (PHY) or―bits‖layerimplementation, depicted 

in Figure 2.3, thus, it can be integrated along with higher-layer implementations which allows 

it to coexist and interoperate with the existing network architectures. Instead of cabling, the air 

is used as a medium for transporting LoRa radio waves from an RF transmitter in an IoT end 

node to an RF receiver in a gateway, and vice versa [22]. The LoRa wireless technology was 

developed by a French start-up called Cycleo which developed the LoRa modulation 

technology. In 2012, the Semtech Corporation acquired Cycleo. The LoRa radio and 

modulation part is patented, and its source is closed. Semtech has licensed its LoRa 

intellectual property (IP) to other chip manufacturers, such as HopeRF, Microchip, Dorji, etc. 

The word LoRa is a trademark of Semtech Corporation, filed in 2015 [23]. 

 

Figure 2.3: OSI seven-layer network model [23]. 

LoRa end nodes are responsible for collecting data from the environment and send it via RF 

waves to a LoRa gateway. LoRa gateways act as an intermediary between LoRa end nodes and 



14 

 

cloud services, meaning that a gateway is a hub where all data is gathered, converted into 

network packets, and then forwarded to a web application via cellular, Ethernet, or Wi-Fi to 

make use of it. The data may be cleaned, stored, visualized, analyzed, and decisions may be 

sent back as an action to a node or an end-user based on the acquired data. Figure 2.4 shows 

the basic architecture of both LoRa gateway and end node. 

 

Figure 2.4: LoRa gateway and end node architectures. 

2.2.2. LoRa characteristics 

A key characteristic of the LoRa-based solutions is ultra-low power requirements, which 

allows for the creation of battery-operated devices that can last for up to 10 years. Deployed in 

a star topology, LoRa is perfect for applications that require long-range or deep in-building 

communication among a large number of devices that have low power requirements and that 

collect small amounts of data [22]. Concerning range, a single LoRa-based gateway can 

receive and transmit signals over a distance of more than 15 kilometers in rural areas. Even in 

dense urban environments, messages are able to travel up to three to five kilometers, 

depending on how deep indoors the end nodes are located. Table 2.1 shows approximately the 

ranges that LoRa can reach in different environments [22]. As far as battery life is discussed, 

the energy required to transmit a data packet is quite minimal given that the data packets are 

very small with respect to the transmission rate. Furthermore, when the end devices are asleep, 

thepowerconsumptionismeasuredinmilliwatts(mW),allowingadevice‘sbatterytolastfor

many years [22]. Given the capabilities of LoRa-based end nodes and gateways, only a few 

gateways configured in a star network are required to serve a huge number of end nodes, this 

means that expenses can be kept relatively low. Also, when cheap LoRa RF modules are 

embedded in inexpensive end nodes and are used in conjunction with the open protocols 

standard, the return on investment can be considerable [22]. 

 



15 

 

Table 2.1 : LoRa approximate ranges [25]. 

Environment Range (km) 

Urban areas (towns & cities) 2-5 

Rural areas (countryside) 5-15 

Direct Line Of Sight >15 

2.2.3. LoRa modulation technique 

In digital communications, chirp spread spectrum (CSS) is a spread spectrum technique that 

uses wideband linear frequency modulated chirp pulses to encode information. CSS uses its 

entire allocated bandwidth to broadcast a signal, making it robust to channel noise [24]. A 

chirp is a sinusoidal signal whose frequency increases or decreases over time to represent a 

piece of information; if the frequency increases, it is called an up-chirp, whereas a decreasing 

frequency chirp is called a down-chirp [24]. Figure 2.5 shows the amplitude and frequency of 

an up-chirp. 

 

Figure 2.5: Up-chirp graphical representation [25]. 

A signal that contains a set of chirps is used as a carrier to encode digital information. The 

chirps are shifted periodically, and it is the role of frequency jumps to form a certain pattern 

that determines how the data is encoded on top of the chirps. Figure 2.6 shows how 

information is encoded using chirp signal modulation [25]. By a symbol, we mean a number of 

bits that can encode certain digital information. A symbol can hold one or more bits of data 

depending on the encoded information. If a symbol contains seven bits, we say that it can 

encode seven bits of raw data (from 0 to 127 in decimal). The number of bits is known also as 

the spreading factor and we write: a symbol can have 2
SF

 values. Given a piece of information 

in the form of a numerical value, the chirp signal is divided into 2
SF

 chips in order to encode 

this information into a modulated signal [25]. For example, the symbol is 10111111 (decimal 

value = 191), the number of raw bits that can be encoded by this symbol is 8 (SF=8), and the 

chirp signal is divided into up to 2
SF

 = 2
8
 = 255 chips as shown in Figure 2.7. 



16 

 

 

Figure 2.6: Message encoded on a chirp signal [25]. 

 

Figure 2.7: Chips representation [25]. 

Forward Error Correction (FEC) is the process where error correction bits are added to the 

transmitted data. These redundant bits help to restore the data when it gets corrupted by 

interference. The more error correction bits added, the easier the data can be corrected. 

However, by adding more error correction bits, more data are transmitted which decreases the 

battery life [25]. 

2.2.4. LoRa parameters 

A LoRa device can be configured to use different Transmission Power (TP), Carrier 

Frequency (CF), Spreading Factor (SF), Bandwidth (BW), and Coding Rate (CR) to tune link 

performance and energy consumption [26]. 

1) Transmission power 

TPonaLoRaradiocanbeadjustedfrom−4dBmto20dBm,in1dBsteps,butbecauseof

hardware implementation limits, the range is often limited to 2 dBm to 20 dBm. In addition, 

because of hardware limitations, power levels higher than 17 dBm can only be used on a 1% 

duty cycle [26]. 

2) Carrier Frequency 

LoRa operates in the unlicensed ISM (Industrial, Scientific, and Medical) radio band that is 

available worldwide. CF is the center frequency that can be programmed in steps of 61 Hz 

between 137 MHz to 1020 MHz.  Every country in the world has a specific frequency band 



17 

 

that is allowed for Lora usage, for example, Europe uses 863 MHz to 870 MHz frequency 

range [26]. 

3) Spreading Factor 

SF is the ratio between the symbol rate and chip rate. A higher SF increases the Signal to 

Noise Ratio (SNR), and thus sensitivity and range, but also increases the airtime of the packet. 

Each increase in SF divides the transmission rate by half and, hence, doubles transmission 

duration and ultimately energy consumption. SF can be selected from 6 to 12 [26]. 

4) Bandwidth 

BW is the width of frequencies in the transmission band. Higher BW gives a higher data rate, 

but a lower sensitivity because of the integration of additional noise. A lower BW gives a 

higher sensitivity, but a lower data rate. Data is sent out at a chip rate equal to the bandwidth; a 

bandwidth of 125 kHz corresponds to a chip rate of 125 Kchips/sec. Although the bandwidth 

can be selected in a range of 7.8 kHz to 500 kHz, a typical LoRa network operates at 500 kHz, 

250 kHz, or 125 kHz [26]. 

5) Coding rate 

CR is the FEC rate used by the LoRa modem that offers protection against bursts of 

interference, and can be set to 4/5, 4/6, 4/7 or 4/8. A higher CR offers more protection, but 

increases time on air. Radios with different CR (and same CF, SF and BW), can still 

communicate with each other if they use an explicit header, as the CR of the payload is stored 

in the header of the packet, which is always encoded at CR 4/8 [26]. 

The unit of bandwidth is Hertz (Hz) which is the number of vibrations or wave cycles per 

second. In CSS, this term bandwidth is used interchangeably with the chip rate Rc [25]: 

                       BW = Rc = chip rate (chips/sec). (2.1) 

For example: BW=125 kHz, gives Rc (chip rate) = 125 Kchips/sec. 

The Symbol Rate (Rs) is calculated as follow [25]:  

 Rs = BW / 2SF = Rc / 2SF (symbols/sec). (2.2) 

For example: BW=125 kHz, SF=7, gives Rs = 125000 / 2
7
 = 977 symbols/sec. 

To calculate the data rate (DR) also known as the bit rate (Rb) [25]: 

        Rb = SF * (BW/2SF) * 4/ (4+CR) (bits/sec). (2.3) 

Where: Code Rate (CR) takes values from 1 to 4. 

For example: SF=7, CR=1 BW=125 kHz, Rb = 7 x (125000 / 2
7
) x (4 / (4 + 1)) = 5.5 Kbits/s. 



18 

 

2.3. Embedded system development 

An embedded system can be broadly defined as a device that contains tightly coupled 

hardware and software components to perform a dedicated function with minimal human 

interaction, as a part of a larger system, and it is not intended to be independently 

programmable by the user. Most embedded systems interact directly with processes or the 

environment, making decisions based on their inputs. This makes it necessary that the system 

must be reactive, responding in real-time to process inputs to ensure proper operation. Besides, 

these systems operate in constrained environments where memory, computing power, and 

power supply are limited [27]. 

Another way to identify embedded systems is the use of cross compilers. While a cross 

compiler runs on a desktop or laptop computer, it creates code that does not. The cross-

compiled image runs on the target embedded system. Since the code needs to run on a 

processor, the vendor for the target system usually sells a cross compiler or provides a list of 

available cross compilers to choose from. Many larger processors use the cross compilers from 

the GNU family of tools [28]. 

