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                          ABSTRACT 
 

 

 
 

 

 

This report presents a comparison study of performances and characteristics of three advanced 

state observers, including the high-gain observers, the sliding-mode observers and the extended 

state observers. These observers were originally proposed to address the dependence of the 

classical observers, such as the Kalman Filter and the Luenberger Observer, on the accurate 

mathematical representation of the plant. The results show that, over all, the nonlinear extended 

state observer is much superior in dealing with dynamic uncertainties, disturbances and sensor 

noise. Several novel nonlinear gain functions are proposed to address the difficulty in dealing with 

unknown initial conditions. Simulation results are provided. 

 

Keywords: High Gain Observer, Sliding Mode Observer, Nonlinear Extended State Observer. 
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                                  GENERAL   INTRODUCTION 
 

 

 

 

In many applications, estimating the current state of a dynamical system is crucial 

either to build a controller or simply to obtain real time information on the system for 

decision-making or surveillance. A common way of addressing this problem is to place some 

sensors on/in the physical system and design an algorithm, called observer, whose role is to 

process the incomplete and imperfect information provided by the sensors and thereby 

construct a reliable estimate of     the whole system state. Of course, such an algorithm can exist 

only if the measurements from the sensor somehow contain enough information to determine 

uniquely the state of the system, namely the system is observable. 

 

The number and quality of the sensors being often limited in practice due to cost and   

physical constraints, the observer plays a decisive role in a lot of applications.  Many efforts 

have thus been made in the scientific community to develop universal methods for the 

construction of observers. Several conceptions of this object exist, but in this work, we mean by 

observer a finite-dimensional dynamical system fed with the measurements, and for which a 

function of the state must converge in time to the true system state. Although very 

satisfactory solutions are known for linear systems, nonlinear observer designs still suffer from a 

significant lack of generality. The very vast literature available on the subject consists of 

scattered results, each making specific assumptions on the structure and observability of the 

system. In other words, no unified and systematic method exists for the design of observers 

for nonlinear systems [1]. 

 

On the contrary of linear observer theory, which has approximately reached to a saturation 

point, researches on nonlinear systems observers are still premature and far away from complete. 

Actually, design methodologies, stability analysis and formulation of nonlinear observer for 

nonlinear systems still encounter hard difficulties. In this context, the enlargement of stability region 

of attraction for nonlinear observer is the challenging problem which attracted many researchers who 

proposed many approaches to solve this problem. One solution is based on expansion or linearization 

irrespective to system complexity such as Leunberger observer and Kalman filters for nonlinear 

systems [2].  
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The Luenberger observer (1971), which is a linear observer, has been the essential approach 

in designing the state estimators in control theory. The works proposed by Arthur J. Krener and 

Alberto Isidori (1983), Arthur Krener andWiltold Respondek (1985), and Xiaohua Xia and Wei Gao 

(1989) had firstly addressed the theory of observers in nonlinear system by approximating the 

nonlinear dynamic of observation error to linear structure by imposing a set of conditions. However, 

the necessary and sufficient conditions of such observation approaches, like the feedback 

linearization problem, are somewhat restrictive [1, 2]. 

  

Another contribution to the linearization technique is made by Zeitz (1987), which proposed 

an algorithm that extends the Luenberger observer for nonlinear systems. This algorithm used input 

time derivatives and it was easy to implement. However, the critical issue with this technique is that 

the convergence of the Luenberger observer cannot be guaranteed. Later in 1989, Tornambe 

presented an approach to cancel the nonlinearity based on high gain approximation. The main 

drawback with this algorithm is that it cannot guarantee asymptotic convergence of estimation error 

to zero with arbitrarily finite high gain in spite that the error might be bounded and the initial 

conditions of both system and observer states have to be set synchronously [1, 2]. 

 

 In 1990, an adaptive observer was proposed by Marino for Single Input-Single Output 

(SISO) nonlinear systems. The difficulty with this observer is that the nonlinear system is either in 

(or transformed to) an observable canonical form. The work presented by Bastin and Gevers (1988) 

could establish the necessary and sufficient conditions that transform the nonlinear system into 

observable canonical form. However, such conditions are restrictive since transforming the observer 

to canonical form may be difficult to be found. Although this adaptive observer does not require the 

full information of dynamic systems model, it can guarantee asymptotic stability to only finite error 

[3].  

 

In 1990, Tsinias proposed an observer which is able to guarantee the convergence of 

estimated states of observer to the actual states. In 1992, Gauthier et al. presented a contribution to 

the nonlinear observation theory by introducing an observer which can asymptotically track the 

states of nonlinear system in such a way that the Lyapunov equation can be determined by observer 

gain. However, the existence of globally defined and globally Lipschitzian change of coordinates is a 

prerequisite of this observation method. It was shown that for any nonlinear system which is 

observable to any input, an observer with global convergence can be found. Gauthier et al. could 

present an alternative proof to show this hypothesis [2]. 
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  In 1992, Khalil and Esfandiari presented a new observer for output feedback control design 

called High-Gain Observer (HGO). HGO shows robust characteristics in estimating the unmeasured 

states and asymptotic attenuation of disturbances. Later in 1999, At tassi etal proved that the 

separation principle can be achieved with HGO for a wide class of systems and this was the basis in 

solving many nonlinear system problems [4, 5]. In 2008, a modified version HGO named as an 

Extended High Gain Observer (EHGO) has been proposed by Freidovich. The observer was used to 

reduce the effect of model errors and unknown disturbances in fully actuated mechanical systems 

[6,7]. 

  

Other efficient tool for observation is the sliding mode observers. The development of this 

type is contributed by pioneers of researchers such as Slotine, Utkin and Walcott [8]. These 

observers are basically based on sliding theory and can solve the problem of peaking phenomenon 

seen in HGO. They are able to offer finite-time convergence, and robustness with respect to 

uncertainties and the possibility of uncertainty estimation. Second sliding mode observer, super 

twisting sliding mode observer and adaptive sliding mode observer are other advanced versions of 

sliding mode observer, which recently used in many applications [8, 9, 36].  

 

In 1995, J. Han introduced a unique observer design by class of Nonlinear Extended State 

Observers (NESO). The main feature with this observer is that it does not depend on plant 

mathematical model. Thus, enhanced robustness has been achieved and it was verified and applied in 

different industrial observer-based control applications [10 - 12].  

 

Generally, the observers can be divided into three groups: linear, non-linear and disturbance 

observers. The linear and nonlinear observers mainly rely on the mathematical model of considered 

systems including the knowledge of existing noises and disturbances. More exact model information 

will give better estimation accuracy of such observers. On the other hand, the disturbance observer is 

concerned with input-output data. This type of observer can tackle systems of high nonlinearities and 

uncertainties and has the capability to disturbance rejection effectively. Fig .1 illustrates the details 

of observer classification [1, 2]. 

 

The present work focuses on a comparison of performances and characteristics of threse 

observers.  The criterion for comparison is based on the observer tracking errors, both at steady state 

and during transient, and the robustness of the performance with respect to the uncertainties of plant. 

To further enhance the performance of NESO in the presence of unknown initial conditions, several 
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nonlinear gain functions are introduced. The simulations conducted assisted in gaining insight of 

observer behavior in a nonlinear servo motor system. It results are provided to give realism. 

 

 

 
 
 

 

                                                        Figure 1.General Classification of Observers 

 

 

 Problem Formulation 

            The design of observers have faced critical challenges in practical applications due to the 

presence of nonlinearities, disturbances and dynamic uncertainties. Thus, obtaining high-

performance robust observer design was the target of many researchers. In the last two decades, 

several advanced observer design techniques have been proposed like high gain observers (HGOs), 

sliding mode observers (SMO), extended state observer (ESO), nonlinear extended state observer 

(NESO). 

 

 

 

Classification of Observers 
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Motivation of the project 

 

From the literature review, it appears that several unresolved issues exist in the 

current nonlinear control methods. 

Most nonlinear controllers are state feedback controllers. When the state of the system is 

unavailable or the sensor is expensive, observers must be used in estimation. The motivation of this 

work is to find a set of observer based the control systems that are relatively independent of the 

mathematical model, perform better, and are simple to implement. 

The objectives of this thesis can be divided into several items as follows: 

1. To design and develop non-linear high-gain observer HGO to estimate the system states to be 

used in the comparative study of the observers. 

2. To design and develop non-linear sliding mode observer SMO to estimate the system states to 

be used in the comparative study of the observers. 

3. To design and develop non-linear extended state observer NESO to estimate the system states to 

be used in the comparative study of the observers. 

4. To presents a comparison study of the characteristics and performances of 

the HGO, SMO, and NESO. 

 

Work methodology 

 

The Nonlinear Extended State Observer (NESO), proposed by Professor Jingqing Han, can 

estimate the state without a mathematical model of the system. It is a novel concept for observer 

design, estimating not only the state, but also the internal and external disturbances, thus making 

disturbance rejection control possible. The invention of NESO is a revolutionary concept for control 

theory and application. It has several properties including model-independence, active estimation, 

compensation for disturbances, simple design, and strong robustness. This method has evolved as 

an important technique for the state feedback control of nonlinear systems. 

  In this dissertation, the concepts of the NESO, the High Gain Observer (HGO), and the 

Sliding Mode Observer (SMO) are introduced in Chapter II. Chapter III presents a comparative 

study of these three observers, which is based on the robustness of the performance with respect to 

the uncertainties of the plant and the observer tracking errors, both at steady-state and transient.
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           NONLINEAR CONTROL SYSTEMS 
 

 

This chapter is divided to into four sections. The first section discusses nonlinear control 

systems in general; linear and non-linear controllers are briefly discussed. The feedback 

linearization control is reviewed in the second section. The third section highlights the use of 

variable structure with sliding mode control, the last section explained another nonlinear control 

theory under the name back stepping control, and all of the above have been conclude in the end 

of this chapter. 
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1.1. Introduction: 

 

Nonlinear control theory is the area of control theory which deals with systems that 

are nonlinear, time-variant, or both. Control theory is an interdisciplinary branch of engineering 

and mathematics that is concerned with the behavior of dynamical systems with inputs, and how 

to modify the output by changes in the input using feedback, feed forward, or signals filtering. 

