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Abstract 

In this thesis we work on two of the most urgent research problems surrounding the use of 

deep learning in cardiac applications: the shortage of labeled data, and the lack of 

trustworthy Artificial Intelligence (AI) models.  

We first tested the impact of using synthetic data as a solution for dataset imbalance on the 

task of atherosclerosis screening from Coronary CT Angiography images. We recorded an 

improvement in sensitivity from 60.8% to 89.0%, an unprecedented performance. 

For the second part of the thesis, we focused on heart structure identification using a novel 

AI model that mimics doctor reasoning; creating a mind map that describes every step the 

doctor uses when manually segmenting and identifying the heart structures, then replacing 

each step with a corresponding machine learning algorithm, making the model trustworthy. 

 

Keywords: Deep Learning; Cardiac Segmentation; Atherosclerosis; Classification; 

Transfer Learning. 
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Résumé 

Dans cette thèse, on travaille sur deux grandes problématiques dans l'utilisation de 

l'apprentissage approfondi dans les applications cardiaques: le manque de données 

étiquetées, et le manque d'explicabilité des modèles d'intelligence artificielle (IA). 

On a d'abord étudié l'impact d'utiliser des données synthétiques pour gérer le déséquilibre 

d'un ensemble de données sur la tâche de dépistage de l'athérosclérose à partir d'images 

d'angiographie coronarienne. On a noté une amélioration de la sensibilité de 60,8% à 

89,0%, une performance sans précédent dans la littérature. 

Dans la deuxième partie, on travaille sur l'identification des structures cardiaques à l'aide 

d'un nouveau modèle d'IA qui imite le raisonnement des médecins. On a suivi un 

organigramme qui décrit chaque étape fait par le médecin lors de la segmentation et de 

l'identification manuelles des structures cardiaques, en remplaçant chaque étape par un 

algorithme d'apprentissage automatique approprié. 

 

Mots Clé : Apprentissage Approfondi (Deep Learning) ;  Segmentation Cardiaque ; 

Athérosclérose ; Classification ; Apprentissage par Transfer. 
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 ملخّص 

 البيانات نقص: الط بية الت طبيقات في العميق التعل م استخدام عند مواجهتهما يتمّ  مشكلتين نناقش الأطروحة هذه في

 (AI)   الاصطناعي الذكاء نماذج في للتفسير القابليةّ إلى والإفتقار ، المصنَّفة

 حالات تصنيف مهمة في البيانات نقص لتعويض حقيقي ة غير مُستحدثة بيانات إضافةّ تأثير أولااّ اختبرنا

لنا   .(CCTA)المقطعية التاجية الأوعية تصوير صورّ منّ الشرايين  تصل ب اّ سج   التصنيفّ حساسية فيّ تحسنا

 .مسبوق غير مستحسن أداءّ وهو ٪ّ،89.0 إلى ٪60.8 من

 تفكيرّ يقلدّ جديد اصطناعي ذكاء نموذج باستخدام القلب بنية علىّ التعرف علىّ رك زنا الأطروحةّ، منّ الثاني الجزء في

 بخوارزمية خطوة كل استبدال ثم يدوياا، المهمة تأدية عند الطبيب يستخدمها خطوة كل تصف خطة انشاء عبر  .الطبيب

 .مناسبة آلي تعلم

 

  .التصنيف ؛ الشرايين تصلب ؛ العميق التعلم : المفتاحية الكلمات

 

  

tel:60.8
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General Introduction 

Cardiovascular diseases are a group of diseases that attacks the heart, the coronary arteries, 

and the blood vessels. They are considered the number one cause of death globally. Over 17 

million people die from them every year, which is on the rise, according to the world health 

organization [1]. The diagnosis and follow-up of such disease are made by professional 

clinicians, with the help of different medical imaging techniques, that includes 

Echocardiography, Computer Tomography, Angiography, cardiac MRI, etc, 

Even though the advances in cardiac imaging have made an immense improvement in the 

follow-up of cardiac diseases, they also provide large numbers of images that take 

significant time to be analyzed, even with an expert’s eye. This can be a problem due to 

the significant lack of medical professionals; especially after the COVID-19 pandemic, the 

medical industry has a big drop in the number of professionals. Therefore, automated 

solutions have been proposed and adapted in the field. 

The rise of deep learning has revolutionized every field, and that does include healthcare. 

Cardiac applications have benefited a lot from deep learning advances. The literature is full 

of ground-breaking results brought by the use of deep learning, and Artificial Intelligence 

(AI) in general, in cardiac image segmentation, classification, and reconstruction. 

However, in order to take these achievements from academia to industry and benefit from 

them properly, a few problems need to be answered: 

• Deep learning is known for its big appetite for data. However, annotated medical 

images are not widely available, which has always been a problem. Is it possible to 

find a solution? By performing innovative data augmentation techniques, can we 

perform cardiac disease screening successfully without needing more labeled data? 

 

• If cardiac applications are to be used by non-experts, there would be no one to 

supervise the final result provided by the computer. In that case, deep learning 

techniques must be completely trustworthy.  
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Our research focuses on these two problems limiting the proper use of deep learning for 

cardiac applications: lack of annotated data and trustworthy AI.  

Our contribution to the first problem is in proving that is possible to use generative models 

such as GAN to generate new synthetic data and use it to balance imbalanced datasets. 

While for the second problem, we came up with a trustworthy AI workflow that helps with 

the task of structure segmentation from Cardiac MRI images. 

This thesis is outlined as follows: 

In chapter 1, we provide the medical context of the research for a better understanding of 

the terminologies used further down the thesis. Then, we describe the heart anatomy and 

the blood vessel system, a general description of the most common cardiovascular diseases, 

and finally, and then we give the existing imaging modalities used for cardiac imaging. 

This chapter shows the complicated aspects of cardiovascular diseases and the numerous 

techniques available for cardiac imaging, all providing an increasingly overwhelming 

amount of data. 

In chapter 2, we introduce the fundamentals of machine learning and deep learning, where 

it all started, and how it turned into a powerful AI tool. Then in section 2.2, we talk about 

the state-of-the-art deep learning models in cardiac image segmentation and classification 

to give an idea of the existing research related to our study and how it inspires our research 

questions. 

In chapter 3, we work on atherosclerosis screening from Coronary Computed Tomography 

Angiography (CCTA) images using transfer learning; we test different types of pre-trained 

models, with different combinations of hyperparameters. Next, we study the influence of 

data imbalance on classification; we propose using Generative Adversarial Networks 

(GANs) for data augmentation to deal with the data imbalance and improve the model’s 

performance. Parts of this chapter were published as in [2]. 

Chapter 4 proposes a new approach for a trustworthy model for cardiac segmentation and 

identification. We attempted to replicate the steps taken by a human expert from the 
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moment they see the image to the moment they decide on its segmentation, replacing each 

step with a machine learning technique. This chapter was partially published in [3]. 

We finish up with a general conclusion, and research perspectives. 
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Chapter 1 

Medical Context 
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1 Medical Context 

Given the nature of our research, the remainder of the thesis will involve a lot of medical 

terms. To make them easy to understand, we present a medical context. This chapter 

includes general information of the heart position and anatomy, the vascular system, a 

description of most common cardiovascular diseases and current heart imaging modalities. 

1.1 Heart Anatomy 

1.1.1 Presentation, Position and Dimensions of the Heart 

The heart, a hollow muscular organ of conical shape, is the most important muscle in the 

body. It essentially provides the blood circulation system with indispensable pressure. 

Despite its power, the heart is quite small in size, approximately the size of a human fist. 

It is 12 cm in length, 9 cm in width at its widest point, and 6 cm thick. It weighs only 

around 300 grams. [4] 

The heart is vertically divided by the septum into the right heart and the left heart, each 

half is in turn divided into two chambers, atrium and ventricle which makes the heart 

composed of four chambers: right atrium (RA), left atrium (LA), right ventricle (RV); and 

left ventricle (LV). It is located between the lungs, near the center of the rib cage, with 

about two thirds of its mass lying on the left of the body’s midline, as shown in Figure 1-1. 

The heart rests on the diaphragm in a space called the mediastinum, surrounded by a fluid-

filled sac called the pericardium. 

The heart muscle is what produces the electrical signals that cause the heart to contract, 

pumping blood throughout the whole body. The combination of the heart and circulatory 

system is what is referred to as the cardiovascular system. 
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Figure 1-1 Position of the heart in the thorax [5] 

1.1.2 The Pericardium and Heart Wall  

The heart is surrounded and held in place by the pericardium (peri: around), a three-layered 

sac that surrounds and protects the heart. Its main role is to keep the heart in position while 

allowing it enough space for vigorous and rapid contact movements. 

The wall of the heart consists of three layers (Figure 1-2):  

- Epicardium (outer layer): constitutes the wall’s thin, transparent outer layer. 
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- Myocardium (middle layer): forms a major part of the heart wall and is responsible 

for its pumping action. It is the cardiac muscle tissue, it consists of involuntary, 

striated, and grooved fibers. which is the cardiac muscle tissue, 

- The endocardium (inner layer). 

 

Figure 1-2 Different layers of the heart muscle [5] 

1.1.3 Blood Circulation in The Heart 

Although we are not consciously aware of the heart’s activity most of the time, it has an 

incredible working capacity. Even when the body is at rest, the heart pumps thirty times its 

own weight every minute, and about 5 liters of blood are sent to the lungs and the same 

amount to the rest of the body. Since we do not spend all of our time at rest, the heart pumps 

more vigorously during periods of activity and its actual output is much greater.  

The cardiovascular system provides the "pump" that circulates blood. As the blood 

circulates through the body's tissues, it supplies nutrients and oxygen to the interstitial fluid 
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and then to the cells. At the same time, it collects waste, carbon dioxide and heat. The 

heart’s pumping cycle happens as follows: 

The right atrium receives blood coming back from the cells, deoxygenated, through three 

veins: the superior vena cava which brings blood from body organs situated above the 

heart; the inferior vena cava which brings blood from body organs situated below the 

diaphragm, while the coronary sinus drains blood from the mesh vessels supplying the 

heart walls. The blood then moves from the right atrium to the right ventricle, which pumps 

it to the lungs from the pulmonary trunk.  

The pulmonary trunk splits into two arteries, the right pulmonary artery carries blood to 

the right lung, while the left pulmonary artery carries blood to the left lung. When it reaches 

the lung, the blood is stripped of carbon dioxide and supplied with oxygen. This 

oxygenated blood is carried back to the heart through the four pulmonary veins right into 

the left atrium.  

From the left atrium, the blood goes into the left ventricle, which pushes it into the 

ascending aorta. From there blood flows into the coronary arteries, which carry it to the 

heart, the aortic arch, the thoracic aorta, and the abdominal aorta. Finally, the aorta and its 

branches carry the blood into the systemic circulation. 



 

19 

 

Figure 1-3 Anterior and posterior views of the Coronary Circulation [5] 

1.1.4 The Valves of The Heart 

When a chamber of the heart contracts, it expels some blood into a ventricle or out of the 

heart through an artery. The heart has valves, which prevent the blood from flowing back. 

The contraction and relaxation of the heart causes an alteration in pressure that eventually 

triggers the valves to open and close. 

- Atrioventricular valves : The atrioventricular valves are located between the atria 

and the ventricles; The right atrioventricular valve, located between the right atrium 

and the right ventricle, is also called the tricuspid valve, because it is composed of 

three cusps (points). The left atrioventricular valve is located between the left 
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atrium and the left ventricle. It is also called a bicuspid valve because it has two 

cusps.  

When an atrioventricular valve is open, the pointed ends of the valve project into 

the ventricle. 

- Sigmoid Valves (semi-lunar valves): are positioned between the arteries and the 

heart; The pulmonary sigmoid valve is located at the gap where the pulmonary 

trunk leaves the right ventricle. The aortic sigmoid valve is located in the gap 

between the left ventricle and the aorta. 

