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       Abstract 

 

Fault detection and diagnosis is an important problem in process engineering. It is the 

central component of abnormal event management (AEM) which has attracted a lot of 

attention recently.  

This thesis discuses different classes of FDD approaches for process monitoring. In 

addition, it presents main results of fault detection and diagnosis in a cement manufacturing 

plant using three monitoring techniques. The techniques are based on multivariate statistical 

analysis and a threshold strategy. The process is statistically modeled using Principle 

Component Analysis (PCA), kernel PCA and new proposed reduced KPCA to cope with the 

computational problem introduced by KPCA. The proposed RKPCA method consists on 

reducing the number of observations in a data matrix using a proposed algorithm based on 

fractal dimension. 

The Hotelling’s T², Q in addition to the new proposed index called the combined 

statistic φ are used as fault indicators for testing PCA, KPCA and the suggested approach 

RKPCA carried out using the cement rotary kiln system. The three methods are compared to 

in terms of False Alarms Rate (FAR), Missed Alarms Rate (MDR), Detection Time Delay 

(DTD) and the cost function (J). 

The obtained results demonstrate the effectiveness of the proposed technique in 

reducing the number of observations from 768 to 11, leading to an 11x11 kernel matrix 

instead of 768x768, hence, diminishing computational time and storage requirement. 

Moreover, it has effectively detected the different types of faults when using statistical 

indices. 

 

Keywords: Fault Detection; Principal Component Analysis (PCA); Kernel Principal 

Component Analysis (KPCA); Reduced Kernel Principal Component Analysis (RKPCA); 

Fractal Dimension; the Combined Index. 
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With the advent of industry, current industrial processes are transforming into smart 

ones. In particular, many modernized industrial processes are equipped with several well-

elaborated sensors to gather process-related data for discovering faults existing or arising in 

processes as well as monitoring the process status. For this change of industrial environments 

with the full-automation of equipment and process, more cautious supervision that includes 

process control and suitable corrective actions is required to guarantee the process efficiency. 

Some changes in the process the controllers cannot handle adequately, these changes are 

called faults. The types of faults occurring in industrial systems include process parameter 

changes, disturbance parameter changes, actuator problems, and sensor problems. Here, 

comes the role of Fault Detection and Diagnosis. 

Various approaches have been proposed, tackling this issue from different angles. 

These can be broadly divided into model based approaches and knowledge based approaches. 

Model based approaches generally utilize results from the field of control theory and are based 

on parameter estimation or state estimation. The approach is based on the fact that a fault will 

cause changes in certain physical parameters which in turn will lead to changes in some model 

parameters or states. It is then possible to detect and diagnose faults by monitoring the 

estimated model parameters or states. When using this approach, it is essential to have the 

knowledge about the relationships between faults and model parameters or states. 

Furthermore, quite accurate models are required. Knowledge based approaches generally 

utilize results from the field of Machine Learning. Several knowledge based fault diagnosis 

approaches have been proposed. These include the quantitative based approach and the 

qualitative simulation based approach. In the quantitative based approach, faults are usually 

diagnosed by causally tracing symptoms backward along their propagation paths. In the 

qualitative simulation based approach, the model of a process is used to predict the behavior 

of the process under the normal operating condition and various faulty conditions. Fault 

detection and diagnosis is then performed by comparing the predicted behavior with the actual 

observations. To develop knowledge based diagnosis systems, knowledge about process 

structure and qualitative models of process under various faulty conditions are required. The 

development of a knowledge based diagnosis system is generally effort demanding. 

For industrial processes, the most easily obtainable knowledge is usually the process 

measurement data. During process operations, a large number of process variables are 

measured and these measurement data are routinely collected and stored by computers. 

Process monitoring based on statistical analysis of process data has been investigated by 
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several researchers recently. Multivariate statistical process control (MSPC) is a collection of 

such techniques that are based on the analysis of measurements system. These approaches are 

generally based on principal component analysis (PCA) or partial least squares (PLS) 

techniques. PCA have been widely reported in literature for fault detection, isolation and 

reconstruction, the latest can reduce the dimensionality of process data by projecting them 

down to a low dimensional latent variable space. Process monitoring can then be performed in 

this latent variable space. Faults can be detected and classified by inspecting the plots of the 

Squared Prediction Errors Q, using the Hotteling’s T2 index or the combined index φ. This 

approach has been shown to be very effective in some situations, especially when the number 

of faults is not large. 

Despite proven performance of PCA for linear system processing, it remains a method 

of linear projection and cannot reveals nonlinearities. To overcome this limitation, many 

extensions of PCA for handling nonlinear systems have been developed such as principal 

curves using neural networks and kernel principal component analysis (KPCA). KPCA has 

been developed by Schölkopf, it consists to first map input space into a reproducing kernel 

Hilbert space called feature space via nonlinear kernel function and then to compute principal 

components (PCs) in that feature space by applying conventional linear PCA. Compared with 

nonlinear extension of PCA, the advantages of KPCA are that it does not involve any 

nonlinear optimization problem, making it simple as standard PCA. Indeed, KPCA can handle 

a wide range of nonlinearities by the possibility to use different kernels. KPCA has been 

applied successfully for process monitoring in various fields such as chemical technology, 

face recognition and engineering in medicine. Despite proven performances of KPCA, kernel 

principal component analysis (KPCA) suffers from a high computational cost and requires the 

storage of the symmetric kernel matrix (computation time increases with the number of 

samples). Among several solutions that have been proposed, only few methods are available 

for dimensionality reduction with KPCA, we mention k means clustering and reduced kernel 

principal component analysis (RKPCA). 

In this project, we propose a new reduced KPCA algorithm based on the fractal 

dimension. It consists on using the fractal dimension to select a reduced set of observations 

that “sufficiently” approaches the system behavior. Several techniques used to determine the 

fractal dimension of a given set; in this work we have used the Correlation dimension that is 

based on the distances between the variables to identify the fractal dimension. Main advantage 

of the proposed fractal dimension based RKPCA is that it entails maximum lower memory 
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and computation time by retaining only principal observations. Similar to the PCA, the 

Hotelling’s T² statistic, the Q statistic and the combined index φ are indices commonly used in 

KPCA-based process monitoring, hence, also used in the proposed RKPCA. 

The proposed RKPCA method has been tested on a cement manufacturing plant and 

compared to KPCA and Euclidian distance based  RKPCA in terms of False Alarm Rate 

(FAR), Missed Alarm Rate (MDR), Detection Time Delay (DTD), the Cost function (J) and 

the Execution Time (ET). 

This report is organized as follow: Chapter I presents the theoretical definitions of fault 

detection and diagnosis field, methods and classification. Chapter II the mathematical 

background of PCA, KPCA and the proposed method RKPCA are explored and their 

application in complex processes. Chapter III provides the detailed description of the cement 

plant followed by the experimental setup. The obtained results are discussed and concluding 

remarks are drawn. 
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I.1. Introduction 

 

      Fault detection and diagnosis has been an active area of research for the last few decades, 

which is an essential part of modern industries to ensure safety and product quality [1].   This has 

encouraged the development of many fault diagnosis methods and which can be classified into 

three categories: Quantitative Model based methods, Qualitative model based methods, and 

process history based methods [2]. 

     In this chapter, we first address the definitions and terms used in the domain of process fault 

diagnosis. In the next part, we present a list of 10 desirable characteristics that one would like a 

diagnostic system to possess. Section 4 discusses the data transformations that occur during the 

diagnostic decision-making process. Section 5 contains a classification of fault diagnostics 

methods. 

 

I.2. Definitions of fault detection and diagnosis 

A fault is generally defined as a departure of an observed variable or calculated parameter 

from an accepted range [3]. More specifically, a fault is an unpermitted deviation of at least one 

characteristic property of a variable from an acceptable behavior. This means that a fault may 

lead to the malfunction or failure of the system [4]. Essentially, Fault Detection and Diagnostics, 

or FDD, is the process of uncovering errors in physical systems while attempting to identify the 

source of the problem. 

The time dependency of faults can be distinguished, as shown in Fig. 1: 

 

- Abrupt fault (stepwise): The cause of the fault and/or the effects remains continuing until            

corrected. 

- Incipient fault (drift-like): The effect on process remains constant until corrected. 

- Intermittent fault (with interrupts): The effect disappears and reappears in time.  

 

 

 

 

 

 

Figure 1. Time dependency of faults:  a) Abrupt;  b) Incipient;  c) Intermittent [29]. 
c) b) a) 
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Faults are also categorized as additive or multiplicative (Fig.2). The addition of fault 

characteristics influences a variable in additive faults. These types of faults might emerge as 

deviations from a normal or desirable value in a process measure. Multiple faults impact the 

variable as a product and frequently occur as changes in the process parameters [4]. 

 

 

 

 

    

 Figure 2. Basic fault models: (a) Additive and (b) Multiplicative faults [5]. 

 

Faults may include: 

- Malfunctioning sensors and actuators 
 

Errors with actuators and sensors are often caused by a fixed failure or a constant bias 

(positive or negative). Failure of one of the instruments might cause the plant status variables to 

vary beyond permissible limits. The goal of diagnostic is to discover any instrument failure that 

might severely affect the operation of the control system [5]. 

 

- Gross parameter changes in a model 
 

 Parameter failures occur when a disturbance from the environment enters the system via 

one or more independent variables. A variation in the concentration of the reactant in a reactor 

feed from its usual or steady state value is an example of such a malfunction. The concentration is 

an independent variable in this case [5]. 

 

- Structural changes 
 

Changes in the structure come when the process itself changes. They occur when the 

process equipment is badly damaged. Structural defects affect the flow of information between 

different variables. The failure of a controller is an example of a structural failure. Other 

examples are a stuck valve, a fractured or leaked pipe etc. [5]. 

 

Additive Multiplicative 
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I.3. Desirable attributes of a fault detection and diagnosis system  

In order to compare various diagnostic approaches or to assess whether a fault detection 

and diagnosis system is successful, it is useful to identify a set of desirable characteristics that a 

diagnostic system should possess [5]. 

I.3.1. Quick detection and diagnosis 

The diagnostic system should respond quickly to malfunctions. A system that is designed 

to detect failure quickly will be sensitive to high frequency influences. This makes the system 

sensitive to noise and can lead to false alarm during normal operation [5]. 

I.3.2. Isolability 

Isolability is the ability of the diagnostic system to distinguish between different failures. 

Most of the classifiers work with various forms of redundant information. There is only a limited 

freedom for classifier design. Due to this, a classifier with high degree of isolability would 

usually do a poor job in rejecting modelling uncertainties and vice versa [5].  

I.3.3. Robustness 

A diagnostic system satisfying robust feature means its performance should be insensitive 

to the effect of various noise and modeling uncertainties [5].  

I.3.4. Novelty identifiability 

A fault detection and diagnosis system should be able to decide whether a process is in a 

normal or malfunction operation and, if an abnormal condition occurs, whether the causes are 

from known or novel unknown malfunction [5]. 

I.3.5. Classification error estimate 

An important practical requirement for a diagnostic system is in building the user’s 

confidence on its reliability. This could be greatly facilitated if the diagnostic system could 

provide a priori estimate on classification error that can occur. Such error measures would be 

useful to project confidence levels on the diagnostic decisions by the system giving the user a 

better feel for the reliability of the recommendations by the system [5]. 
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I.3.6. Adaptability 

It is also desirable to have extendable systems. This would allow processes to change due 

to changes in the external inputs, structural changes and also changes in the environmental 

conditions. Thus the diagnostic system should be adaptable to changes [5]. 

I.3.7. Modelling requirements 
   

The amount of modelling required for the development of a diagnostic classifier is an 

important issue. For fast and easy deployment of real-time diagnostic classifiers, the modelling 

effort should be as minimal as possible [5]. 

 

I.3.8. Explanation facility 

A diagnostic system should be able to explain where a fault originated and how it 

propagated in the system [5]. 

 

I.3.9. Multiple fault identifiability 

This refers to the ability of a diagnostic system to identify and correctly classify multiple 

faults that may even coexist in a system. This is a rather difficult requirement mainly due to 

nonlinearities and coupling/ interactions that generally exist between the states and the potential 

fault sources of a dynamical system. Another reason is that some faults in an engineering system 

are extremely difficult to model because of their complexity [5].  

 

I.3.10. Storage and computational requirements 

This criterion is specifically required for the fast real-time implementation of diagnostic 

classifiers. Then, the systems should be reasonably balanced between high storage capacities and 

less computational complexity [5]. 

I.4. Transformation of measurements in a diagnostic system 

To attempt a comparative study of various diagnostic methods it is helpful to view them 

from different perspectives. In this sense, it is important to identify the various transformations 

that process measurements go through before the final diagnostic decision is made. Two 

important components in the transformations are the a priori process knowledge and the search 

technique used. Hence, one can discuss diagnostic methods from these two perspectives. In 
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The measurement space

The feature space

The decision space

The class space

general, one can view the diagnostic decision making process as a series of transformations or 

mappings on process measurements. Fig. 3 shows the various transformations that process data 

go through during diagnosis.  