The system to be controlled is called the "plant". One way to make the output of a system 

follow a desired reference signal is to compare the output of the plant to the desired output, and 

provide feedback to the plant to modify the output to bring it closer to the desired output. 

 

Control theory is divided into two branches. Linear control theory applies to systems made 

of devices which obey the superposition principle. They are governed by linear differential 

equations. A major subclass is systems which in addition have parameters which do not change 

with time, called linear time invariant (LTI) systems. These systems can be solved by 

powerful frequency domain mathematical techniques of great generality, such as the Laplace 

transform, Fourier transform, Z transform, Bode plot, root locus, and Nyquist stability criterion. 

 

Nonlinear control theory covers a wider class of systems that do not obey the superposition 

principle. It applies to more real-world systems, because all real control systems are nonlinear. 

These systems are often governed by nonlinear differential equations. The mathematical 

techniques which have been developed to handle them are more rigorous and much less general, 

often applying only to narrow categories of systems. These include limit cycle theory, Poincaré 

maps, Lyapunov stability theory, and describing functions. If only solutions near a stable point 

are of interest, nonlinear systems can often be linearized by approximating them by a linear 

system obtained by expanding the nonlinear solution in a series, and then linear techniques can 

be used. Nonlinear systems are often analyzed using numerical methods on computers, for 

example by simulating their operation using a simulation language. Even if the plant is linear, a 

nonlinear controller can often have attractive features such as simpler implementation, faster 

speed, more accuracy, or reduced control energy, which justify the more difficult design 

procedure [18].  
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1.2. Feedback Linearization Control: 
                   

Feedback linearization  is considered as a non-linear control method in which non-linear 

system is indirectly linearised, where linearization is achieved by ex- act feedback and 

exact state transformations rather than linearising the system dynamics directly using 

linear approximation, Tylor series or Jacobian transformation. 

 

Feedback linearization is to employ a non-linear control law so that the controlled sys- 

tem combined with non-linear control behaves linear and controllable in the closed-loop. 

As shown in Figure 1.1, feedback linearization is implemented using two control loops, 

the inner control loop is referred to as non-linear linearising control law, while the outer 

control loop is to control the resultant linear system achieved by the inner loop control 

[19]. 

 

 
 

   r  
 

 

 

 

 

 

 
 

Figure 1.1.Feedback linearisation control block diagram 

 

 

There are two types of feedback linearization, input-output linearization in which 

input- output map is completely linearised, yet the state equations might be partially 

linearised. Another type of feedback linearization is input-state linearization or referred to 

by some as full-state linearization where the state equation is completely linearised. 

In input-output linearization, the method of linearising input-output map can be briefly 

explained by writing the state and output equations in the form of 

 

𝑥̇(t)=f(x,u) 

                                                                          𝑥̇(t)=g(v,y)                                                                   (1.1) 
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Where 𝑥̇ is the dynamic change of the system, x, u and y represent the states, input and output      

of the system receptively and v is the control synthesis or the input to the linearised system. State 

equation is said to be related to output equation if there is a diffeomorphism     as 

 

 

T: → Rn+1 →→ Rn+1        (1.2) 

 

Such that T1(x, u) = y1, T2(x, u) = y2, ... and Tn+1(x, u) = v. Thus the feedback 

equivalent to the system can be represented in terms of state equation as:  

 

                                           

(

 
 
 

𝑦̇1
𝑦̇2
.
.
.
𝑦̇𝑛)

 
 
 

= 

(

  
 

𝑦1
𝑦2
.
.
.
𝑦𝑛)

  
 

+

(

  
 

0
0
.
.
.
1)

  
 

 v 

 

This is considered as linear, time-invariant and controllable single input system. 

 

1.3. Variable Structure, Sliding-Mode Control: 

  

 Sliding mode control is a subset of variable structure control [20, 21], in which the states of 

the system are guided into a switching surface and then the states slide to the origin, as shown in 

Figure 1.2. Variable structure system and control were developed by Utkin and sliding mode 

control was introduced by Utkin as well (Utkin, 1978). 

 

                
                                 Figure1.2.Sliding mode demonstration 
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Variable structure control [20, 21] has been widely used over the last decade for the control 

of uncertain systems because of its robustness to modeling uncertainties and disturbances, consider 

the dynamic system: 

                                                    𝑥(𝑛)(𝑡) = 𝑓(𝑋; 𝑡) + 𝑏(𝑋; 𝑡)𝑢(𝑡) + 𝑑(𝑡)                                      (1.1) 

Where u(t) is scalar control input, x is the scalar output of interest, and  𝑋 = [𝑥, 𝑥,̇ … , 𝑥(𝑛−1)]
𝑇
 is the 

state. The function 𝑓(𝑋; 𝑡)  is not exactly known, but the extent of imprecision  |∆𝑓| on 𝑓(𝑋; 𝑡)   is 

upper bounded by a known continuous function of X and t; similar to the control gain 𝑏(𝑋; 𝑡). The 

disturbance d (t) is unknown but bounded in absolute value by a known continuous function of time. 

The control problem is to get the state X to track a specific state  𝑋𝑑 = [𝑥𝑑 , 𝑥̇𝑑 , … , 𝑥𝑑
(𝑛−1)

]
𝑇
 in the 

presence of model imprecision on f(X;t), b(X;t) and disturbance of d(t). To guarantee that this is 

achievable using a finite control u, it must be assumed: 

                                                                 𝑋̃|
𝑡=0

= 0                                                                         (1.2)    

 

Where  𝑋̃ = 𝑋 − 𝑋𝑑 = [𝑥̃, 𝑥̃,̇ … , 𝑥̃
(𝑛−1)𝑇]. A time-varying sliding surface s(t) is defined in the 

state-space 𝑅𝑛as 𝑆(𝑥̃; 𝑡) = 0 with: 

                                                              𝑆(𝑥̃; 𝑡) = (
𝑑

𝑑𝑡
+ 𝜆)𝑛−1𝑥̃, 𝜆 > 0                                     (1.3) 

     Where λ is a positive constant 

Given initial condition (1.2), the problem of tracking 𝑋 = 𝑋𝑑 is equivalent to that of remaining on 

the surface 𝑆(𝑡) for all 𝑡 > 0; indeed  𝑆 ≡ 0 represents a linear differential equation whose unique 

solution is 𝑋̃ ≡ 0  thus, the problem of tracking the n-dimensional vector 𝑥𝑑 can be reduced to that of 

keeping the scalar quantity s at zero. A sufficient condition for such positive invariance of s (t) is to 

choose the control law u(t) of (1.1) to satisfy 

                                                                   
1

2

𝑑

𝑑𝑡
𝑠(𝑥; 𝑡) ≤ −ῃ|𝑠|                                                       (1.4) 

 

Where ῃ is a positive constant. Inequality (1.4) constrains trajectories to point towards 

the surface s (t) (Fig. 1.3), and is referred to as the sliding condition. 
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                             Figure 1.3.The Sliding condition 

 

1.4. Back stepping control: 

 
In the last few decades, several control techniques are deployed for the stabilization, 

regulation, and control of linear and nonlinear dynamical systems. For linear autonomous systems, it 

is easy to find a control Lyapunov function for stability and optimization problems. However, 

finding a suitable control Lyapunov function is a challenging problem for nonlinear control systems.                            

 

The back stepping control method is a recursive design procedure that links the choice of a 

control Lyapunov function with the design of a feedback controller and guarantees global asymptotic 

stability of strict feedback systems. The active back stepping control method is a practical tool to 

overcome the limitations of the feedback linearization approach in the control literature. The block 

back stepping control method is a general back stepping control method with more applicability in 

the control literature. The adaptive back stepping control method is a modified form of back stepping 

control method that uses estimates for unknown parameters in the systems. The robust back stepping 

control method is an effective back stepping technique for control systems with uncertainties. 

 

The basic idea of this method is to leave some states of the system act as virtual inputs. The 

back stepping uses a form of the system chain of integrators, after a coordinate transformation of a 

triangular system and based on the direct method of Lyapunov. The method is to split the system into 

a set of subsystem nested descending order. From there, it is possible to design systematically and 

recursively controllers and corresponding Lyapunov functions [22]. 
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Back stepping theory: The control objective is to design a robust controller for the output y(t) of the 

system to track the output yref of the reference model asymptotically .assume that not only yref, but 

also it is first two derivatives 𝑦̇𝑟𝑒𝑓 and 𝑦𝑟𝑒𝑓̈  are all bounded functions of time [23]. The diagram 

block of this back stepping control is shown in Fig.1.4 

 

Fig.1.4. Back stepping control system 

The back stepping design to achieve the position tracking objective is described step by step 

as follows. 