1.1.5 Blood Supply to The Heart 

The wall of the heart has its own network of blood vessels. Coronary circulation is the 

blood movement through the mesh of vessels running through the myocardium, it is called 

“coronary” after the crown-shaped arrangement of the heart's blood vessels (corona: 

crown). 

1.1.6 Cardiac Conduction  

Cardiac conduction refers to the speed at which electrical impulses travel through the heart. 

This is achieved by both conductive cells that generate and transmit impulses and 

contractile cells (muscles) that contract in response to electrical impulses. They can also 

transmit and sometimes generate impulses. 

The cardiac conduction system includes the spread of electrical activity from the sinoatrial 

node (SA) to the atrioventricular node (AV), down the bundle of His and through the 

Purkinje fibers. As the electrical activity moves through the system, it triggers muscle 

contraction in the surrounding myocardial tissue, starting with the atria then the ventricles. 

1.1.7 Cardiac Cycle  

The cardiac cycle is the series of actions taking place at each heartbeat. It has two phases:  

- Diastole: The heart's ventricles are relaxed, while the blood flows into the heart.  

- Systole: The ventricles contract expulsing blood to the arteries.  
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1.2 The Blood Vessels 

Blood vessels are the circulatory part of the cardiovascular system. They are complex 

networks of hollow tubes that carry blood away from the heart to the body's tissues and 

back to the heart. There are two types of blood vessels:  

1.2.1 Arteries  

Arteries are the vessels transporting blood from the heart toward the tissues. The large 

elastic arteries come out the heart and split into muscular arteries of medium caliber, 

branching out into different body areas. 

These medium-sized arteries then divide into smaller arteries, which branch into even 

smaller arteries called arterioles. As the arterioles enter a tissue, they branch into countless 

microscopic vessels called capillaries. Through the walls of the capillaries, substances are 

exchanged between the blood and the body's tissues. 

Before leaving the tissue, groups of capillaries come together to form small veins called 

venules. They, in turn, join together to form progressively larger vessels called veins. 

- Aorta: the origin and provider of most major arteries. It is the body’s largest artery. 

It is responsible for pumping oxygenated blood from the heart to the rest of the 

body.  

- Brachiocephalic artery: carries oxygenated blood from the aorta to the head, neck, 

and arms of the body.  

- Carotid arteries: provide oxygenated blood to the head and neck regions of the 

body.  

- Common Iliac Arteries: transports oxygenated blood from the abdominal aorta to 

the legs and feet.  

- Coronary arteries: transports oxygenated and nutrient-filled blood to the heart 

muscle.  

- Pulmonary artery: carries deoxygenated blood from the right ventricle to the lungs.  

- Subclavian arteries: maintain proper blood circulation of the arms.  
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1.2.2 Veins  

Veins are the vessels that carry blood from the tissues to the heart. 

- Brachiocephalic veins: Two large veins that merge to create the superior vena cava, 

which carries deoxygenated blood from the head, neck, and arms to the heart. 

- Common iliac veins: Veins that join to form the inferior vena cava, , which carries 

deoxygenated blood from the lower body to the heart. 

- Pulmonary veins: transport oxygenated blood from the lungs to the heart.  

- Cava veins: consisting of the superior and inferior vena cava, transport 

deoxygenated blood from various body parts to the heart.  

1.3 Cardiovascular Diseases 

Cardiovascular diseases (CVD) are the number one cause of mortality around the world, 

according to the World Health Organization (WHO) [1]. CVD include several cardiac and 

vascular diseases, the most common of which are heart rheumatism, high blood pressure, 

and coronary artery diseases. In addition, anatomical deformations of the heart or blood 

vessels, Diphtheria, or lack of nutrition can cause other cardiac diseases. 

Cardiovascular diseases refer to a group of disorders affecting the heart and blood vessels, 

which include:  

1.3.1 Coronary Heart Disease:  

Coronary Heart Disease (CHD) is a significant contributor to death and impaired quality 

of life in developed nations. CHD affects the blood vessels that provide blood and nutrients 

to the heart muscle, making it one of the leading causes of cardiovascular disease. [6].  

It is due to plaque, a combination of fatty deposits including cholesterol, connective 

tissue, white blood cells, and some smooth muscle cells.  

Plaque build-up within the artery wall causes the arteries to narrow and decrease 

flexibility, obstructing blood flow. This condition is called atherosclerosis, a hardening 

of the arteries that involves plaque accumulation.  
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The occlusion in the coronary blood vessels causes a restriction of blood flow to the tissues, 

called ischemia, which in turn causes the cells to receive insufficient amounts of oxygen, 

leading to hypoxia.  

A common symptom of coronary artery disease is pain radiating from the chest, but some 

patients remain asymptomatic. If untreated, coronary artery disease can lead to stroke or a 

heart attack. Plaque rupture is also the most common cause of coronary thrombosis. [7] 

Early detection of atherosclerosis enables timely intervention. Angioplasty is a procedure 

where blockages are widened using a balloon. A catheter with an expandable tip is inserted 

through a superficial vessel, typically in the leg, and guided to the blockage site. The 

balloon is then inflated, compressing plaque and opening the vessel for improved blood 

flow. After deflation, the balloon is removed, and a stent made of a specialized mesh is 

often placed at the blockage site to reinforce the weakened walls. Stent insertion has been 

a common practice in cardiology for over 40 years. [5] 

1.3.2 Cerebrovascular Disease  

Affecting the blood vessels that supply the brain, cerebrovascular diseases include stroke, 

transient ischemic attack (TIA), aneurysm, and vascular malformation. They can develop 

from other vascular diseases like atherosclerosis, thrombosis, and embolic arterial blood 

clots. When not treated in time, cerebrovascular diseases can prevent the brain cells from 

getting enough oxygen, resulting in eventual brain damage. [8] 

1.3.3 Peripheral Arterial Disease  

Peripheral Artery Disease (PAD) is a condition that affects the blood vessels supplying the 

arms and legs and is characterized by stenosis or blockage in the aorta or limb arteries. 

Other contributing factors to PAD include thrombosis, embolism, vasculitis, fibromuscular 

dysplasia, entrapment, cystic adventitial disease, and injury. [9]  
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1.3.4 Rheumatic Heart Disease  

Rheumatic Heart Disease is a condition affecting the heart muscle and valves, caused by 

streptococcal bacteria and resulting from a previous case of rheumatic fever. This disease 

can lead to long-term damage to the heart, potentially leading to heart valve problems. 

1.3.5 Congenital Heart Defects 

One of the most common birth defects, Congenital Heart Defects (CHDs) are abnormalities 

in the structure of the heart that are present at birth and are caused by genetic or 

environmental factors. These defects can range from minor issues, such as small holes in 

the heart, to more severe conditions like missing or poorly formed heart chambers. 

1.3.6 Deep Vein Thrombosis and Pulmonary Embolism:  

Obstruction of the leg veins by a blood clot, which can break free and migrate to the heart 

or lungs. Deep vein thrombosis (DVT) is a serious disorder. It is caused by a blood clot 

developing in the deep veins, most commonly in the lower extremities. When part of the 

clot breaks off and travels to the lungs, it causes a pulmonary embolism. Venous 

thromboembolism (VTE) refers to DVT, PE, or both. 

Heart attacks and strokes are usually acute events primarily due to an artery blockage 

preventing blood from reaching the heart or brain. Their most common cause is the build-

up of fatty deposits on the inner walls of the blood vessels supplying these organs, called 

atherosclerosis. Strokes can also result from bleeding from a cerebral blood vessel or clots.  

The presence of several associated risk factors, such as smoking, poor diet and obesity, 

sedentary lifestyle, harmful use of alcohol, hypertension, diabetes, and hyperlipidemia, 

usually causes most cardiovascular diseases.  

1.4 Heart Imaging Modalities 

The ability to accurately assess heart functionality depends on monitoring parameters such 

as heart chambers’ volumes, cardiac output (CO), and ejection fraction (EF) non-
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invasively, all of which can be calculated from cardiac images. The ability to image the 

heart invasively using different modalities caused a revolution in cardiovascular medicine, 

allowing a better understanding and early diagnosis of CVDs, leading to eventual longer 

life expectancy. 

Modern cardiovascular imaging techniques involve Computed tomography (CT), magnetic 

resonance (MR), single-photon emission computed tomography (SPECT), and ultrasound 

(US). Each technique offers the ability to capture multiple images during the heart's 

complete cycle, but each one is more suited to certain tasks compared to others. 

1.4.1 Echocardiography 

A cardiac ultrasound scan, also known as echocardiography, is a medical diagnostic tool 

that uses high-frequency sound waves to produce real-time images of soft tissues and 

organs. The sound waves are reflected by the boundaries between tissues of differing 

densities, based on the impedance difference. 

An echocardiography is similar to a standard ultrasound, although the hardware and 

software are optimized for evaluation of cardiac structure and function. It is broadly used 

in the clinic because it is non-invasive, portable, and affordable. 

Early echocardiography machines featured a single “M-mode” ultrasound displayed 

overtime on a moving paper sheet. Modern echocardiographs, however, use phased array 

transducers that discharge sequences of ultrasound, which are reflected and then sensed by 

the receiving elements. A “scan converter” generates images using information about the 

timing and magnitude of the reflected ultrasound. This operation repeatedly occurs in 

almost real-time, generating in-motion images with frame rates from thirty frames per 

second up to 100 frames per second. Different structures are indicated by varying shades 

of gray, with liquids appearing black, solids such as calcifications appearing white, tissues 

like the myocardium appearing gray, and muscle exhibiting a unique speckled pattern. 

Although two-dimensional echocardiography has replaced M-mode echocardiography in 
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most cases, M-mode is still used due to its high temporal resolution and accuracy for linear 

measurements. [10] 

1.4.2 Coronary Computed Tomography Angiography (CCTA) 

An exam that examines the blood vessels supplying the heart using an iodine-based contrast 

material and a CT scan to detect any narrowing of the arteries. 

Imaging of the coronary arteries by CT is a difficult task due to the small size of their lumen 

and the movement of the heart and respiratory system. To overcome the issue of respiratory 

motion, the image is taken during breath-holding. To address the cardiac motion, the heart 

rate can be decreased by administering appropriate medication. Imaging the whole-heart 

volume is timed with the administration of intravenous iodinated in a weight-appropriate 

dose. Image acquisition is ECG-triggered, which makes it adapted to the cardiac cycle.  

Prospective ECG triggering is used to minimize the patient’s radiation exposure. The x-ray 

beam is only activated during a specific part of the cardiac cycle with the least movement.  

1.4.3 Nuclear Medicine Imaging 

Both Single photon emission computed tomography (SPECT) and Positron emission 

tomography (PET) scans are non-invasive nuclear imaging tests that use radioactive tracers 

(called radionuclides) to produce images of healthy and damaged heart muscles. They are 

dedicated to the diagnosis of coronary artery disease and damage due to a heart attack.  

A radioactive tracer is injected into the bloodstream. The tracers are usually natural 

molecules such as glucose or water, which are branded with a small amount of radioactive 

material. The radioactive tracer produces a gamma ray, which is then detected by a gamma 

detector and used to produce a series of images of the heart from all different directions 

and angles. 

PET myocardial perfusion imaging is a better option compared to SPECT due to its higher 

diagnostic accuracy and lower radiation exposure from using shorter-lived radiotracers. 