Embedded software compilers often support only C, or C/ C++. In addition, many embedded 

C++ compilers implement only a subset of the language (commonly, multiple inheritance, 

exceptions, and templates are missing). Regardless of the language used in the software 

design, object-oriented techniques can be practiced. The design principles of encapsulation, 

modularity, and data abstraction can be applied to any application in nearly any language. The 

goal is to make the design robust, maintainable, and flexible [28]. 

2.3.1. Embedded system components 

When viewed from a general perspective, the hardware components of an embedded system 

include all the electronics necessary for the system to perform the function it was designed for. 

Therefore, the specific structure of a particular system could substantially differ from another, 

based on the application itself. Despite these dis-similarities, three core hardware components 

are essential in an embedded system: The Central Processing Unit (CPU), the system memory, 

and a set of input-output ports. The CPU executes software instructions to process the system 

inputs and to make the decisions that guide the system operation. Memory stores programs and 

data necessary for system operation. Most systems differentiate between program and data 

memories. The program memory stores the software programs executed by the CPU. Data 

memory stores the data processed by the system. The I/O ports allow conveying signals 

between the CPU and the external world [27]. 



19 

 

Beyond this point, a number of other supporting and I/O devices needed for system 

functionality might be present, depending on the application. These include communication 

ports for serial and/or parallel data transfer, a user interface to interact with the user, sensors 

and electromechanical actuators to interact with the environment, data converters (Analog-to-

digital (ADC) and/or Digital-to-Analog (DAC)) to allow interaction with analog sensors and 

actuators, system support components to provide essential services that allow the system to 

operate such as power supply and management components and clock frequency generators, 

other subsystems to enable functionality, this  might include Application-Specific Integrated 

Circuits (ASIC), Field Programmable Gate Arrays (FPGA) and other dedicated units 

according to the complexity of the application. Figure 2.8 illustrates how these hardware 

components are integrated to provide the desired system functionality [27].  

 

Figure 2.8: Hardware elements in embedded systems [27]. 

The software components of an embedded system include all the programs necessary to give 

functionality to the system hardware. These programs are referred to as the 

system firmware and are stored in some sort of non-volatile memory. Firmware is not meant to 

be modifiable by users, although some systems could provide means of performing upgrades. 

In high-performance embedded systems, system programs are organized around some form of 

operating system and application routines. The operating systems can be simple and informal 

in small applications, but as the application complexity grows, the operating system requires 

more structure and formality. In some cases, designs are developed around Real-Time 

Operating Systems (RTOS). In small embedded systems that do not require a high computing 



20 

 

performance, the system is built on top of a single microcontroller chip that commands the 

whole application. These systems are roughly integrated, adding only a few hardware 

resources as needed, and operate with minimal or no maintenance. Software in such 

applications is typically single-tasked and does not require an RTOS [27]. 

2.3.2. Microcontroller unit 

A microcontroller unit, abbreviated MCU, is developed using a CPU. The CPU is integrated 

along with memories of both types (program and data) and several types of peripherals, all 

embedded into a single integrated circuit or chip. This set of CPU, memory, and I/O within a 

single chip is what we call an MCU. The assortment of components embedded into an MCU 

allows for implementing complete applications requiring only a minimal number of external 

components or in many cases individually using only the MCU chip. Timer peripherals, 

input/output (IO) ports, interrupt handlers, and data converters are among those commonly 

found in most MCUs. The provision of such an assortment of resources inside the same chip is 

what has gained them the denomination of computers-on-chip. Figure 2.9 shows typical MCU 

architecture [27]. 

 

Figure 2.9: Microcontroller detailed architecture [27]. 

MCUs are usually marketed as family members. Each family is developed around a basic 

architecture that defines the common characteristics of all members. These include, among 

others, the data and program path widths, architectural style, register structure, base instruction 



21 

 

set, and addressing modes. Features differentiating family members include the amount of on-

chip data and program memory and the on-chip peripherals [27]. 

MCUs support Assembly programming language, however, most developers prefer C and/or 

C++ for the development of an MCU-based solution. C and C++ provide a wide range of 

advantages upon Assembly in terms of script readability, facility to write and debug the code, 

and the possibility to use high-level language methodologies like OOP. After compiling the 

firmware, a programmer is used to upload the code into the target MCU. A programmer is a 

piece of hardware that acts as a bridge between the user development environment like a 

laptop, and the target MCU, this allows the code to be placed in the appropriate memory 

location to be executed by the MCU to perform the intended operation. 

2.3.3. Embedded solution design 

The traditional design process of most embedded system solutions is developed around 

commercial off-the-shelf (COTS) parts. Although other methodologies exist, standard COTS 

methods are the default choice for embedded system designers having commercial 

components as the hardware resources to assemble an embedded solution. These methods 

allow for minimizing the hardware development costs through tight constraints on physical 

parts components, usually at the expense of larger software design and system verification 

cycles. Figure 2.10 shows a representative diagram of a typical COTS-based design process 

for an embedded solution. The diagram details the steps in the system conception, design, and 

prototyping stages. It also includes the estimated time duration of the different stages in the 

process. It can be observed that although hardware and software design could be carried in 

parallel, their functional verification can only happen on a functional prototype [27]. 

2.4. Data management 

Data management is an administrative process that includes acquiring, validating, storing, 

protecting, and processing required data to ensure the accessibility, reliability, and timeliness 

of the data for its users. Organizations and enterprises are making use of Big Data more than 

ever before to inform business decisions and gain deep insights into customer behavior, trends, 

and opportunities for creating extraordinary customer experiences. 

The best way to manage data, and eventually get the insights needed to make data-driven 

decisions, is to begin with a business question and acquire the data that is needed to answer 

that question. Companies must collect vast amounts of information from various sources and 

then utilize best practices while going through the process of storing and managing the data, 

http://www.businessdictionary.com/definition/data-management.html


22 

 

cleaning and mining the data, and then analyzing and visualizing the data in order to inform 

their business decisions [29]. 

 

Figure 2.10: Embedded solution design work flow based on COTS parts [27]. 

A database is an organized collection of structured information, or data, typically stored 

electronically in a computer system. A database is usually controlled by a database 

management system (DBMS). Together, the data and the DBMS, along with the applications 

that are associated with them, are referred to as a database system, often shortened to just 

database. Data within the most common types of databases in operation today is typically 

modeled in rows and columns in a series of tables to make processing and data querying 

efficient. The data can then be easily accessed, managed, modified, updated, controlled, and 

organized. Most databases use structured query language (SQL) for writing and querying 

data [30]. 

2.4.1. Time series database 

A time series database (TSDB) is a database optimized for time-stamped or time series data. 

Time series data are simply measurements or events that are tracked, monitored, down 

sampled, and aggregated over time. This could be server metrics, application performance 

monitoring, network data, sensor data, events, clicks, trades in a market, and many other types 

of analytics data. A time series database is built specifically for handling metrics and events or 

measurements that are time-stamped. A TSDB is optimized for measuring change over time. 

https://www.oracle.com/database/what-is-database/#WhatIsDBMS
https://www.oracle.com/database/what-is-database/#WhatIsDBMS
https://www.influxdata.com/what-is-time-series-data/
https://www.influxdata.com/the-best-way-to-store-collect-analyze-time-series-data/


23 

 

Properties that make time series data very different than other data workloads are data 

lifecycle management, summarization, and large range scans of many records [31]. Time 

series databases are the fastest-growing segment of the database industry over the past two 

years; this is illustrated in Figure 2.11. Time series databases are best suited for IoT 

applications where data is acquired over time. TSDB makes it easier to manage the gathered 

sensor‘sdatainacleanandreliablewaytomakethemost benefit of it. 

 

Figure 2.11: Database management systems popularity over the last two years [31]. 

 

 

 

 

 

 

 

 

 

 

 

https://db-engines.com/en/ranking_categories


24 

 

Chapter 3: Design and Implementation 

In this chapter, we will demonstrate detailed steps regarding the design process of the asset 

tracking solution. The first part covers the hardware aspect of the design, whereas the second 

part deals with the software design. Both the tracker node i.e., the transmitter, and the gateway 

i.e., the receiver, along with data storing and visualization are designed based on the 

information and techniques provided in previous chapters. For the prototype implementation, 

we used COTS modules for simplicity and availability, see section 2.3.3. However, the 

firmware was written from scratch using the C programming language. At the end of each 

part, a complete prototype implementation is built to demonstrate and discuss the obtained 

results of our solution. 

3.1. Hardware design of the gateway and tracker node 

The hardware design deals with all electronic components of both the tracker and the gateway. 

The goal is to build an embedded system that can send real-time GPS locations wirelessly over 

a specific period of time; on the other hand, a similar embedded system must be continuously 

listening to any data sent by nodes, then forward these data to a web application. MCUs are a 

good choice when it comes to designing embedded systems since they offer an excellent set of 

built-in peripherals that provide a wide range of options for interfacing purposes, as well as 

effective computation capabilities to run different tasks. 