Consider a drive system: 

                                                                   𝑥1̇ = 𝑥2 

                                                                   𝑥2̇ = 𝑢 + 𝜑(𝑥1, 𝑥2)𝜃                                                     (1.5)                    

                                                                   y=𝑥1 

Where       u: control input 

  𝜃:  System parameter 

 y: output state 

 x:  variable state 

Step 1: for the position tracking objective, define the tracking error as  

                                                                        𝑧1 = 𝑦 − 𝑦𝑟𝑒𝑓                                                           (1.6) 

And its derivative as: 

 

                                                                       𝑧̇1 = 𝑦̇ − 𝑦̇𝑟𝑒𝑓                                                            (1.7) 

The 𝑥2 can be viewed as a virtual control in above equation. Define the following stabilizing 

function  

                                                                           𝛼1 = −𝑐1𝑧1                                                           (1.8) 

 

Where 𝑐1 is a positive constant. So, the second regulated variable is chosen as: 

                                                                      𝑧2 = 𝑥2 − 𝛼1 − 𝑦̇𝑟𝑒𝑓                                                    (1.9) 

 

The first Lyapunov function is chosen as: 

 

                                                                     𝑣1 =
1

2
𝑧1
2                                                                   (1.10) 
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Then the derivative of 𝑣1 is 

                                                              𝑣̇1 = 𝑧1𝑧2 − 𝑐1𝑧1
2                                                              (1.11) 

 

Step2: hence, the derivative of the second regulated variable is calculated as  

 

                                                               𝑧̇2 = 𝑥̇2 − 𝛼̇1 − 𝑦̈𝑟𝑒𝑓                                                        (1.12) 

 

To design the controller, add terms concerning 𝑧2 to 𝑣1 to form the following Lyapunov function  

 

                                                             𝑣2 = 𝑣1 +
1

2
𝑧2
2                                                                   (1.13)  

 

Using eq.1.11 and 1.13 the derivative of 𝑣2 can be derived as follows: 

 

𝑣̇2 = 𝑣̇1 + 𝑧2𝑧̇2 

                                                                    = −𝑐1𝑧1
2 + 𝑧2(𝑧1 + 𝑧̇2)                                              (1.14) 

 

According to eq.1.14, the control law u is designed as follows: 

 

                                       𝑢 = −𝑐2𝑧2 − 𝑧1 −  𝜑(𝑥1, 𝑥2)𝜃 − 𝑐1𝑧̇1 + 𝑦̈𝑟𝑒𝑓                                        (1.15) 

 

Where 𝑐2 is a positive constant. Substituting eq.1.15 into eq.1.14, the following equation can be 

obtained  

 

                                                                  𝑣2̇ = −𝑐1𝑧1
2 − 𝑐2𝑧2

2 ≤ 0                                               (1.16) 

 

So, the back stepping control is asymptotically stabilizing. 

 

 

1.5. Conclusion 
 

Nonlinear control systems are those  control systems where nonlinearity plays a significant 

role, either in the controlled process (plant) or in the controller itself. Nonlinear plants arise 

naturally in numerous engineering and natural systems, including mechanical and biological 

systems, aerospace and automotive control, industrial process control, and many others. Nonlinear 

control theory is concerned with the analysis and design of nonlinear control systems which 

provides its basic analysis tools such as feedback linearization control, sliding mode control and 

back stepping control. 
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                   NONLINEAR OBSERVERS 
 

 

 
Observers provide state estimates of the plant to closed-loop control algorithms. The 

control algorithm is designed in two parts: a “full-state feedback” part based on the assumption 

that all of the state variables can be measured and an observer to estimate the state of the 

process based on the observer output. In this chapter, the concepts of a nonlinear linear 

observer are introduced first, a linear observer have been explained as a basic design. The high 

gain observers, sliding mode observers and extended state observers are reviewed. 
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2.1. Introduction 
 

Estimating a state of a dynamical system, whether it is estimated from system input or 

output, is known as “observing the state”, that is where the name of “observer” in the 

theory of systems comes from. In the early works, the principle of observer has been 

widely studied and proven in many linear systems, Linearised systems, in the so-called “observer-

based control”. Figure2.1.(Luenberger, 1979).  

                                                                       

 

                                                         Figure 2.1.luenberger observer 

 

 However, applying such type of linear observer to non-linear system theory has been successfully 

implemented by using the extended Kalman filter (Primbs, 1996). 

                           

                                                Figure 2.2.Kalman filter demonstration.  
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Attempts have continued to construct a non-linear observer using tools developed from pure 

non-linear systems theories. One of the most highlighted results, which used Lyapunov stability 

theory, was presented by Thau (1973) and Kou et al. (1975). Primbs (1996) has considerably 

simplified both these results and presented with examples [39, 41, 43]. 

Techniques relying on Lie-algebraic approach have been introduced in non-linear observer 

design by converting non-linear states of the system to linear states where any applicable linear 

theory can be utilized. Non-linear state transformations method in non-linear observer design was 

primarily developed and introduced by Zeitz (1987) who has designed non-linear observer by 

transformation into a generalized canonical from and Keller (1987) has extended the Luenberger 

observer for non-linear control systems [40, 44]. 

Baumann and Rugh (1986) introduced the method of injecting non-linear output [42], of 

single-input multi-output (SIMO) non-linear system, based on system linearization in order to place 

the eigenvalues of the family of linearised closed-loop systems at specific values, so that the 

linearised error dynamics would have locally constant eigenvalue with respect to the closed-loop 

operating points.  

Figure2.3 summarises the methodology that can be used to design a non-linear observer. 

 

 
 

                                      Figure 2.3.Non-linear observer design hierarchy 
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In the late of 1980’s, high-gain observer was used in controlling non-linear systems two 

groups of researches simultaneously developed techniques in high-gain observer for non-linear 

terms. These were a French group lead by Hammouri, Gauthier and a US group lead by Khalil. The 

French group focused on stabilizing the non-linear system globally under global Lipschitz and the 

structure of non-linear zeros in this work was more general. However, the work done by Khalil’s 

group was in lack of global Lipschitz conditions, i.e. the characteristic of this work doesn’t require 

that non-linearity of the system to satisfy Lipschitz conditions, as when the observer gain is 

sufficiently increased that could destabilize the system, which means only semi-global results were 

achieved in this work with a compact set which can be made arbitrary large. The first demonstration 

of the presence of peaking phenomena in non-linear feedback control was in Esfandiari and Khalil’s 

work, where undesirable peak would make the transient response worse and worse as the observer 

gain increased. It was found that the interaction of peaking phenomena with non-linearity of the 

system drives the system to unstable region and causes the system to have finite escape time [13]. 

 

In the case of designing an observer for linear/ linearised system, a high value of the linear 

Luenberger observer gain “L” will make the estimated states converge very quickly to the system 

states. Nevertheless the initial estimator error can be prohibitively large leading to the so-called 

peaking phenomenon. The aforementioned problem justifies utilizing sliding mode observer. The 

sliding mode observer drives the estimated states to hyper surface (sliding surface) around zero 

estimated error utilizing instead non-linear high gain. This non-linear gain can be implemented with 

any scaled function such as signum, saturation, or tanh function. This kind of non-linear gain will 

maintain the observer trajectories slide along a surface once the estimated states hit this sliding 

surface where the observed outputs exactly match the measured outputs. Hence, this attractive 

feature would reduce the sensitivity of the estimated states to many types of noise [36]. 

 

The extended state observer first proposed by Jingqing Han in can efficiently estimate disturbances, 

uncertainties and sensor noise. ESO is used in the control system to estimate and compensate 

disturbances via a feed-forward cancellation technique. Also, it can be extended to estimate 

uncertainties and disturbances for multi-input–multi-output (MIMO) systems as well [16].
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2.2. Basic Linear Observer Design 
 

 

The concept of separating the state feedback control design into the full-state feedback part 

and observer is known as the separation principle, which has rigorous validity in linear systems, as 

well as a limited class of nonlinear systems. In the linear control community, the well-known 

separation principle states that, for a controller designed using an observer and a constant-gain 

state-feedback gain can be designed separately since the overall closed-loop system eigenvalues 

are the union of those due to the observer alone and those due to the state-feedback controller 

alone [11]. 

 Figure2.4. illustrates the state-feedback design using an observer. 

 

Figure 2.4.State-Feedback Design using an Observer 

 

 

Consider a linear, continuous-time dynamic system: 

(2.1) 

                                                                                                                                                                                    

Given the control input u(t) and the initial condition we can predict the evolution of x(t) and y(t) 

The state evolution is given by: 

  

x(t)=𝑒𝐴𝑡𝑥(0) + ∫ 𝑒𝐴(𝑡−𝜏)Bu(t)dτ
t

0
                                      (2.2) 

𝑥̇(𝑡) = Ax(t) + Bu(t) 

y(t) = Cx(t) 
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Where x(0) is the initial condition, the second term is the convolution contains u(t) which is well known 

because we assume that A, B and C are exactly  known. 

If we simulate a model with state x̂ in parallel with the process: 

 

The process output     y(t) =𝐶𝑒𝐴𝑡𝑥(0) + 𝐶 ∫ 𝑒𝐴(𝑡−𝜏)Bu(t)dτ
t

0
                                            (2.3) 

The model output       ym(t)= 𝐶𝑒𝐴𝑡𝑥̂(0) + 𝐶 ∫ 𝑒𝐴(𝑡−𝜏)Bu(t)dτ
t

0
                                          

(2.4) 

 

 

The model parameters and input u(t) are known exactly, then : 

t > t1 and t1 is too large so 𝑒𝐴𝑡 ≈0 and A must be Hurwitz. 

 

For that it will be:   

                      y(t) ≈ ym(t)                                                                              (2.5) 

                     x(t) ≈  x̂ 

 

A simple observer is an open loop model simulation in parallel with the actual process. But in practice 

this will fail because the model parameters are not known exactly, there are also external signals 

affecting a real system such disturbance. 

Open loop simulation is inadequate because it makes no use of system information and system 

measurements to recalibrate. 

Let have: 

 

y(t) = 𝐶𝑒𝐴𝑡𝑥̂(0) + 𝐶 ∫ 𝑒𝐴(𝑡−𝜏)Bu(t)dτ
t

0
+ Ĉ ∫ 𝑒𝐴(𝑡−𝜏)B̂v(t)dτ

t

0
                                      

(2.6) 

 

Where v(t) is the disturbance signal and the third term in y(t) is the disturbance effects. 

So our model output will be:  

ym (t) = C 𝑒𝐴𝑡𝑥̂(0) + 𝐶 ∫ 𝑒𝐴(𝑡−𝜏)Bu(t)dτ
t

0
                                                                      (2.7) 
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The model parameters are slightly different from the real ones. 

So even with stable dynamics the difference y-ym≠ 0 at t⟶ ∞ due to to parameters error and unknown 

signal v(t). 

For that the parallel model simulation need to be recalibrate to ensure it converges to match the true 

model states, irrespective of v(t) and that by forcing the error between the model output system and the 

real output to zero. 