 

 

 

 

 

 

 

Figure 3. Transformations in a diagnostic system [5]. 

The measurement space is a space of measurements x1, x2,. . .,xN with no priori problem 

knowledge relating to these measurements, these are the input to the diagnostic system. The 

feature space is a space of points y =/(y1,. . .,yi ) where yi is the ith feature obtained as a function 

of the measurements by utilizing a priori problem knowledge. Here, the measurements are 

analyzed and combined with the aid of a priori process knowledge to extract useful features 

about the process behavior to aid diagnosis. The mapping from the feature space to decision 

space is usually designate to meet some objective function (such as minimizing the 

misclassification). This transformation is achieved by either using a discriminant function or in 

some cases using simple threshold functions. The decision space is a space of points d = [d1,. . 

.,dK], where K is the number of decision variables, obtained by suitable transformations of the 

feature space. The class space is a set of integers c =/ [c1.  . . cM], where M is the number of 

failure classes, indexing the failure classes indicating categorically to which failure class (or 

classes) including normal region a given measurement pattern belongs. The class space is thus 

the final interpretation of the diagnostic system delivered to the user. The transformations from 

decision space to class space are again performed using either threshold functions, template 

matching or symbolic reasoning as the case may be [5].  
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I.5. Classification of fault detection and diagnosis methods  

There is a large number of literatures about systems of fault diagnostics varying from 

analytical techniques to artificial intelligence and statistics. The classification of these fault 

diagnosis methods very often is not consistent. This is primarily due to the fact that academics 

generally focus on a given branch [4]. 

The main difference between the approaches of fault diagnosis is about the diagnostic 

knowledge utilized. At the limits, diagnostics may be based on prior knowledge (e.g., models 

based entirely on first principles) or empirically driven (e.g., by black-box models). Both 

techniques utilize models and both employ data, but the diagnostic approach is fundamentally 

different[6]. Usually, the model-based approach is built out using a basic understanding of the 

process physics. It can be classified into quantitative model-based and Qualitative model-based. 

In quantitative models this understanding is expressed in terms of mathematical functional 

relationships between the inputs and outputs of the system. In contrast, in qualitative model 

equations, these relationships are expressed in terms of qualitative functions centered on 

different units in a process [5]. 

Purely process history approaches (i.e., methods based on black-box models) use no 

priori knowledge of the process but, instead, derive behavioral models only from measurement 

data from the process itself. In this latter case, the models may not have any direct physical 

significance [6]. There are different ways in which this data can be transformed and presented as 

a priori knowledge to a diagnostic system. This is known as the feature extraction process from 

the process history data, and is done to facilitate later diagnosis. This extraction process can 

mainly proceed as either quantitative or qualitative feature extraction (Fig. 4) [5]. 
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Fault detection and diagnosis methods 

Quantitative model-based 
methods 

Observers

Parity space

Frequency domain 
approaches

Qualitative model-based 
methods

Digraphs based causal 
models

Fault Trees

Qualitative Physics 
Approaches

Process history  methods

Qualitative feature 
extraction

Expert systems

Qualitative trend 
analysis (QTA)

Quantitative feature 
extraction

Multivariate statistical 
approaches

(PCA/PLS ...)

Statistical classifier 
approaches

Neural network 
approach

 

 

 

 

 

Figure 4. Classification of fault detection and diagnosis methods. 

 

I.5.1. Quantitative model based methods 

Model-based methods rely on analytical redundancy by using explicit mathematical models 

of the monitored process, plant, or system to detect and diagnose faults [30]. The essence of this 

concept is to check for consistency between the actual outputs of the monitored system and the 

outputs obtained from a (redundant. i.e. not physical) analytical mathematical model. Therefore, any 

inconsistency expressed as residuals, can be used for detection and isolation purposes. These 

residuals should be close to zero when no fault occurs but show ‘significant’ values when the 

underlying system changes [5].  

The quantitative model-based approaches have been based on using general input-output 

and state space models to generate residuals. These approaches can be classified into observers, 

parity space and frequency domain approaches. 
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I.5.1.1. Observers 

The main concern of observer-based FDI is the generation of a set of residuals which detect and 

uniquely identify different faults. The method develops a set of observers, each one of which is 

sensitive to a subset of faults while insensitive to the remaining faults and the unknown inputs 

[5,6].  

 

I.5.1.2. Parity space 

It is essential to check the parity (consistency) with sensor outputs (measurements) and know 

process inputs of plant models. The so-called residual or value of the parity equations is zero 

under perfect stable operation conditions [5].  

 

I.5.1.3. Frequency domain approaches 

Residuals are also generated in the frequency domains via factorization of the transfer function 

of the monitored system.  

 

Strengths of Quantitative Models. Strengths of fault detection and diagnosis based on 

quantitative models include: 

• Models are based on sound physical or engineering principles. 

• They provide the most accurate estimators of output when they are well formulated. 

• Detailed models based on first principles can model both normal and “faulty” operation; 

therefore, “faulty” operation can be easily distinguished from normal operation. 

• The transients in a dynamic system can only be modeled with detailed physical models[30]. 

 

Weaknesses of Quantitative Models.  The weaknesses of fault detection and diagnosis based on 

quantitative models include:  

• They can be complex and computationally intensive. 

• The effort required to develop a model is significant. 

• These models generally require many inputs to describe the system, some for which values may 

not be readily available. 

• Extensive user input creates opportunities for poor judgment or input errors that can have 

significant impacts on results [6]. 
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I.5.2. Qualitative Model-Based Methods 

Fault detection and diagnostics based on qualitative modeling techniques represent 

another broad category that is based on a priori knowledge of the system. Unlike quantitative 

modeling techniques in which knowledge of the system is expressed in terms of quantitative 

mathematical relationships, qualitative models use qualitative relationships or knowledge bases 

to draw conclusions regarding the state of a system and its components (e.g., whether operations 

are “faulty” or “normal”) [6]. 

 

Qualitative model-based methods can be classified into: 

I.5.2.1. Digraphs based causal models 

Causal graphs provide a good way to represent physical cause-effect relations between 

different process variables that are of interest for fault diagnosis. In the causal directed graph 

models, the nodes denote the variables, while the directed edges between the nodes represent the 

causal relations between these variables, through which faults can propagate. The Signed 

Directed Graph (SDG) method, the simplest causal directed graph method, uses pure qualitative 

information, which can give rise to ambiguous fault diagnosis [7]. 

I.5.2.2. Fault Trees 

Fault tree analysis (FTA) describes all possible causes of a specified system state in terms 

of the state of the components within the system. This will be achieved with the use of coherent 

and non-coherent fault trees. A coherent fault tree is constructed from AND and OR logic, 

therefore only considers component failed states. The non-coherent method expands this 

allowing the use of NOT logic which implies that the existence of component failed states and 

working states are both taken into account [8]. 

I.5.2.3. Qualitative Physics Approaches 

The detailed physical models are based on detailed knowledge of the physical 

relationships and characteristics of all components in a system. Using this detailed knowledge for 

mechanical systems, a set of detailed mathematical equations based on mass, momentum, and 

energy balances along with heat and mass transfer relations are developed and solved. Detailed 

models can simulate both normal and “faulty” operational states of the system (although 

modeling of faulty states is not required by all methods).qualitative physics approach is 

represented in mainly two approaches. The first approach is to derive qualitative equations from 

the differential equations termed as confluence equations [9]. Considerable work has been done 



                      Chapter I. Fault detection and diagnosis 

 

13 
 

in this area of qualitative modeling of systems and representation of causal knowledge [10].The 

other approach in qualitative physics is the derivation of qualitative behavior from the Ordinary 

Differential Equations (ODEs). These qualitative behaviors for different failures can be used as a 

knowledge source [11]. 

Strengths of Qualitative Models. Strengths of qualitative models are: 

• They are well suited for data-rich environments and noncritical processes. 

• These methods are simple to develop and apply. 

• Their reasoning is transparent, and they provide the ability to reason even under uncertainty. 

• They possess the ability to provide explanations for the suggested diagnoses because the 

method relies on cause-effect relationships. 

• Some methods provide the ability to perform FDD without precise knowledge of the system 

and exact numerical values for inputs and parameters [6]. 

 

Weaknesses of Qualitative Models. Weaknesses of FDD based on qualitative models include: 

• The methods are specific to a system or a process. 

• Although these methods are easy to develop, it is difficult to ensure that all rules are always 

applicable and to find a complete set of rules, especially when the system is complex. 

• As new rules are added to extend the existing rules or accommodate special circumstances, 

the simplicity is lost. 

• These models, to a large extent, depend on the expertise and knowledge of the developer [6]. 

I.5.3. Process History (Data-driven) Methods 

In process history based methods, only the availability of large amount of historical 

process data is needed. This data can be transformed and presented as a priori knowledge to a 

diagnostic system using different ways. And this is known as feature extraction.  

This extraction process can be either qualitative or quantitative in nature. Two of the 

major methods that extract qualitative history information are the expert systems and trend 

modelling methods. Methods that extract quantitative information can be broadly classified as 

non-statistical or statistical methods [12]. 
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I.5.3.1. Qualitative feature extraction 

Two of the major methods that extract qualitative history information are expert systems 

and Qualitative Trend Analysis [12]. 

 Expert systems 

 
 An expert system is generally a very specialized system that solves problems in a narrow 

domain of expertise. The main components in an expert system development include: knowledge 

acquisition, choice of knowledge representation, the coding of knowledge in a knowledge base, the 

development of inference procedures for diagnostic reasoning and the development of input – output 

interfaces. The main advantages in the development of expert systems for diagnostic problem-solving 

are ease of development, transparent reasoning, the ability to reason under uncertainty and the ability 

to provide explanations for the solutions provided [10, 12]. 

 Qualitative trend analysis (QTA)  

 Trend analysis and prediction are important components of process monitoring and 

supervisory control. Trend modeling can be used to explain the various important events that happen 

in a process, to diagnose malfunctions and to predict future states. From a procedural perspective, in 

order to obtain a signal trend not too susceptible to momentary variations due to noise, some kind of 

filtering needs to be employed [10]. 

 

I.5.3.2. Quantitative feature extraction 

Methods that extract quantitative information can be broadly classified as Non-statistical 

or statistical methods. Neural networks are an important class of non-statistical classifiers. 

Principal component analysis (PCA)/partial least squares (PLS) and statistical pattern classifiers 

form a major component of the statistical feature extraction methods [10, 12]. 

 Multivariate statistical approaches: 
 

Multivariate statistical techniques are powerful tools capable of compressing data and 

reducing its dimensionality so that essential information is retained and easier to analyze than the 

original huge data set; and they are able to handle noise and correlation to extract true 

information effectively. Multivariate statistical process control methods, such as Principal 

Component Analysis (PCA) and Partial Least Squares (PLS), have been used in process 

monitoring problems. These are based on transforming a set of highly correlated variables to a 

set of uncorrelated variables [13, 14]. Principal component analysis (PCA) probably is the most 

popular among these techniques [16, 15]. PCA is capable of compressing high-dimensional data 
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with little loss of information by projecting the data onto a lower-dimensional subspace defined 

by a new set of derived variables (principal components (PCs)) [17]. 

 Statistical classifier approaches 
 

Fault diagnosis is essentially a classification problem and hence can be cast in a classical 

statistical pattern recognition framework. Fault diagnosis can be considered as a problem of 

combining, over time, the instantaneous estimates of the classifier using knowledge about the 

statistical properties of the failure modes of the system [11, 18, 19]. 

 Neural network approach 

Neural networks have been proposed for classification and function approximation 

problems. In general, neural networks that have been used for fault diagnosis can be classified 

along two dimensions: (i) the architecture of the network such as sigmoidal and radial basis (ii) 

The learning strategy such as supervised and unsupervised learning [12]. 

Fault detection and diagnosis methods based on process history are well suited to 

problems for which theoretical models of behavior are poorly developed or inadequate to explain 

observed performance and where training data are plentiful or inexpensive to create or collect. 

This approach provides black-box models, which are easy to develop and do not require an 

understanding of the physics of the system being modeled with a generally manageable 

computational requirement. 

Beside all the advantages listed earlier, the most significant drawbacks is that most of the 

models cannot be used to extrapolate beyond the range of the training data and a large amount of 

training data is needed, representing both normal and faulty operation. The models are specific to 

the system for which they are trained and rarely can be used on other systems. Process data-

based methods are suitable where no other methods exist. Some are applicable for virtually any 

kind of pattern recognition problems [6, 11]. 

 

I.6. A comparison of various approaches  

 

Table 1 gives a comparison of various methods in terms of the desirable characteristics of 

diagnostic systems. In the table only some representative methods in each of the three 

approaches (quantitative model-based, qualitative model-based, process history based) are 

chosen for comparison. A check mark would indicate that the particular method (column) 
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satisfies the corresponding desirable property (row). A cross would indicate that the property is 

not satisfied and a question mark would indicate that the satisfiability of the property is case 

dependent. 