Our design was carried out based on the idea of using separate hardware blocks, also known as 

hardware modules, each for a specific purpose, then to connect all parts together to perform 

the desired operation on both the tracker and the gateway sides. Generally, components like 

GPS receivers and LoRa transceivers come as a standalone System-on-Chip (SoC), such 

systems contain an integrated computing unit that internally performs the required task and 

provides a mean of communication to developers for configuration and interfacing. 

Communication protocols such as Universal Asynchronous Receiver and Transmitter (UART), 

Serial Peripheral Interface (SPI), and Inter-Integrated Circuit (I
2
C) are widely used for this 

purpose.  

We chose to work with separate hardware modules for the reason that such a technique 

reduces the complexity of the hardware design as each module is delivered as a compact chip 

with only the required pins for interfacing. On the other hand, the major advantage of using 

hardware modules is to reduce the computation complexity off the MCU, so instead of having 

a single MCU responsible to perform all computations, each module runs the specific task 



25 

 

which is designed to deliver. For example, in our design, the localization operation was 

assigned to the GPS module which internally contains large circuits with many filters and 

performs complex computations just to provide GPS locations as a ready-to-use raw data 

through its communication protocol. 

Starting with the tracker side, the system includes a GPS receiver for localization and a LoRa 

transceiver to send the acquired location wirelessly to the gateway. An MCU is used to 

interface both the GPS and LoRa modules. The MCU receives GPS data from the GPS 

module, extracts the location data, places it into an appropriate format then transfers it to the 

LoRa module in which the data is converted into an RF packet and sent over the air to the 

gateway. Figure 3.1 shows the block diagram of the tracker node functionality. 

 

Figure 3.1: Block diagram of the tracker node functionality. 

On the other hand, the gateway consists of a LoRa module to receive RF packets holding the 

location data and a network interface module to transfer this data to the web application; Wi-Fi 

or Ethernet modules can be used as network interface components. Similarly, Wi-Fi and 

Ethernet modules are provided as SoCs that are ready to use by the developer and allow 

interfacing using communication protocols mentioned before. An MCU is used to interface the 

LoRa module with the network interface module, hence, receiving location data from the 

tracker, convert it into a network-like packet format then transfers it to the network interface 

module where it is forwarded to the web application. Figure 3.2 shows the block diagram of 

the gateway functionality. 

 

Figure 3.2: Block diagram of the gateway functionality. 

In our hardware design process, we have decided to use both SPI and UART communication 

protocols on each side interchangeably so that the gateway and the tracker embedded systems 

can perform their intended functions properly without any data interference, meaning that each 

communication port is responsible for either data transmission or reception. For the UART 

hardware design, we have connected the transmitter (TX) and receiver (RX) lines of the 



26 

 

corresponding GPS and Wi-Fi/Ethernet modules to the RX and TX lines of the MCU unit 

respectively. Furthermore, the master in – slave out (MISO), the master out – slave in (MOSI), 

the serial clock (SCK), and slave select (SS) lines of the SPI port of the relevant LoRa module 

were connected to their opposite lines on the MCU side. Figure 3.3 illustrates the hardware 

designs of both the gateway and the tracker node with all required connections. 

 

Figure 3.3: Tracker node and Gateway hardware designs. 

3.2. Hardware implementation of the gateway and tracker node 

In an effort to test the validity of our hardware design, we were supposed to build two 

embedded system prototypes for the gateway and the tracker node. The prototypes used 

hardware modules as building blocks which were selected based on our hardware design 

approach from one side, and the availability of hardware components in the market from the 

other side. The following sections introduce the hardware modules and computing units we 

used in our hardware implementation. 

3.2.1. Atmel ATmega328P 

The Atmel ATmega328P is a low-power 8-bit MCU based on the AVR enhanced RISC 

architecture. By executing powerful instructions in a single clock cycle, the ATmega328P 

achieves throughputs approaching 1MIPS per MHz allowing the system designer to optimize 

power consumption versus processing speed. The Atmel ATmega328P provides the following 

features: 32K bytes of in-system programmable flash with read-while-write capabilities, 1K 

bytes EEPROM, 2K bytes SRAM, 23 general-purpose I/O lines, 32 general purpose working 

registers, three flexible Timer/Counters with compare modes, internal and external interrupts, 

a serial programmable USART, an SPI serial port, and a 6-channel 10-bit ADC. The 

ATmega328P reaches 16 MHz clock speed on a voltage range from 2.7V to 5.5V and can 



27 

 

operate on temperature range between –40°C and +125°C, which makes it good choice for 

automotive applications [34]. Figure 3.4 shows the ATmega328P pinout and SMD chip. 

 

Figure 3.4: ATmega328P pinout and SMD chip [34]. 

The device is manufactured using Atmel high density non-volatile memory technology. The 

on-chip ISP flash allows the program memory to be reprogrammed in-system through an SPI 

serial interface, by a conventional non-volatile memory programmer, or by an on-chip boot 

program running on the AVR core. The boot program can use any interface to download the 

application program in the application flash memory. The ATmega328P AVR is supported 

with a full suite of program and system development tools including C compilers, macro 

assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits [34].  

We opted to use the ATmega328P MCU because it allows access to a huge number of 

documentations and resources besides the large developers‘ community using this MCU 

family; this gives the advantage to implement different prototypes with the help of the 

availableexamplesandtheexperiencesoftheAtmeldevelopers‘communityonboththe

hardware and software aspects. Beside the fact that the ATmega328P is used for automotive 

applications which directly meets our asset tracking use case, it integrates mainly all 

communication protocols that were chosen in our hardware design; these are the SPI and 

the UART. 

1) Serial Peripheral Interface 

The SPI allows high-speed synchronous data transfer between the ATmega328P and 

peripheral devices or between several AVR devices, the data communication occurs between 

what is called Master and Slave peripherals. The interconnection between master and slave 

CPUs with SPI is shown in Figure 3.5. The system consists of two shift registers and a master 



28 

 

clock generator. The SPI master initiates the communication cycle when pulling low the slave 

select (SS) pin of the desired Slave. Master and Slave prepare the data to be sent in their 

respective shift registers, and the master generates the required clock pulses on the SCK line to 

interchange data. Data is always shifted from master to slave on the master out – slave in, 

MOSI, line, and from slave to master on the master in – slave out, MISO, line. After each data 

packet, the master will synchronize the slave by pulling high the slave select, SS, line [34]. 

 

Figure 3.5: SPI Master-slave interconnection between MCU and peripheral [34]. 

2) Universal Asynchronous Receiver and Transmitter 

The UART is a highly flexible serial communication protocol. It consists of three main parts: a 

baud rate generator for setting data sampling speed, a transmitter and a receiver to exchange 

data from and into external peripherals. For the ATmega328P, the UART features a full-

duplex operation meaning that sending and receiving data can be performed simultaneously 

since both receiver and transmitter include independent registers. The UART has to be 

initialized before any communication can take place. The initialization process consists of 

setting the baud rate, setting frame format, and enabling the transmitter or the receiver 

depending on the usage. The interconnection between two devices using UART is shown in 

Figure 3.6. 

Data transmission is initiated by loading the transmit buffer with the data to be transmitted. 

The buffered data in the transmit buffer will be moved to the shift register when it is ready to 

send a new frame. The shift register is loaded with new data if it is in the idle state (no 

ongoing transmission) or immediately after the last stop bit of the previous frame is 

transmitted. When the shift register is loaded with new data, it will transfer one complete 

frame at the rate given by the baud register. On the other hand, the receiver starts data 

reception when it detects a valid start bit. Each bit that follows the start bit will be sampled at 

the baud rate, and shifted into the receive shift register until the first stop bit of a frame is 

received. A second stop bit will be ignored by the receiver. When the first stop bit is received, 



29 

 

i.e., a complete serial frame is present in the receive shift register, the contents of the shift 

register will be moved into the receive buffer [34]. 

 

Figure 3.6: UART circuit interconnection between MCU and peripheral. 

For the implementation process, we have used the Arduino UNO board, which is an 

ATmega328P-based development board designed for fast prototyping. We have selected the 

Arduino board first because it is widely available in the market at a cheap price, it includes 

also a built-in USB-to-Serial chip that allows uploading codes to the MCU without the need 

for any external hardware (programmer), in addition to some components such as voltage 

regulators, a reset button, power outputs, and LED indicators for more sophisticated use. The 

Arduino UNO was used to implement the tracker node part, which is to interface the GPS 

module and the LoRa transceiver to build an IoT node that transmits asset locations over the 

air.  

3.2.2. Espressif ESP8266 

The ESP8266 is a low-cost Wi-Fi microchip, with a full TCP/IP stack and MCU capability, 

produced by Espressif Systems. The ESP8266 delivers a highly integrated Wi-Fi SoC solution 

tomeetusers‘continuousdemandsforefficientpowerusage,compactdesign,andreliable 

performance in IoT industry. With the complete and self-contained Wi-Fi networking 

capabilities, ESP8266 can act either as a standalone application or as the slave to a host MCU. 