Although more expensive, PET imaging is faster than SPECT. Nowadays, PET and SPECT 
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scanners are combined with CT scanners, where CT is primarily used for positioning the 

patient in the field of view and correcting radiotracer distribution in soft tissues (attenuation 

correction). CT can also provide diagnostic data like coronary artery calcium score and CT 

coronary angiography. [11] 

1.5 Conclusion  

Medical imaging plays a key role in assessing and treating cardiovascular disease. But with 

the variety of available modalities, it is important to choose the appropriate test for the 

disease. Moreover, the interpretation of images and extraction of the most useful and 

relevant information remains a challenge for many reasons. First, medical professionals are 

a valuable resource that the world increasingly lacks [12]. Besides, the difference in 

machine settings and acquisition can make a remarkable difference between tests even for 

the same subject, which makes it difficult to maintain a stable evaluation. Finally, the 

increasing number of images generated by each test requires considerable time, even from 

a trained professional, to assess every piece of information; even then, some information 

can be overlooked, affecting the quality of the diagnosis. 

The advances in cardiac imaging techniques may have revolutionized cardiovascular 

medicine, but if it is not backed with automatic evaluation systems, their potential can be 

eventually wasted. 
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2 Deep Learning for Cardiac Classification and 

Segmentation 

 

2.1 Fundamentals of Deep Learning 

2.1.1 Introduction  

Since the first notion that computers can “think” and solve complex problems, it has been 

the ultimate goal to make computers solve complex problems, not by following algorithms 

and rules, but in a smart, intuitive way like humans do. But to do so, we needed to build a 

new form of program that imitates a human’s problem-solving skill.  

The human learning process is complicated, and it mostly happens as we are children, We 

learn the most complicated tasks early, from walking and talking to critical thinking. The 

learning process happens in stages and through different processes. It is almost impossible 

to grasp how brains learn, but it is certain that it has everything to do with going through 

different experiences every day and dealing with a lot of information. 

In a way, that is exactly how it translated into computer learning. It has to do with a lot of 

incoming information, data, and how the machine processes and learns from it. This was 

the beginning of deep learning, machine learning, and artificial intelligence as we know it. 

The emergence of deep learning has changed the face of programming. Being exceptionally 

good at finding intricate structures in data makes it particularly useful. It meant having 

machines that think like humans but faster and more efficiently. 

2.1.2 What Is Machine Learning? 

Since the existence of early computers, they have been used to perform complex 

computations and operations. The process is done following an algorithm. An algorithm is 

a set of commands created by a user, conducted in a specific order by the computer to 

perform a particular task. 
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The algorithm is performed on a set of inputs, to reach a desired output. For instance, in 

Figure 2-1, the algorithm is performed on a dataset containing images of both normal brain 

images and images containing tumors, and it turns each image with a caption of either 

“Normal” or ‘Tumor”.  

 

Figure 2-1 An illustration of classical programming 

Machine Learning is the science of understanding data and making sense of it. It is a set 

of methods that allow computers to learn from the data itself to make and improve 

predictions. Unlike “normal programming”, where all instructions must be explicitly given 

to the computer, machine learning relies on “indirect programming” where learned 

parameters map inputs to predictions. This can be a set of weights for a linear model or a 

neural network. For example, in Figure 2-2 the machine learning model takes labeled brain 
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MRI images of both tumor and normal cases and learns to tell them apart. The result is a 

model that can classify unseen data as either normal or tumor. 

In other words, a machine-learning model takes input data and finds some hidden pattern 

to give as output, these patterns are “learned” from repeated exposure to similar sets of 

inputs and outputs.  

 

Figure 2-2 An illustration of machine learning 

2.1.3 From Machine Learning to Deep Learning 

Deep learning is a sub-division of machine learning based on artificial neural networks. It 

is the perfect imitation of the way humans learn, as it relies on learning from examples and 

trial and error. 
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We would like to propose that deep learning is quite similar to the scientific method. The 

scientific method is, by definition, “the process of objectively establishing facts through 

testing and experimentation”. The process mainly includes observing, establishing a 

hypothesis, predicting, experimenting  and finally analyzing  outcomes.  

Similarly, a neural network starts with the assumption that the input is related to the output, 

that there exists a mathematical formula, simple or complicated and that tells of a 

correlation between the input and the output. 

The first experiment is usually done with random initializations of weights. The results of 

the first few iterations are usually far from what is desired. Another iteration would be 

attempted, taking into consideration the error from the previous iteration, and optimizing 

it. More iterations are attempted until the model reaches the desired result, a minimal error 

between the desired output and that generated by the model. 

This was the simplest, most relatable definition of deep learning, But, of course many new 

concepts were introduced along the way: 

2.1.3.1 Neural Networks 

The principle of Deep learning algorithms lies in building a network of connected basic 

computational elements. These elements are small computational units called “artificial 

neurons”, which are often referred to simply as neurons. The design of the artificial neuron 

was modeled after the human neuron, which forms the brain and central nervous system 

and plays a vital role in our cognitive abilities. 

2.1.3.2 Artificial Neurons 

The concept of artificial neurons used in machine learning is inspired by real neurons and 

their interconnections and decision-making process. The first version of an artificial neuron 

is the “perceptron”. It was first presented in a paper by McCulloch and Pitts in 1943 [13]. 

A perceptron takes several binary inputs, x1, x2…, and produces a single binary output, as 

illustrated in Figure 2-3. 
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Figure 2-3 The building block of a perceptron 

 

More accurately, the inputs are “weighted” as shown in Figure 2-4, and the weights 

attached to every input are gradually altered until the network reaches the correct output.  

 

 

Figure 2-4 An illustration of how weights affect the outcome of a perceptron. 
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Stacking neurons in a series of layers has proven to be the most efficient way to organize 

neural networks. Neurons of the same layers are separated from each other, They get their 

input from a previous layer and feed their output to the next layer.  

The layer stacking method allows a hierarchical analysis of data, where early layers analyze 

simple features, and later layers analyze more complicated ones. Taking the example of 

computer vision, early layers are more of a simple shape detector. They only detect lines 

and curves, whereas later layers detect more complicated shapes and textures until the 

model can analyze a full complex image. 

2.1.3.3 Layers  

All the learning occurs in the layers. A layer is a series of neurons stacked at a specific 

depth within a neural network. Layers can be of different types, as shown in Figure 2-5: 

Input layer, hidden layers , and output layer. 

The input layer contains the input data, where each variable is a ‘node’. 

The hidden layers are the heart of neural networks. They are designed to learn specific 

aspects of the data by minimizing a cost function. A hidden layer means simply it is neither 

an input nor an output layer.  

Up to now, a neural network’s output of a layer is an input of the next, Such a structure is 

called a feed-forward neural network, and loops are not much sensical. However, there 

are recurrent neural networks that have neurons that fire for a limited time, which makes 

loops possible.  

The output layer usually represents the output of classification problems. It can have one 

to more neurons, depending on the expected outcome of the problem. 
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Figure 2-5 The different types of layers in a neural network 

  

2.1.3.4 Loss Function  

It is how we monitor the learning process and try to improve it. Loss functions map a 

number of parameter values for the network onto a scalar value that compares the desired 

output to the predicted one. Then it measures how efficiently those parameters achieve the 

intended task. 

2.1.3.5 Optimization Algorithms  

There are usually too many different parameters to tweak in a neural network (weights and 

biases) before it performs as it is expected to. It is common to consider the parameters’ 

universe a multidimensional universe, which needs to be searched to find the best 

parameters’ combination for optimal performance. The search process is done through an 

optimization process, a mathematical error function that needs to be minimized. This 

function is minimized using one of many popular optimization algorithms [14]: 

- Gradient Descent [15] 
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- Stochastic Gradient Descent (SGD) [16] 

- Mini Batch Stochastic Gradient Descent (MB-SGD) [17] 

- SGD with momentum [18] 

- Root Mean Square Propagation (RMSProp) [19] 

- Adam [20] 

2.1.4 Popular Architectures: 

The success of neural networks leads to more research to make them more suited to 

different tasks, resulting in different architectures adapted to different research fields. We 

will mention a few that were more used in computer vision in general and medical 

applications in particular. 

2.1.4.1 Convolutional Neural Networks (CNNs) 

The Convolutional neural network (CNN) was introduced in 1995 [21].  

CNNs are regular neural networks that have at least one convolutional layer. A convolution 

is the act of sliding a filter all over the input, which mainly helps consider the neighborhood 

of each pixel, which is particularly useful when dealing withs images. Additionally, 

considering single patches of the input at a time can make spotting features easier than 

looking at the whole input. Convolutional neural networks have been particularly superior 

in performance with image, speech, and audio signal inputs. Their structure involves three 

main layers: Convolutional layers, Pooling layers, and fully connected (FC) layers. 
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Figure 2-6 The Convolutional Neural Network as described in the original paper [21] 

 

Convolutional Layer 

Most of the computing in a CNN happens on the convolutional layers. There is a 

convolution operation between the input data and the kernels (filters), which results in a 

matrix referred to as “feature map”, which mainly highlights the location and strength of a 

feature in the input.  

Pooling Layer 

Pooling layers are responsible for reducing the spatial size of the layer and the number of 

parameters in the input, which is why they are sometimes referred to as down-sampling 

layers. The pooling layer sweeps a filter through the image, but instead of doing a 

convolution operation, the kernel performs an aggregation function on its field of impact 

and fills an output array in the process. This is useful for spotting dominant features which 

are invariant to rotation and position. The main types of pooling that exist are: 

• Max pooling: the most popular type of pooling. It selects the pixel with the 

maximum value and sends it to the output array, then the filter slides into another 

region of the input. 
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• Average pooling: in this type of pooling, the output array is filled with the average 

of the region in contact with the filter, before it slides to the next one and does the 

same.  

The down-sampling that happen in the pooling layers comes with a big loss of information 

but is considered insignificant. Pooling layers are the strength of CNNs. Not only do they 

reduce the complexity of the module, but they also help improve efficiency, and limit the 

risk of overfitting.  

Fully Connected Layer 

As its name suggests, a fully connected layer has each neuron of the output layer connected 

to every neuron from the layer before. It is used for classification based on previously 

extracted features.  

The success of CNNs in different tasks leads to more improvements, and variations over 

the years, including: AlexNet  [22], VGG Net [23], GoogleNet [24], and ResNet [25].  

2.1.4.2 Fully convolutional Networks 

Fully convolutional networks were first developed by Long [26], They are CNN with no 

fully connected layers in them. The last fully connected layer was replaced with a fully 

convolutional layer. This change allows the network to have a better pixel-wise prediction.  

 

Figure 2-7 The Fully Convolutional Network as described in the original paper [26] 

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/pdf/1409.1556.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43022.pdf
https://arxiv.org/pdf/1512.03385v1.pdf
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2.1.4.3 U-Net 

U-Net is particularly popular in medical image segmentation problems, proposed by 

Ronneberger [27]. The main architectural novelty in U-Net is the combination of an equal 

amount of up-sampling and down-sampling layers, leading to a symmetrical shape 

resembling a “U” (Figure 2-8), connecting them with skip connections between opposing 

convolution and deconvolution layers. This step aims to concatenate features learned in the 

contracting path to the expanding paths. U-Net models can process entire images in one 

forward pass, directly producing a segmentation map. This allows them to consider the full 

context of the image, unlike patch-based CNNs. A 1x1 convolution is used in the final 

layer  to assign each 64-component feature vector to the desired number of classes. The 

network has 23 convolutional layers in total. 

This architecture was introduced along with data augmentation, decreasing the amount of 

annotated data needed to train, a feature that made the network very successful in 

biomedical applications.  
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Figure 2-8 The U-Net architecture as described in the original paper [27] 

 

2.1.4.4 Residual Networks 

Residual Networks (ResNets) [18] came as answer to an emerging problem in very deep 

networks, where weights became increasingly large  or small after too many operations.   

ResNets add residual blocks that pact as short-cut connections between the input (x) and 

the output of a layer (F(x)). 