Table 01. Comparison of diagnosis methods [12]. 

 Observer Digraphs Expert 

systems 

QTA PCA Neural 

networks 

Quick detection and 

diagnosis 

√ ? √ √ √ √ 

Isolability √ x √ √ √ √ 

Robustness √ √ x √ √ √ 

Novelty identifiability ? √ x ? √ √ 

Classification error x x x x x x 

Adaptability x √ √ ? x x 

Explanation facility x √ √ √ x x 

Modelling requirement ? √ √ √ √ √ 

Storage and computation √ ? √ √ √ √ 

Multiple fault identifiability √ √ x x x x 

√: suitable; x: not suitable; ? : not assessed 

 

I.7. Statistical Process Monitoring (SPM) 

Statistical Process monitoring is an analytical decision making tool which allows to see 

when a process is working correctly and when it is not. Variation is present in any process, 

deciding when the variation is natural and when it needs correction is the key to quality control. 

A control chart sometimes called a Shewhart chart, a statistical process control chart, or 

an SPC chart—is one of several graphical tools typically used in quality control analysis to 

understand how a process changes over time. Data are plotted in time order. A control chart 

always has a central line for the average, an upper line for the upper control limit, and a lower 

line for the lower control limit. These lines are determined from historical data. By comparing 

current data to these lines, you can draw conclusions about whether the process variation is 

consistent (in control or healthy state) or is unpredictable (out of control, affected by special 

causes of variation). 
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Figure 5. Control chart for SPC  

. 

I.8. Conclusion 

The main purpose of this chapter is to provide certain concepts and terminology used in 

the subject of fault detection and diagnosis, as well as to explore several defect detection 

approaches from various perspectives. We additionally compared these techniques to a common 

set of desirable diagnostic system characteristics that we specified in section 3. In order to gain a 

basis in the field, a definition of SPC was researched. Due to the complexity of the FDD field, a 

detailed analysis of each approach is a time-consuming process. In the next chapters, we will 

concentrate on multivariate statistical techniques.    
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II.1. Introduction 

Due to consistent product quality demand and higher requirements in safety, the process 

monitoring performance has become a key factor in improving productivity and safety. Process 

systems are using large amount of data from many variables that are monitored and recorded 

continuously every day. Several multivariate statistical techniques for fault detection, analysis of 

process and diagnosis have been developed and used in practice [20].  

This chapter is in three parts. In the first, PCA is defined, and what has become the 

standard derivation of PCs, in terms of eigenvectors of a covariance matrix, and it its use in Fault 

Detection is presented. However, the PCA identifies only linear structure in a given dataset, as it 

is nothing but a linear projection. To overcome this problem, many studies have been proposed 

to define nonlinear extensions of PCA. The kernel principal component analysis (KPCA) is 

among the most popular nonlinear statistical methods, the second part gives a review of the 

kernel PCA method for process monitoring, the process and the drawbacks. The last part 

discusses the proposed Reduced Kernel PCA, technique of reduction and its application in FDD. 

II.2. Principal Component Analysis 

Principal Component Analysis (PCA) is a multivariate statistical technique that analyzes 

data described by several inter-correlated quantitative dependent variables in order to extract the 

important information as new orthogonal variables called principal components. PCA depends 

upon the Eigen-decomposition of positive semidefinite matrices and upon the singular value 

decomposition (SVD) of rectangular matrices [21] 

PCA is used for exploratory data analysis and examination of the relationships among a 

group of variables. Hence it can be used for dimensionality reduction. [22] 

II.2.1. Statistical process modeling using PCA 

The first step in the PCA algorithm is to construct a data or feature matrix 𝑿, where each 

sample is represented as one column and the number of rows represents the dimension, note that 

𝑿𝝐 𝑹𝑵 ×𝒎 is a normalized data with zero mean and unit variance. Calculating the lower 

dimensional space with the PCA technique can be done using the covariance or SVD methods 

[23,24]. 
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The covariance matrix is calculated as follows: 

 
𝑪 =

1

𝑁 − 1
𝑿𝑻𝑿 

(2. 1) 

The covariance matrix of 𝑿 can be decomposed using SVD as: 

 
𝑪 = 𝑷𝜦𝑷𝑻 

(2. 2) 

Where the matrix 𝑷 𝝐 𝑹𝒎 ×𝒎 is the principal component loading vectors. While, 𝚲 𝝐 𝑹𝒎 ×𝒎 is a 

diagonal matrix of the eigenvalues of 𝑪𝒐𝒗 𝝐 𝑹𝒎 ×𝒎 decreasingly ordered. 

The data matrix is given as: 

 
𝑿 = 𝑻𝑷𝑻 

(2. 3) 

where 𝑻 is called the score matrix, and it is given by: 

 
𝑻 = 𝑿𝑷 

(2. 4) 

The aim of PCA method is to represents the data by fewer sufficient components. Thus, using 

𝓵 <  𝒎 of the components, by decomposing he matrix 𝑷 can be decomposed into: 

 
𝑷 = [ 𝑷̂    𝑷̃ ] 

(2. 5) 

Where 𝑷̂ contains only the ℓ first columns of 𝑷.  𝓵  Represents the number of retained principal 

component, the decomposition of the used matrices becomes: 

 
𝑷 = [ 𝑷̂ 𝒎×𝒍   𝑷̃ 𝒎×(𝒎−𝒍) ] (2. 6) 

 𝑻 = [ 𝑻̂ 𝒏×𝒍   𝑻̃ 𝒏×(𝒎−𝒍) ] (2. 7) 

 
𝜦 = [

𝜦̂ 𝒍×𝒍 𝑶𝒍×(𝒎−𝒍)

𝑶(𝒎−𝒍)×𝒍 𝜦̃ (𝒎−𝒍)×(𝒎−𝒍)

] 
(2. 8) 

The data matrix 𝑿 can be decomposed as: 

 
𝑿 = 𝑿𝑷̂𝑷̂ 𝑻 +  𝑿𝑷̃𝑷̃ 𝑻 = 𝑿𝑨 +  𝑿(𝑰 − 𝑨) =   𝑿̂ + 𝑬 

(2. 9) 

Where 𝑿̂ = 𝑿𝑨 and 𝑬 = 𝑿(𝑰 − 𝑨) are the projection of the observed sample onto the principal 

component subspace and the residual subspace respectively [24]. Note that matrix 𝑨 is 

idompotent. 
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II.2.2. Model dimension selection 

The effectiveness of the PCA model depends on the number of principal components 

(PCs) are to be used for PCA. Selecting an appropriate number of PCs introduces a good 

performance of PCA in terms of processes monitoring. Several methods for determining the 

number of PCs have been proposed such as; the scree plot , the cumulative percent variance 

(CPV), the cross validation  and the profile likelihood [20]. In this study here, the cumulative 

percent variance method is utilized to come up with the optimum number of retained principal 

components. The cumulative percent variance is computed as follows: 

 
𝐶𝑃𝑉 =  

∑ 𝝀𝒊
𝒊=𝒍
𝒊=𝟏

∑ 𝝀𝒊
𝒊=𝒎
𝒊=𝟏

 % 
(2. 10) 

Where 𝒍 is the number of the retained PC’s having their sum of variances greater than a certain 

percentage of the total variance [24], the percentage chosen based on the CPV determines the 

quality of the constructed model. 

II.2.3. Fault Detection Indices 

For fault detection, the PCA model of the process is developed, based on normal 

operating process data, and then used to check new measurement data. The differences between 

the new measurement data and their projections to the built model, the residuals are then 

subjected to some sort of statistical test to determine if they are significant. Usually the SPE 

statistic, also called squared prediction error (𝑸), and the Hotelling's (𝑻𝟐) statistic are used to 

represent the variability in the residual subspace and principal component subspace [26]. 

A third monitoring index 𝝋 is introduced, which is a combination of the 𝑻² and 𝑸 

indices, weighted by their control limits for monitoring the principal and residual space 

simultaneously [27]. 
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Figure 6. Data projection on two PCs [28] 

II.2.3.1. Q-statistic or squared prediction error (SPE) 

It is possible to detect new events by computing the squared prediction error SPE or 𝑸 of 

the residuals for a new observation. 𝑸 statistic [29], [30], is computed as the sum of squares of 

the residuals. Also, the 𝑸 statistic is a measure of the amount of variation not captured by the 

PCA model [20], it is defined as: 

 
𝑄 = ‖𝐸‖𝟐 = 𝑿(𝑰 − 𝑨)(𝑰 − 𝑨)𝑻𝑿𝑻 

(2. 11) 

 

The monitored system, meanwhile, is accepted to be in normal operation if: 

 
𝑄 ≤ 𝑄𝛼 

(2. 12) 

The threshold of 𝑄-statistic is calculated by the following relation [20]: 

 𝑄𝛼 = 𝜃1 [
𝑐𝛼ℎ0√2𝜃2

𝜃1
+

𝜃2ℎ0(ℎ0 − 1)

𝜃1
2 + 1]

1
ℎ0

⁄

 (2. 13) 

Where  𝜃𝑖 = ∑ 𝝀𝒋
𝒊𝒊=𝒎

𝒋=𝒍+𝟏  {i = 1,2,3},  ℎ0 = 1 −
2𝜃1𝜃3

𝜃2
2   and 𝒄𝜶 is the value of the normal 

distribution with  is the level of significance at the instant of an unusual event, when there is a 

change in the covariance structure of the model, this change is going to be detected by a high 

value of 𝑸. 
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The threshold of 𝑸𝜶 statistic can also be calculated by the following [31]: 

 
𝑄𝛼 = 𝑔𝜒ℎ,𝛼

2  
(2. 14) 

Where 𝑔 = 𝜃2 𝜃1⁄  and ℎ = 𝜃1
2 𝜃2⁄  

 

II.2.3.2. Hotelling's T2 statistic  

The Hotelling’s 𝑻𝟐 statistic measures the variability in the principle components 

subspace. It depends on the first eigenvalues that capture the most variations of data [32], it is 

determined by: 

 
𝑻𝟐 = 𝑿𝑷̂ 𝚲̂−𝟏 𝑷̂ 𝑻 𝑿 𝑻 

(2. 15) 

The threshold is calculated with conditions that the process is normal and the data follows a 

multivariate normal distribution according to the following relation: 

 
𝑇𝛼

2 = 
𝐿(𝑁2 − 1)

𝑁(𝑁 − 𝐿)
𝐹𝐿,𝑁−𝐿,𝛼 

(2. 16) 

Where 𝑭𝑳,𝑵−𝑳,𝜶 is the Fisher normal distribution function with 𝑳 and 𝑵 − 𝑳 degrees of freedom. 

𝜶 is the level of significance (confidence interval). When the number of observations 𝑁  is high, 

The 𝑻𝟐 statistic threshold can be approximated with 𝝌𝟐 distribution [32]. 

 𝑇𝛼
2 = 𝑔𝜒ℎ,𝛼

2  (2. 17) 

Where 𝒈 and 𝒉 can be set to 1. 

 

II.2.3.3. φ Statistic  

The combined index, 𝝋 statistic, has been first proposed by Yue and Qin .The index is a 

combination of both 𝑻𝟐and 𝑸 statistics, it gives informations about the variability 

in the whole measurement space and used for monitoring the principal and residual space 

simultaneously[27]. For a new measurement vector 𝑿, 𝝋 is defined: 

 𝜑 = 
𝑇2

𝑇𝛼
2
+

𝑄

𝑄𝛼
= 𝑿𝑻𝒘𝑿 (2. 18) 
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Where : 

 
𝒘 =

𝑷̂ 𝚲̂−𝟏 𝑷̂ 𝑻

𝑇𝛼
2

+
𝑰 − 𝑷̂ 𝑷̂ 𝑻

𝑄𝛼
 

(2. 19) 

In a similar way, the 𝝋 statistic threshold can be determined by [32]: 

 
𝜑𝛼 =  𝑔𝜒ℎ,𝛼

2  
(2. 20) 

𝒈 and 𝒉 are given as follow [32,26] : 

 𝑔 =
𝑡𝑟𝑎𝑐𝑒(𝐶𝑜𝑣 𝑤)2

𝑡𝑟𝑎𝑐𝑒(𝐶𝑜𝑣 𝑤)
 (2. 21) 

 
ℎ =

[𝑡𝑟𝑎𝑐𝑒(𝐶𝑜𝑣 𝑤)]2

𝑡𝑟𝑎𝑐𝑒(𝐶𝑜𝑣 𝑤)2
 

(2. 22) 

 

Table 02. PCA-based fault detection algorithm [24] 

Algorithm 1: PCA-based fault detection algorithm 

1. Offline monitoring 

- Obtain training fault free data set that represent the normal operations. 

- Scale the data to zero mean and unit variance. 

- Compute the covariance matrix 𝑪 using (2. 1).  

- Calculate the eigenvectors and eigenvalues of 𝑪. 