When ESP8266 hosts the application, it promptly boots up from the flash. The integrated high-

speed cache helps to increase the system performance and optimize the system memory. Also, 

ESP8266 can be integrated into any MCU design as a Wi-Fi adaptor through SPI or UART 

interfaces. Besides the Wi-Fi functionalities, the ESP8266 integrates an enhanced version of 

Tensilica‘s L106 Diamond series 32-bit processor which achieves extra-low power 

consumption and reaches a maximum clock speed of 160 MHz. It can be interfaced with 

external sensors and other devices through the GPIOs [35]. Figure 3.7 shows the ESP8266 

module pinout and SMD chip. 



30 

 

 

Figure 3.7: ESP8266 chip pinout and SMD chip [35]. 

The ESP8266 Software Development Kit (SDK) is an IoT application development platform 

created by Espressif for developers and includes two types: Non-OS SDK and RTOS SDK. 

ESP8266 implements TCP/IP and full 802.11 b/g/n WLAN MAC protocol. In the world of 

wireless communication, the term Wi-Fi is related to wireless access in general, despite the 

fact that it is a specific trademark owned by the Wi-Fi Alliance, a group dedicated to certifying 

that Wi-Fi products meet the IEEE‘ssetof 802.11 standards. IEEE 802.11 is a set of technical 

guidelines for implementing Wi-Fi communication protocol [36]. On the other hand, TCP/IP 

is a widely used Internet protocol suite, which is the conceptual model and set of 

communication protocols used in the Internet and similar computer networks. TCP/IP is a set 

of standard Internet communication protocols that allow digital computers to communicate 

over long distances. The Internet is a packet-switched network, in which information is broken 

down into small packets, sent individually over many different routes at the same time, and 

then reassembled at the receiving end. TCP is the component that collects and reassembles the 

packets of data, while IP is responsible for making sure the packets are sent to the right 

destination [37]. 

For our implementation, we have used the NodeMCU board which is a ready-to-use 

development board based on the ESP8266 module designed for fast prototyping of IoT 

projects. Similar to Arduino, The NodeMCU does not require any external programming 

hardware to upload codes to the MCU. Furthermore, NodeMCU defines an open-source 

firmware that is built on top of the Espressif Non-OS SDK; this firmware makes it easier to 

develop and upload codes in a flexible and reliable way especially during the prototyping 

process. NodeMCU was used to implement the gateway part of our solution, which is to 

https://www.wi-fi.org/
http://ieeexplore.ieee.org/browse/standards/number/ieee/?pageNumber=1&selectedValue=3386
https://www.britannica.com/technology/Internet
https://www.britannica.com/technology/protocol-computer-science
https://www.britannica.com/technology/digital-computer


31 

 

receive RF data through the LoRa transceiver then transfer these data to the web application 

using WiF for further use. 

It was more practical to choose an Ethernet module since the gateway side needs a stable and 

constant network connection which may be achieved by Ethernet rather than Wi-Fi. However, 

we have decided to go with the ESP8266 over other hardware modules as it comprises a 

network connection interface with a programmable MCU in a single chip, this would greatly 

reduce the hardware connections and allow more flexibility for interfacing. Since the ESP8266 

combines a Wi-Fi module with an integrated MCU, we would have the ability to choose 

between either SPI or UART to interface the LoRa transceiver, unlike in the hardware design 

where a UART port was only dedicated to connecting the MCU unit to the network interface 

module which would not be the case in the implementation. 

3.2.3. NEO-6M U-blox GPS module 

The NEO-6M module is a stand-alone GPS receiver featuring a high-performance positioning 

engine. This flexible and cost-effective receiver offers numerous connectivity options in a 

miniature 16 x 12.2 x 2.4 mm package. Its compact architecture and power and memory 

options make the NEO-6 module ideal for battery-operated mobile devices with very strict 

cost and space constraints [32]. Figure 3.8 shows the GPS module with its Antenna.  

 

Figure 3.8: NEO-6M GPS module with antenna [32]. 

The NEO-6M operates on a maximum voltage of 3.6V and includes one configurable UART 

interface for serial communication. The UART port is used to transmit GPS measurements 

which are structured in the NMEA data format; this will be described in greater details later in 



32 

 

the software implementation section. By default, the GPS module measures its location at a 

frequency of 1Hz and then transmits this information through the serial port at 9600 bits/sec 

baud rate. As a first step to test the functionality of our GPS module, we have powered up the 

NEO-6M by attaching a 3.6V power source to its power pins VCC and GND, this module 

contains a blue LED which indicates whether the receiver is working properly or not; after 

waiting for a while, the LED started blinking as an indication that our module hardware did 

not contain any internal hardware fault and was ready for interfacing with the MCU. The 

NEO-6M GPS receiver was integrated into the tracker node embedded system prototype for 

localization purposes. 

3.2.4. SX1278 LoRa Transceiver 

The SX1278 LoRa transceiver is a cheap LoRa module mainly used for long-range spread 

spectrum communication. It for provides ultra-long range spread spectrum communication and 

high interference immunity whilst minimizing current consumption. For maximum flexibility, 

the user may decide on the spread spectrum modulation bandwidth, spreading factor, and 

correction rate (CR). The SX1278 offers bandwidth options ranging from 7.8 kHz to 500 kHz 

with spreading factors ranging from 6 to 12 and covering carrier frequencies from 137.0 MHz 

to 525.0 MHz [33]. Figure 3.9 shows the LoRa transceiver pin configuration. The SX1278 is a 

half-duplex transceiver that can act either as a receiver or a transmitter; ideally, it operates at a 

voltage of 3.3V and uses SPI communication protocol to interface with external computation 

devices for reading or writing data. The module also contains a built-in cyclic redundancy 

check (CRC) algorithm that can be used to detect errors in the incoming payloads. 

 

Figure 3.9: SX1278 LoRa Transceiver pin configuration [33]. 



33 

 

A simplified outline of the transmitting and receiving processes is shown in Figure 3.10. Here 

we see that the LoRa modem has an independent dual-port First-in First-out (FIFO) data 

buffer that is accessed through the SPI interface. Configuration registers give access to modify 

different parameters such as carrier frequency and spreading factor; this allows flexible 

performance optimization depending on the application and usage. 

 

Figure 3.10: LoRa modem connectivity [33]. 

The SX1278 is equipped with a 256 byte RAM, also referred to as FIFO Data buffer. It is fully 

customizable by the user and allows to read the received data, or to write the transmitted data. 

All the access to the LoRa FIFO data buffer is done via the SPI interface. By default, the 

device is configured at power-up so that half of the available memory is occupied for reception 

(RegFifoRxBaseAddr initialized at address 0x00), and the other half is occupied for 

transmission (RegFifoTxBaseAddr initialized at address 0x80) as shown in Figure 3.11. 

However, due to the contiguous nature of the FIFO data buffer, the base addresses for 

transmission and reception operations are fully configurable across the 256 byte memory area. 

The FIFO data buffer location to be read from, or written to, via the SPI interface is defined by 

the address pointer RegFifoAddrPtr.  Upon reading or writing to the FIFO data buffer, the 

address pointer will then increment automatically, therefore, it is necessary to initialize all 

these pointer registers to the corresponding addresses before any read or write operation [33]. 

 

Figure 3.11: SX1278 internal memory mapping [33]. 



34 

 

3.2.5. Tracker node prototype implementation  

Based on the hardware modules that we described in sections 3.2.1, 3.2.3, and 3.2.4, we have 

built a tracker node that would allow collecting location data from mobile assets. The tracker 

prototype circuit consists of an ATmega328P MCU as a controlling and interfacing unit, the 

NEO-6M GPS module, and the SX1278 LoRa transceiver. The tracker node localizes the asset 

mounted on it using the GPS module, this data is transferred to the MCU using UART 

protocol and then transmitted to the gateway using the LoRa module which reads data from 

the ATmega328P via SPI; The LoRa module acts as a transmitter at this side of the 

implementation. First, we have connected the UART port pins TX and RX of the NEO-6M to 

the PD0 (RX) and PD1 (TX) pins of the ATmega328P respectively. For the SX1278, we have 

attached the SPI port pins NSS, MOSI, MISO, and SCK to pins PB2 (SS), PB3 (MOSI), PB4 

(MISO), and PB5 (SCK) of the ATmega328P, see Figure 3.4. Since we have used an Arduino 

board for our prototype, we could power our modules directly from the 3.3V power output 

provided by the board. Figure 3.12 shows the tracker prototype circuit connections and 

Figure 3.13 shows the prototype implementation of the tracker.  

 

Figure 3.12: Tracker prototype circuit connections. 



35 

 

 

Figure 3.13: Tracker prototype implementation. 

At this point of the implementation, the MCU did not contain any firmware inside. However, 

we could get an insight that the GPS module was working properly since it included an LED 

indicator, unlike the LoRa module which did not provide the option of checking its 

functionality at this stage, this would be done later in the software implementation part. A 

piece of software would be used to test the functionality of sending and receiving data using 

the SX1278 and the check location data from the NEO-6M as well. 