The residual block sums the non-linear transformations performed by the layer and its 

input. It is reformulated as H(x) = F(x) + x  (Figure 2-9). 
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Figure 2-9 The residual block structure 

 

2.1.4.5 Attention-Based Models 

The use of attention mechanisms in deep learning models started with the publication of a 

paper by Vaswani et al [28]. Attention-based models are a type of deep learning 

architecture that use attention mechanisms to selectively focus on different parts of an input 

sequence or image. This allows the model to dynamically allocate more computational 

resources to the most relevant parts of the input, while ignoring the less relevant parts. 

Attention-based models are commonly used in natural language processing (NLP) tasks, 

such as machine translation, question answering, and text summarization, where the model 

needs to selectively attend to different words in a sentence. They are also used in computer 

vision tasks, such as image captioning and visual question answering, where the model 

needs to selectively attend to different regions in an image. In the medical field, attention-

based models have been used for tasks such as image segmentation, lesion classification, 

and diagnosis prediction. 

2.1.4.6 Visual Transformers 

Visual Transformers [29] are a type of deep learning model based on the Transformer 

architecture, originally proposed for natural language processing tasks. The Transformer 
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architecture is a type of neural network that uses self-attention mechanisms to capture 

dependencies between elements in an input sequence. In visual transformers, this 

architecture has been adapted to process visual data, such as images and videos. 

Visual Transformers have been used for various computer vision tasks, including image 

classification, object detection, and segmentation. They have shown to be effective in 

capturing global contextual information and handling long-range dependencies, making 

them well suited for tasks that require a comprehensive understanding of the visual content 

in an image. Additionally, Visual Transformers can be trained on large-scale datasets, 

allowing them to learn from vast amounts of data, leading to improved performance on 

complex visual recognition tasks. 

2.1.5 Challenges in deep learning 

Thanks to the quick advancement in computational powers and the increasing availability 

of data, deep learning has taken off in the last few years in all fields. However, when it 

comes to medical applications, too many challenges are emerging lately, slowing the full 

impact it could have had. 

• Need for data: 

As previously mentioned, the availability of data, especially labeled one, has strengthened 

deep learning in the last few years. Unfortunately, this is not the case with medical 

applications; there is a big shortage of labeled data, not only because of the lack of 

resources to begin with, but because of confidentiality concerns. As we will see in the next 

chapter, one promising solution is data augmentation, either by traditional methods or data 

synthesis. 

• Explainability and fairness: 

Even though deep learning algorithms have reached human-level accuracy on many tasks, 

they still are considered black boxes and cannot be backtracked to explain each prediction 

made. This makes them hard to trust, especially in sensitive domains like healthcare.  
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2.2 Deep Learning for Cardiac Image Segmentation 

Automatic segmentation of heart chambers is a large field of research. The complex shape 

of the heart and the existing variety of imaging modalities provide many tasks and 

challenges corresponding to different segmentation methodologies.  

The literature is quite rich and detailed when it comes to cardiac segmentation, most review 

papers focused on MRI being the best-performing imaging modality. For instance, the 

authors in [30] reviewed techniques for segmenting different heart chambers in MRI, while 

in [31], the authors focused on segmentation methods on short-axis cardiac MR images. 

[32] and [33] reviewed only the right ventricle segmentation from cardiac MRI. Some 

papers took an interest in segmentation techniques from echocardiography images [ [34], 

[35], cine MR segmentation [31], or Tagged MRI [ [36]. Frangi et al. [37] classified cardiac 

modeling techniques into three classes: surface models, volume models, and deformable 

models.  

Other reviews were more generalized. For instance, in [38], the reviewed 3D cardiac 

modeling techniques were based on different modalities, angiography, cardiac US, isotope 

imaging, cardiac CT, and MRI. Similarly, the authors in [39] grouped heart chambers and 

whole heart segmentation techniques by modalities. 

With the emergence of deep learning, reviews focused on its application in cardiology [40], 

[41], [42].  

The study of different review papers offers an overview of the various techniques and 

applications of segmentation in cardiac imaging. 
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2.2.1 Cardiac Magnetic Resonance Imaging CMRI 

Magnetic resonance imaging is the golden technique for viewing the heart’s structure and 

function. The sharp contrast between different tissues results in good-quality images and 

easy diagnosis.  

Initial segmentation techniques employed basic methods such as thresholding as a 

preliminary step, followed by a region-expansion technique [43], [44]. Some other 

techniques relied on Classification-based segmentation [45] or deformable contour [46], 

[47], 

2.2.1.1 Left Ventricle LV 

The left ventricle (LV) plays a crucial role in the cardiovascular system as it pumps 

oxygenated blood from the heart through the aortic valve to be circulated throughout the 

whole body. With such a key role in blood circulation, the left ventricle has been the most 

investigated chamber in cardiac segmentation. 

The left ventricle has relatively thick myocardial tissues that provide enough pressure for 

blood circulation. As a result, LV parameters can be abnormal in many cardiovascular 

diseases, such as hypertension or after myocardial infarction. 

The success of Convolutional Neural Networks in medical applications applied quickly to 

LV segmentation; Romaguera et al. [48] trained a five-layer FCN model using whole 

cardiac MRI on the MICCAI 2009 SUNNYBROOK Left Ventricle Segmentation 

challenge dataset [49] without cropping the images while using stochastic gradient descent 

(SGD) and RMSprop optimizer; They reported better results with SGD. Emad et al.  [50] 

used a 6-layer CNN with a pyramid of scales-based localization, which allowed the 

algorithm to consider varied sizes of the heart over different images, increasing the 

system’s performance. Finally, Molaei et al. [51] reported an improvement in both 

specificity and sensitivity in LV segmentation when using Gabor filter initialization; Gabor 

filters were chosen due to their structure invariant properties, which the authors hoped the 

DCNN would inherit, resulting in a stronger system and more accurate segmentation. In 
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addition, Gabor filters act as a preprocessing step that enhances tissue contrast and blurred 

edges.  

Some researchers have investigated hybrid methods, combining traditional image 

processing techniques with deep learning architectures. Ngo et al. [52] created high-quality 

segmentation by utilizing a distance regularized level-set method, in combination with a 

pipeline of Deep Belief Networks (DBNs) to both identify and segment the LV. Luo et al. 

[53] trained a three-layered CNN to predict the LV segmentation, after employing a LV 

atlas method to accurately localize the left ventricle. Avendi et al. [54] implemented a 

three-step process to segment the LV. It starts with using a  CNN for LV chamber detection, 

then using a stacked autoencoder to predict the shape of the LV and finally, completing the 

segmentation with level-set refinement.  

Ngo et al. [43] created high-quality segmentation by utilizing a distance regularized level-

set method, in combination with a pipeline of Deep Belief Networks (DBNs) to both 

identify and segment the LV. Avendi et al. [44] employed a three-stage approach, starting 

with a CNN to identify the LV chamber, and then using a stacked autoencoder to infer the 

shape of the LV, and lastly, applying level-set refinement. Luo et al. [45] used an LV atlas 

mapping method for precise localization, and then trained a three-layer CNN to predict the 

LV. 

Yang et al. [55] created an end-to-end deep fusion network that uses deep learning for label 

fusion and feature extraction, Learned features are then used to define a similarity measure 

for MRI atlas selection. They used these learned features to define a similarity measure for 

selecting MRI atlases. They evaluated their method against other techniques such as 

majority voting, patch-based label fusion, multi-atlas patch match, and SVM with 

augmented features and found that their method had superior accuracy. In a subsequent 

study [56],  they used a regression CNN to locate the left ventricle (LV) and then used a 

U-net-based architecture to segment it within the relevant region of interest. 

Rohé et al. [57]  developed a multi-atlas framework with a registration method trained with 

convolutional neural networks, The registration module employs SVF-Net [58] , which is 
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an encoder-decoder network that replaces the optimization of energy criteria with a 

deterministic prediction of the parameters from training images.   

A recent technique resorted to breaking down the segmentation problem into subtasks by 

applying neural networks in a multi-stage pipeline. Tan et al. [59]  used a CNN for LV 

endocardium location and another CNN to determine the endocardial radius. They used 

MICCAI 2011 Left Ventricle Segmentation STACOM [60] and MICCAI 2009 

Sunnybrook dataset [49] for training and evaluation, respectively,  the model achieved 

results comparable to the state of the art. While Liao et al. [61] combined a detector with a 

neural network classifier and used them to detect the region of interest containing the LV. 

They segmented the LV using a “hyper columns” FCN. The 2D segmentations were used 

to estimate the LV volume. The model was end-to-end trained alternately on LV 

segmentation and volume estimation. 

Wolterink et al. [62] employed a convolutional neural network that increases the level of 

dilatation with every convolutional layer, ensuring a larger receptive field with less 

trainable parameters. While Yang et al. [56]  used a 3D fully connected network, with 

residual connections instead of concatenation, in order to compensate for the volume size 

imbalance usually encountered with 3D series. They investigated different loss functions, 

They proposed a Multi-class Dice Similarity Coefficient (mDSC) based loss function to 

re-weight the training for all classes. 

 The authors in [63] performed end-to-end LV segmentation combining feature detection 

with a capsule network. A capsule is a group of neurons that output a vector [64], The 

length of the vector refers to the probability of the existence of the object, while its direction 

refers to the instance parameters [65], [64]. A capsule network preserves spatial 

information; it proved useful in replacing pooling layers, which would significantly 

decrease the number of parameters while maintaining the same amount of information. 
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2.2.1.2 Right ventricle RV 

Right ventricle (RV) segmentation had long been neglected, considering its role less 

important than that of the left ventricle, but recent research suggests that any failure of the 

left ventricle causes an overload of the right ventricle and changes its dynamic, making the 

RV function a vital biomarker of the progress of all heart diseases. 

But even after knowing its importance, RV segmentation remains more challenging due to 

the complex geometry of the right ventricle; it has a variable and crescent structure, thin 

indistinct myocardial walls, and non-uniform boundaries. In addition, the literature on RV 

segmentation remains poor.  

Early segmentation algorithms used end-to-end FCNs to segment the LV and RV 

simultaneously. One of the first papers to apply a plain FCN to CMRI was Tran et al. [66]. 

They  trained a plain four-layer end-to-end FCN model on two different datasets; MICCAI 

2009 Sunnybrook  dataset  [49] for LV and MICCAI 2011 Left Ventricle Segmentation 

STACOM [60] for RV. The model performed better than state-of-the-art methods on both 

tasks. 

Later works focused on optimizing the network structure to enhance the feature learning 

capacity for segmentation. Khened et al. [67] developed a model inspired by DenseNets 

and included Inception modules [24] for a consistent performance when segmenting 

images with varying anatomical shapes. The model performs parallel convolutions with 

different kernel sizes, and later combine them in a similar fashion to an inception module. 

In [68], the authors created a self-training semi-supervised learning method in which a 

segmentation network for LV/RV and myocardium was trained on labeled data to estimate 

labels, then updated the network with both the available true image-label pairs and the 

estimated labels for the unlabeled images, while the final segmentation was refined using 

a Conditional Random Field (CRF). 

Avendi et al. [69] stack a regular CNN with autoencoders. The model first detects the RV 

chamber, then segments it. 
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Archontis et al. [70] use a two-pathway CNN; one pathway captures the finest details from 

original images, whereas the other learn the higher-level features from down-sampled 

images.  

Other studies use either Recurrent Neural Networks or multi-slice networks (2.5D nets) to 

enhance the segmentations with spatial information extracted from neighboring slices ( 

[71], [72], [73], [74]).  