- Determine how many principal components to be used. Many techniques can be used 

in this regard. In this work, the CPV criterion is used (2.10). 

- Calculate 𝑸𝜶, 𝑻𝟐
𝜶 and 𝝋𝛼 using (2.13) (2.16) (2.20)  respectively. 

2. Online monitoring 

- Obtain testing data (possibly faulty data). 

- Scale the data using mean and variance of the training set. 

- Calculate 𝑸, 𝑻𝟐 and 𝝋. 

- Check for faults: if 𝑸 ≤ 𝑸𝜶 , 𝑻𝟐 ≤ 𝑻𝟐
𝜶 and 𝝋 ≤ 𝝋𝛼 , then declare a fault. 
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II.2.4. PCA main drawbacks 

The selection of the optimal number of principal components (PCs) in fault detection 

using principal components analysis (PCA) is a critical and sensitive operation because 

overestimating the number of components will results in a contamination of the extracted 

information by adding noise dimensions with no useful information. This will lead to an 

important amount of false alarms. In the other hand, underestimating the number of components 

results in a loss of information and a misdetection of faults [33]. 

The PCA technique produces new uncorrelated variables called principal components 

(PC) with each component is linear combinations of original variables. However, the majority of 

processes, data have nonlinear relationships. In fact, PCA only defines a projection of linear  

data. Hence, it is incapable to analyze and represent the data with nonlinear characteristics. This 

limitation and nonlinearity problem have motivated various researchers to develop nonlinear 

extensions, such as Kernel PCA presented in the next section [34]. 

 

II.3. Kernel Principal Component Analysis (KPCA) 

Kernel Principal Component Analysis (KPCA) is among the most popular dimensional 

reduction and analysis method. It extends the conventional linear PCA to deal with nonlinear 

modes[34] that can only be effectively performed on a set of observations that vary linearly. 

When the variations are nonlinear, the data can always be mapped into a higher-dimensional 

space in which they vary linearly. That is, according to Cover’s theorem, the nonlinear data 

structure in the input space is more likely to be linearly separabale after high-dimensional 

nonlinear mapping [35]. 

The main objective of Kernel PCA is to model process data with non-linear structure. It 

consists to transform the nonlinear input data space into a linear data in a new high dimensional 

feature space denoted 𝓕 and to perform PCA in that space, where the feature space 𝓕 is 

nonlinearly transformed from the input space with a non-linear mapping function [34]. 
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Figure 7. Non-linear data transformation to linear feature space 𝓕 [48] 

 

II.3.1. Statistical process modeling using KPCA 

We assume a distribution consisting of 𝑁 data points and 𝑚 variabals 𝑿𝒊 𝝐 𝑹
𝑵 ×𝒎. Before 

performing linear PCA, these data points are mapped into a higher-dimensional feature 

space 𝓕 through a non-linear mapping : 

 
𝜙: 𝑋𝑖𝜖𝑅

𝑚 → 𝜙(𝑋𝑖) = 𝜙𝑖𝜖 𝑅
ℎ 

(2. 23) 

Where 𝑹𝒉 (ℎ >> 𝑚) be an arbitrarily large or possibly infinite dimension. The data is arranged 

in 𝓕 as  𝝌 = [𝜙(𝑥1)…𝜙(𝑥𝑖)…𝜙(𝑥𝑁)]𝑻 ∈ ℝ𝑵×𝒉 define the data matrix in the feature space 𝓕, 

then the covariance matrix 𝑪𝝓 can be expressed as : 

 𝑪𝝓 =
1

𝑁
∑𝒊=𝟏

𝑵  𝝓(𝑿𝒊)𝝓(𝑿𝒊)
𝑻 =

1

𝑁
𝝌𝝌𝑻𝜖𝑅ℎ×ℎ (2. 24) 

 

The principal components of the mapped data 𝜙𝑖 are computed by solving the 

eigenvalue decomposition of 𝑪𝝓such that: 

 
𝝀𝒗 = 𝑪𝝓𝒗 

(2. 25) 

Where are 𝝀 eigenvalues and 𝒗 𝜖 𝓕{𝟎}  their corresponding eigenvectors. The importance of the 

eigenvectors is indicated by the magnitude of their corresponding eigenvalues. 
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All solutions 𝒗 with 𝝀 ≠ 𝟎 lie in the spam of  [𝜙(𝑥1)…𝜙(𝑥𝑖)…𝜙(𝑥𝑁)] this has two useful 

consequences[k]. First, there exist coefficients 𝜶𝒊 such that: 

 
𝒗 = ∑  

𝑁

𝑖=1

𝛼𝑖𝜙(𝑋𝑖) 
(2. 26) 

Second, we may instead consider the set of equations: 

 

 

𝜆⟨𝜙(𝑋𝑘), 𝑣⟩ = ⟨𝜙(𝑋𝑘), 𝐶𝜙𝑣⟩              𝑘 = 1,… ,𝑁 
(2. 27) 

 

Combining equations (2. 26) and (2. 27), we get: 

 𝜆 ∑  

𝑁

𝑖=1

𝛼𝑖⟨𝜙(𝑋𝑘), 𝜙(𝑋𝑖)⟩ =
1

𝑁
∑  

𝑁

𝑖=1

𝛼𝑖 ⟨𝜙(𝑋𝑖),∑  

𝑁

𝑗=1

𝜙(𝑋𝑗)⟩ × ⟨𝜙(𝑋𝑖𝑗), 𝜙(𝑋𝑖)⟩  

 𝒌 = 𝟏,… ,𝑵 (2. 28) 

 

The trick herein is that the PCA can be computed such that the vectors 𝜙𝑖  appear only 

within scalar products. Thus, the mapping need not be explicitly computed and only the dot 

products of two vectors in the feature space are needed. Instead, we only work with a kernel 

function 𝑘(𝑥, 𝑦), which replaces the scalar product. This is called the kernel trick (35,36). 

Now defining a matrix 𝑲 ∈ 𝑹𝑵×𝑵 by: 

 𝑲𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗) = ⟨𝜙(𝑋𝑖), 𝜙(𝑋𝑗)⟩ =  𝝌𝝌𝑻 (2. 29) 

 𝑲 = 

[
 
 
 
 
𝜙1

𝑇𝜙1 … 𝜙1
𝑇𝜙𝑁

⋅ ⋅
⋅ ⋯ ⋅
⋅ ⋅

𝜙𝑁
𝑇𝜙1 … 𝜙𝑁

𝑇𝜙𝑁]
 
 
 
 

 = [

𝑘(𝑥1, 𝑥1) … 𝑘(𝑥1, 𝑥𝑁)

⋅ ⋅
⋅ … ⋅

𝑘(𝑥𝑁, 𝑥1) … 𝑘(𝑥𝑁, 𝑥𝑁)

] (2. 30) 
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The left hand side of equation (2.28) can be expressed as: 

 
𝝀∑  

𝑁

𝑖=1

𝛼𝑖⟨𝜙(𝑋𝑘), 𝜙(𝑋𝑖)⟩ = 𝝀∑  

𝑁

𝑖=1

𝛼𝑖𝑲𝒌𝒊 (2. 31) 

And the right hand side of equation (2.28) can be given by: 

 

1

𝑁
∑  

𝑁

𝑖=1

𝛼𝑖 ⟨𝜙(𝑋𝑖),∑  

𝑁

𝑗=1

𝜙(𝑋𝑗)⟩ × ⟨𝜙(𝑋𝑖𝑗), 𝜙(𝑋𝑖)⟩ =
1

𝑁
∑  

𝑁

𝑖=1

𝛼𝑖 ∑ 

𝑁

𝑗=1

𝐾𝑖𝑗𝐾𝑗𝑖 (2. 32) 

this reads : 

 
𝝀𝑁𝑲𝜶 = 𝑲𝟐𝜶 

(2. 33) 

where 𝜶 denotes the column vector with entries 𝜶𝟏, 𝜶𝟐, … 𝜶𝑵. 

To find solutions of equation (2.33), we solve the eigenvalue problem: 

 
𝑁𝝀𝜶 = 𝑲𝜶 

(2. 34) 

Eigen-decomposition of the kernel matrix K is equivalent to performing PCA in 𝑹𝒉 [i]. 

This yields eigenvectors 𝜶𝟏;  𝜶𝟐; … ; 𝜶𝑵 with eigenvalues 𝝀𝟏 ≥ 𝝀𝟐 ≥ ⋯ ;≥ 𝝀𝑵 . The 

dimensionality of the problem can be reduced by retaining only the 1st 𝒍 eigenvectors using the 

cumulative percent variance method given in equation (2.10). 

We normalize 𝜶𝟏;  𝜶𝟐; … ; 𝜶𝑵 by requiring that the corresponding vectors in 𝓕 

be normalized, that is: 

 
⟨𝑣𝑘 , 𝑣𝑘⟩ = 1         𝑘 = 1,… , ℓ 

(2. 35) 

 

Using eq (2. 35) and (2. 26)  we get the normalization condition: 

 

1 = ∑  

𝑁

𝑖,𝑗=1

𝛼𝑖
𝑘𝛼𝑗

𝑘〈Φ(x𝑖) ⋅ Φ(x𝑗)〉 = ∑  

𝑁

𝑖,𝑗=1

𝛼𝑖
𝑘𝛼𝑗

𝑘𝐾𝑖𝑗

= 〈𝛼𝑘 ⋅ 𝑲𝛼𝑘〉 = 𝜆𝑘〈𝛼
𝑘 ⋅ 𝛼𝑘〉

 
(2. 36) 
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Thus, 

 ⟨𝛼𝑘 , 𝛼𝑘⟩ =
1

𝜆𝑘
                         𝑘 = 1,… , ℓ (2. 37) 

 

Which shows that : 

 
𝑣𝑖 = ∑  

𝑁

𝑗=1

𝛼𝑗
𝑖

√𝜆𝑖

𝜙𝑗 =
1

√𝜆𝑖

𝝌𝑻𝜶𝒊 
(2. 38) 

We denote  𝑷̂ 𝑵×𝒍  =  [ 𝑣1, 𝑣2, … , 𝑣𝑙]  the principal subspace, which is denoted: 

 
𝑷̂ 𝑵×𝒍 = [𝝌𝑻𝛼1𝜆1

−
1
2, … , 𝝌𝑻𝛼ℓ𝜆ℓ

−
1
2]  = 𝝌𝑻𝑷̂𝑻𝚲̂−

𝟏
𝟐 

(2. 39) 

 

By projecting 𝝓(𝑿) onto principl eigenvectors in the feature space F we get [24,35]: 

 𝒕̂ = 𝑷̂𝑻𝝓 = 𝚲−
𝟏
𝟐𝑷̂𝑻𝑘(𝑥)   ∈ ℝ𝓵 (2. 40) 

Or : 

 
𝒕̂𝒌 = ⟨𝑣𝑘 , 𝜙(𝑋)⟩ = ∑  

𝑁

𝑖=1

𝛼𝑖
𝑘⟨𝜙(𝑋𝑖), 𝜙(𝑋)⟩, 𝑘 = 1,… , 𝑘 

(2. 41) 

II.3.1.1. Computing Dot Products in Feature Spaces 

The kernel representations allow us to compute the value of the dot product in F without 

having to carry out the map  𝝓. This method substitute a priori chosen kernel functions K for all 

occurrences of dot products[k], several kernel functions exists: 

Laplacian kernel : 

 k(𝑥𝑖 , 𝑥𝑗) = exp (−
∥∥𝑥𝑖 − 𝑥𝑗∥∥

𝜎
) (2. 42) 
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Gaussian kernel [Radial Basis Function (RBF)]: 

 
k(𝑥𝑖 , 𝑥𝑗) = exp(−

∥∥𝑥𝑖 − 𝑥𝑗∥∥
2

2𝜎2
) 

(2. 43) 

Where 𝝈 is specied a priori by the user. 

Polynomial function: 

 
k(𝑥𝑖 , 𝑥𝑗) = 〈𝑥𝑖 , 𝑥𝑗〉

𝑑 
(2. 44) 

where 𝒅 is a positive integer. 

Sigmoid function: 

 
k(𝑥𝑖 , 𝑥𝑗) = tanh (𝛽0〈𝑥𝑖 , 𝑥𝑗〉 + 𝛽1) 

(2. 45) 

where 𝜷𝟎 and 𝜷𝟏 are fixed by the user to satisfy Mercer’s theorem[34]. 

 

Kernel functions provides a low-dimensional KPCA subspace that represents the 

distributions of the mapping of the training vectors in the feature space. A specific choice of 

kernel function implicitly determines the mapping and the feature space  𝓕 .[35] 

Before applying KPCA, mean centering in the high dimensional space should be 

performed. This can be done by substituting the kernel matrix 𝑲 with [35]: 

 
 

𝐊𝒄 = 𝐊 − 𝟏𝑵𝐊 − 𝐊𝟏𝑵 + 𝟏𝑵𝐊𝟏𝑵 
(2. 46) 

 

 

Where 

 
𝟏𝑵 =

1

𝑁
[
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

] ∈ 𝑹𝑵×𝑵 
(2. 47) 
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II.3.2. Fault detection using KPCA 

The KPCA-based monitoring method is similar to that using PCA in that the three 

indices: 𝑸, The Hotelling’s 𝑻² and the combined and can be interpreted in the same way 

in the feature space [37]. 