3.2.6. Gateway prototype implementation 

We have implemented the gateway circuit which consists of an ESP8266 module interfaced 

with the SX1278 LoRa transceiver. The LoRa transceiver receives RF packets sent wirelessly 

from nodes; these packets contain information about real-time locations of assets. The data is 

then transferred using SPI protocol to the ESP8266 in which it is converted into network-like 

packets then sent to the web application via Wi-Fi. We have connected the SPI port pins NSS, 

MOSI, MISO, and SCK of the SX1278 to pins MTDO (SS), MTCK (MOSI), MTDI (MISO), 

and MTMS (SCK) of the ESP8266 Wi-Fi module, see Figure 3.7. The NodeMCU includes a 

3.3V power output pin which is enough to feed the LoRa module during the testing operation. 

After connecting all necessary pins, we could not have any idea regarding the functionality of 

the SX1278 as the gateway at this point does not run any firmware so; this would be covered 

later in the software implementation and testing part. As expected, the gateway prototype 

circuit contained only few connections compared to the tracker‘scircuit implementation. 



36 

 

Figure 3.14 shows the gateway prototype circuit connections and Figure 3.15 shows the 

prototype implementation the gateway. 

 

Figure 3.14: Gateway prototype circuit connections. 

 

Figure 3.15: Gateway prototype implementation. 



37 

 

3.3. Software design of the gateway and tracker node 

The software design deals with the algorithm and logic that run the whole system. In our case, 

it was necessary to build a piece of firmware that would be able to control different parts of 

our solution in order to realize the intended behavior from the gateway and the tracker node. 

Nevertheless, it is important to know that we will not be designing an algorithm to solve a 

mathematical problem, rather than designing software modules to drive the process of sending 

and receiving data in a reliable and effective way based on our hardware design. The tracker 

node and the gateway must operate coordinately to localize assets in real-time, thus solving the 

problem of asset tracking within industrial environments. 

The core operation of the tracker node was to detect asset locations using the GPS receiver, 

put the received data in an appropriate format, and then send it to the gateway using LoRa 

transceiver, which acts as a transmitter on this side of the solution. Our software design for the 

tracker node started by setting up the needed communication protocols which would be used to 

interact with the LoRa and GPS modules, these are the SPI and UART protocols. The data 

transmission operation was based on the condition that the node must receive a valid location 

before moving to the transmission stage. If valid GPS data is received by the GPS module, the 

system has to extract only the location field from the whole GPS data then moves on to the 

transmission step using the LoRa module. Moreover, the asset tracking operation must be done 

over a specific period of time meaning that data is sent once every n seconds depending on the 

user‘s specifications. The software design flowchart for the tracker node is presented in 

Figure 3.16. 

The gateway function consists of receiving RF packets from tracking nodes using the LoRa 

module, which acts as a receiver on this side, converts these packets again into the appropriate 

format which would be compatible with the web application, then forwards the data to the web 

application using the network interface module. Likewise, the gateway has to set up 

communication protocols to allow communication between the LoRa receiver and the network 

interface module, as well as to initialize parameters for network communication to allow the 

interaction with the web application side. Our design implements an algorithm that 

continuously checks for any available data sent from nodes; if any data is received it is 

promptly forwarded to the web application using the network interface module. Figure 3.17 

shows the software design flowchart on the gateway side. 

 



38 

 

 

Figure 3.16: Tracker software design flowchart. 

 

Figure 3.17: Gateway software design flowchart. 



39 

 

Since we were focusing only on the embedded system design of the solution, the web 

application will not be included in the design process; however, we will be using existing 

storing and visualizing tools that meet the requirements of our solution, these tools will be 

introduced later in the implementation section. The web application should be able to store 

location data over time as well as visualize it on a graphical map to show the exact location of 

an asset in real-time. It consists of a data storing application, hence a database system, which 

sources data to a visualization application to show asset locations on a graphical map in real-

time. We have decided to work with two separate systems, one for data storage and one for 

data visualization, as most of the existing database management systems do not provide 

integrated visualization options, so we had to add an extra layer just for visualization; on the 

other hand, the visualization process was one of the core functions that must be included in the 

asset tracking solution, so it was more practical to choose a dedicated system just for 

visualization which would give a better user experience. We had to choose a database system 

that would be able to communicate with the gateway in order to receive data via the network 

from one side and to forward this data to the visualization application from the other side. 

Also, we have chosen to work with time-series databases because it would be the best choice 

to work with IoT data that change over time; a timer-series database would allow a better 

understanding of the captured data with more flexibility to store, process, and query data over 

time. 

3.4. Software implementation of the gateway and tracker node 

Our hardware implementation was based on MCUs as controlling units which allow a variety 

of choices when it comes to programming languages for developing the firmware. In our 

implementation of the tracker node, we have used the C programming language, which is one 

of the widely used languages to write firmware for MCUs. The C language as a mid-level 

programming language provides two critical characteristics which make it the best choice for 

MCU programming, these are the access to low-level capabilities like the ones found in 

Assembly language as well as supporting the powerful high-level functionalities. On the other 

hand, we have used Arduino libraries which are built on top of C++ programming language 

forimplementingthegateway‘sfirmware; this was a safe choice for prototyping the network 

communication programming part. The software implementation of both the tracker and the 

gateway starts with testing the functionality of each hardware module based on circuits 

implemented in sections 3.2.5 and 3.2.6, after that, a complete firmware is written for both of 

the systems to perform the required task. 



40 

 

3.4.1. Tracker node firmware implementation 

For the tracker node which was based on the ATmega328P MCU, see section 3.2.5, we have 

written a C-language firmware from scratch to drive the GPS and the LoRa modules. For that 

purpose, it was necessary to set up the AVR Toolchain which includes all required 

components for the firmware development process. The AVR Toolchain is a collection of 

tools/libraries used to create applications for AVR MCUs; this collection includes compiler, 

assembler, linker, and Standard C and math libraries. 

1. AVR-GCC: AVR-GCC is a compiler that takes C language high level code and creates 

a binary source which can be uploaded into an AVR MCU. Thus AVR-GCC might be 

regarded as a 'C' cross compiler for producing AVR code.  

2. AVR-libc: A subset of the standard C Library with some additional AVR specific 

functions. The libc-avr package includes C libraries, header files, and documentation 

primarily for the AVR target and is used in conjunction with AVR-GCC.  

3. AVRDUDE: AVRDUDE is a utility to download/upload/manipulate the ROM and 

EEPROM contents of AVR MCUs using the in-system programming technique (ISP). 

 

The development of the firmware was done on a Linux environment (Ubuntu) machine; we 

have used the terminal to install the AVR Toolchain before diving into the software 

implementation process. After installing all necessary components for the development 

process, we have tested first the functionality of each hardware module alone to make sure that 

we would not face any problem when building up the whole system. Below are the steps that 

we followed during the testing of the LoRa and the GPS modules: 

1) Testing the functionality of the NEO-6M 

As mentioned in the hardware implementation section 3.2.3, the NEO-6M U-blox GPS 

module uses UART to send GPS data to the MCU. The ATmega328P contains a built-in 

UART port that can be configured to send and receive data with different baud rates. First, we 

have initialized the UART port by setting the baud rate, enabling the transmitter and the 

receiver, and setting the data format that would be used for the communication, this was done 

by writing bits to specific locations on the configuration registers of the ATmega328P. Since 

the default baud rate of the NEO-6M is 9600 bits/sec, the same value was initialized at the 

MCU side. When testing the functionality of the GPS module, we had to configure the 

ATmega328P to receive the data from the GPS module then send it via UART as well to the 

host computer to observe the acquired data. The MCU can send data by writing a byte to the 

UART data buffer and receive data by reading it from the same buffer. After uploading the test 

http://savannah.nongnu.org/projects/avrdude


41 

 

firmware, we got a group of messages from the GPS module through UART, the messages 

were sent once every second meaning that the default transmission rate on the GPS module 

was one second as expected. Figure 3.18 shows the messages sent from the GPS module to the 

host machine via UART. 

 

Figure 3.18: GPS data received by the host computer via UART. 

Figure 3.18 shows that the GPS messages sent via UART were in the NMEA standard format 

which was already discussed in section 2.1.1. NMEA format includes a set of messages that 

provides different GPS information; however, we were interested only in the GPS fix data that 

isthe―GPGGA‖fieldline.Our goal was to get the most important information out of this data 

line, which is the location data. The―GPGGA‖messagestructurecontains thefollowing 

information: 

$GPGGA,hhmmss.ss,Latitude,N,Longitude,E,FS,NoSV,HDOP,msl,m,Altref,m,Diff

Age,DiffStation*cs<CR><LF> 

In our implementation, we have used three fields highlighted in green to get a valid location 

fromthe―GPGGA‖messageline: 

1. “FS” Position Fix Status Indicator field: This field allows to determine whether a 

valid GPS location is fixed or not, the default value is 0, however, when the module 

fixes a position in regards to a number of satellites, this field changes to values 1 or 2 

according to the number of satellites seen by the GPS receiver. 



42 

 

2. Latitude and Longitude fields: According to the NMEA Standard, Latitude and 

Longitude are output in the format degrees, minutes and fractions of minutes. To 

convert to degrees and fractions of degrees, the minutes and fractional minutes parts 

need to be converted. In other words, If the GPS receiver reports a Latitude of 

4717.112671 and Longitude of 00833.914843 it means: 

Latitude: 47 degrees, 17.112671 minutes.  