The authors in [71] start with determining the region of interest (ROI) using ROI-net, a 

variant of U-Net that takes one MRI image as input and predicts pixel-wise probabilities 

providing a heart/background segmentation. The ROI image is then segmented using LV-

net for left ventricle segmentation or LVRV-net for bi-ventricular segmentation. It 

performs slice segmentation of a given slice S(i), taking S(i-1), the adjacent slice above, 

and the segmentation mask as contextual input. In [72], the authors proposed a recurrent 

U-Net that combines left ventricle detection and segmentation into a single end-to-end 

architecture, thus simplifying the segmentation pipeline. The network trains on a stack of 

2D images. Previously segmented images are fed to the recurrent unit to serve as context 

for segmenting the current image. The proposed model outperformed known architectures 

such as FCN and recurrent deep belief networks. 

Patravali et al. [73] tested a 2D and 3D U-Net, trained with different loss functions. The 

model that reported the highest Dice loss was a 2D U-Net designed to take a stack of 3 

image slices as input channels. 

In [74], Du et al. use an advanced end-to-end encoder-decoder network that takes dilated 

modules as an encoder and D-Fire dilated modules as a decoder. The model performs Bi-

Ventricle segmentation from the pixel level view (Cardiac-DeepIED). The ED is integrated 

with a convolutional LSTM in one innovative end-to-end network architecture. The 

encoder and the Convolutional LSTM can capture semantic information (pixel-based 

information). At the same time, the pooling layers reduce the size of feature maps, resulting 

in images that are small in size but rich in semantic information. The decoder up-samples 

the image representation to recover original dimension, then generates a feature map 
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featuring the image’s label. The resulting feature maps are finally fed to a fully connected 

layer. Kong et al. [75] used a temporal regression network to accurately identify end-

diastole and end-systole frames. They combined a 2D CNN to code the spatial information 

of the cardiac sequence with a long short-term memory (LSTM) to decode the temporal 

information. 

Isensee et al. [76] used a combination of 2D and 3D U-Nets to perform both segmentation 

of the LV/RV contours and LV myocardium, and disease classification.  

Adding skip connections to the models has also shown good results. Lieman et al. [77] 

created “FastVentricle”, a new FCN architecture with integrated skip connections, adding 

more speed and memory efficiency. The model was inspired by ENet [78]. In [79], the 

authors introduce a variant of U-net, where they replaced the double convolution layers 

with a single convolution layer at each depth, which reduces the memory burden and 

speeds-up the training. The new model, called V-net, is used for segmentation of LV/RV 

endocardium and epicardium . The method over-performed human experts, particularly for 

RV segmentation.  

2.2.1.3 Left Atrium LA 

Using deep learning algorithms for left atrium segmentation can be challenging due to the 

small presence of the atrial structures compared to the background. To overcome this issue, 

Vesal et al. [80] started by cropping using fixed coordinates to extract the input images 

from the center of the image, which allows for a better representation of the LA features 

on a smaller ROI. They used dilated convolutions instead of regular convolutions in the 

lowest layer of the encoder branch of a 3D U-Net, for the segmentation of the LA straight 

from Gadolinium Enhanced MRIs (GE-MRI). Following a similar principle, other 

researchers ( [81], [82], [83]), used a multi-CNN method for atrial segmentation. They 

concatenated two networks: a CNN to localize and crop out the Left Atrium, and another 

network to segment the LA from the small image patches.  
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A recurrent issue that decreases segmentation performance when training is the big 

variance of the LA anatomical structures. He et al. [84] avoided false classification by using 

image context information. They incorporated multi-scale pooling in a pyramid module to 

associate contextual features for a more accurate classification. Similarly, Zhao et al. [85] 

incorporate object and image context with  pyramidal pooling in their neural network new 

called PSPNet. 

Inspired by [84] and the PSPNet [85], Bian et al. [86] extract different scale features with 

pyramid pooling, incorporated in a multi-scale 2D CNN. The network is robust against the 

different shapes and forms usually encountered in clinical cases.  

Vigneault et al. [87] and Bai et al. [88] applied 2D FCNs to directly segment the LA and 

RA from standard 2D long-axis images. They also demonstrated that their networks can be 

trained to also segment ventricles from 2D short-axis images without changes to the 

network structure. Likewise, Xiong et al. [89] , Preetha et al. [90], and Chen et al. [91] have 

used 2D FCNs to segment the atrium from 3D LGE (Late Gadolinium Enhancement) 

images slice-by-slice, optimizing the network structure for improved feature learning. In 

addition, 3D networks ( [82], [92], [93], [80], [81]) and multi-view FCN ( [94], [95]) have 

been investigated to capture 3D information from 3D LGE images for more accurate atrium 

segmentation. In particular, Xia et al. [82] proposed a two-stage segmentation framework 

that uses a 3D U-Net to roughly locate the atrial center from down-sampled images, 

followed by another 3D U-Net to accurately segment the atrium in the full-resolution 

portions of the original images. This approach is both efficient and accurate. 

2.2.2 Computed Tomography CT 

Computed tomography of the heart, also known as cardiac CT, is a diagnostic imaging test 

used to get detailed images of the heart and coronary arteries. This test is commonly 

performed to evaluate the presence and severity of coronary artery disease (CAD), and to 

detect and assess atherosclerosis by analyzing plaque and stenosis. 
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Early research in the field of automatic atherosclerosis screening in cardiac CT focused on 

improving the analysis of the images obtained from the test. This involved recognizing and 

segmenting the cardiac arteries for better analysis [96], [97], and also segmenting stenosis 

[98] and plaques [99], which are the primary indicators of atherosclerosis.  

2.2.2.1 Coronary Artery Segmentation 

Coronary CT angiography (CCTA) is considered the golden modality for coronary artery 

disease diagnosis. Segmentation of the coronary artery has versatile uses in CCTA; it 

provides quantitative information on coronary artery stenosis, 3D reconstruction, and 

cardiac dynamics assessment. 

The authors in [100] proposed a growing method that starts with determining an initial seed 

which is the meeting point of the ascending aorta and the coronary arteries. Then a 

convolutional network helps a growing algorithm search for the existence of coronary 

arteries in the neighboring blocks, all happening iteratively.  

[101] proposed a 3D attention FCN method to perform end-to-end coronary artery mapping 

straight from CCTA. The FCN was associated with a deep attention strategy to highlight 

semantic features, improving the segmentation accuracy.  

Multiple studies investigated vessel segmentation from CTA ( [102], [103]), which is the 

first step towards the diagnosis of atherosclerosis and the detecting and quantifying of 

stenosis ( [104], [105]). 

2.2.2.2 Coronary Artery Calcium and Plaque Segmentation 

One particularly specific feature of atherosclerosis is Coronary artery calcium (CAC), 

Coronary artery calcification is a collection of calcium in the heart’s coronary arteries 

which, makes CAC scoring an easy and efficient means of cardiovascular disease 

assessment [106]. Early papers focused on learning and analyzing spatial information such 

as dimensions, texture, looks, and overall position of a lesion to distinguish CAC from 

other similar candidates like aortic calcifications. Position features related to anatomical 

landmarks were the most efficient, as proven by many studies ( [99], [107], [108], [109]). 
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 Shahzad et al. [110] and Wolterink et al. [111] performed calcium scoring for each 

individual vessel on pre-located major coronary arteries. While Išgum et al. [112] estimated 

the location of the whole coronary artery tree, Yang et al. [113] extracted coronary artery 

centerlines in CCTA images to provide location features. Hong et al. [98] were the first to 

evaluate clinically relevant parameters from deep learning-based coronary artery 

segmentation and CNNs to segment CTA lumen and calcified plaque.  

Most deep learning-based methods aim to predict dense segmentation probability maps 

using an end-to-end CNN segmentation ( [114], [115], [96], [69]).  Recent methods, 

however, resorted to classifying each voxel separately. For example, Wolterink et al. [116] 

proposed to first identify candidate voxels in CCTA with a CNN, and then further 

discriminate among identified candidates with a second CNN. Lessmann et al. [117] used 

a similar approach to locate calcifications with two CNNs, one for identification of labeling 

of potential calcification based on location, and the other for true calcification’s 

identification from pre-selected candidates. In contrast, using end-to-end regression, Cano-

Espinosa et al. [118] and de Vos et al. [119] achieved fast automatic calcium scoring in 

less than a second. 

On the other hand, few works were interested in non-calcified plaque (NCP) and mixed-

calcified plaque (MCP) segmentation and quantification [105]. Most machine learning-

based methods extracted descriptors of the vessel wall ( [120], [121], [122], [123]), then 

ran them through a linear classifier or SVM to determine the presence of non-calcified 

plaque. [124] 

 

2.3 Deep Learning for Cardiac Disease Classification  

Disease classification straight from MRI or CT is NOT quite common. Instead, the process 

usually involves a feature extraction step or segmentation. 

Zreik et al. [125] identified patients with coronary artery stenoses from the LV myocardium 

of rest CT. They used a multi-scale CNN to first segment the LV myocardium and then 
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applied an unsupervised Convolutional Autoencoder (AE) to encode it. Finally, they used 

a Support Vector Machine (SVM) classifier to perform the final classification based on the 

encoded and clustered data. 

One of the first papers to investigate the possibility of automatic atherosclerosis screening 

straight from  CCTA [126] proposed a deep-learning-based system to classify coronary 

arteries as normal or abnormal and display the likelihood of atherosclerosis in each 

coronary artery or branch. They start by identifying and extracting the coronary arteries 

from the CCTA images through the use of a deformed mean shape model. They then 

straighten the vessels in a multi-planar reformatting (MPR) to produce a longitudinal view 

of the coronary arteries. The MPR volumes were classified using a 3D CNN for 

atherosclerosis screening, associated with a gradient-based class activation map (Grad-

CAM) [109], to highlight image regions that influenced the CNN’s decision-making 

process. The model was evaluated using five-fold cross-validation and achieved an 

accuracy of 90.9%, a positive predictive value of 58.8%, and a sensitivity of 68%. 

The authors in [127] employed an automated technique for plaque classification as either 

normal, calcified, or non-calcified. The algorithm uses a Gabor transform to extract seven 

features from CTA images: energy, and Kapur, Max, Rényi, Shannon, Vajda, and Yager 

entropies. They obtained 89.09% accuracy, 91.70% positive predictive value, 91.83% 

sensitivity, and 83.70% specificity. The results were obtained using all computed features 

without any feature reduction, using a probabilistic neural network.  

White et al. [128] achieved 95% Negative Predictive Value for the task of atherosclerosis 

screening from CCTA, allowing for a safe discard of atherosclerosis. 

2.4 Conclusion  

The emergence of deep learning had an important impact on cardiology. It allowed for a 

full exploration of the big data generated by modern imaging techniques.  

Automatizing the assessment of cardiac structure and function is the eventual aim of 

applying deep learning. As we have seen in this chapter, many breakthroughs have been 
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accomplished, but there is still room for improvement in existing applications and 

innovation in new ones.  

Cardiac segmentation is a broad field of research. With the rapid rise of learning 

techniques, choosing the right model for the right task can be a challenge, and it can depend 

on the following:  

- The imaging modality, as with every modality, has its own characteristics and 

specifics. 

- The targeted structure. Different heart chambers have different textures and shapes, 

and it is important to adapt the segmentation method to match the task’s needs. 

- Available data, as it is challenging to adopt a deep learning method when working 

with limited datasets, although it is important to note that most recent research 

found a way around this, as transfer learning and data augmentation allowed more 

flexibility. 

Deep learning is a powerful tool that has been heavily studied in cardiac research in recent 

years. However, the challenges and issues related to it need to be addressed properly to 

make it accepted and commonly used in real-life cardiac applications. 
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3 Coronary Artery Disease, Atherosclerosis Screening 

3.1 Introduction 

The coronary arteries form a mesh surrounding the heart muscle. They are solely 

responsible for delivering blood to the myocardium, hence providing nutrients and oxygen 

to every blood cell. Any malfunction of the coronary arteries can lead to ischemia, angina, 

decreased performance, and/or infarction. Consequently, the drop in coronary blood flow 

below required metabolic needs leads to ischemic myocardium, affecting everything from 

the heart’s electrical activity to its pumping ability. This can lead to a heart attack and 

possibly death.  