                           e(t) = y(t)-ym (t) ;   lim
𝑡⟶∞

𝑒(𝑡) = 0 

                           ex(t) = x(t)-𝑥̂      ;    lim
𝑡⟶∞

ex(t) = 0 

 

 A full-order observer for the linear process is defined by 

                                      

                                            𝑥̇̂ = 𝐴𝑥̂ +  𝐿(𝑦 − 𝐶𝑥̂) + Bu                                                                 (2.8) 

 

The estimation error is 

                                          e = x - 𝑥̂                                                                                             (2.9) 

From (2.8) and (2.9) it is given that:  

                                                      𝑒̇ = (A-LC)*e = 𝐴̂𝑒                                                                         (2.10) 

 

The estimation error will converge to zero if Â is a stability matrix. When Â is constant, its eigenvalues 

must be in the open left half-plane. This asymptotic state estimator is known as the Luenberger 

observer [2]. Since the matrices A, B and C are defined by the plant, the only freedom in the design of 

the observer is in the selection of the gain matrix L. Optimization and pole placement are two standard 

design methods. 

Since the observer given by (2.8) has the structure of a Kalman filter, its gain matrix can be 

chosen as a Kalman filter gain matrix [25], i.e, 

 

                                              L  PCR1                                                                (2.11) 

 

Where P is the covariance matrix of the estimation error and satisfies the matrix Riccati equation: 
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                                        𝑃̇  AP  PA  PCR1CP  Q                                                  (2.12) 

R is a positive definite matrix and Q is a positive semi-definite matrix. In most applications the steady-

state covariance matrix is used in (2.11). This matrix is given by setting  𝑃̇ in (2.12) to zero.  The 

resulting equation is known as the algebraic Riccati equation. Algorithms to solve the algebraic Riccati 

equation are included in popular control system software packages such as MATLAB and CONTROL-

C. In order to make the gain matrix given by (2.11) and (2.12) to be genuinely optimum, the process 

noise and the observation noise must be white, with the matrices Q and R as their spectral densities. It is 

nearly impossible to determine these spectral density matrices in practical applications. Hence, the 

matrices Q and R are best treated as design parameters that can be varied to achieve overall system 

design objectives. 

 

An alternative to solving the algebraic Riccati equation in order to obtain the observer gain matrix is to 

select L to place the poles of the observer [26, 27, 28, 29], i.e. the eigenvalues of Â in (2.10). From 

(2.10), the characteristic equation of the error is now given by: 

                                             det[sI  ( A  LC )]  0                                                                          (2.13) 

 

If L is chosen so that A-LC has stable and reasonably fast eigenvalues, i.e. we make the transient matrix 

A-LC has a stable dynamics then  e will decay  to zero and remain there, independent of the known 

forcing function u (t), its effect on the state x (t), and irrespective of the initial condition e (0). 

Therefore, 𝑥̂(𝑡) will converge to x(t) regardless of the value xˆ(0) . Furthermore, the dynamics of the 

error can be chosen for stability, as well as for speed, as opposed to the open-loop dynamics determined 

by A. If we do not have an accurate model of the plant (A, B, C), the dynamics of the error are no longer 

governed by (2.10). 

 

However, we can typically choose L so that the error system is at least stable and the error 

remains acceptably small, even with (small) modeling errors and disturbing inputs. It is important to 

emphasize that the nature of the plant and that of the estimator are quite difference.
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2.2.1. Duality with state feedback control 

 

 The selection of L can be approached in exactly the same fashion that K is selected in the 

control-law design. If Si is the desired location of the estimator error poles than it is specified as: 

                                Si = β1, β2…..βn 

Where βi are the desired poles 

Then the desired estimator characteristic equation e is 

                                 e (s)  (s  ) (s  )...(s  n)                                            (2.14) 

   We can solve for L by comparing coefficients in (2.7) and (2.8). 

     The observer is used mainly to estimate the state for the purpose of feedback control. 

                                    u  K x  ̂                                                                             (2.15)    

      Where: 

                                   𝑥̂ = x – e                                                                              (2.16) 

The closed-loop dynamics is given in part by: 

                                        𝑥̇  Ax  BK(x  e)                                                                  (2.17) 

When a full-order observer is used 

                                        𝑒̇ = Âe  (A  LC) e                                                                (2.18) 

Thus, the complete closed-loop dynamics is 

                             [
𝑥
𝑒̇
̇
] = [

𝐴 − 𝐵𝐾 𝐵𝐾
0 𝐴 − 𝐿𝐶

] [
𝑥
𝑒
]                                                   (2.19) 

Suppose: 

                              Ā = [
𝐴 − 𝐵𝐾 𝐵𝐾
0 𝐴 − 𝐿𝐶

] 

|𝑆𝐼 − Ā| = |𝑆𝐼 − A + BK||𝑆𝐼 − A + LC| = 0                                                           (2.20) 
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The closed-loop eigenvalues are the eigenvalues of A-BK, the full-state feedback system; and the 

eigenvalues of A-LC, the dynamics matrix of the observer. This is a statement of the well-known 

separation principle, which permits one to design the observer and the full-state feedback control 

independently, with the assurance that the poles of the closed- loop dynamic system will be the 

poles selected for the full-state feedback system and those selected for the observer. 

 

 2.3. High Gain Observer 
 

High gain observer is used to estimate unknown state for a nonlinear system with the assumption 

that the system is observable. The design process for high-gain observer is very simple; the observer 

gain is determined based on a positive constant that should be selected as small as possible to have a 

fast state estimation. The first problem of high-gain observer is the so-called peaking phenomenon (the 

state estimation exhibits a large output during transients), but such an issue can easily be solved by 

saturating the control input during transients. Note that the control saturation does not affect the 

transient performance of the closed-loop system, as the state observer can compensate for the effect of 

the saturation blocks. Global asymptotic stability under high-gain observer is guaranteed for nonlinear 

systems [13, 30, 31].  

More importantly, nominal transient performance achieved under feedback linearization is 

retained with high-gain observer provided that the observer gain is high enough. Such a feature cannot 

be guaranteed under the conventional composite controllers. Here, separation principle can be adopted 

to prove the stability of the closed-loop system under the composite controller consisting of high-gain 

observer and feedback linearization. Furthermore, high-gain observer can be employed to estimate the 

unknown disturbance representing model uncertainty and external disturbance to ensure asymptotic 

stability of the close-loop system.  

Last important point is that fast state estimation requires high-observer gain, which raises 

concerns about measurement noises sensitivity. Therefore, measurement noises put limit on how fast 

could the state observer. Prof. H. Khalil has proposed different strategies to overcome such an issue. 

As an example, one can use high observer gain during transients to ensure fast state estimation, and 

once the difference between the measured output and its estimate becomes small enough (within 

specified limits), the observer gain can be reduced to reduce the effect of the measurement noise 

during steady-state regime.  
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Consider the second-order nonlinear system: 

       𝑥̇1 = x2 

     𝑥̇2 = Φ(x, u, w) 

     

Where Φ(x,u,w) is some nonlinear function and w is a disturbance. 

Supposing that u = γ(x, w) is a state feedback control that stabilizes the origin x = 0  

of the closed-loop system, so the system is given as:  

   𝑥̇1 = x2 

   𝑥̇2 = Φ(x, γ(x, w), w)                                                                                             (2.21) 

The following observer is used: 

                       𝑥̇̂1 = 𝑥̂2 + h1(y-𝑥̂1)                                 (2.22) 

                       𝑥̇̂2 = Φ0 (𝑥̂ , u) + h2 (y-𝑥̂1) 

Where, Φ0(𝑥̂ , u)  is a nominal model of the nonlinear function Φ(x ,u, w). The estimation error 

equations are: 

𝑥̃1 = x1 - 𝑥̂1                                         (2.23) 

𝑥̃2 = x2 - 𝑥̂2 

So it derivatives are:  

𝑥̇̃1 = 𝑥̇1 - 𝑥̇̂1 = x2 - 𝑥̂2 - h1(y-𝑥̂1)  

𝑥̇̃2 = 𝑥̇2 - 𝑥̇̂2 = Φ(x, γ(x, w), w) - Φ0 (𝑥̂ , u) - h2 (y-𝑥̂1) 

After that: 

𝑥̇̃1 = -h1 𝑥̃1 +𝑥̃2                                                              (2.24) 

𝑥̇̃2 = -h2 𝑥̃1 + δ(x, 𝑥̃, w) 

Where δ(x , 𝑥̌, w) = Φ(x, γ(𝑥̃, ,w), w) - Φ0(𝑥̂ , γ(𝑥̃, ,w),) is the disturbance term. 
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      As in any asymptotic observer, the observer gain H = [
h 1
h2
]  is designed to achieve 

asymptotic error convergence; that is, lim
𝑡⟶∞

𝑥̃ (𝑡). In the absence of the disturbance term δ(x, 𝑥̃, 

w) , asymptotic error convergence is achieved by designing the observer gain such that the matrix 

A0 = [
−ℎ1 1
−ℎ2 0

] is Hurwitz; that is, its eigenvalues have negative real parts. For this second-order 

system, A0 is Hurwitz for any positive constants h1 and h2. In the presence of δ, the observer gain 

must be designed with the additional goal of rejecting the effect of the disturbance term δ on the 

estimation error 𝑥̌. This is ideally achieved, for any disturbance term δ if the transfer function from 

δto 𝑥̃ is identically zero. The observer gain can then be designed h1>>h2>>1, such that the transfer 

function H0 from the input to states is arbitrarily close to zero. 

                                H0 (s) = 
1

𝑠2+ℎ1 𝑠+ ℎ2
 [

1
𝑠 + ℎ1

]                                                          (2.25) 

In particular, taking:  

                                      h1 =  
𝛼1

𝜀
 , h2 = 

𝛼2

𝜀2
                                                              (2.26) 

For some positive constant 𝛼1, 𝛼2 and 𝜀, with 𝜀 ≪ 1, lim
𝜀→0

H0 (s) = 0. 

 

The scaled estimation errors are defined as: 

                                    η1 =  
𝑥̃1

𝜀
 ; η2 = 𝑥̃2                                         (2.27) 

Then the newly defined variables satisfy the following equations:   

                                           ε η1̇=  −𝛼1 η1 + η2                                                (2.28) 

                                           ε η2̇ = −𝛼2 η1 + ε δ(x, 𝑥̃) 

This equation shows that reducing εdiminishes the effect of the disturbance term δ. 