II.3.2.1. Q-statistic  

The squared prediction error (𝑸) is usually used for fault detection using KPCA. 

However, the conventional KPCA does not provide any approach of data reconstruction in the 

feature space. Thus, the computation 𝑸 index is difficult in the KPCA method. 

A proposed expression to calculate 𝑸 in the feature space H, which is shown as follows[38]: 

 
𝑄 = k(𝑥, 𝑥) − 𝑘𝑥

𝑇𝑷̂𝚲̂−𝟏𝑷̂𝑻𝑘𝑥 
(2. 48) 

The confidence limit for 𝑸 index can be calculated using the  𝝌𝟐-distribution and is given by: 

 
𝑄𝛼 =  𝑔𝜒ℎ,𝛼

2  
(2. 49) 

𝒈 is a weighting parameter included to account for the magnitude of 𝑸 and 𝒉 accounts for the 

degrees of freedom. If 𝒂 and 𝒃 are the estimated mean and variance of the 𝑸 [35, 38] Where 𝒈 =

𝑏 2𝑎⁄  and  ℎ = 2𝑎2 𝑏⁄   . 

 

II.3.2.2. T²-statistic 

The Hotelling’s 𝑻² index is calculated as: 

 
𝑻𝟐 = 𝒕̂ 𝚲̂−𝟏 𝒕̂ 𝑻 

(2. 50) 

 

The 𝑻𝟐 is calculated using kernel functions as [38]: 

 
𝑻𝟐 = 𝑘(𝑥)T𝑷̂𝚲−𝟏𝑷̂𝐓𝑘(𝑥) 

(2. 51) 

The control limit for 𝑻² is calculated using 𝓕 distribution as in conventional PCA given by 

equation (2. 17). 
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III.3.2.3. 𝝋 Statistic 

The combined index 𝝋 is proposed in [27],[25],That it aims to monitor the principal and 

residual space in the feature space simultaneously by combining the 𝑸 and 𝑻² indices weighted 

by their thresholds, and it is defined as as in PCA eq (2. 18). 

The combined index 𝝋 has a control limit which is given in PCA or the same as 𝑸𝜶 eq (2. 49). 

Table 03. KPCA-based fault detection algorithm [39]. 

Algorithm2:  KPCA-based fault detection 

1. Offline monitoring 

- Acquire normal operating data and normalize it using the mean and standard deviation of 

each variable. 

- Decide on the type of kernel function to use and determine the kernel parameter. 

- Compute the kernel matrix 𝑲 of the NOC using equation (2.29) and normalize it using 

equation (2. 46). 

- Solve the eigenvalue problem given in equation (2.34) and normalize the eigenvectors 

using equation (2.38). 

- Calculate the monitoring statistics (𝝋 , 𝑻² and 𝑸) of the normal operating data. 

- Determine the control limits of 𝝋 , 𝑻² and 𝑸 charts. 

2. Online monitoring 

- Obtain new data for each sample and scale it with the mean and variance of the model. 

- compute the kernel vector of the normal new measured data. 

- Mean center the test kernel vector using (2. 46). 

- Calculate the monitoring statistics (𝝋 , 𝑻² and 𝑸)  of the test data.  

- Monitor whether 𝝋 , 𝑻² and 𝑸 exceeds its control limit calculated in the Offline 

monitoring. 
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II.3.3. KPCA main drawback 

Kernel PCA is computationally expensive. Most time consuming is the extraction of the 

eigenvectors of 𝑲, which is 𝑶(𝑵𝟑) if extracting all eigenvectors [40]. Kernel PCA is also 

memory exhaustive: the 𝑵 × 𝑵 matrix 𝑲 need an 𝑶(𝑵𝟐) to be stored. 

Furthermore, testing is expensive. For each new data point, the kernel function needs to 

be evaluated N-times. However, this number could be reduced using so-called ‘reduced set 

methods’ [36]. 

In order to surmount the problem of high computational cost and storage, we have 

investigated the use of a reduced version of KPCA called reduced kernel principal 

component (RKPCA) 

 

II.4.Proposed approach Reduced Kernel principal component (RKPCA) 

In the case of dynamic system, monitoring algorithms based on KPCA suffer from 

computation complexity as the amount of computer memory and the number of observations 

increases, which implies that it contains redundant information as well as noise due to 

measurement errors. To overcome this burden, possible solutions among others consist either to 

use kernel k means for clustering, to use an incremental approach for fast calculation of the 

kernel PCs , or to search a reduced data set that approaches sufficiently the system behavior with 

original model in the offline phase before applying it online [41]. 

 In this section, we improve the use of the RKPCA method for monitoring by introducing 

the Fractal Dimension as the new reduction method for identification of the observations 

containing the principal information. 

 

 

 

 



Chapter II. Multivariate statistical approaches 

33 
 

 

II.4.1. Fractal Dimension 

Mandelbrot written in his book ‘The Fractal Geometry of Nature (1982)’ where he 

explained the fractal phenomena in nature: ‘A fractal is a shape made of parts similar to the 

whole in some way’. 

Fractals are a relatively new mathematical concept for describing the geometry of 

irregularly shaped objects in terms of fractional numbers rather than integers. The key parameter 

for fractal analysis is the fractal dimension, which is a real noninteger number, differing from the 

more familiar Euclidean or topological dimension. The latter is an integer, with a value of one 

for a line, and two for a surface. The fractal dimension for a line of any shape varies between one 

and two, and for a surface of any shape, between two and three. This ratio provides a statistical 

index of complexity comparing how detail in a pattern changes with the scale at which it is 

measured. Fractal fragmentation theory provides a means by which the entire size distribution of 

material can be quantified [42, 44] 

There exist several techniques for the determination of the Fractal Dimension, we 

mention : The Hausdorff dimension which is purely a description of the geometry of the fractal 

set, Box counting dimension that has a number of practical limitations, particularly at a high 

embedding dimension, and so a variety of other algorithms have also been developed. The most 

popular method to compute dimension is to use the correlation Dimension, which estimates 

dimension based on the statistics of pairwise distances [43]. 

In this study we are going to use the correlation algorithm based on the comparison done in [43] 

II.4.2. Correlation dimension 

As the most widely used quantitative parameter to describe attractors, correlation 

dimension is a measure of the complexity of the system related with its degrees of freedom [45]. 

It is obtained from the correlations between random points on the attractor. Consider the set 

{ 𝑋𝑖, 𝑖 =  1 . . . 𝑁 } of points on the attractor, obtained e.g. from a time series, i.e. 𝑋𝑖 =  𝑋(𝑡 +

 𝑖𝑧) with a fixed time increment 𝒛 between successive measurements. Due to the exponential 

divergence of trajectories, most pairs (𝑋𝑖, 𝑋𝑗) with 𝒊 ≠ 𝒋 will be dynamically uncorrelated pairs 

of essentially random points. The points lie however on the attractor. Therefore they will be 

https://en.wikipedia.org/wiki/Complexity
https://en.wikipedia.org/wiki/Pattern
https://en.wikipedia.org/wiki/Scaling_(geometry)
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spatially correlated. We measure this spatial correlation with the correlation integral 𝑪(𝒓)[46], 

defined according [43] as: 

 
𝐶(𝑟) =

1

𝑁(𝑁 − 1)
∑  

𝑖≠𝑗

𝐻(𝑟 − ∥∥𝑋𝑖 − 𝑋𝑗∥∥) 
(2. 52) 

Where 𝑯 is the Heaviside function. In words, 

𝐶(𝑟) =
# 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑟

# 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑎𝑙𝑙 𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟
 

𝑪 (𝑹) is a measure of the probability that two arbitrary points 𝑿𝒊, 𝑿𝒋 will be separated by a 

distance less than 𝒓 [45]. 

 

 

If the number of data and the embedding dimension are adequately large, the correlation 

dimension is given by [45]: 

 
𝐷 = 𝑙𝑖𝑚

𝑟→0
 
log 𝐶(𝑟)

log 𝑟
 

(2. 53) 

However, there are a variety of practical issues and potential pitfalls that come with 

making an estimate from finite data. Extracting dimension directly from the correlation integral 

according to Eq. (2.53) is extremely inefficient, since the convergence to 𝑫 as 𝒓 → 𝟎  is 

logarithmically slow. Taking a slope solves this problem. [43] 

 

II.4.3. Data Reduction using Correlation Dimension  

The idea is to compute the Correlation dimension of the original data, then take off 

observations one by one and compute the corresponding new dimension, only 𝑹 samples that 

changes the dimension when deleted are retained. The process is explained in the algorithm 3. 
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Table 4. Data reduction using Correlation Dimension. 

Algorithm 3: Data reduction using Correlation Dimension 

1. Calculating the fractal dimension : 

- Acquire normal operating data 𝒙 and normalize the data using the mean and standard 

deviation of each variable, to get 𝑿. 

- Calculate the Euclidian distance 𝒓 and the correlation integral 𝑪(𝒓) using (2. 52). 

- Draw 𝒍𝒐𝒈𝑪(𝒓) versus  𝒍𝒐𝒈 𝒓. 

- Extract the slope 𝒔, where the fractal dimension 𝑫𝒇 = 𝒔. 

2. Reducing data : 

-For each 𝒊 = 𝟏,… ,𝑵 and size of 𝑿𝒓𝒆𝒅  < 𝑫𝑓 : 

- Delete 𝒙𝑖 . 

- Calculate the new fractal dimension 𝑫𝑖, following the same steps of part 1. 

- If 𝑫𝑖 = 𝑫𝑓, go to the next sample. 

- Else, restore  𝒙𝑖.  

 

After the reduction, KPCA is applied on the new reduced data. 

II.5. Conclusion 

During this chapter, the theoretical background of PCA models was established as well as 

the selection of the model parameters, such as the number of PCs and the loadings. Furthermore, 

KPCA approach and its theoretical background has been proposed to cope with the problem of 

linearity. However, Due to its high computational cost, the RKPCA technique was introduced 

with its theory to deal with this issue. The foundations of fault detection using this three methods 

was presented using the well-known Hotelling’s  𝑻², sum squared error  𝑸 and the combined 

index 𝝋. 
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III.1. Introduction 

In this chapter, the introduced RKPCA method based on Fractal Dimension is tested on 

the data collected from a cement factory under Normal Operation Conditions and different fault 

types (abrupt, incipient and intermittent) that can occur and disturb the normal operation of the 

system. Then compare it with results of other techniques: PCA, different types of KPCA, 

RKPCA based on Euclidean distance. The comparison is done in terms of False Alarm Rate 

(FAR), Missed Alarm Rate (MDR), Detection Time Delay (DTD) and the Cost function (J). 

III.2. Process description 

The first step in the dry cement production process is to produce flour like raw material 

by milling limestone, clay and iron ore mix. This raw material is then fed to the kiln system at the 

upper end of the preheat tower which is composed of a series of suspending cyclones where heat 

exchange between feed material and hot gas stream exhausting the rotary kiln is made. Drying, 

dehydration and carbon expulsion are initiated wherein. Afterwards, in the rotary kiln which is a 

huge rotating furnace, several chemical reactions occur between calcium and silicon dioxide 

yielding a new chemical structure called clinker. In the kiln discharge, a cooler system is used to 

cool hot clinker to preserve its properties using forced air. As final step, clinker and natural 

gypsum are milled together to get what is commonly known as cement. 

Ain El Kebira cement plant (first production line) shown in Figure 8 , where our case 

study is conducted, is located in the east of Algeria. It has a rotary kiln of 5:4m shell diameter 

and 80m length, with 3◦ incline. The kiln can be rotated up to 2:14 rpm as maximum speed using 

two 560KW s asynchronous motors and produces clinker with density from 1300 to 1450kg=m3 

under the normal operation. The plant works with two natural gas burners, the main one placed in 

the discharge end and the secondary located in the first level of the pre-heater tower without any 

tertiary air conduct. The data used to monitor the process is recorded from 44 sensors. The 

sensors measure temperatures, pressures, speeds, and motors current. Table 5 illustrate the 

different variables used in the process monitoring. In general, two main datasets are collected 

from the plant which is used to develop and validate RKPCA model, and afterwards to test under 

different faulty situations the established monitoring scheme [24]. 
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Figure 8. Ain El Kebira cement plant  [24] 

Table 5. Process variables of the cement rotary kiln [24] 
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III.3. Computation of monitoring performance metrics 

Monitoring performance was based on five metrics: False Alarms rate (FAR), Missed 

Alarms rate (MDR), Detection Time Delay (DTD), the Cost function J. 