Coronary artery disease is one of the most common types of cardiovascular diseases. It is 

a result of the gradual narrowing of the lumen of the coronary arteries due to 

atherosclerosis, a buildup of plaque in artery walls leading to blockage or narrowing, 

making it the primary cause of heart disease. 

Atherosclerosis is a condition in which cholesterol builds up in the walls of the arteries. 

This process begins in childhood, with the formation of fatty streaks within the arteries. As 

people age, these streaks can worsen, becoming scarred and calcified, which can lead to 

narrowed or blocked vessels. The effects of the narrowing or blockage depend on which 

vessels are affected. Affected cerebral vessels can cause strokes, affected coronary vessels 

can cause angina and heart attacks, while affected renal vessels can cause renal failure, and 

affected  peripheral arteries can cause limb ischemia. [129] 

There are several risk factors that can increase the chances of individuals developing 

atherosclerosis including among others : age, male gender, and raised plasma cholesterol. 

The go-to modality for evaluating patients with  coronary artery diseases is Coronary CT 

angiography (CCTA). It is a non-invasive imaging technique that permits a thorough 

description of coronary artery plaque and grading of coronary artery stenosis. However, 

like any other imaging modality, CCTA generates a substantial number of images, of which 
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the examination process is still to date performed manually by an expert or semi-

automatically by first segmenting the lumen and the arterial wall and then defining the 

presence of plaque or stenosis,  which can be a time-consuming process and can only be 

performed by a human expert. Therefore, the need for an automatic system proves more 

urgent than ever for better and faster management of emergencies. 

Automatic atherosclerosis screening remains a relatively novel field of research. Early 

studies focused on segmenting and classifying plaque scores. [130] 

The issue of immediate atherosclerosis screening  was first addressed by Candemir [126]. 

They began with a deformed mean shape model that uses coronary ostia and cardiac 

chambers as anchor points to locate and extract the coronary arteries from CCTA images. 

The initial estimation of the centerline was then refined through region-of-interest masks. 

Next, the vessels are defined as the volumes around the centerline, and the surrounding 

area of the vessel. Eventually, they produce a longitudinal view of straightened MPR 

volumes. They then move to a pre-processing step to increase the performance of their 

eventual CNN. Considering the arteries, they can have varying lengths. They cannot be 

introduced into a CNN until they are resized, but to avoid any loss of information, they add 

empty frames at the extremities of shorter arterial volumes. Finally, they augment the data 

size by rotating MPR volumes between 0◦ and 360◦ around the vessel centerlines. 

The final data was then processed with a 3D CNN with five-fold cross-validation , resulting 

in an Accuracy of 90.9%. The positive predictive value (PPV) was 58.8%, Sensitivity was 

68.9%, Specificity was 93.6%, and negative predictive value (NPV) was 96.1%. Finally, 

they used Grad-cam  [131] for a weakly supervised abnormality localization to better 

understand the results. The  algorithm produced a map emphasizing the significance of 

each pixel on the image, providing visible indicators to the most active regions, which 

hopefully would refer to the presence of atherosclerosis in diseased cases. 

Another recent study uses a 3D CNN for coronary artery analysis. The network first 

extracts image characteristics from singular sections through the MPR volume of the artery, 
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then processes the features with a recurrent neural network  [105]. The proposed system 

can identify plaque, determining its type and stenosis along with its significance. 

We explored a different approach for atherosclerosis screening from CCTA images. We 

started by applying Transfer learning to evaluate pretrained models on our dataset. Transfer 

learning has proven to be very efficient, not only for optimizing the time of experimentation 

but also redressing the shortage of data required for training a new model solely dedicated 

to the task. 

In this chapter, we provide an in-detail description of the proposed method. We start by 

describing the used data, briefly describing transfer learning, and the models we chose to 

evaluate. After deciding on the best model, we will discuss the problem of “data 

imbalance” and present the proposed solution.  

3.2 Data 

The dataset used in this chapter is an open-source dataset containing Coronary CT 

Angiography images designated for atherosclerosis screening. 

It was gathered and arranged by a research group at Ohio State University Wexner Medical 

Center  [132]. It is a collection of Mosaic Projection View (MPV) Coronary artery images 

from 500 patients. Each set is composed of 18 views of a straightened coronary artery, 

stacked vertically. 

The Mosaic Projection Views were created from a 3D to 2D projection. First, every volume 

is rotated, creating unique ray-traced (RT) projections every 10° (0–180°). The projections 

are then combined by averaging the overlapping intensities, straightened, and arranged in 

vertical series of 18 images as shown in Figure 3-1. 

The dataset was repartitioned as 300 for training, 100 images for testing, and 100 for 

validation. The validation dataset consists of one randomly selected artery per normal case 

(50 images) and one diseased case (50 images). The training images were augmented 6-

fold to create 2 364 more images to balance the dataset and re-enforce training. The 
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augmentation was not performed on the 2 304 normal images in the data set, the whole 

validation dataset, or the whole testing dataset. 

 We used different data augmentation techniques to increase the network’s performance 

further: Random reflection horizontally and vertically with 50% probability, random 

rotation between -90 and 90 degrees, and random scaling between 1 and 4. 

 

Figure 3-1 Mosaic Projection Views of the coronary arteries as described in the original 

paper [132] 
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3.3 Transfer Learning 

Atherosclerosis screening is a relatively new task and has not been thoroughly studied. 

Therefore, we decided against building a new CNN for the task. Transfer learning can easily 

achieve the same performance, if not better, considering the small dataset.  

Transfer learning is one of the most powerful concepts in machine learning. It takes 

knowledge that a network learns training on big data, then applies it to another task by 

retaining the weights of the initial layers and only training the final layers with new data for 

better fine-tuning. It is typically used in one of three cases : 

- A shortage in annotated data to train a model from scratch, which is almost always 

the case in medical applications. Starting with an already trained model with basic 

knowledge of shapes and patterns can put the little data that is available to better use. 

It is used only for fine-tuning and perfecting the model’s performance.  

- A limited time limit. It is never an easy task to build a brand-new model and train it 

from scratch. There are too many parameters to play around before landing on the 

perfect architecture for both the data and the task at hand. Testing with transfer 

learning can at least stir the research towards the most appropriate models. 

- Limited computing resources, especially when data isn’t a lack in data. Handling 

bigger datasets and complicated tasks requires powerful computers that aren’t always 

available to researchers. 

All the known algorithms are trained on big datasets such as Imagenet [133], Ms coco 

[134], and Pascal [135]; they are ready to be used on chosen data following one of the 

following methods: 

- Freeze all the weights, remove the last classification layer, and replace it with a 

classification layer  appropriate to the target task. 

- Calculate a function from the input to the last layer and use it as a shallow network. 

- In some extreme cases, the weights of the trained network can be used as an 

initialization for training instead of random initialization. 



 

61 

Transfer learning not only answers the lack of data issue but can also add flexibility to 

the model. For example, no matter how extensive and varied the dataset is. It is inevitable 

to encounter new pathological cases which have anatomical properties different than any 

image on the dataset. Such images can puzzle the system. However, models trained on 

regular images have a more flexible nature and can recognize more details in the image to 

help them decide better. Therefore, a pre-trained model is theoretically more robust and 

generalizes better. 

3.3.1 Finding The Right Model 

Like end-to-end machine learning projects, not every architecture is suitable for all kinds 

of images. Therefore, it is crucial to find the suitable model for the data. For this purpose, 

we experimented on several architectures. The choice was not random; the models were 

picked mindfully depending on previously known advantages of each model. 

 

Figure 3-2 Performance of different known pretrained models on Imagenet [136] 
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Figure 3-2 shows the performance of a group of the most known and powerful 

architectures trained on the Imagenet dataset. In addition, it shows a prediction of the 

accuracy of each model and the relative predicted time to reach it by training with a GPU. 

ImageNet is a famous dataset containing more than 14 million annotated images 

following to the WordNet hierarchy. The dataset has been used in the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) since 2010 . This dataset spans 1000 object 

classes and contains 1,281,167 training images, 50,000 validation images and 100,000 test 

images. [137] The database is publicly available at http://www.image-net.org.  

The personal computer we used for the entirety of this thesis is an Intel I5 8th generation, 

with 8 Go of RAM, an integrated GPU  (NVIDIA GEFORCE 940MX). When choosing the  

models to experiment with , we were restricted by the limitations of the machine, so we 

chose models that respected a set of criteria: 

-  CNNs have proven very efficient for computer vision problems. Therefore, we 

tested convolutional neural network-based models . 

- Not too deep: considering the relatively small size of the dataset on hand, we had to 

be careful not to overfit the models prematurely. 

- Fast to train, but with relatively good accuracy. It was important to pick models that 

are fast to train but that had good performances. 

After considering the conditions above, we settled on 6 models for testing: AlexNet, VGG 

Net, GoogleNet, ResNet, Inception, and Inception-ResNet. Of course, every model is 

different in structure and function. 

3.3.1.1 AlexNet 

AlexNet was the best-performing architecture in the 2012 Large Scale Visual Recognition 

Challenge (ILSVRC). It has one of the most straightforward architectures, with about 60 

million parameters and only 8 hidden layers. It is composed of 5 convolution layers followed 

by three fully connected layers and pooling layers  [22]. It was first trained on a restricted 

https://image-net.org/challenges/LSVRC/index.php
https://image-net.org/challenges/LSVRC/index.php
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subset of the ImageNet data, provided by the ImageNet Large-Scale Visual Recognition 

Challenge (ILSVRC). 

 

Figure 3-3 AlexNet basic architecture as cited in the original paper  [22] 

 

The training was partitioned across two different GPUs. Due to the lack of on-chip memory 

on the GPU, the authors used (an NVIDIA GeForce GTX 580). 

 The network consists of 7 layers, with the first 5 being convolutional (including some with 

max-pooling) and the last 2 being fully connected. The final output layer is a 1,000-unit 

softmax layer, used to classify the 1,000 different image classes. A diagram of the network 

can be found in Figure 3-3 as featured in the corresponding paper [128]. Note that many 

layers are split into two parts, corresponding to the two GPUs. 

The input layer contains 224×224×3 neurons, representing the RGB values for a 224 × 224 

image. All images had to be rescaled, so the shorter side had a length of 256. They would 

then be cropped out into a 256 × 256 area in the center of the rescaled image.  

The first hidden layer is a convolutional layer with a max-pooling step. The layer has 96 

feature maps in total which are divided into two groups of 48 each, with half being processed 
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on one GPU and the other half on the other GPU. The max-pooling in this and the following 

layers are performed in 3x3 regions, with a 2-pixel overlap between them. 

The second hidden layer is also a convolutional layer, with a max-pooling step. It contains 

256 feature maps, distributed evenly across both GPUs. The following three layers, the third, 

fourth, and fifth, are also convolutional layers but do not include max pooling. Their specific 

parameters are: the third layer has 384 feature maps, with 3x3 receptive fields and 256 input 

channels, the fourth layer has 384 feature maps, with 3x3 receptive fields and 192 input 

channels and the fifth layer has 256 feature maps, with 3x3 receptive fields and 192 input 

channels. It's worth noting that the third layer necessitates some inter-GPU communication 

for access to all 256 input channels, as depicted in the figure. 

The final two hidden layers in the architecture are fully connected, each containing 4,096 

neurons. The last layer, the output layer, comprises a 1,000-unit softmax layer. 

To accelerate the training process, the network employed rectified linear units. However, 

with approximately 60 million parameters, it was prone to overfitting, despite the large 

training set. To counter this issue, the training set was expanded by randomly cropping and 

horizontally reflecting 224x224 sub-images from the original 256x256 images, which were 

then used as inputs for the network. Additionally, overfitting was mitigated by applying a 

variation of L2 regularization and dropout. Finally, the network was trained using a 

momentum-based mini-batch stochastic gradient descent method. 