Longitude: 8 degrees, 33.914843 minutes. 

Converted to degrees as follows:  

Latitude: (47 + 17.112671/60) = 47.28521118 degrees. 

Longitude: (8 + 33.914843/60) = 8.56524738 degrees.  

Degree is the format supported by the visualization tool that we would use later in the 

web application side. 

After getting a clear idea about the required data fields that we had to use in order to detect a 

location, we could implement the first part of the firmware. Based on our software design, we 

had to implement an algorithm that reads GPS data from the module via UART, checks if the 

data is valid, and then extracts GPS latitude and longitude from the GPGGA message line. For 

that reason, we have built three functions to perform the required tasks; below is the 

pseudocode for the functions to check for valid GPS data, and extract the latitude and 

longitude from it: 

GPS_valid( data[] ): 

 read data from UART port 

 if( received data == “$GPGGA” ): 

  save GPGGA message line in data[] 

  if( “FS” field in data[] == 1 or 2 ): 

   return true      // 1 or 2 means that GPS data is valid 

  else 

   return false     // else means that GPS data is not valid 

 

GPS_getLatitude( data[] ) 

 Latitude[], LatitudeDegree[], i 

 for i from 0 to Latitude field index in data[]: 

  Latitude[i] = data[i + Latitude field index] 

 Convert Latitude[] to degrees and save in LatitudeDegree[] 

return LatitudeDegree[] 

 

GPS_getLongitude( data[] ) 

 Longitude[], LongitudeDegree[], i 

 for i from 0 to Longitude field index in data[]: 

  Longitude[i] = data[i + Longitude field index] 

 Convert Longitude[] to degrees and save in LongitudeDegree[] 

return LongitudeDegree[] 



43 

 

2) Testing the functionality of the SX1278 

The SX1278 LoRa transceiver uses SPI communication protocol to send or receive data 

depending on the operation mode. As we are developing the firmware for the tracker node, the 

SX1278 acts as a transmitter on this side, however, we had to set up another LoRa module that 

worked as a receiver to be able to read the transmitted packets and to test both the 

functionality of the transmitter and the receiver once at a time. First, we have initialized the 

SPI port on the ATmega328P to work properly in regards to the SX1278 internal SPI port 

parameters. Similarly, to set up the SPI communication protocol on the ATmega328P, we 

have written bits to a number of configuration registers connected to the SPI port, the MCU 

was configured to work as a Master, the clock to drive the data exchange was set to 8Mhz, 

―CPOL‖clockpolaritysettolowwhenidle,and―CPHA‖clockphasesettosampleonthe

leading clock edge; these parameters were chosen after checking the SX1278 SPI‘s port 

default configuration from the datasheet. After setting up the SPI port on the MCU, it was 

possible to access internal registers of the SX1278; both read and write operations were 

allowed for all registers. 

The LoRa module allows access to internal registers by receiving an address byte followed by 

a data byte for the write access whereas an address byte is received and a data byte is sent for 

the read access. Before each read or write operation, the NSS (negative slave select line) pin 

must be set to low and at the end of the operation, it must be returned to high. Below is the 

pseudocode of the functions to perform a read/write operation on the ATmega328P from/to the 

SX1278‘sinternal registers: 

LoRa_writeRegister( address, value ) 

 set NSS to low  // select slave 

 send address    // send the address of the register to read/write 

 while( byte transmission is not done ) 

 send value      // write a data byte to the address register 

while( byte transmission is not done ) 

 set NSS to high // unselect slave 

 

LoRa_readRegister( address ) 

 response        // variable to hold the response of the operation 

 set NSS to low  // select slave 

 send address    // send the address of the register to read/write 

 while( byte transmission is not done ) 

 response = value read from the address register 

 set NSS to high // unselect slave 

 return response 

 



44 

 

Before starting the wireless data transmission between the LoRa transmitter and receiver, it 

was necessary to configure both sides to use the LoRa communication protocol, to set the 

carrier frequency, to set up the base addresses of the FIFO register, to enable the CRC 

algorithm, to set the transmission power, and to put the modules on the standby mode. We had 

to write a function to initialize all parameters before starting the data transmission process, this 

function had to write different parameters to the module‘s internal registers using the

LoRa_writeRegister() function described above. The following pseudocode presents the 

LoRa_Begin() function which initializes the LoRa module before any data communication 

operation can occur: 

LoRa_Begin( frequency ) 

 set NSS to low                                  //select slave 

 LoRa_writeRegister(mode_register, value)        //put in LoRa mode 

 LoRa_writeRegister(frequency_register, frequency)//set frequency band 

 LoRa_writeRegister(FIFO_base_register, value)//set FIFO base address 

 LoRa_writeRegister(config_register, value)   //enable CRC 

 LoRa_write(TX_power_register, power_value)   //set transmission power 

      LoRa_writeRegister(mode_register, value)     //put in standby mode 

 return true 

 

The last two functions that we had to write in order to test the functionality of the SX1278 

were responsible for handling the data sending and receiving processes. Similarly, 

LoRa_send() and LoRa_receive() functions, shown in pseudocode below, use the 

LoRa_readRegister() and LoRa_writeRegisters() to access internal registers to allow data 

transmission and reception. LoRa_send() initiates data transmission operation by writing a 

byte to the FIFO register of the LoRa module, whereas, LoRa_read() allows data reception by 

reading a byte from the FIFO register as well. Figure 3.19 shows packets sent from the 

transmitter side and received on the receiver side. 

LoRa_send( data[], size ) 

 LoRa_writeRegister(mode_register, value)   // put in TX mode 

 LoRa_writeRegister(FIFO_base_addr, address)// reset FIFO base address 

 LoRa_writeRegister(packet_length_register, value)// set packet length 

 for i from 0 to size: 

  LoRa_writeRegister(FIFO_address, data[i] // send data 

 LoRa_writeRegister(mode_register, value)       // put in standby mode 

 

LoRa_receive( ) 

LoRa_writeRegister(mode_register, value)       // put in RX mode 

 LoRa_writeRegister(FIFO_address, LoRa_readRegister(current_RX_addr)) 

 LoRa_writeRegister(mode_register, value)       // put in standby mode 

 return LoRa_readRegister(FIFO_address) 

 



45 

 

 

Figure 3.19: Data communication between LoRa modules using the ATmega328P. 

3) Implementing the firmware on the tracker node 

At this point, and after testing the functionality of both the LoRa and GPS modules, we were 

able to write a complete firmware for the tracker node which was based on the functions that 

were written during the testing phase. The tracker firmware starts by initializing the UART 

and SPI protocols for data communication between the NEO-6M and the SX1278 modules. 

The LoRa module is then configured based on the required parameters set by the user; the 

firmwarewillbreakifanyerroroccursduringthemodule‘sinitialization.Thetrackernode

then tries to get valid GPS data, extracts the latitude and longitude fields out of it, sends both 

information one at a time then waits for n seconds before receiving the next valid GPS 

location. The same operation is executed continually and infinitely as long as the core MCU 

has a power source attached to it. Below is the pseudocode for the tracker node system.  

Begin 

data[], latitude[], longitude[] 

Initialize UART protocol 

Initialize SPI protocol 

if( !LoRa_begin() ) 

 return false 

while(true) 

 if( GPS_valid( data[] ) ) 

  latitude = GPS_getLatitude( data[] ) 

  longitude = GPS_getLongitude( data[] ) 

  LoRa_send( latitude ) 

  LoRa_send( longitude ) 

  delay( n_seconds ) 

End 



46 

 

3.4.2. Web application installation 

Before moving to the gateway software implementation, it was better to set up the web 

application first then test sending data from the gateway to the web application. By the web 

application we mean the data storage and the visualization tools; for that purpose we have used 

InfluxDB open-source time-series database for data storage and Grafana multi-platform open-

source analytics and interactive web application for data visualization. 

1) InfluxDB installation and testing 

InfluxDB is a database management system developed by InfluxData, open-source, and can be 

used free of charge. In addition, it can run as a customizable local server with a web-based 

user interface that easily allows the insertion, deletion, and modification of data stored in the 

database. InfluxDB includes a built-in time service that uses the Network Time 

Protocol (NTP) to ensure that time is synchronized between all systems which makes it ideal 

for dealing with time-series data such as IoT data. On the other hand, we have used InfluxDB 

as it provides an Arduino client library to write data directly from the ESP8266 gateway into 

the database. 

We have first installed the InfluxDB local server on our Linux host machine using commands 

provided in the influxDB official website. Figure 3.20 shows that InfluxDB local server was 

running properly. By default, InfluxDB uses TCP port ―8086‖ for client-server 

communication; using a web browser, we could access the InfluxDB local server user 

interface. Figure 3.21 shows the welcome page of the influxDB local server user interface, at 

the leftmost of the page there exits different options to interact with the backend of the data 

management system such as inspecting data using data queries which can be executed directly 

on this web page. 

 

Figure 3.20: InfluxDB local server status. 

https://www.ionos.com/digitalguide/hosting/technical-matters/database-management-systems-dbms/
https://www.ionos.com/digitalguide/server/know-how/network-time-protocol-ntp/
https://www.ionos.com/digitalguide/server/know-how/network-time-protocol-ntp/


47 

 

 

Figure 3.21: InfluxDB local server user interface. 