It also shows that, for small ε, the dynamics of the estimation error will be much faster than the 

dynamics of x. 

 

2.3.1. Peaking Phenomenon 

 The change of variable (2.27) may cause the initial condition η1(0) to be divided 

by ε, even when  𝑥̃1(0) is of order O(1). 
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η1 is given by:  

             η1= 
𝑥1−𝑥̃1 

𝜀
 = 
𝑥̃1
𝜀

 

If x1(0) ≠ 𝑥̂1(0)  

η1(0) could be divided by ε. 

        With this initial condition the solution of (2.27) will contain a term of the form 
1

𝜀
𝑒
−𝑎𝑡

𝜀⁄  for 

some a>0. While this exponential mode decays rapidly, it exhibits an impulse-like behavior where 

the transient peaks to high values according to ε before decaying toward zero. 

        This behavior is known as the peaking phenomenon, which is an intrinsic feature of any HGO 

design that rejects the effect of the disturbance term δin (2.24) ; that is, any design with 

h2>>h1>>1. The peak phenomenon could destabilize the closed-loop system, as the impulse-like 

behavior is transmitted from the observer to the plant. 

         The HGO is basically an approximate differentiator, which can be easily seen in a special case 

when the nominal function Φ0 is chosen to be zero; for which the observer is linear. For the full-

order observer (2.22) the transfer function from y to x is given by: 

             
𝛼2

(𝜀𝑠)2+𝛼1𝜀𝑠+ 𝛼2
[
1 + (𝜀𝛼1 𝛼2)𝑠⁄

𝑠
]  →[

1
𝑠
] as  𝜀 → 0 

         Realizing that the HGO is basically an approximate differentiator, the measurement 

noise and unmodeled high frequency sensor dynamics will put a practical limit on how small ε 

could be. 

         The combination of globally-bounded state feedback control with an HGO allows 

for a separation approach where the state feedback control is designed to meet the design objectives 

first. The HGO follows quickly enough to recover the performance achieved under state feedback. 

Most papers that use an HGO incorporate this separation approach.   

 

       The peaking phenomenon can be solve by saturating u or 𝑥̂ outside a compact set of intrest, we 

can either saturate the components of the estimate themselves or saturate the control signal by 

finding the maximum value that the control can take over that compact set and saturate it at a value 

higher than that. The HGO follows quickly enough to recover the performance achieved under state 

feedback.       
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2.4. Sliding Mode Observer 
 

Sliding mode observers have unique properties [24], in that the ability to generate a sliding 

motion on the error between the measured plant output and the output of the observer ensures that a 

sliding mode observer produces a set of state estimates that are precisely commensurate with the 

actual output of the plant. It is also the case that analysis of the average value of the applied observer 

injection signal, the so-called equivalent injection signal, contains useful information about the 

mismatch between the model used to define the observer and the actual plant. These unique 

properties, coupled with the fact that the discontinuous injection signals which were perceived as 

problematic for many control applications have no disadvantages for software-based observer 

frameworks, have generated a ground swell of interest in sliding mode observer methods in recent 

years.  

Slotine, Hedrick, and Misawa [33, 35] proposed the design of state observers using sliding 

surfaces. Consider the function f to be: 

                              𝑥(𝑛) = 𝑓(𝑥, 𝑡)                                                                                                   (2.29) 

Where 𝑓(𝑥, 𝑡) is a nonlinear, uncertain function and 𝑥1 is the measurement 

The observer used is on the form: 

                                                        𝑥̇̂1 = −𝛼1𝑒1 + 𝑥̂2 − 𝑘1𝑠𝑔𝑛(𝑒1)                  

                                                       𝑥̇̂2 = −𝛼2𝑒1 + 𝑥̂3 − 𝑘2𝑠𝑔𝑛(𝑒1)                                              (2.30) 

 …….  

                                                       𝑥̇̂𝑛 = −𝛼𝑛𝑒1 + 𝑓 − 𝑘𝑛𝑠𝑔𝑛(𝑒1)                    

𝛼𝑖 Chosen as for a Luenberger observer to ensure asymptotic error decay when 𝑘𝑖 = 0 

𝑒1 = 𝑥1 − 𝑥1, 𝑓 is an estimate of 𝑓(𝑥, 𝑡)  

Errors dynamics are: 

  𝑒̇1 = −𝛼1𝑒1 + 𝑒2 − 𝑘1𝑠𝑔𝑛(𝑒1)                 

                                                        𝑒̇2 = −𝛼2𝑒1 + 𝑒3 − 𝑘1𝑠𝑔𝑛(𝑒1)                                              (2.31) 

     …………..                             

   𝑒̇𝑛 = −𝛼𝑛𝑒1 + ∆𝑓 − 𝑘𝑛𝑠𝑔𝑛(𝑒1)                

∆𝑓 = 𝑓 − 𝑓 is assumed bounded and 𝑘𝑛 ≥ |∆𝑓| 
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The sliding condition 
𝑑

𝑑𝑡
(𝑒1)

2 < 0 is satisfied in the region  

𝑒2 ≤ 𝑘1 + 𝛼1𝑒1  𝑖𝑓 𝑒1 > 0 

𝑒2 ≥ −𝑘1 + 𝛼1𝑒1  𝑖𝑓 𝑒1 < 0 

 

Now revisit the error dynamics imposing the sliding condition.  

 

Sliding mode dynamics when 𝒆𝟏 = 𝟎: 

It follows from 𝑒̇1 dynamic equation that  

𝑒2 − 𝑘1𝑠𝑔𝑛(𝑒1) = 0 

                   And therefore   :                        

 

                                                                   𝑒̇2 = 𝑒3 −
𝑘2

𝑘1
𝑒2 

                                                          ………..                                                   (2.32) 

𝑒̇𝑛 = ∆𝑓 −
𝑘𝑛
𝑘1
𝑒2 

 

By making the first error converges to zero e1 →0 using the sliding condition ie. consider e1 

as a sliding surface and using the sliding condition 
𝑑

𝑑𝑡
(𝑒1)

2 < 0 it will be asymptotically stable and 

that causes e1 =0, Sliding mode observer allow all the other states errors to slide to e1  results in an 

estimated states exactly match the real ones.  

 

 

 

2.5. Nonlinear Extended State Observer 
 

 

The Nonlinear Extended State Observer (NESO), proposed by Professor Jingqing Han [16, 

34], can estimate the state without a mathematical model of the system. It is a novel concept for 

observer design, estimating not only the state, but also the internal and external disturbances, thus 

making disturbance rejection control possible. The invention of NESO is a revolutionary concept for 

control theory and application. It has several properties including model-independence, active 

estimation, compensation for disturbances, simple design, and strong robustness. This method has 

evolved as an important technique for the state feedback control of nonlinear systems. 
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Han proposed the following extended state observer (NESO): 

                                      𝑥̇̂1 = 𝑥̂2 – β1 g1 (𝑥̂1 – y)                                                            (2.33) 

                                      𝑥̇̂2 = 𝑥̂3 – β2 g2 (𝑥̂1 – y) 

⋮ 

                                                     𝑥̇̂n = 𝑥̂n+1 – βn gn (𝑥̂1 – y) + b u(t) 

                                    𝑥̇̂n+1 = – βn+1 g1n+1(𝑥̂1 – y) 

With e = 𝑥̂1 – y 

For an n-dimensional SISO nonlinear system                   

   𝑥(𝑛)(t)  =  f (x(t), 𝑥̇(t),… . . , x(n − 1)(t),w(t))  +  bu 

              y(t)  =  x(t)                                                                                             (2.34)                               

 

 

 This can be written as: 
 

                                                   𝑥̇1 (t) = x2(t)   ; x1(0) = x10 

                                                   𝑥̇2 (t) = x3(t)   ; x2(0) = x20                                                             (2.35) 

⋮ 

                                                   𝑥̇n (t) = f ( t, x1, x2,……, xn, w(t)) + b u(t)     ; xn(0)=xn0 

                                                  𝑥̇n+1 = a(t) 

                                                  y(t) = x1(t) 

 

  Where   a(t) = ∑
𝜕𝑓

𝜕𝑥𝑖
𝑥𝑖̇ + 

𝜕𝑓

𝜕𝑤
𝑤̇𝑛

𝑖=1  

 

where f (.) is an uncertain function, w( t ) is the unknown external disturbance, u (t) is the known 

control input, and y (t) is the measured output, βi , αi and i = 1,2,…,n are  constants. 
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y 

y = x 

y = f( x,       ,  ) 

 1 x 

g I (.) is defined as a modified exponential gain function : 

 

gi (e, αi , δ) = {
⃓𝑒⃓α𝑠𝑖𝑔𝑛(𝑒)           ; ⃓𝑒⃓ > 𝛿

      
𝑒

𝛿1−α
                 ;     ⃓𝑒⃓ < 𝛿      

                                  (2.36) 

 

The nonlinear function in (2.36) which is used to make the observer more efficient, 

was selected heuristically based on experimental results. Intuitively, it is a nonlinear gain function 

where small errors correspond to higher gains, and large errors correspond to smaller gains. When 

the error is small, it prevents excessive gain, which causes high frequency chattering in some 

simulation studies.  

Figure 2.5 illustrates the difference between the linear and nonlinear gain.            

 

 

                                Figure 2.5.Comparison of Linear and Nonlinear Gains 

 

If αi  are chosen as unity, then the observer is equal to the well-known Luenberger observer. 

The main idea of the extended state observer is that for the appropriately chosen functions gi , 

the state of the observer 𝑥̇̂i , i = 1,2,…,n and 𝑥̇̂n+1 can be, through regulating αi, considered as the 

approximations of the corresponding state xi for i =1, 2, . . . , n, and the total disturbance f , 

respectively. 

The NESO does not include a model, yet can reconstruct states reliably for nonlinear plants. 