The model’s simple structure makes it the fastest to learn. Therefore, it is best suited to 

choose the initial preferences for fast run-through parameters. 

Table 3-1 Results of the tests using AlexNet 

Mini-Batch 

size 

Number of 

epochs 

Initial 

learning rate 

Dropout Accuracy  Training time 

100 5 1e-4 / 83.71 88min 21sec 

100 8 1e-4 / 90.18 142min 0 sec 

64 20 1e-4 / 82.28 439min 18sec 
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64 20 1e-4 0.5 89.50 140 min 18 sec 

 

The table above  reports the results of some of the tests we ran using AlexNet; two main 

results are to be concluded:  

- Training on bigger mini-batch sizes has better results 

- Dropout  improves accuracy and reduces training time significantly 

3.3.1.2 VGG Net 

The VGG or VGG-19 network was created by Simonyan and Zisserman from the Visual 

Geometry Group (VGG) at the University of Oxford in 2014  [23,23]. VGG Net managed 

to take second place in the 2014 ILSVR Challenge. The model has a uniform architecture 

with 19 stacked hidden convolutional layers and contains 138 million parameters, which 

makes it hard to handle and slow to train. However, we still chose to experiment with it 

because it is a strong model for feature extraction.  

 

Figure 3-4 The VGG Net architecture as described in the original paper  [23,23] 
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The convolutional layers are more efficient in representing images for classification 

purposes. After the convolution process, each image is transformed into a vector of 4096 

features, which is a significant reduction from its initial representation as a vector of 

154,587 features.  

The two fully connected layers and the softmax layer are similar to a multilayer perceptron 

and can be replaced by other classifiers such as Random Forests or Support Vector 

Machines. However, these layers are crucial for the training phase of the neural network. 

 

Table 3-2 Results of the tests using VGG Net 

Mini-Batch 

size 

Number of 

epochs 

Initial 

learning rate 

Accuracy  Training time 

128 3 1e-4 91.02 939min 33sec 

128 4 1e-4 84.89 1001min 55sec 

 

As shown in the table above, we trained the model for a short three and then four epochs. 

Still, the training time was significantly long. Furthermore, training the longer model 

caused the system to crash due to many generated parameters and limited computing 

power. 

3.3.1.3 GoogleNet 

It was the first version of the Inception network, developed by the Google team, and won 

the 2014 ILSVRC. It is a relatively deep model with 22 hidden layers  but has a reduced 

number of parameters (4 million). This is due to the use of 1x1 convolutions, which reduces 

the size of the matrices [24] 

With the advances and  complications of the task at hand, AlexNet started falling short, and 

they cost too much computational power once you started getting deeper. 

In 2015, Google tried to build deeper models without sacrificing cost. They came up with a 

special convolutional layer called the inception layer. It is basically a network-in-network 
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system (Figure 3-5); Each inception module contains a few convolution layers in parallel 

that go through a dimensionality reduction step through 1 × 1 convolutional layers, and there 

is one max pooling layer. These layers get concatenated before being passed on to another 

inception or a regular module. The 1 × 1 convolutions reduce the dimensionality. This gets 

passed on to the more expensive 5 × 5 and 3 × 3 layers. 

 

Figure 3-5 The building block of GoogleNet 

 

The network is 22 layers , without the pooling layers. With such a deep network, there arises 

a problem of vanishing gradients. A vanishing gradient is a problem of depth wherein the 

errors are not strong enough to produce strong gradients to move the weights in any 

direction. To avoid this, in between, layers are branched off into one fully connected 

softmax layer. These classifier layers aim, not to perform better in label accuracies, but to 

add more errors so that some gradients produce additional discriminative features; they act 

as regularizers.  

GoogleNet has traditional convolution layers at the beginning followed by inception 

modules. The traditional convolution layers produce activations that can be easily clustered 
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using the 1 × 1 layers. In addition, the fully connected layers were trained with a 0.7 dropout 

unlike the 0.5 of AlexNet and a 0.9 momentum.  

Having a relatively short training time compared to its high performance, GoogleNet was 

an obvious choice for our experimentation. We only ran one test with a mini-batch size of 

64 and an initial training rate of 10-4. After training for 10 epochs, the model rendered a 

poor accuracy of 79.09 %. 

3.3.1.4 ResNet 

Ever since the introduction and success of the AlexNet, most winning models resorted to 

adding more hidden layers and going deeper to learn better. Unfortunately, although it 

prevents the model from overfitting the dataset, this method results in one of two problems, 

vanishing and exploding gradients. This happens when while training a very deep network, 

the derivatives or the slopes can sometimes get either extremely big or extremely small, 

even exponentially small, and this makes training difficult. 

Proposed by He et al. [25], residual networks or ResNets are a novel architecture, which 

creates new branches in the architecture, whereas one branch (an identity block) the 

information is forwarded without changes, and in the other (the convolutional block) it is 

processed as would be in a typical layer. The unprocessed data or the “residual” is added to 

the original signal going through the network unaltered. This split in the network means one 

branch simply propagates the gradient without altering it. Deep residual networks are built 

by stacking these blocks together allowing them to learn with strong gradients passing 

through.  

The concept of residual blocks is illustrated in Figure 3-6. The "jump connection" as it is 

called, is in the heart of the residual blocks. It keeps X nonintact to later add it to the 

outcome. The skip connection causes the output to vary from the traditional approach where 

the input 'X' is multiplied by the layer weights and then a bias term is added. 



 

69 

 

Figure 3-6 The main structure of a residual block 

 

It has been established that ResNets are easy to optimize, and their performance is directly 

proportional to the increase in their depth [25]. That is why we used two different versions 

of the network: ResNet-50 which has 50 layers, and ResNet-101 which has 101 layers. 

 

Table 3-3  Results of the tests using ResNet-50 and ResNet-101 

 Mini-

Batch size 

Number 

of 

epochs 

Initial 

learning rate 

Dropout  Accuracy  Training 

time 

R
es

N
et

 

5
0
 

128 4 1e-4 / 88.08 381min 56 

sec 

256 10 1e-4 / 91.02 1099min 55 

sec 

R
es

N
et

-1
0
1
 

64 6 1e-4 / 90.43 310min 18 

sec 

32 10 1e-5 / 91.10 329min 54 

sec 

32 25 1e-5 0.2 91.94 1471 min 6 

sec 

64 10 1e-5 0.1 86.15 2135 min 14 

sec 



 

70 

32 10 1e-4 0.3 94.71 1332 min 52 

sec 

64 20 1e-4 0.5 94.29  

64 20 1e-3 0.5 89.50 140 min 18 

sec 

64 20 1e-4 0.5 95.21 2999 min 17 

sec 

128 25 1e-5 0.5 91.18 3083 min 11 

sec 

 

3.3.1.5 Inception Net 

A common challenge with deep convolutional neural networks is that the number of feature 

maps tends to grow as the network's depth increases. This can significantly raise the 

number of parameters and computation time when larger filter sizes, such as 5x5 and 7x7, 

are used. 

A 1x1 convolutional layer is designed to address the problem of dimensionality reduction. 

This layer, also known as a feature map pooling or projection layer, performs channel-wise 

pooling, which reduces the number of feature maps while preserving important features. It 

can also be used for a direct one-to-one projection of feature maps to combine features 

across channels or to increase the number of feature maps, as in traditional pooling layers. 

The Google team had developed new and improved versions of GoogleNet. There was 

Inception v2 and Inception v3 [138], Inception v4 and Inception-ResNet [139]. Each 

version offers an improvement over the last one. The original GoogleNet had 9 Inception 

modules. 

The Inception net relies on a bunch of concepts and modules that make it what it is. Mostly 

the 1 x 1 Convolutions. 

Inception Net v3 was a revision of the original inception network, introducing new 

features such as the RMSProp Optimizer, Factorized 7x7 convolutions, and BatchNorm 

in the Auxiliary Classifiers. Additionally, Label Smoothing was added as a regularizing 
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component in the loss formula to prevent the network from becoming too confident in a 

class and to prevent overfitting. 

3.3.1.6 Inception-ResNet 

Inception Net v3 uses residual connections to combine the output of the convolution 

operation in the inception module with the input. To maintain consistency in dimensions, 

1x1 convolutions are applied after the original convolutions, adjusting the depth to match 

the input (since the depth increases after the initial convolution). 

The slowest network of them all. We chose it to study the utility of using complicated 

networks, and whether it would make much difference to the final result. A powerful and 

complex architecture that is probably over-qualified for our data. But we decided to test it 

to stay out of the speculative. 

  

Table 3-4 Results of the tests using Inception-ResNet 

 

As mentioned before, the Inception-ResNet is rather a deep and complicated network, and 

it tends to overfit rapidly. Relatively large mini-batch sizes wouldn’t allow the computer 

to memorize the weights during training. We had to work with small batch sizes of 16 and 

32. We trained for 10 and 6 epochs, respectively.   

Mini-

Batch size 

Number of 

epochs 

Initial learning 

rate 

Dropout Accuracy Training 

time 

32 6 1e-4 0.35 87.24 1644 min 29 

sec 

16 10 1e-4 0.4 90.93 2391 min 30 

sec 
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3.3.2 Fine-Tuning Hyperparameters 

When there is enough data, we can use simple algorithms with little-to-no tweaking. 

Nevertheless, when the dataset is small, it is particularly important to carefully tune the 

architecture and the hyperparameters, which can make a significant difference.  

Applied deep learning is a very empirical process. Many parameters must be tried  to find 

what works best for the problem. One healthy habit in machine learning is having a clear-

eyed understanding of what to tune in order to achieve a certain effect. This is what is called 

“orthogonalization”.  

The right model needs to be finely adapted to the data in hand. For this purpose, the main 

metrics to tweak are : 

- Minibatch size: a “minibatch” is a subset section from the training dataset built by 

shuffling and partitioning the dataset. Its size can vary from one image to the total 

number of examples in the training dataset. Common choices are 32, 64, and 128 

elements per minibatch. A bigger batch size computes faster, which is more 

efficient, while a smaller batch size converges faster and generalizes better. 

However, it is often reported that when increasing the batch size for a problem, there 

exists a threshold after, which is a deterioration in the quality of the model.  

The perfect balance is a batch size that significantly speeds up training without 

sacrificing model accuracy. In our case, we tried 32, 64, and 128. And eventually 

settled on a batch size of 64. 

- Learning rate: the hyperparameter that controls how quickly model learns. It 

determines the amount of error that is applied to the weights of the layers during 

each update. A higher learning rate allows for faster learning but may not converge 

to the optimal weights. Lower learning rates provide more optimal learning, but 

require more time and computational resources. We experimented with different 

learning rates, including 10-3, 10-4 and 10-5. We found that using the lowest learning 
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rate 10-5 resulted in a significant increase in training time, so we decided to use 10-4 

for a balance of better performance and faster training. 

- Number of training epochs: how many times the model goes through the dataset 

can impact its performance. Training for too many epochs can lead to overfitting, 

while not training for enough can result in underfitting. Determining the optimal 

number of epochs can be difficult, so it is advisable to monitor the learning curve 

during training. 

- As shown in Figure 3-7, reaching 25 epochs improves training performance without 

causing overfitting. On the other hand, using only 3 epochs may not be sufficient as 

it only reaches 91% accuracy. 

- Dropout : Dropout is a method of regularization that temporarily removes certain 

neurons from the network during training, according to a pre-set probability, 

preventing them from participating in forward and backward propagation. This 

dynamic alteration of the model's architecture leads to more robust training. 

However, using dropout throughout the entire training process can make it difficult 

to evaluate the model's performance, as dropout should be disabled during testing. 