2) Grafana installation and testing 

Grafana is an open-source visualization and analysis software that allows users to query, 

visualize, alert on, and explore metrics no matter where they are stored. Grafana provides tools 

to turn time-series database (TSDB) data into beautiful graphs and visualizations. We have 

chosen Grafana as a visualization tool as it allows data query from a wide range of data 

sources including influxDB database which is used for storage in our application. Grafana was 

installed locally using commands from the official website. Figure 3.22 shows that Grafana 

local server was running properly. By default, Grafana uses TCP port ―3000‖ for client-server 

communication. Again, and using a web browser, we could access the Grafana local server 

user interface as shown in Figure 3.23. Grafana allows interacting with the backend server 

using the buttons on the leftmost of the user interface, they allow adding data sources, creating 

panels, and adding dashboards for visualization. 

 

Figure 3.22: Grafana local server status. 



48 

 

 

Figure 3.23: Grafana local server user interface. 

3.4.3. Gateway firmware implementation 

The gateway hardware implementation was based on the ESP8266 Wi-Fi module, see 

section 3.2.6. As is the case for all MCUs, ESP8266 allows different options for software 

development; however, in our case we have used the Arduino Integrated Development 

Environment which provides a full Toolchain to develop firmware for the ESP8266. Unlike 

the tracker node firmware which was implemented from scratch using C programming code, 

here we have used Arduino libraries which are built on top of the C++ programming language; 

thismadeiteasierforustodevelopthegateway‘sfirmwareandespeciallyforimplementing

the network communication part as Arduino provides several libraries for all network 

communication interfaces; this was the main motivation to use Arduino IDE in this part of the 

implementation as if we tried to write a firmware from scratch, we would have to dive into 

network communication protocols and the way they work internally which was out of our 

subject mainly. 

For the SX1278 LoRa module, we have used the Arduino-LoRa library from sandeepmistry 

which allows sending and receiving LoRa packets using the ESP8266 [38]. The library source 

code is based on the operation of reading from and writing to the SX1278 internal registers, 

similar to what has been implemented on the tracker node side .To test the functionality of the 

LoRa module with the ES8266, we have configured the SX1278 to work as a receiver while 

sending packets from the tracker node. The Arduino-LoRa library provides three functions to 

handle the receiving operation of packets: 

 LoRa_parsePacket() returns the number of bytes received by the LoRa module. 

 LoRa_available() returns True whenever the module finshes receiving the current byte. 



49 

 

 LoRa_receive() returns the received byte by reading the FIFO internal register. 

After, uploading a test code to the ESP8266 we have received data packets from the tracker 

node which was running a test code as well. Figure 3.24 shows packets received by the 

ESP8266. 

 

Figure 3.24: LoRa packets received using the ESP8266. 

Finally, we have used the ESP8266Wi-Fi library to connect to the Wi-Fi access point for data 

transmission over the network, and the InfluxDBV2 client library to write data into the 

database directly from the ESP8266 [39][40]. Thegateway‘sfirmwaredescribedbelowstarted 

by initializing the SPI communication protocol to be used for the SX1278, then to configure 

the LoRa module before any RF packets reception begins; again, if the LoRa module fails to 

configure, the system would break at this point of the operation. The next step was to connect 

the ESP8266 to a Wi-Fi access point which must be relatively near the gateway in order to 

have a stable network connection; this was done based on functions from the ESP8266Wi-Fi 

library. After setting up the parameters of the InfluxDB client which have the database name 

and the fields‘ names to be written to, we could initiate the data receiving operation. If the 

LoRa module captures any RF packet on the air, it will separate the latitude and longitude data 

from eachother‘s, add tags that are necessary on the database side, and then forward the data 

to the web application over the network based on the InfluxDBV2 library functions. 

Figure 3.25 shows the ESP8266 connected successfully to the Wi-Fi access point and the data 

forwarded to the InfluxDB database as well. 

Begin 

 Inp[], latitude[], longitude[] 

Initialize SPI protocol 

if( !LoRa_begin() ) 

 return false 

connect to Wi-Fi 

Set database name                           // from influxDB 

Set columns names to be written to          // from influxDB 



50 

 

while( true ) 

   if( LoRa_parsePacket() ): 

    while( LoRa_available() ): 

     Inp[i++] = LoRa_receive() 

  // get latitude and longitude from the received packet 

   for i from 0 to latitude field index: 

    latitude[i] = inp[i]  

   for j from 0 to longitude field index: 

    longitude[i] = inp[i+ longitude field index] 

   Add tags to latitude and longitude   // will be used in database 

   Send latitude and longitude to database 

End 

 

 

Figure 3.25: ESP8266 Wi-Fi connection and data transmission. 

3.5. Results and discussion 

To observe the full data path of our implementation, from the tracker node to the gateway until 

the visualization map, we have placed the tracker on a moving car while fixing the gateway in 

a building that has a Wi-Fi access point. The car was moving within a free range to test the 

reach of the LoRa module and the accuracy of the GPS module. Figure 3.26 shows a set of 

data points acquired duringthecar‘smovement,theyellowsquarerepresents the location of 

thegatewayandthegreencirclesshowthecar‘slocationsduringthe movement. The data has 

been sent successfully from the tracking node, received by the gateway, forwarded to the 

influxDB database, and visualized as shown below in the Grafana visualization map; resulting 

the intended task that our solution was designed for, which is to track outdoor mobile vehicles. 

The green data points on the map give a clear idea about the current location of the asset, 

which allows the user to track the car in real-time and to collect all needed information about 

its location. 

The gateway was put in three different floors inside of the building to check the LoRa signal 

range in regards to the height between the sender and the receiver. The gateway could receive 



51 

 

data points from the tracker at a range of up to 293 meters. The red circle in Figure 3.26 was 

drawn on the map to demonstrate the part where the LoRa signal was missed, that part of the 

map contains a dense number of buildings which may act as an obstacle that prevents the RF 

signal from reaching the gateway. Placing the gateway in a higher location regarding the Lora 

nodes will increasingly allow greater reach for the LoRa signal. Table 3.1 shows different 

ranges acquired from our implementation during the test. 

 

Figure 3.26: Tracking map test results from Grafana user interface. 

Table 3.1: Gateway height vs LoRa range. 

Gateway height (m) Range (m) 

2 (first floor) <100 

5 (second floor) 100-200 

8 (third floor) >200 

 

During the test, the car was moving on the roads of the streets around the building where the 

gateway was fixed. It is clear that some of the points do not appear exactly within the road but 

next to it, this is due to the GPS module accuracy which is common when working with such 

technology. An error of 1-3 meters was observed about the location of the car. Figure 3.27 

shows the real location of the car in the blue color and next to it the acquired location using 

our tracking node in the green color. Although there was an error in the data points on the 

map, this did not affect the information delivered by the tracker as it still gives the 

approximate location of an asset which is enough to locate the asset and perform a decision for 

such use case. 



52 

 

 

Figure 3.27: The acquired location vs the real location. 

The firmware on the gateway was designed to capture the data only from a single node; 

however, it is possible to enhance the functionality of the gateway by implementing a real-

time operating system-based firmware on top of more powerful computing unit to allow 

handling thousands of nodes simultaneously. On the tracker node side, we could implement 

logic to put the node on a sleep mode when the vehicle is not moving to increase the battery 

life while serving the intended operation. Regarding the GPS accuracy and the LoRa signal 

reach, the asset tracking solution based on these technologies works perfectly within large 

industrial environments, where tracking the location of constantly moving vehicles is greatly 

needed. 

 

 

 

 

 

 

 

 

 



53 

 

Conclusion 

The IoT asset tracking solution was an attempt to deliver a cheap and reliable system that 

provides more meaningful insights to users interested in tracking assets within large industrial 

environments. Our design was based on GPS technology for localization and LoRa wireless 

communication technology for data transmission. The system consists of a gateway that 

receives location data a tracking node. The tracker node is the part responsible for localization 

and data transmission over long ranges. The gateway is a hub to collect data sent from nodes 

then forward these data to the web application where the storing and visualization occurs. 

Both the tracker node and the gateway were implemented successfully using cheap hardware 

modules. First, the GPS and LoRa modules were tested individually to check the functionality 

of these parts; for each module, a software driver that runs on top of an MCU was written. 

Libraries were used in the gateway part to allow receiving RF packets along with the network 

interface data communication. The web application was installed and tested with the gateway 

as well. After setting up all parts of the solution, we could track a moving vehicle sending data 

wirelessly over approximately a long-range. Location data were received by the gateway then 

forwarded to the web application where data points appeared on the visualization map.  

The design and implementation of the asset tracking solution prototype introduced a Proof-of-

Concept that deals with a limited number of nodes, specifically, in our system the gateway 

could receive locations from one node only. For future work, an algorithm that handles 

thousands of nodes will be designed to enhance the functionality of the system to meet 

realistic use cases that are faced in the industry nowadays. Furthermore, the implemented 

system does not include an addressing logic when sending data from nodes to the gateway 

meaning that the gateway can capture any data on its range, for that reason, the LoRaWAN 

protocol can be integrated into our system as a full solution that provides nodes addressing, 

data encryption, a network server for management and much more.