Because it does not use a model, it is simpler and easier to construct, easier to implement due to its 

efficiency in many cases, and freer from model uncertainties such as parameter variations and 

external disturbances. Therefore, in this case, it is robust.  
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If part of f (t, x1, x2, w) says f1 (t, x1,x2, w) is known, and then it should be incorporated into the 

observer as: 

    

                                𝑥̇̂1 = 𝑥̂2 – β1 g1 (𝑥̂1 – y, β1, δ1)                                                       (2.37) 

                                𝑥̇̂2 = 𝑥̂3 – β2 g2 (𝑥̂1 – y, β2, δ2) 

⋮ 

                                                𝑥̇̂n = 𝑥̂n+1 – βn gn (𝑥̂1 – y, βn, δn) + b u(t) 

                               𝑥̇̂n+1 =h1(t, x1, x2, w) – βn+1 g1n+1(𝑥̂1 – y, βn+1, δn+1) 

Where h1(t,x1,x2,w) = 𝑓̇(t, x1,x2,w) . This will make the observer more efficient. 

For example if we have: 

 

                                               𝑥̈= f (x(t), 𝑥̇(t),w) + b0u 

Which is equivalent to 

 

                                   𝑥̇1 (t) = x2(t)    

                                   𝑥̇2 (t) = x3(t) + b0u                                                                                                                 (2.38) 

                                   𝑥̇3 (t) = h                                  

 

So f (x(t), 𝑥̇(t),w) is treated as an extended state, x, . Here both f (x(t), 𝑥̇(t),w)and h(t,x1,x2,w) = 𝑓̇(t, 

x1,x2,w) are unknown however, it is now possible to estimate f (x(t), 𝑥̇(t),w) by using a state 

estimator. 

 

                              𝑥̇̂1 = 𝑥̂2 – β1 g1 (𝑒)                                                                           (2.39) 

                              𝑥̇̂2 = 𝑥̂3 – β2 g2 (𝑒)+ b0u 

                             𝑥̇̂3 =– β3 g3 (𝑒) 

The NESO is not only a state observer, but also a disturbance observer. Since Han’s 

observer uses nonlinear functions, it was named Nonlinear Extended State Observer (NESO) and can 

be applied for MIMO systems also. 
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y 

0 
x 

- 

-.-.- f i ( . ) 

-..-..  g(.),     0 

---- g(.), 0     1 

2.5.1. Selection of Nonlinear Gains for NESO 

 

Research revealed that, for the plant with unknown initial conditions, a new nonlinear 

function fi (.), as shown in equation (2.40), could be used in NESO to avoid significant transient 

estimation error: 

 

 

fi(e, K1i, K2i) = {
𝐾2𝑖𝑒 + 𝑠𝑖𝑔𝑛(𝑒) ∗ (𝐾1𝑖 − 𝐾2𝑖) ∗ 𝛿   ; ⃓𝑒⃓ > 𝛿

  𝐾1𝑖 ∗ 𝑒                            ;  ⃓𝑒⃓ ≤ 𝛿
                                  (2.40) 

 

With K1i, K2i 0. Furthermore, by choosing αi0 in (2.36), the transient error was significantly 

reduced. Three curves from (2.36) and (2.40) are shown in Figure2.6 to illustrate the differences. As 

in (2.36), δ defines the range of a high gain section where the observer is very aggressive. This 

range is usually small. 

 

 

  

                                     Figure 2.6.Nonlinear Gain Functions 
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2.6. Conclusion 
 

 

Observer structures usually need to include a plant model in their equations which inevitably 

accompanies some practical burdens. Without a model, observers cannot be constructed: even if it 

is available, unless it is accurate enough, a reliable state reconstruction could not be expected. Even 

when a model is accurate enough, the observer could often become too complicated (because of 

model complexity) to have any practical use, especially on a real-time basis. The advantages and 

benefits of an accurate and efficient model cannot be emphasized too much, when it is available, 

unless such a model is difficult to obtain. HGOs, SMOs, and NESOs are three kinds of observers 

designed for the plant in the presence of disturbances, dynamic uncertainties, and nonlinearities in 

practical applications. 
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                                                          CHAPTER III 
 

 

 

 

 

 

 

 COMPARISON OF ADVANCED STATE                                             

OBSERVER DESIGN TECHNIQUES 

 

This chapter presents a comparison study of the characteristics and performances of the 

HGO, SMO, and NESO. These observers were originally proposed to address the dependence 

of the classical observers, such as the Kalman Filter and the Luenberger observer, on the 

accurate mathematical representation of the plant. The simulations conducted give insight into 

observer behavior in servo system in three cases, nominal system, system with disturbance and 

system with uncertainty, it results are provided to give realism. 
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 3.1. The Servo Motor Plant Model 

 

A typical servo motor plant is made up of a motor, a servo drive amplifier, a system 

of gears, and a load. This plant is used for software in the loop simulations. 

 

A current drive is typically used in high performance servo motor systems to reduce the 

order of the mathematic model of the servomotor by eliminating the effect of the 

inductance. In motion control literature, a servo motor can be approximated as a linear, 

time-invariant system. 

 

The expression describes the model of a servo fed by a current amplifier is on the following 

form:  

 

                                     J ÿ + cẏ + f sign (ẏ) = τ+ τc                                                   (3.1) 

Where y, ẏ, and  ÿ  are the angular position, velocity, and acceleration, respectively. J is the sum, in 

that order, of servomotor Jm and load inertia Jl , 𝒄 and f are, respectively, the viscous and Coulomb 

friction coefficients; τc is a constant disturbance; and τ is the driving torque. The term τ is equal to 

Ku, where u is the input voltage of the servo amplifier, and K = KT KE/Kc, KT is the servomotor 

torque constant, KE is the amplifier gain, and Kc is the gain in the amplifier current loop. The gain K 

is assumed known. 

 

The parameters associated with the Coulomb and with the constant disturbance are not 

available. Defining the following relationship: 

                                                                       𝑦̈ = 
𝑐

𝐽
 𝑦̇ + 

𝑏

𝐽
 u                                                                          (3.2) 

Where b is the total hardware gain which typically includes the gear ratio 

The transfer function is: 

                                                  G(s) = 
𝑏

𝑠(𝐽𝑠+𝑐)
                                                     (3.3)                                   

 

The criteria for comparison is based on the robustness of the performance with 

respect to the uncertainties of plant and the observer tracking errors, both at steady state 

and during transients. Simulations are conducted to give insight into observer behavior. 
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    The linear model for this study purpose is derived as: 

                                         𝑦̈= -1.41 𝑦̇+ 23.2 u                                                   (3.4) 

 

Where y is the output position and u is the control voltage sent to the power amplifier 

that drives the motor. The servo motor system is already stable [11]. 

 

       Initially, no friction, disturbance or backlash is intentionally added. 

 

3.2. Simulated Results: 

The quality of observers is measured by the speed and accuracy of the states of the observer 

converging to those of the plant. To make the comparison fair, the parameters of the observers are 

adjusted so that their sensitivities to measurement noise are roughly the same. The exact outputs of y 

and 𝒚̇ are obtained directly from the simulation model of the plant to calculate the state 

estimation error. 

 

For the tests, the input to the plant is a sine wave function, and the observers are evaluated 

according to their capability in tracking the input response. The tests were run in three conditions: 

I. Nominal plant; 

II. Nominal plant plus stribeck friction as disturbance. 

A stribeck effect is a kind of friction which occurs when a liquid or solid oils is used for 

the contact surfaces of moving mechanical parts. At low velocity the friction will 

decrease with the increase velocity. Stribeck friction is usually expressed by following 

equation [15]: 

                                F(x2) =FC + (Fs –Fc) 𝒆−𝜷 𝐱𝟐                                                         (3.10) 

Where Fc , Fs, 1/β are Coulomb friction, static friction and stribeck velocity, respectively.  

 

The stribeck friction is in the Figure 3.1 shown. 
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                          Figure 3.1.Stribeck friction 

 

For our simulation the same disturbance F(x2) is used, where FC = 0.1, FS= 0.5 and β=0.07.      

There for: 

                                Dis= F(x2) = 0.1+ 0.4 𝒆−𝟎.𝟎𝟕 𝐱𝟐                                 (3.11) 

And the function is bounded by 0 ≤ 𝒆−𝜷 𝐱𝟐≤ 1.5 

 

III. Nominal plant with 100% increase in inertia  

The system has uncertainty in load moment of inertia such that its value will increase 

100% over the nominal value. 

 

Profile generator has been used for the system input as a sine wave with low-

frequency which provides the desired state trajectory in both y and y ̇. 

                   The input u(t) = 0.05sin(t) is used in all simulations. 

The same set of observer parameters are used in all simulations. 

 

3.2.1.Observers Designs: 

 

Define the states x1=y (position), x2=𝑦̇ (velocity) and the system input u = v (applied voltage). 

The state space model of the servo motor system can be expressed as: 

 

𝑥̇1 = x2 

                                                                                              𝑥̇2 = 23.2 u – 1.41 x2                                                      (3.5) 
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The HGO for the model (3.5) is: 

                                            𝑥̇̂1 = 𝑥̂2 + h1 (y-𝑥̂1)                                                                               (3.6) 

                                            𝑥̇̂2 = 23.2 u – 1.41 𝑥̂2 + h2 (y-𝑥̂1) 

 

The observer gains are adjusted as: 

h1 = 
𝛾1

𝜀
              h2 = 

𝛾2

𝜀2
                                                                                        (3.7) 

Where 0 ε 

 

The SMO is designed as: 

 

                                            𝑥̇̂1 = −𝛾1𝑒1 + 𝑥̂2 − 𝑘1𝑠𝑔𝑛(𝑒1)                                                            (3.8) 

                                            𝑥̇̂2 = −𝛾2𝑒1 + 23.2 𝑢 − 1.41 𝑥̂2 − 𝑘2𝑠𝑔𝑛(𝑒1)                   

 

The extended state-space model for (3.4) is: 

 

                        𝑥̇1 = x2 

                        𝑥̇2 = x3 +23.2 u 

                                         𝑥̇3 = 0 

                        𝑦 = x1 

Where 1.41x2 is treated as f(t,x1,x2,w), as well as an extended state,x3. 