 

III.3.1. False Alarms Rate 

Calculated as the percentage of faulty samples under healthy state, and given by: 

 
𝑭𝑨𝑹 =

# 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑠 𝑢𝑛𝑑𝑒𝑟 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑠𝑡𝑎𝑡𝑒

# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑢𝑛𝑑𝑒𝑟 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑠𝑡𝑎𝑡𝑒
× 𝟏𝟎𝟎% 

(2. 53) 

III.3.2. Missed Detection Rate 

Calculated as the percentage of healthy samples under faulty state, and given by: 

 
𝑴𝑫𝑹 =

# 𝑜𝑓 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑢𝑛𝑑𝑒𝑟 𝑓𝑎𝑢𝑙𝑡𝑦 𝑠𝑡𝑎𝑡𝑒

# 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑢𝑛𝑑𝑒𝑟 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑠𝑡𝑎𝑡𝑒
× 𝟏𝟎𝟎% 

(2. 54) 

III.3.3. Detection Time Delay 

Defined as the time required for indicating the fault after its occurrence. 

 
𝑫𝑻𝑫 = 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 − 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒 

(2. 56) 

III.3.4. The Cost function 

The cost function is a way to evaluate the results in terms of performance matrices. Using 

the three evaluation criteria introduced previously, a cost function is of the form : 

 
𝑱 = 𝒒𝟏

𝑭𝑨𝑹

𝑭𝑨𝑹𝒅
+ 𝒒𝟐

𝑴𝑫𝑹

𝑴𝑫𝑹𝒅
+ 𝒒𝟑

𝑫𝑻𝑫

𝑫𝑻𝑫𝒅
 

(2. 57) 

Where 𝑭𝑨𝑹𝒅 ,𝑴𝑫𝑹𝒅 and 𝑫𝑻𝑫𝒅 are the desired values of 𝑭𝑨𝑹,𝑴𝑫𝑹 and 𝑫𝑻𝑫 respectively. 

Whereas 𝒒𝟏, 𝒒𝟐 and 𝒒𝟑 are their respective weights. 
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III.4. Application procedure 

This work is based on the real-time data collected by process computers from the cement 

plant. Table 6 lists the different data sets used in order to construct and test the proposed RKPCA 

then evaluate and compare its performances to that of PCA and KPCA. 

Table 6. Data sets used in the application [24]. 

 

The dataset is divided into training, testing, faulty sub-datasets. The training dataset 

consists of 768 observations (one sample each 20s) which are collected under the healthy 

operating conditions of the plant during 4 hours and 15 min. It is used to extract a reduced 

training dataset via Correlation Dimension by which a RKPCA model is built. While the testing 

dataset contains 11000 samples (one sample each second) which is used to test and validate the 

developed RKPCA model. The faulty dataset includes 1500 samples for each subset, where 

various simulated sensors faults are carried out to evaluate the monitoring scheme performance. 

These simulated faults Sfault1 to Sfault7 lie in the interval {500 – 1000}, in the intermittent case, 

the fault is introduced in the intervals {500-580, 610-660, 700-740, 800-830, 870-900 and 975-

1000} with amplitude 5.5%, 4.5%, 5%, 5.5%, 5% and 4.5% respectively[24]. The faults 

characteristics are briefly and adequately described and reported in Table 7. [24] 

Table 7. Simulated sensor faults introduced at 500-1000 s [24].  
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III.4.1.Application of PCA, KPCA and the proposed approach RKPCA 

to cement rotary kiln process 

The steps to follow to apply  PCA, KPCA and the proposed approach RKPCA previously 

described, on the cement plant, to build and evaluate the models are explained. 

III.4.2.1. PCA monitoring model 

To build PCA monitoring model, the training data is normalized then used to build the 

PCA model by using the steps described in Table2 (Algorithm 1). The CPV is set to 90% of the 

total variance in the training dataset, which results in retaining PC’s. Then, the statistical control 

limits 𝑸𝜶, 𝑻𝜶
𝟐  and 𝝋𝜶 at the confidence 99% are determined. 

The performance of the PCA model is evaluated using the monitoring performance 

metrics 𝑭𝑨𝑹,𝑴𝑫𝑹,𝑫𝑻𝑫 and the Cost Function J. In this study, 𝑭𝑨𝑹,𝑴𝑫𝑹 and 𝑫𝑻𝑫 are of 

the same importance 𝒒𝟏 = 𝟏, 𝒒𝟐 = 𝟏 and 𝒒𝟑 = 𝟏 and 𝑭𝑨𝑹𝒅 , 𝑴𝑫𝑹𝒅 and 𝑫𝑻𝑫𝒅 values are 1%, 

1% and 1 respectively.so the cost function is of the form: 

 
𝑱 = 𝑭𝑨𝑹 + 𝑴𝑫𝑹 + 𝑫𝑻𝑫 

(2. 58) 

 

III.4.2.2. KPCA monitoring model 

The Algorithm 2 is followed to obtain the KPCA model using the training data after 

normalization. The same CPV is set to 90% of the total variance in the training data, which 

results in retaining the PC’s. Another, important parameter for kernel-based methods in model 

development for process monitoring is the choice of the kernel function and its width. The radial 

basis kernel  𝐤(𝑥𝑖 , 𝑥𝑗) = exp (−
∥∥𝑥𝑖−𝑥𝑗∥∥

2

2𝜎2 ) is utilized in this work and normalized using equation 

(2.40). The value of the kernel parameter c depends on the process being monitored and has been 

set to 𝑐 =  2𝜎2  = 13 000 in this application. 

Then, the statistical control limits 𝑸𝜶,𝑻𝜶
𝟐  and 𝝋𝜶 at a 99% confidence level are determined. 

These parameters are used to evaluate 𝑭𝑨𝑹,𝑴𝑫𝑹 and 𝑫𝑻𝑫, and calculate the Cost function (2.58). 
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For KPCA modeling, an important criteria is taken in consideration: the execution 

time. Kernel PCA is known by its high computational and storage problem and our purpose is to 

decrease this time by the proposed RKPCA approach.  

 

III.4.2.3. Proposed RKPCA monitoring model 

The reduction is done following the Algorithm 3, 𝒓 and 𝑪 produced are vectors of 

𝒎×(𝒎−𝟏)

𝟐
 elements. To determine the slope from 𝒍𝒐𝒈( 𝑪 ) vs 𝒍𝒐𝒈( 𝒓 ) curve, we take the second 

third of the points and draw a fitting line through them. At the end of the algorithm we end up 

with 𝑹 number of samples equal to the fractal dimension. 

After the normalization of the new 𝑹 × 𝑹 reduced training data matrix, a conventional 

KPCA model is applied, then, the statistical control limits 𝑸𝜶, 𝑻𝜶
𝟐  and 𝝋𝜶 at a confidence level 

of 99% are determined. The new model is then evaluated using the monitoring performance 

metrics 𝑭𝑨𝑹,𝑴𝑫𝑹,𝑫𝑻𝑫 and the Cost Function J of the form (2. 58). 
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III.5. Results and discussion 

 

III.5.1. PCA monitoring model 

The results of PCA monitoring model are taken from [49]. 

The CPV is set to 90%, this results in retaining 20 PC’s(ℓ = 20). The thresholds 

𝑻𝜶
𝟐  , 𝑸𝜶 and 𝝋𝜶 deduced from the training set are computed using 99% as the confidence 

interval, the limits are      𝑻𝜶
𝟐 = 𝟓𝟏. 𝟏𝟑  , 𝑸𝜶 = 𝟏. 𝟓𝟐𝟓 × 𝟏𝟎−𝟒    and  𝝋𝜶 =  𝟏. 𝟕𝟐𝟑𝟖 

The performance of the fault detection model based PCA in terms of FAR set is 

summarized in table 8. From this table, it can be seen that globally the three monitoring indices 

showed good results of FAR. The FAR contributed by the PCA model in the training set are 

good. This clearly indicates the accuracy of the model. In the testing set, a low FAR is obtained 

for the rotary kiln monitoring using PCA. Besides, it is even negligible when using a confidence 

level of 99%. 

Table 08. FAR contributed by 𝑻²,𝑸 , 𝝋 under NOC using PCA 

 

 

 

 

 

 

 

 

 

 

Method NOC Data index FAR (%) 

PCA 

Training data 

 

T² 1.04 

Q 1.04 

𝜑 1.04 

Testing data 

T² 0.08 

Q 0.65 

𝜑 0.57 
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Table 9. Missed detection rate (MDR), False Alarm Rate (FAR), detection time delay (DTD) and the 

cost function J values for the eight faults of cement rotary kiln using PCA using 99% as the confidence 

interval. 

Faults Performances T² Q φ 

Process fault 

MDR 1.98 1.68 1.14 

FAR 1.67 14.05 14.52 

DTD 30.00 0.00 2.00 

J 33.65 15.73 17.66 

Random and 

single 

MDR 2.40 1.20 1.40 

FAR 0.30 0.80 0.60 

DTD 1.00 1.00 1.00 

J 3.70 3.00 3.00 

Abrupt and 

single 

MDR 0.00 7.60 0.00 

FAR 0.90 1.70 1.30 

DTD 0.00 0.00 0.00 

J 0.90 9.30 1.30 

Drift and 

single 1 

MDR 6.80 10.80 5.80 

FAR 0.70 0.40 1.10 

DTD 27.00 5.00 27.00 

J 34.50 16.20 33.90 

Drift and 

single 2 

MDR 21.20 2.20 2.40 

FAR 0.10 0.10 0.10 

DTD 90.00 1.90 10.50 

J 111.30 4.20 13.00 

Abrupt and 

multiple 

MDR 0.00 0.00 0.00 

FAR 0.20 1.50 0.60 

DTD 0.00 0.00 0.00 

J 0.20 1.50 0.60 

Drift and 

multiple 

MDR 22.60 15.60 15.80 

FAR 1.00 1.30 1.50 

DTD 111.40 71.40 54.90 

J 135.00 88.30 72.20 

Intermittent 

and single 

MDR 0.00 0.00 0.00 

FAR 1.04 1.85 1.37 

DTD 0.00 0.00 0.00 

J 1.04 1.85 1.37 

J average 40.03  17.51 17.87 

J total 25.13 
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III.5.2. KPCA monitoring model 

III.5.2.1. NOC results 

The thresholds 𝑸𝜶,𝑻𝜶
𝟐  and 𝝋𝜶 with a 99% confidence level deduced from the training 

data are found to be: 

𝑻𝜶
𝟐  = 𝟑𝟗. 𝟎𝟕𝟔𝟕          𝑸𝜶  =  𝟑. 𝟓𝟑𝟒 × 𝟏𝟎−𝟒           𝝋

𝜶
= 𝟐. 𝟏𝟗𝟒𝟒 

 

 Performances of the fault detection model based KPCA in terms of FAR are tabulated in 

table10. 

The FAR values provided by the three monitoring indices 𝑻²,𝑸 and 𝝋 shows good results 

which confirm the accuracy of the KPCA model. In the validation phase, the model has provided 

the best performances in the three monitoring indices using 99% confidence interval 

 

 Table 10. FAR contributed by 𝑻², 𝑸, 𝝋  under NOC using KPCA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method NOC Data index FAR (%) 

KPCA 

Training data 

 

T² 2.994792 

Q 0.651042 

𝜑 0.911458 

Testing data 

T² 2.809091 

Q 0.518182 

𝜑 0.336364 
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Figure 9 shows the monitoring results of KPCA model in normal operation (training and testing 

set) using the 3 indices. The horizontal line in red represents the index threshold with a 

confidence level of 99%      

 

 

 

 

 

 

 

 

 

 

               a) Training data set     b) Testing data set 

Figure 9. T², Q and 𝜑 monitoring results of healthy process operation using KPCA. 

 (a) testing data set , (b) training data set. 

 

 

III.5.2.2. Involuntary real process fault results 

Table 11 summarizes the performances of KPCA-based model in terms of MDR, FAR, 

DTD and Cost function J. 

The table shows that the detection time of the fault Drift and multiple is delayed when 

the three monitoring indices are used with the confidence level 99%. 

In terms of FAR and MDR, high amount of false alarms is shown by the three indices 

except for  𝝋𝜶 where FAR equals to 2.67. Whereas, the amount of missed detected samples is 

approximately zero and also for the delay of the detection (seconds). 

In order to give a global view of the performances in detecting this fault, the cost function 

is used. Minimum values of J are seen when the thresholds  𝑻𝜶
𝟐  and 𝝋𝜶are utilized. 
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Table 11. Missed detection rate (MDR), False Alarm Rate (FAR), detection time delay (DTD) and the 

cost function J values for the eight faults of cement rotary kiln using KPCA using 99% as the confidence 

interval. 