 

 

Bibliography 

[1]       J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): A vision, 

      architectural elements, and future directions. Future generation computer systems. Sep. 

      2013. 

 

[2]       I.F. Akyildiz, W. Su, and Y. Sankarasubramaniam, E. Cayirci, Wireless sensor 

      networks: a survey. Computer Networks 38. March 2002. 

 

[3]       Tableau Software, Data visualization beginner's guide: a definition, examples, and 

      learning resources. < https://www.tableau.com/learn/articles/data-visualization >. 

      [Accessed Apr. 13, 2021]. 

 

[4]       K. Ashton, That―Internet of Things‖ thing. RFiD Journal?. 2009. 

 

[5]       I. Lee, K. Lee, The Internet of Things (IoT): Applications, investments, and challenges 

      for enterprises. Business Horizons. Jul. – Aug. 2015. 

 

[6]       Albert Behr, Best Uses of Wireless IoT Communication Technolog.< 

      https://industrytoday.com/best-uses-of-wireless-iot-communication-technology/ >. 

      Dec. 10, 2018. [Accessed Apr. 17, 2021]. 

 

[7]       International Organization for Standardization, ISO 55000: Asset management — 

      Overview, principles and terminology, Jan. 2014. 

 

[8]       Comparesoft Ltd, What is Asset Tracking, and How Does It Work?. < 

      https://comparesoft.com/assets-tracking-software/what-is-assets-tracking/ >. [Accessed 

      Apr. 19, 2021]. 

 

[9]       L.Batistić,M.Tomic,OverviewofIndoorPositioningSystemTechnologies. MIPRO 

      2018. May 21-25, 2018. 

 

[10] Brian Ray, Which Indoor Asset Tracking Technology is Best?. < 

      https://www.airfinder.com/blog/which-indoor-asset-tracking-technology-is-best>. Apr. 

      26, 2019. [Accessed Jun. 25, 2021]. 

 

[11] Link Labs, Breaking it Down: The Building Blocks of Asset Tracking and Asset 

      Monitoring. < https://www.link-labs.com/asset-tracking >. [Accessed Apr. 19, 2021]. 

 

[12] G. Lachapelle, GNSS Indoor Location Technologies. GNSS 2004, the International 

      Symposium on GNSS/GPS. 2004. 

 

https://www.tableau.com/learn/articles/data-visualization
https://industrytoday.com/best-uses-of-wireless-iot-communication-technology/
https://comparesoft.com/assets-tracking-software/what-is-assets-tracking/
https://www.airfinder.com/blog/which-indoor-asset-tracking-technology-is-best
https://www.link-labs.com/asset-tracking


 

 

[13] Official U.S. government, GPS: The Global Positioning System. < 

      https://www.gps.gov/systems/gps/>. Feb 22, 2021. [Accessed Apr. 21, 2021]. 

 

[14] The National Marine Electronics Association. < https://www.nmea.org/ >. [Accessed 

      Jun. 26, 2021]. 

 

[15] Eric Gakstatter , What Exactly Is GPS NMEA Data?. < 

      https://www.gpsworld.com/what-exactly-is-gps-nmea-data/ >. Feb. 4, 2015. [Accessed 

      Jun. 26, 2021]. 

 

[16] Trimble, NMEA-0183, Messages Guide for AgGPS Receivers. Feb. 2004. 

 

[17] N.Rahemi, M. R. Mosavi, A. A. Abedi, and S.Mirzakuchaki, Accurate Solution of 

      Navigation Equations in GPS Receivers for Very High Velocities Using Pseudorange 

      Measurements, Department of Electrical Engineering, Iran University of Science and 

      Technology, Narmak, Tehran 16846-13114, Iran. Jun. 29, 2014. 

 

[18] Dali I., Mahbubur R., Abusayeed S., Low-Power Wide-Area Networks: Opportunities, 

      Challenges, and Directions. The Workshop Program of the 19th International 

      Conference. Jan. 2018. 

 

[19] DP Acharjya and M Kalaiselvi Geetha, Internet of Things: Novel Advances and 

      Envisioned Applications. 2017. 

 

[20] Andrew J Viterbi, CDMA: principles of spread spectrum communication. Addison 

      Wesley Longman Publishing Co., Inc. 1995. 

 

[21] Semtech, AN1200.22, LoRa Modulation Basics. May, 2015. 

 

[22] Semtech, What are LoRa and LoRaWAN?.  

      < https://loradevelopers.semtech.com/library/tech-papers-and-guides/lora-and 

      lorawan >. [Accessed Apr. 27, 2021]. 

 

[23] Semtech, What is LoRa.< https://www.semtech.com/lora >. [Accessed Apr. 27, 2021]. 

 

[24] IEEE Computer Society, IEEE Standard 802.15.4a-2007. New York, NY: IEEE. Aug. 

      31, 2007. 

 

[25] Robert Lie, LoRa/LoRaWAN tutorial,  

      < https://www.youtube.com/playlist?list=PLmL13yqb6OxdeOi97EvI8QeO8o-PqeQ0g 

      >. [Accessed May 02, 2021]. 

 

[26] Martin Bor and Utz Roedig, LoRa Transmission Parameter Selection. 13
th

 

      International Conference on Distributed Computing in Sensor Systems (DCOSS).2017. 

 

https://www.gps.gov/systems/gps/
http://www.nmea.org/
https://www.nmea.org/
https://www.gpsworld.com/what-exactly-is-gps-nmea-data/
https://loradevelopers.semtech.com/library/tech-papers-and-guides/lora-and%20%20%20%20%20%20lorawan
https://loradevelopers.semtech.com/library/tech-papers-and-guides/lora-and%20%20%20%20%20%20lorawan
https://www.semtech.com/lora
https://www.youtube.com/playlist?list=PLmL13yqb6OxdeOi97EvI8QeO8o-PqeQ0g


 

 

[27] Manuel Jiménez, Rogelio Palomera , and Isidoro Couvertier , Introduction to 

      Embedded Systems: Using Microcontrollers and the MSP430. 2014. 

 

[28] Elecia White, Making embedded systems design patterns for great software. Nov 2011. 

 

[29] Molly Galetto, What is Data Management?. < https://www.ngdata.com/what-is-data 

      management/ >. March 31, 2016. [Accessed May 05, 2021]. 

 

[30] Oracle, what is a database. < https://www.oracle.com/database/what-is-database/ >. 

      [Accessed May 05, 2021]. 

 

[31] InfluxData, what is a time series database.  

      < https://www.influxdata.com/time-series-database/ >. [Accessed May 06, 2021]. 

 

[32] U-blox , U-blox 6 GPS Modules Data Sheet, Docu. No. GPS.G6-HW-09005-E. 

 

[33] Semtech, SX1276-7-8-9 Datasheet. 

 

[34] Atmel, Atmel ATmega328P Datasheet. 

 

[35] Espressif, ESP8266EX Datasheet. 

 

[36] Keith Shaw, Wi-Fi standards and speeds explained. 

      < https://www.networkworld.com/article/3238664/80211x-wi-fi-standards-and-speeds 

       explained.html >. Apr. 23, 2020. [Accessed May 14, 2021]. 

 

[37] Encyclopedia Britannica, <https://www.britannica.com/technology/TCP-IP >. 

      [Accessed May 16, 2021]. 

 

[38] Sandeep Mistry, Arduino LoRa Library.  

      < https://github.com/sandeepmistry/arduino-LoRa >. [Accessed Apr. 01, 2021]. 

 

[39] ESP8266 Community Forum, Arduino core for ESP8266 Wi-Fi chip,  

      < https://github.com/esp8266/Arduino > [Accessed Apr. 02, 2021]. 

 

[40] Tobias Schürg, InfluxDB Arduino Client,  

      < https://github.com/tobiasschuerg/InfluxDB-Client-for-Arduino >. [Accessed Apr. 03, 

      2021]. 

 

https://www.ngdata.com/what-is-data%20%20%20%20%20%20management/
https://www.ngdata.com/what-is-data%20%20%20%20%20%20management/
https://www.oracle.com/database/what-is-database/
https://www.influxdata.com/time-series-database/
https://semtech.my.salesforce.com/sfc/p/E0000000JelG/a/2R0000001Rc1/QnUuV9TviODKUgt_rpBlPz.EZA_PNK7Rpi8HA5..Sbo?__hstc=212684107.7ad0ca6509f8bbb94af7f8edb5404f04.1619688985699.1619702738568.1620551700926.5&__hssc=212684107.1.1620551700926&__hsfp=4264563489
https://www.networkworld.com/article/3238664/80211x-wi-fi-standards-and-speeds%20%20%20%20%20%20%20explained.html
https://www.networkworld.com/article/3238664/80211x-wi-fi-standards-and-speeds%20%20%20%20%20%20%20explained.html
https://www.britannica.com/technology/TCP-IP
https://github.com/sandeepmistry/arduino-LoRa
https://github.com/esp8266/Arduino
https://github.com/tobiasschuerg/InfluxDB-Client-for-Arduino