 

The NESO is given as: 

 

                                      𝑥̇̂1 = 𝑥̂2 – β1 g1 (𝑒)                                                                             (3.9) 

                                      𝑥̇̂2 = 𝑥̂3 – β2 g2 (𝑒) + 23.2 u 

                                      𝑥̇̂3 =– β3 g3 (𝑒) 

 

Where e = y - 𝑥̂1   

gi(.) for i= 1,2,3 are the same as (2.30) 
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3.2.2. High gain observer (HGO): 

Pole placement is used to determine the position of the poles at –4.2, { 𝜸𝟏, 𝜸𝟐} in HGO. 

Initial conditions of the non-linear Servo model were different from the ones for the non-linear 

observer as they were set for non-linear model to x10 = 0.05  for the position, the velocity was set to 

x20 = 0 and the initial conditions for the observer are [0, 0]. 

                               Table 3.1.Parameters of high gain observer 

Parameter Symbol Value 

positive constant_1 𝜸𝟏 1.4 

positive constant_2 𝜸𝟐 0.311 

positive constant ε 0.2 

First observer gain 

Second observer gain 

h1 

h2 

70 

777.5 

 

 Simulation Model with Matlab Simulink: 

              

 

                                                Figure 3.2.HGO Matlab Simulink Model 
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3.2.2.1. NOMINAL SYSTEM: 

 

  

(a) Actual and estimate states of the Nominal plant      (b) Estimation Error of the Nominal Plant 

 

                       Zoom in on (a)                                                          Zoom in on (b)  

                                 Figure 3.3.HGO Matlab simulation of Nominal system 

 

Figure 3.3 gives the actual and estimate responses of the angular position (x1, 𝑥̂1) and angular 

speed (x2, 𝑥̂2) for the servo nominal plant. Also, the error for angular position and its estimate (e1) 

and angular velocity and its estimate (e2) are also shown in the figure. 

From figure 3.3 (b) the HGO has an estimation position residuals of e1= -0.025    to 0.05               

And e2≈ -02 to 1.6 for the speed estimation error 

The time of transient response for the HGO in the nominal case is 0.5s for both position and speed.  
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3.2.2.2. SERVO MOTOR SYSTEM UNDER DISTURBANCE : 

 

(a) Actual and estimate states of the Nominal plant      (b) Estimation Error of the Nominal Plant 

                       With disturbance            With disturbance  

 

                       Zoom in on (a)                                                          Zoom in on (b)                                    

                  Figure 3.4.HGO Matlab simulation of Nominal system with DISTURBANCE 

 

In figure 3.4 the same set of behaviors shown in previous scenarios are repeated with the 

system is subjected to disturbance and the performance of the observer will be assessed accordingly. 

The applied disturbance is a stribeck friction in the form: 

 F(x2) = 0.1+ 0.4 𝒆−𝟎.𝟎𝟕 𝐱𝟐. 

 The time of transient response for the HGO in the nominal case with disturbance is TTR= 0.5s. 

The same states and estimation errors as before are shown in Figure 3.4 (b). It has seen that the HGO 

has a residuals of e1= -0.025 to 0.05   for the position estimation. After TTR the error will be bounded 
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by      -0.05 ≤ e1 < 0. 

And e2= -02 to 1.8 for the speed estimation. After TTR   the error will be bounded by   -1≤ e2 < 0. 

 

3.2.2.3. SERVO MOTOR SYSTEM WITH UNCERTAINTY: 

 

(a) Actual and estimate states of the Nominal plant      (b) Estimation Error of the Nominal Plant 

                       With uncertainty                                                       With uncertainty 

                 Zoom in on (a)                                                          Zoom in on (b)  

                Figure 3.5.HGO Matlab simulation of Nominal system with UNCERTAINTY 

 

It is assumed that the system has uncertainty in load moment of inertia such that its value will 

increase 100% over the nominal value. Figure 3.5 shows the responses of actual and estimated states 

and also the estimation error for both angular position and speed for the servo system. It is evident 

from the figure that, the HGO has an estimation position residuals of e1= -0.025   to 0.05.  And      

e2= -02 to 1.8 for the speed estimation error. 

The time of transient response for the HGO in the nominal case with uncertainty is TTR= 0.5s. 
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3.2.2. Sliding Mode Observer (SMO): 

Pole placement is used to determine the position of the poles at –4.2, { 𝜸𝟏, 𝜸𝟐} in SMO). 

Initial conditions of the model were [0.05, 0] whereas the initial conditions for the observer were [0, 

0]. 

                               Table 3.2.Parameters of sliding mode observer 

Parameter Symbol Value 

positive constant_1 𝜸𝟏 1.4 

positive constant_2 𝜸𝟐 0.311 

First observer gain 

Second observer gain 

k1 

k2 

0.5 

15 

 

Simulation Model with Matlab Simulink: 

 

 

                                              Figure 3.6.SMO Matlab Simulink Model 
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3.2.3.1. NOMINAL SYSTEM: 

 

 

(a) Actual and estimate states of the Nominal plant      (b) Estimation Error of the Nominal Plant 

 

                                

                                                           Zoom in on (a)                                                           

                                   Figure 3.7.SMO Matlab simulation of Nominal system 

 

Figure 3.7 gives the actual and estimate responses of the angular position (x1, 𝑥̂1) and angular 

speed (x2, 𝑥̂2) for the servo nominal plant. Also, the error for angular position and its estimate (e1) 

and angular velocity and its estimate (e2) are also shown in the figure. 

From figure 3.7 (b) the SMO has an estimation position residuals of e1≈ -0.02 to 0.05               

And e2≈ -0.25 to 0.1 for the speed estimation error 

The time of transient response for the SMO in the nominal case is TTR= 0.8s for position and 0.6s for 

the speed.  
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3.2.3.2. SERVO MOTOR SYSTEM UNDER DISTURBANCE: 

 

 

 (a) Actual and estimate states of the Nominal plant         (b) Estimation Error of the Nominal Plant 

                       With disturbance            With disturbance     

                 

                        Figure 3.8.SMO Matlab simulation of Nominal system with DISTURBANCE 

 

 

In figure 3.8 the same set of behaviors shown in previous scenarios are repeated with the 

system is subjected to disturbance and the performance of the observer will be assessed accordingly. 

The applied disturbance is a stribeck friction in the form: 

 F(x2) = 0.1+ 0.4 𝒆−𝟎.𝟎𝟕 𝐱𝟐. 

The same states and estimation errors as before are shown in Figure 3.8 (b). It has seen that 

the SMO has a residuals of e1= -0.075 to 0.05    for the position estimation. After TTR the error will 

be bounded by   -0.05≤ e1<0 and e2= -0.5 to 00 for the speed estimation. After TTR the error will be 

bounded by     -0.2 ≤ e2<0. 

The time of transient response for the SMO in the nominal case with disturbance is TTR = 02s. 
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3.2.3.3. SERVO MOTOR SYSTEM WITH UNCERTAINTY: 

 

 

(a) Actual and estimate states of the Nominal plant      (b) Estimation Error of the Nominal Plant 

                       With uncertainty                                                       With uncertainty 

 

                       Zoom in on (a)                                                          Zoom in on (b)  

                Figure 3.9.SMO Matlab simulation of Nominal system with UNCERTAINTY 

 

It is assumed that the system has uncertainty in load moment of inertia such that its value will 

increase 100% over the nominal value. Figure 3.9 shows the responses of actual and estimated states 

and also the estimation error for both angular position and speed for the servo system. It is evident 

from the figure that, the SMO has an estimation position residuals of e1= -0.02 to 0.05.  And e2= -

0.25 to 0.1 for the speed estimation error. 

The time of transient response for the SMO in the nominal case with uncertainty is TTR ≈ 1.5s. 
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3.2.4. Nonlinear Extended State Observer (NESO): 

Pole placement is used to determine the position of the poles at –4.2, βi (i= 1, 2, 3) for NESO. 

Initial conditions of the model were [0.05, -2,0] whereas the initial conditions for the observer were 

[0, 0,0]. 

                               Table 3.3.Parameters of nonlinear extended state observer 

Parameter Symbol Value 

First observer gain β1 12.6 

Second observer gain β2 52.92 

Third observer gain β3 74.088 

Regulable constant_1 α1 01 

Regulable constant_2 α2 0.5 

Regulable constant_3 α3 0.25 

Gain function constant δ 10-3 

 

Simulation Model with Matlab Simulink: 

 

                                        Figure3.10. NESO Matlab Simulink Model 



       CHAPTER III                                    COMPARISON OF ADVANCED STATE OBSERVERS   

48 

 

3.2.4.1. NOMINAL SYSTEM: 

 

  

(a) Actual and estimate states of the Nominal plant      (b) Estimation Error of the Nominal Plan 

                    

                                                           Zoom in on (a) 

 

   (c) Actual and estimate states of f( x)                            (d) Estimation Error of  f( x)  and x(3).   

 

                                   Figure 3.11.NESO Matlab simulation of Nominal system 
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Figure 3.11 gives the actual and estimate responses of the angular position (x1, 𝑥̂1) and 

angular speed (x2, 𝑥̂2) for the servo nominal plant. Also, the error for angular position and its 

estimate (e1) and angular velocity and its estimate (e2) are also shown in the figure. 

From figure3.11 (b) the NESO has an estimation position residuals of e1= -0.06    to 0.08 And 

e2≈ -02 to 1.5 for the speed estimation error. 

The time of transient response for the NESO in the nominal case is 01s for both position and speed 

For the disturbance NESO has an estimation residuals of e3 = -0.5   to 2.5, with TTR= 5s. After TTR 

the error will be bounded by   0≤ e3 ≤ 0.25.          

 

 3.2.4.2. SERVO SYSTEM UNDER DISTURBANCE:  

        

(a) Actual and estimate states of the Nominal          (b) Estimation Error of the Nominal  

                     Plant with disturbance   Plant with disturbance  

             

   (c) Actual and estimate states of f(x)                            (d) Estimation Error of f(x) and x(3).    

                     Figure 3.12.NESO Matlab simulation of Nominal system with DISTURBANCE 
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In figure 3.12 the same set of behaviors shown in previous scenarios are repeated with the 

system is subjected to disturbance and the performance of the observer will be assessed accordingly. 