Faults Performances T² Q φ 

Process fault 

MDR 0.06 0.75 0.25 

FAR 7.57 10.02 2.67 

DTD 1 4 1 

J 8.63 14.77 3.92 

Random and single 

MDR 5.58 1.19 1.79 

FAR 0.6 0.4 0 

DTD 0 0 0 

J 6.18 1.59 1.79 

Abrupt and single 

MDR 0 5.78 0 

FAR 1.2 1 0.9 

DTD 0 0 0 

J 1.2 6.78 0.9 

Drift and single 1 

MDR 4.99 10.57 6.98 

FAR 1.9 0.3 0.5 

DTD 19 6 28 

J 25.89 16.87 35.48 

Drift and single 2 

MDR 15.16 2.39 4.79 

FAR 0.3 0 0 

DTD 1 6 11 

J 16.46 8.39 15.79 

Abrupt and 

multiple 

MDR 0 0 0 

FAR 0.63 0.94 0.21 

DTD 1 0 0 

J 1.63 0.94 0.21 

Drift and multiple 

MDR 18.16 15.96 18.36 

FAR 1.8 0.8 0.9 

DTD 110 110 110 

J 129.96 126.76 129.26 

Intermittent and 

single 

MDR 0 0 0 

FAR 4.13 1.9 1.66 

DTD 0 0 0 

J 4.13 1.9 1.66 

J average 24.26 22.25 23.62 

J total 23.38 
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Figure 10 shows the monitoring results of KPCA model applied on the real process fault using 

the three indices. The horizontal line in red represents the index threshold with a confidence level 

of 99%. 

Figure 10. T², Q and 𝜑 monitoring results of real involuntary process fault in the cement 

rotary kiln using KPCA 

 

III.5.2.3. Simulated sensor faults results 

The performances of the KPCA based model in detecting all these faults are summarized 

in table 11. 

From the table, abrupt fault in single sensor (Sfault2) or multiple sensors (Sfault5) and 

intermittent fault in single sensor (Sfault7) are detected immediately and efficiently with no delay 

and zero amounts of missed detected samples. Furthermore, the quantity of false alarms is 

insignificant. 

The KPCA based model has also promptly detected the random fault (Sfault1) and the 

drift fault in single sensor (Sfault4) with the three monitoring indices. Whereas the detection is 

delayed in the drift fault in single sensor (Sfault3) to 20s and to 1min30s when using to detect the 

drift fault in single sensor (Sfault6). 

In terms of FAR, negligible values in detecting random fault in single sensor (Sfault1) 

and drift fault in single sensor (Sfault3, Sfault4) are noticed. Similarly, the amounts of missed 

alarms are acceptable except the detection of: Sfault3, Sfault4 and Sfault6 using the monitoring 

indices. 

Globally, the performance of KPCA model in terms of average J has shown that random fault 

(Sfault1), abrupt fault in single sensor (Sfault2) or multiple sensors (Sfault5) and intermittent fault in 
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single sensor (Sfault7) are efficiently detected particularly. Whereas, drift fault in single sensor 

(Sfault4) are effectively detected using the statistic 𝑸 and as well as (Sfault3) using the 𝑸. Drift 

fault in multiple sensors (Sfault6) has shown high values of J in the three monitoring indices. 

Figure 11 show the 3 indices monitoring results using KPCA. The detection of single as 

well as multiple sensor faults of abrupt, random, intermittent, and drift types can be noticed from 

the graphs 

   a) Random fault in single sensor (Sfault1)                            b) Abrupt fault in single sensor (Sfault2) 

       c) Drift fault in single sensor (Sfault3)                          d) Drift fault in single sensor (Sfault4) 

 

 



Chapter III. Application, Results & Discussion 

49 
 

 

        e) Abrupt fault in multiple sensors (Sfault5)                       f) Drift fault in multiple sensors (Sfault6) 

 

g) Intermittent fault in single sensor (Sfault7) 
  

Figure 11. T2 , Q ,  𝜑 monitoring results of sensor faults using KPCA. (a) Sfault1; (b) Sfault2; (c) 

Sfault3; (d) Sfault4; (e) Sfault5; (f) Sfault6; (g) Sfault7. 
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III.5.3. Proposed RKPCA monitoring model 

III.5.3.1. Graphical representation of the original dataset (768 observations) using        

logarithmic distance 

𝒍𝒐𝒈(𝑪) vs 𝒍𝒐𝒈(𝒓) is plotted after calculating the correlation integral 𝑪 from (2.52) and 

the Euclidian distance 𝒓 between the different pairs of variables.  

The following graph is obtained:  

 

 

Figure 12. Graphically representation of the original data (786 observations) 

 

 

III.5.3.2.Reduced data and characteristics 

After plotting the data, we take the second third of the dataset (the second third where the 

distance 𝒓 tends to 0 as it is mentioned in eq.(2.53)) which represents approximately a linear line 

and its slope is the fractal dimension of the dataset.  

The obtained fractal dimension through integral correlation technique is 11. So, the 

original data can be reduced and represented only with 11 independent observations. 
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A regression analysis is used to analyses the fitting line.  Regression Analysis is a method of 

statistically analyzing data. The purpose is to estimate the relationships between a dependent 

variable (often called the 'outcome variable') and one or more independent variables (often called 

'predictors', 'covariates', or 'features') and to establish a mathematical model to observe specific 

variables how they predict. More specifically, regression analysis can help people understand the 

amount of change in the dependent variable when only one independent variable changes.  

A reasonable form of a relationship between Y and X is the linear relationship: 

𝒀 =  𝒃𝟎 +  𝒃𝟏𝒙 

Where, of course, b0 is the intercept and b1 is the slope. 

 

The regression model has given the following results: 

 

 

 

 

 

 

 

 

 

 

 

The regression prediction equation established is:  

𝒀 = − 𝟒𝟏. 𝟎𝟓𝟓𝟎 +  𝟏𝟎. 𝟗𝟗𝟖𝟒 ×  𝑿 

Where:  

                   b0= 10.9984 represents the slope of the line. 

                   b1= -41.0557 represents the intersection with the Y axis. 
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bint values are the intervals in which b values range with a 95% confidence intervals, this 

implies: 

10.9003 ≤ 𝑏1 ≤ 11.0965 

−41.4156 ≤ 𝑏0 ≤ −40.6959 

 

stats gives the statistics of the regression model, the first value represents the decision coefficient 

or the coefficient of determination R2 . 

R2=0.9935,   

R-Squared (R² or the coefficient of determination) is a statistical measure in a regression 

model that determines the proportion of variance in the dependent variable that can be explained 

by the independent variable. In other words, R² shows how well the data fit the regression model 

(the goodness of fit). 

The coefficient of determination suggests that the model fit to the data explains 99.35% of 

the variability observed in the response, meaning that a significant linear regression relationship 

exists between the response Y and the predictor variables in X. 

Based in the results of the regression analysis, the second third of dataset is approximately 

linear with a slope of 11, which represents the fractal dimension. 

 

III.5.3.3. Homogeneity test 

In order to check the similarity between the original and the new reduced data sets, we 

expose it to a homogeneity test. We compare the sets in terms of mean difference, variance 

defense and Kulbeck-liebler Divergence. 

Kulbeck-liebler Divergence 

Kullback-Leibler divergence is an information-based measure of disparity among 

probability distributions. Given distributions P and Q defined over X, with Q absolutely 

continuous with respect to P. 
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Kullback-Leibler divergence is given by [47] : 

 

 
𝑫(𝑷 ∥ 𝑸) = ∫ 𝑷(𝒙)𝐥𝐨𝐠 

𝑷(𝒙)

𝑸(𝒙)
𝐝𝐱 

(2. 59) 

 

The value of Kullbeck-Liebler Divergence ranges between 0 and ∞, where 0 means P and 

Q are identical and ∞ means that they are completely different. 

In Figure 13, the mean and variance difference between the normalized original data and the 

selected reduced set is represented in bar graph, in addition to kullbeck-Liebler values 

corresponding to each of the 44 variables. 

Figure 13. Bar chart represents the Kullbeck-Liebler divergence and the difference in mean and variance between 

the original and reduced data 

We can see that the mean and variance differences are both high for variables 9, 15, 

28,31,36,38 and 40; variables 32 and 43 have some variance difference whereas there mean 

difference is tiny. However, the corresponding KLD values are very low for the previous 

variables indicating high degree of similarity. Variables 8, 19, 25 and 34 show some probability 

distribution disparity, however the mean and variance difference is negligible. The remaining 

variables of the original and reduced data highly match in terms of mean, variance and 

probability distribution. 
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Taking into consideration the few observation selected to replace the original large set, we can 

say that the new reduced samples are satisfactory similar to the original.  

 

III.5.3.4. Time and space complexity:  

Time complexity is a function describing the amount of time an algorithm takes in terms 

of the amount of input to the algorithm. Whereas Space complexity describes the amount of 

memory (space) an algorithm takes in terms of the amount of input to the algorithm. These 

concepts are expressed in terms of ‘Big O’ notation. The time complexity is found to be 𝒪(𝑙3)  as 

explained in table 12. The reduced KPCA uses a kernel model matrix of 𝑙 × 𝑙 matrix that needs to be 

stored, meaning that the space complexity is 𝒪(𝑙2) 

Table 12.  RKPCA time complexity analysis.  

Method  Cost 

RKPCA Inti.: Training data 𝑋 ∈ ℝ𝑁×𝑚  

 Begin  

 𝐾𝑙 = 𝑘(𝒙𝑖 , 𝒙𝑗)|𝑖,𝑗=1…𝑙
 𝑙2 

 eigendecompose 𝐾𝑙 = 𝑃̂𝑙𝛬̂𝑃̂𝑙
𝑇 𝑙3 

 Compute 𝑇2, 𝑄 and 𝜑 𝑙 

 Compute 𝑇𝛼
2, 𝑄𝛼 and 𝜑𝛼 𝑙 

 End  

Total 𝑙3 + 𝑙2 + 2𝑙 = 𝒪(𝑙3)  

 

Given that number of samples retained is 𝑙 = 11, using the proposed RKPCA minimizes the time 

it takes to detect the faults with 99.99%, in addition to the reduction of storage from a 768 × 768 

matrix to 11 × 11 kernel matrix with 99.97%. 
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III.5.3.5. NOC results 

The monitoring results of the RKPCA model in normal operation (training and testing 

set) using the three indices 𝑻²,𝑸 and 𝝋 (with confidence levels 99%) are obtained: 

𝑸𝜶 = 𝟏. 𝟓𝟐𝟓 × 𝟏𝟎−𝟒            𝑻𝜶
𝟐 = 𝟓𝟏. 𝟏𝟑            𝝋𝜶 =  𝟏. 𝟕𝟐𝟑𝟖 

 The model is assessed using the FAR values . 

From table 13, The FAR values contributed by the RKPCA model in the training and testing sets 

are very good, where the FAR indicated by the T² is satisfactory which is around 4% .Whereas Q 

and φ shown the best performance with negligible FAR values. This clearly indicates the model’s 

precision. 

 

Table 13. FAR contributed by 𝑻²,𝑸 and 𝝋 under NOC using RKPCA. 

 

 

 

 

 

 

 

 

 

Method NOC Data Index FAR (%) 

RKPCA 

Training data 

T² 4.817708 

Q 0.390625 

φ 0.260417 

Testing data 

T² 4.636364 

Q 0.127273 

φ 0.381818 
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Figure 14 shows the time evolution of the fault detection using the three indices based RKPCA 

for training and testing set. The horizontal line in red represents the threshold a) training data set , 

b) testing data set 

                         a) Training data set                                 b)  Testing data set 

Figure 14. T², Q and 𝜑 monitoring results of healthy process operation using RKPCA. 

(a) testing data set , (b) training data set. 

 

III.5.3.6. The involuntary real process fault results 

The performance measures MDR, FAR, DTD and Cost function J recorded from using 

the proposed RKPCA-based model are summarized in table 14 

From table14, 𝑻² index has detected immediately the process fault (DTD = 0.00s). 

Whereas 𝑸 and 𝝋 indices shows a slight delay of 3 and 1 seconds. In terms of MDR, the 

proposed RKPCA has shown negligible amount of missed detected samples with all the indices. 

For the FAR, 𝑸 and 𝝋 indices provided acceptable results, however, we record considerable 

values when using 𝑻² index.  
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Table 14. Missed detection rate (MDR), False Alarm Rate (FAR), detection time delay (DTD) and the 

cost function J values for the eight faults of cement rotary kiln using the proposed RKPCA using 99% as 

the confidence interval. 

Faults Performances T² Q φ 

Process fault 

MDR 0.31 0.43 0.06 

FAR 36.3 0.89 5.56 

DTD 0 3 1 

J 36.61 4.32 6.63 

Random and single 

MDR 3.19 24.35 4.39 

FAR 18.11 0 2.5 

DTD 0 0 0 

J 21.31 24.35 6.89 

Abrupt and single 

MDR 21.75 0 0 

FAR 1.9 0 0 

DTD 1 0 0 

J 24.65 0 0 

Drift and single 1 

MDR 19.76 5.78 7.98 

FAR 4.8 0.2 0.4 

DTD 78 27 28 

J 102.56 32.98 36.38 

Drift and single 2 

MDR 5.38 6.78 5.78 

FAR 0.8 0 0 

DTD 18 27 18 

J 24.19 33.78 23.78 

Abrupt and 

multiple 

MDR 0 0 0 

FAR 0.21 0.21 0.1 

DTD 18 0 0 

J 18.21 0.21 0.1 

Drift and multiple 

MDR 28.34 33.13 23.75 

FAR 0.2 0.1 0.2 

DTD 110 110 120 

J 138.54 143.23 143.95 

Intermittent and 

single 

MDR 0 3.83 0 

FAR 1.66 1.42 1.58 

DTD 0 0 0 

J 1.66 5.26 1.58 

J average 45.97 30.5 27.41 

J total 34.63 

 

To summarize, J has shown that the real process fault is detected effectively using 𝑸 and 𝝋. 