The applied disturbance is a stribeck friction in the form: F(x2) = 0.1+ 0.4 𝒆−𝟎.𝟎𝟕 𝐱𝟐. 

The same states and estimation errors as before are shown in Figure 3.12 (b). It has seen that the 

NESO has residuals of e1= -0.018 to 0.05    for the position estimation and e2= -0.5 to 0.3 for the 

speed estimation. For the disturbance NESO has an estimation residuals of e3 = -0.5 to 2.5.               

The time of transient response for the NESO in the nominal case is 0.75s for both position and speed.  

For the disturbance TTR = 5s. 

 

3.2.4.3. SERVO MOTOR SYSTEM WITH UNCERTAINTY: 

 

(a) Actual and estimate states of the Nominal plant      (b) Estimation Error of the Nominal Plant 

                       With uncertainty                                                       With uncertainty 

 

                       Zoom in on (a)                                                          Zoom in on (b)  
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   (c) Actual and estimate states of f x)                            (d) Estimation Error of f(x) and x(3) 

              Figure 3.13.NESO Matlab simulation of Nominal system with UNCERTAINTY 

 
 

It is assumed that the system has uncertainty in load moment of inertia such that its value will 

increase 100% over the nominal value. Figure 3.13 shows the responses of actual and estimated 

states and also the estimation error for both angular position and speed for the servo system.              

It is evident from the figure that, the NESO has an estimation position residuals of e1= -0.025   to 

0.1And e2= -01 to 0.5 for the speed estimation error. For the disturbance NESO has an estimation 

residuals of e3 = -01 to 4.4 and TTR = 4s. After TTR the error will be bounded by -0.25≤ e3 ≤ 0.25. 

The time of transient response for the NESO in the nominal case is 01s for both position and speed.  

                              Table 3.4.comparison factors of observers 

           HGO          SMO                       NESO 

  Residuals   TTR  Residuals TTR Residuals     TTR  

 

[
𝒆𝟏
𝒆𝟐
] 

 

[
𝑻𝑹𝑻𝑹𝟏
𝑻𝑹𝑻𝑹𝟐

]  

        

[
𝒆𝟏
𝒆𝟐
] 

 

[
𝑻𝑹𝑻𝑹𝟏
𝑻𝑹𝑻𝑹𝟐

] 

 

[

𝒆𝟏
𝒆𝟐
𝒆𝟑
] 

 

[
𝑻𝑹𝑻𝑹𝟏
𝑻𝑹𝑻𝑹𝟐
𝑻𝑹𝑻𝑹𝟑

] 

            

Nominal plant 

-0.025 to 0.05 0.5s -0.02 to 0.05 0.8s -0.06 to 0.08     01s 

-2 to 1.6 0.5s -0.25 to 0.1 0.6s -2 to 1.5     01s 

        -0.5 to 2.5      5s 

Plant plus 

disturbance 

-0.025 to 0.05 0.5s -0.075 to0.05 02s -0.018 to 0.05     0.75s 

-2 to 1.8 0.5s -0.5 to 0 02s -0.5 to 0.3    0.75s 

        -0.5 to 2.5       5s 

Plant with 

100% increase 

in inertia 

-0.025 to 0.05 0.5s -0.02 to 0.05 1.5s -0.025 to 0.1     0.75s 

-2 to 1.8 0,5s -0.25 to 0.1 1,5s -1 to 0.5 0,75s 

        -01 to 4.4 4s 
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3.3. Comparison study of the characteristics and performances of the                                     

HGO, SMO, and NESO: 

 

                                               Figure 3.14.Over all Simulation Model 

 

The performance comparison of observers is assessed in terms of to their capability in 

tracking and residuals of estimation error. The simulation with three cases (nominal, disturbance and 

uncertainty) 

are shown below: 

Table 3.4 shows the comparison factors depending on the results of simulations of the 

designed observers. For nominal case all three observers perform well in steady-state and have 

roughly the same accuracy and sensitivity to the noise. As expected in the transient state NESO takes 

longer to reach steady state TTR=1s, because it does not assume the knowledge of the plant dynamics 

and it has the highest range of residuals -0.06< e1 <0.08, -2< e2 <1.6 where the residuals of SMO are 

the least ones -0.02< e1 < 0.05, -0.25< e2 < 0.1 but the quickest to reach steady state is the HGO with     

TTR (e1) = 0.5s for both position and speed. 
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Comparing according to additive disturbance, figure 3.16 illustrates the tracking errors for the 

plant with added stribeck friction. As we can see only the estimated errors of NESO are zero at 

steady state while we have a sine wave tracking errors for SMO and HGO caused by the imperfect 

state tracking of these two observers, where for HGO in steady state -0.05<e1<0 and-01< e2<0, for 

the SMO in steady state -0.05<e1<0 and-0.2< e2<0. NESO has the least range of residuals in 

transient state   -0.018<e1<0.05, -0.5< e2<0.3 clearly demonstrating that NESO is much more robust 

than HGO and SMO in the presence of disturbance. As shown in Figure 3.12, 𝑥̇̂3 converges quickly 

TTR=5s   with -0.5<e3<2.5, and accurately to the combination of unknown dynamics and disturbance 

.NESO is a good estimator for both states and disturbances. 

Figure 3.17 illustrates the simulation results for the plant with a 100% increase of inertia. As 

we can see even the sliding mode observer behaves well in the presence of uncertainty due to its 

small range of residuals during the transient state -0.02<e1<0.05, -0.25<e2<0.1 with TTR=1.5s 

almost like those for NESO -0.025<e1<0.1, -1<e2<0.5 and TTR=1s, but only the estimated errors of 

NESO are zero again at steady state which make it the most accurate in following the states. Its 

performance is the best overall, followed by SMO. 

 

3.3.1. NOMINAL SYSTEM ERRORS: 

 

          

                                   

                                         Figure 3.15.Estimation Error of the Nominal Plant 
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3.3.2. SYSTEM UNDER DISTURBANCE ERRORS: 

        

                   

                             Figure 3.16.Estimation Error of the Plant with stribeck Friction 

 

3.3.3. SYSTEM WITH UNCERTAINTY ERRORS: 

     

 

                              Figure 3.17.Estimated Error of the Plant with 100% Change of Inertia 
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3.4. Conclusion 

 
 

In chapter III a software simulation with MATLAB of advanced observer designs, including 

NESO, HGO, and SMO, was performed for a nonlinear servo motor system. A gain modification 

method is proposed for the NESO to deal with the unknown initial conditions. 

The computational criterion chosen is the amplitude of residuals and how fast is the system to 

reach the actual states. As it has been reported using simulation, for every case and for every link, 

there is salient observer outperforms the others in terms of minimum residuals range and high 

dynamic performance. The simulated results show that the performance of the extended state 

observer is superior in terms of the disturbance rejection and uncertainties compared with other 

observers for this class of nonlinear systems. 
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        Most of controlled systems, in one aspect or another, are non-linear, with non-linear dynamics 

due to saturation of actuators, non-linearity of sensors or systems governed by non-linear differential 

equations. Although linear control tools may work well in many non-linear systems, but in some 

cases non-linear effects need to be taken in consideration to stabilize the system. Furthermore, 

considering the non-linear aspect may significantly enhance the performance and improve the overall 

robustness. 

       In the literature many researches are based on linearised models around a specific nominal 

operating point then linear controller is utilized to control the system. The associated problem with 

the linear control technique is that the system can be only be adequately controlled in a small region 

around the equilibrium point but the variation of operating regions in such non-linear system are 

wide following major disturbance .Furthermore, linear controllers provide large actuation and zero 

tracking error cannot be guaranteed in the in presence of disturbance. Thus, non-linear control is 

considered as a better choice to ensure the stability of non-linear systems in the presence of large 

disturbance and over larger operating regions. In the design of any optimal controller, whether it is 

linear or non-linear, it is essential that all state variables of the system are available, whether 

measured all (which in many cases not applicable) or estimated. State estimation can resolve the 

difficulties associated with unmeasured states. 

As we have seen through the past chapters, a comparison study of performances and 

characteristics of three advanced state observers, including the NESO,HGO, and SMO, was 

performed. These observers were originally proposed to address the dependence of the classical 

observers, such as the Kalman Filter and the Luenberger Observer, A gain modification method is 

proposed for the NESO to deal with the unknown initial conditions. As a general overview of the 

comparison study which is based on the robustness of the performance with respect to the 

uncertainties of the servo motor as a  model plant and the observer tracking errors, both at steady-

state and during transients. The tests were run in three conditions:   

 Nominal plant. 

 Nominal plant plus stribeck friction as disturbance. 

 Nominal plant with 100% increase in inertia 

These simulations were run in Matlab simulink and the following observations were concluded: 

 For nominal case, in terms of accuracy and sensitivity to the noise all three observers perform 

well in steady-state. NESO has the longest transient response, because it does not assume the 
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knowledge of the plant parameters. HGO takes the least time to reach steady-state with least 

range of residuals which make it superior in nominal condition. 

  For disturbance  and uncertainty cases simulation results shows that NESO is the best in 

terms of uncertainties  and disturbance rejection and that is because NESO provides a smaller 

steady state errors, i.e. closer adherence to the desired states . 

 The state estimates errors for the Sliding Mode Observer appear somewhat comparable to 

those of the Extended state observer specially for the speed estimates errors although the 

response of SMO is far more oscillatory. This is because of the switching function (saturation 

function) associated with the Switching Gain Matrix K. 

 Although the three observers are successful in providing estimates to such a degree of 

accuracy as to meet design requirements, the Extended State Observer formulated in this 

research is typically more accurate in terms of steady state relative speed and position 

estimation errors, and usually has less standard deviation in such estimates as well, indicating 

a less oscillatory response. This oscillation indicates that there will be a non-zero relative 

velocity and position, and the Follower plant will require control effort of increasing 

frequency for higher standard deviations in |𝑥̂|. The underlying reason for recommending this 

formulation of the Extended State Observer lies in the desire to minimize relative velocity 

and speed errors, in order to save on control effort. 
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