However, large values are provided by the 𝑻² index.  
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Figure 15 shows the monitoring results of RKPCA model applied on the real process fault using 

the 3 indices. The horizontal line in red represents the index threshold with a confidence level of 

99%. 

Figure 15. T², Q and 𝜑 monitoring results of real involuntary process fault in the cement rotary kiln using the 

proposed RKPCA 

 

 

III.5.3.7. Simulated sensor faults results 

 

From table 14, Abrupt fault in single sensor (Sfault2) or multiple sensors (Sfault5) have 

no missed detections nor time delay, except for the T² that missed a number of faults in the 

Sfault2 and had an 18 seconds delay in Sfault5, the FAR values are zero or negligible. The 

random fault (Sfault1) was detected with no delay using the three indices with very low FAR and 

MDR values besides the Q index that shows 24.35% MDR and T² that shows 18.11% FAR. For 

the Drift faults in single 1 & 2 (Sfault3, Sfault4) and in multiple variables and (Sfault6) we can 

notice a tiny false alarms rate, for the single faults (Sfault3, Sfault4), some detection delay occurs 

around 18 and 28 seconds which explains the MDR results that ranges from 5% to 7%. The Drift 

and multiple (Sfault6) marks the highest DTD of 1min 40 sec, that reflected on the MDR 

outcomes that raises to around 30%. The last type of faults tested is the Intermittent single sensor 

fault, the latest was detected with no time delay and negligible FAR and MDR values.  
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Figure 16 show the 3 indices monitoring results using KPCA. The detection of single as well as multiple 

sensor faults of abrupt, random, intermittent, and drift types can be noticed from the graphs. 

  a) Random fault in single sensor (Sfault1)                   b) Abrupt fault in single sensor (Sfault2) 

        c) Drift fault in single sensor (Sfault3)                   d) Drift fault in single sensor (Sfault4) 

     e) Abrupt fault in multiple sensors (Sfault5)                           f) Drift fault in multiple sensors (Sfault6)  
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g) Intermittent fault in single sensor (Sfault7) 

  

 

 

Figure 16. 𝜑 monitoring results of sensor faults using RKPCA. (a) Sfault1; (b) Sfault2; (c) Sfault3;        

(d) Sfault4; (e) Sfault5; (f) Sfault6; (g) Sfault7. 

 

 

 

 

III.5.4. Comparison between PCA, KPCA, RKPCA based on Euclidian 

distance and the proposed approach RKPCA 

 

 
The results achieved by the Euclidian distance RKPCA are taken from [49]. 

Based on the result of the correlation dimension, the proposed RKPCA approach has 

achieved the best minimization in the time and storage complexity compared to KPCA technique 

and the RKPCA based on the Euclidian distance, what we say is that the time gain is about 

99.99% whereas the storage gain is 99.97%. This is due to the reduction in the number of 

samples from 768 to 11 samples, which means the number of observations has been reduced by 

approximately 153 times, and this is tremendous. This reduction in time is very important in 

nowadays processes. 

Generally speaking, the KPCA shows better results when 𝑻² and 𝝋 indices are used, with 

the minimum overall cost J with a value of 23.36 as shown in table 17. This implies that KPCA 

technique has dealt with the non-captured nonlinearities when PCA is used, and the loss of 

information resulted from the reduction in RKPCA. 
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The performances of the proposed method in terms of FAR using the three indices have 

provided very good results, as well as the PCA and KPCA techniques, the values where better 

that the Euclidian distance based technique except for the 𝑻² index where the values rise 

compared to the other methods. In addition, RKPCA technique has provided the best FAR values 

when 𝑸 index is used compared the other methods.  

 The values of MDR and DTD recorded where a little higher that the ones of the PCA 

method, whereas they were very close to the results of KPCA and the RKPCA based on 

Euclidian distance except for the multiple drift sensor fault (Sfault6), where the results are bigger 

due to the complexity of the fault which is considered as the most difficult type of faults due to 

the small development in the fault magnitude over time. 

 

Based on table 15, KPCA has provided the best average J minimization. Yet, the 

proposed approach can perfectly detect all the faults with an average J of 33.38 which is better 

than the other RKPCA method. We can see that cost averages are 30.5 and 27.41 when 𝑸 and 𝝋 

index are used respectively. Whereas, it has some difficulties when the detection is performed 

using 𝑻² index.  

The bold values highlight the best performance of the proposed method. 

Table 15. FAR (%) of faults monitoring results 

Method 
 

Training Testing RPfault SFault1 SFault2 SFault3 SFault4 SFault5 SFault6 SFault7 

PCA 

T 2 1.04 0.08 1.67 0.30 0.90 0.70 0.10 0.20 1.00 1.04 

Q 1.04 0.65 14.05 0.80 1.70 0.40 0.10 1.50 1.30 1.85 

φ 1.04 0.57 14.52 0.60 1.30 1.10 0.10 0.60 1.50 1.37 

KPCA 

T 2 2.99 2.80 7.57 0.60 1.20 1.90 0.30 0.63 1.80 4.13 

Q 0.65 0.51 10.02 0.40 1.00 0.30 0.00 0.94 0.80 1.90 

φ 0.91 0.33 2.67 0.00 0.90 0.50 0.00 0.21 0.90 1.66 

RKPCA 

Eucludian 

distance 

based 

T 2 0.69 0.00 0.00 0.20 0.20 0.10 0.10 0.20 0.10 0.96 

Q 0.69 3.75 23.57 12.10 39.80 3.60 7.80 27.00 19.80 18.63 

φ 0.69 0.88 10.24 1.80 14.10 0.70 0.70 4.10 2.70 3.69 

The 

proposed 

RKPCA 

T 2 4.81 4.63 36.3 18.11 1.90 4.80 0.8 0.21 0.20 1.66 

Q 0.39 0.12 0.89 0.00 0.00 0.20 0.00 0.21 0.10 1.42 

φ 0.26 0.38 5.56 2.50 0.00 0.40 0.00 0.10 0.20 1.58 
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Table 16. MDR (%) and DTD of faults monitoring results 
 

 

 
 

 

Table 17. A comparative table between PCA, KPCA and the proposed RKPCA using the average J value    

contributed by T², Q and φ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Faults 
 

RP Fault SFault1 SFault2 SFault3 SFault4 SFault5 SFault6 SFault7 

PCA 

T² 1.98 | 5 2.40 | 1 0.00 | 1 4.70 | 20 15.60 | 1 0.00 | 1 22.50 | 100 0.00 | 1 

Q 1.68 | 4 1.20 | 1 0.00 | 1 12.90 | 7 2.20 | 3 0.00 | 1 15.60 | 56 0.00 | 1 

φ 1.10 | 4 1.80 | 1 0.00 | 29 7.20 | 19 6.40 | 1 0.00 | 56 19.40 | 1 0.00 |1 

KPCA 

T² 0.06 | 1 5.58 |0 0.00 | 0 4.99 | 19 15.16 | 1 0.00 | 1 18.16 | 110 0.00 | 0 

Q 0.75 | 4 1.19 | 0 5.78 | 0 10.57 | 6 2.39 | 6 0.00 | 0 15.96 | 110 0.00 | 0 

φ 0.25 | 1 1.79 | 0 0.00 | 0 6.98 | 28 4.79 | 11 0.00 | 0 18.36 | 110 0.00 | 0 

RKPCA 

Eucludian 

distance 

based 

T² 3.61 | 56 43.00 | 0 1.20 | 0 9.20  | 42 21.0 | 103 0.00 | 0 42.4 | 203 0.00 | 0 

Q 0.18 | 17 1.00 | 1 0.00 | 0 3.20 | 5 1.00 | 1 0.00 | 0 8.40 | 21 0.00 | 0 

φ 0.72 | 1 1.80 | 1 0.00 | 0 4.40 | 9 1.60 | 2 0.00 | 0 11.00 | 55 0.00 | 0 

Proposed 

RKPCA  

T² 0.31 | 0 3.19 | 0 21.75 | 1 19.76 | 78 5.38 | 18 0.00 | 0 28.34 | 110 0.00 | 0 

Q 0.43 | 3 24.35 | 0 0.00 | 0 5.78 | 27 6.78 | 27 0.00 | 0 33.13 | 110 3.83 | 0 

φ 0.06 | 1 4.39 | 0 0.00 | 0 7.98 | 28 5.78 | 18 0.00 | 0 23.75 | 120 0.00 | 0 

NOC Data Index Cost(J) 
Average Cost 

J 

PCA 

T² 40.03 

25.13 Q 17.51 

φ 17.87 

KPCA 

T² 24.26 

23.36 Q 22.25 

φ 23.62 

RKPCA 

(euclidien 

distance) 

T² 65.78 

35.89 Q 26.27 

φ 15.64 

RKPCA 

(Fractal 

dimension) 

T² 45.97 

33.38 Q 30.50 

φ 27.41 
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III.6. conclusion 

  

PCA, KPCA, and the proposed approach RKPCA were applied to a collection of healthy 

and faulty data collected from a cement factory in this section of the report. In terms of FAR, 

MDR, DTD, the cost function J, and execution time, the three approaches were analyzed. The 

proposed methodology's results have demonstrated its potential to reduce the computing time 

problem presented by KPCA. In addition to its efficiency to detect many types of faults (Abrupt, 

Drift, Intermittent). 
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Fault Detection and Diagnosis approaches for effective process monitoring have gained 

considerable attention from both industrial as well as academic fields, and thus many useful 

process monitoring systems including FDD techniques have been exploited and implemented for 

several industrial processes. However, there are still lots of difficulties in the implementation of 

the FDD methods for real industrial processes due to the unique characteristics (e.g., 

multivariate, correlation, non-linearity...). This thesis presents present a classification of fault 

diagnosis methods and give very brief overview of each class. Fault diagnosis methods were 

classified into three main categories: qualitative model-based, quantitative model-based and 

history-based methods. Measurement data are usually the most easily available knowledge about 

a process, hence, history-based fault diagnosis methods are widely used where multivariate 

statistical process control (MSPC) are among the most efficient techniques that have seen growth 

in the last decade. Fault diagnosis systems based on such knowledge are generally easy to 

develop and maintain, well suited for highly non-linear systems and do not require understanding 

of the physics of the system being modelled. Through multivariate statistical data analysis, 

features associated with different faults can be discovered and used in fault diagnosis. 

The well-known PCA technique is presented and used to detect the different types of 

faults with assumption of the linearity of the data. KPCA technique was then introduced to cope 

with the linear assumption of the PCA. It has provided good results in detecting the several 

faults; however, it has shown a big problem in terms of time consumption and space. The new 

RKPCA approach was proposed to deal with The high computational time and space requirement 

resulted from using KPCA method demands some further work on reducing the time and space. 

In this work we proposed the new reduction technique based on the fractal dimension. The idea 

behind the novel approach was to retain the samples that defines the data set and represents the 

essential information in the data matrix.  

In this work, PCA, KPCA and the suggested approach RKPCA were used as 

multivariate statistical methods to monitor the cement rotary kiln system. The monitoring 

was based on the common used indices: Hotelling’s 𝑻² and 𝑸, in addition to a new 

proposed index called the combined index 𝝋. Then evaluated in terms of False Alarm Rate, 

Missed Alarm rate, Detection Time Delay, Time and Space complexity. 
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We can say that the results of the proposed RKPCA were not good as the ones of PCA 

and KPCA in terms of MDR and DTD; in the contrary the FAR values were pleasing. In the 

other hand, if we compare it to the RKPCA based on Euclidian distance, we can see that the 

results were better in terms of performance measures, and also in terms of size reduction were the 

outcome was incomparable. 

This technique achieved the objectives it was set for compared to other techniques by far. 

The number of samples retained is only 1.43% of the original number of samples. Also, it saves 

99.99% of the time and 99.97% of space compared the KPCA. 

The reduced KPCA has shown promising results in Fault Detection and Diagnosis. With 

the fast development of industrial process and growth of its complexity and generated 

measurements data, the reduction using fractal dimension may be the alternative of other Fault 

Detection and Diagnosis methods. Further improvements to the performance of the proposed 

approach by improving the choice of the kernel function and its parameters, in addition to the 

specification of the number of principle components retained based on the process when applying 

the PCA in the feature space to obtain better performance. 
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