- In our experiment, we first trained the model without dropout, using a fixed network 

structure. Then, we tested different levels of dropout (10%, 20%, 30%, and 50%) 

and found that the highest performance was achieved with a 50% dropout rate. 
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Figure 3-7 A basic illustration for the impact of number of epochs on the stability of the 

model. The figure on top shows the model after training for 3 epochs. The figure on the 

bottom shows the model after training for 20 epochs. 

 

3.3.3 Performance Evaluation 

It is not always possible to find a model that satisfies all the requirements of a task; To 

compare the performance of different models, it is useful to set up satisficing as well as 

optimizing metrics. For instance, let us take accuracy and running time as examples. We 

usually aim to maximize accuracy but in an acceptable time frame.  

In medical applications, every case matters. Therefore, it is important to understand when 

a model works and when it does not. Even though accuracy can be a good metric to initially 

evaluate performance, in medicine, other metrics are to be considered, sensitivity, 

specificity, and prevalence. Sometimes there are different expectations for metrics; 
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maximizing accuracy is an optimizing metric, while minimizing running time is a satisfying 

metric.  

Accuracy is the probability of the prediction being correct. It considers the classification of 

each case. 

Sensitivity , also known as true positive rate, is the likelihood that the model will correctly 

identify a patient as having the disease when they actually do have the disease. It measures 

the proportion of positive cases that are correctly classified as positive. 

𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 =
𝐓𝐏

𝐓𝐏+𝐅𝐍
    (3-1)  

Specificity , also known as true negative rate, is the likelihood that the model will correctly 

identify a patient as healthy when they are actually healthy. It measures the proportion of 

negative cases that are correctly classified as negative.  

𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 =
𝐓𝐍

𝐓𝐍+𝐅𝐏
     (3-2) 

The proportion of patients with a positive diagnosis in a given population is referred to as 

prevalence.  

Accuracy can be expressed in terms of sensitivity, specificity, and prevalence, which 

allows us to view it as a combination of sensitivity and specificity with specific 

weightings. The expression is stated in equation (3-3).  

Accuracy = Sensitivity * prevalence + Specificity * (1 – prevalence) (3-3) 

In the clinic, practicians using artificial intelligence models are usually interested in 

knowing what the probability of the patient having the disease if they are classified as 

positive, which is referred to as the positive predictive value (PPV) of the model. Similarly, 

they may be interested in the probability that a patient is healthy when the model's prediction 

is negative, known as the negative predictive value (NPV) of the model. 
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Confusion matrix assembles the forementioned metrics in a table to better evaluate the 

classifier or model. 

 

Figure 3-8 A detailed description of the confusion matrix 

 

True Positive [ TP ]: The model's prediction is “Positive” and matches the actual 

outcome. 

True Negative [ TN ]: The model's prediction is “Negative” and matches the actual 

outcome. 

False Positive [ FP ]: The model's prediction is “Positive” but contradicts the actual 

outcome. 

False Negative [FN ]: The model's prediction is “Negative” but contradicts the actual 

outcome. 
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3.3.4 Results and Discussion 

The model that performed best on our data was a Residual Network of 101 layers. 

Therefore, we considered a mini-batch size of 64, not too big, not too small. 

We used a learning rate of 10-4 which allowed the model to learn fast enough without 

missing local minima. 

We used 0.5 dropouts, which made the model more universal. 

The model trained for 20 epochs which made it perform well without overfitting. 

The model took about 50 hours to train. It achieved 95.2% accuracy. 99.25% specificity, 

60.8% sensitivity, 90.48% positive predictive value, and 95.6% negative predictive value. 

 

Figure 3-9 The final model's confusion matrix 

 

Transfer learning is one of the most powerful new concepts in deep learning. It allows 

better data recognition, even when the training data is not big enough. However, similar to 

regular learning, finding the right architecture and tweaking it finely enough to suit the data 
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at hand is essential. After testing different variations of the models mentioned above which 

went on for days, we finally settled on ResNet.  

Testing different architectures is not enough. Once we settle on a pre-trained model, it is 

important to fine-tune it again to find the perfect hyperparameters. 

After thorough testing and fine-tuning we settled on using a ResNet-101, with a minibatch 

size of 64, a learning rate of 10e-4 , and a 50% dropout. We trained the model for 20 epochs. 

This model achieved 95.21% accuracy, 99.25% specificity, 60.8% sensitivity, 90.48% 

positive predictive value, and 95.6% negative predictive value. 

It is essential to point out that the model provides a high NPV, enough to confirm negative 

cases and clear out much-needed beds in the emergency room [128]. Eliminating patients 

with chest pain from emergency rooms with a high level of certainty (narrow margin for 

error) is an accomplishment. This means that the model can be implemented as it is for 

clinical use. Every other metric is relatively high and comparable to human performance, 

except for sensitivity. So WHY is the sensitivity low? Is it acceptable to work with the 

model as it is? 

Sensitivity is, by definition, the probability that positive cases are correctly classified. 

Conversely, poor sensitivity means a poor classification of positive cases, which can be 

due to the lack of positive images in the dataset.  

Under the assumption that the lack of positive cases in the dataset is the reason behind the 

low sensitivity, we proceed in the next section to solve that problem. 

3.4 Data Imbalance  

The imbalance related to medical datasets is referred to as “intrinsic”, which arises from 

factors such as limited time, storage, or other restrictions on the dataset or data analysis. 

Intrinsic imbalance is a direct result of the inherent nature of the data space. It reflects the 

prevalence or the frequency of disease in the real world, where healthy cases are much 
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more present than pathological cases in the population, even when under the same health 

risks and triggers, and presenting the same symptomology. In medical applications, 

misclassification can be a problem of severe consequences. Classifying positive cases as 

normal leads to discharging sick patients, which puts their lives at risk.  

Using one evaluation metric, accuracy in our case, to assess the network is not a safe 

practice with imbalanced data. Specificity, sensitivity, positive predictive value, and 

negative predictive value are all important. Furthermore, classifiers and models tend to 

ignore small classes while learning better from the large ones. 

3.4.1 Data Augmentation Techniques 

In their paper “Learning from Imbalanced Data” [140], the authors discussed the issue in 

detail. They proposed several data augmentation solutions. That we have considered but 

were not enough. 

3.4.1.1 Random Oversampling and Undersampling 

Random oversampling follows a simple rule where a random selection of examples E from 

the minority class Smin is replicated and then added to the class. Consequently, the number 

of examples in the dataset S is increased by E, and the data distribution is adjusted 

accordingly [141]. 

On the other, random undersampling, removes data from the original dataset following the 

same principle. Randomly selected examples E from the majority class Smaj are removed, 

decreasing the size of the original dataset S by E examples [141]. 

As simple and efficient as the method seems, it has its limitations. In the case of 

undersampling, removing examples from Smaj can lead to removing important examples 

that lead the model to correctly classify, which means reducing the model’s performance 

on the majority class. Oversampling, on the other hand, would expose the model to a set of 

replicated data, making it learn from the same images, leading to overfitting. Although this 

may increase the training accuracy, the model would perform worse on unseen data [142]. 
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3.4.1.2 Informed Undersampling 

As cited in [140],  many methods have been developed to make undersampling less random 

and avoid cutting off important data. The two models have been thoroughly tested and have 

shown the best results in informed undersampling [143] :  the “Easy Ensemble” and 

“Balance Cascade” algorithms. “Easy Ensemble” samples multiple subsets from the Smaj , 

the majority class, and develops several classifiers based on the combination of each 

sus=best with the minority class. 

To summarize, all the methods mentioned above, and many others, were developed to make 

undersampling less random and avoid cutting off essential data.  

Undersampling has shown promising results, but it is not as interesting to use in deep 

learning. Deep networks need more data, and there is not enough of it. In our example, the 

network can identify negative cases despite the data imbalance, which is useful in 

discharging risk-free patients. Such a feature is extremely useful, and it should not be 

sacrificed for the sake of improving the model’s performance. The aim here is to improve 

the performance of the minority class (positive atherosclerosis) without loss in the 

performance of the majority class (negative atherosclerosis). Therefore, any form of 

undersampling is unacceptable. 

3.4.1.3 Data Augmentation 

One commonly used way to deal with insufficient or/and imbalanced data is the so-called 

“data augmentation”. As its name suggests, the method uses different techniques to 

increase the number of images on the dataset. The solutions can vary from simple image 

processing methods such as rotating, cropping, zooming, and histogram-based methods to 

Generative Adversarial Networks. 

Simple Image transformations like rotation, zooming, and increasing the dataset size 

through data augmentation and image synthesis, can make the model more resilient and 

less susceptible to adversarial attacks [144]. 
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There are methods for image augmentation to create image diversity that have been widely 

used for data generation in CNNs. It not only provides new data, but also makes the 

network more robust and less vulnerable in case of adversarial attacks. Transformations 

include rotation, translation, zooming in and out, and sometimes simply replicating the 

images. 

These techniques are not applicable in our case because of the nature of the images. As 

explained in the section, the dataset is a collection of 18 projections of coronary arteries, 

straightened and stacked vertically. Therefore, any physical change to the images can 

eventually alter the data. It would also provide images quite different from the original ones 

and cannot be replicated in real life. 

3.4.1.4 Data Synthesis 

Data synthesis in the medical dictionary refers to “a method that uses statistical techniques 

to combine results from different studies and obtain a quantitative estimate of the overall 

effect of a particular intervention or variable on a defined outcome—i.e., it is a statistical 

process for pooling data from many clinical trials to glean a clear answer”. The data may 

vary from fake patient records to fake medical imaging. 

As its name suggests, the techniques aim to synthesize new data. When acquiring more 

data became challenging, researchers resorted to using new algorithms for generating new 

images. The new data has the same distribution as the original data and can fill even an 

expert’s eye. 

3.5 Generative Adversarial Networks (GAN) 

3.5.1 Intuition Behind GANs 

Discriminative models learn to predict the class label given an input, such as classifiers. 

Generative models, in contrast, learn the distribution of the data they are trained on and can 

generate new samples from that distribution. 



 

82 

Generative Adversarial Networks (GANs) are a powerful type of generative model that can 

create highly realistic objects that are difficult to distinguish from real ones. 

Data Augmentation Using GANs was first introduced in a paper in 2019 [145]. There are 

two models behind a GAN, the generator and the discriminator. They fight against each 

other, each trying to outperform the other, resulting in one of the models to being so good 

that it generates realistic images. 

Generative models try to learn how to make a realistic representation of some class; 

meanwhile, discriminative models distinguish between different classes. 

In summary, GANs learn to produce realistic examples without seeing real images, and the 

discriminator models learn to distinguish between real and fake. They improve over time 

by receiving more realistic images at each round from the generator and real images, all 

jumbled up in a pile. They try to develop a keener and keener eye as these images improve. 

3.5.2 Discriminator 

"The discriminator in GANs is a classifier that takes in d-dimensional inputs and produces 

a single output in the range of (0,1), representing the probability that the input example is 

real. A value of 1 means the input is real, while a value of 0 means it is synthetic." 

The output probabilities from the discriminator are the ones that help the generator learn 

to produce better-looking examples over time. 

3.5.3 Generator  

It is a model used to generate examples from random noise, then improve them over time. 

The generator samples from a random latent distribution and generates an image. The 

second network is a discriminator that tries to predict if an input image was generated by 

the generator network or was sampled from a dataset. 
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Suppose the data were sampled from the real world. In that case, we may also train a 

softmax layer with the final layer of the discriminator’s representations to learn the features 

in a discriminative way. 

3.5.4 Workflow of a GAN 

As mentioned above, ANs consist of two neural networks, a generator (G(z)) and a 

discriminator (D(x)), that work in opposition to each other. The generator's goal is to create 

realistic images that can trick the discriminator into thinking they are real. On the other 

hand, the discriminator's objective is to accurately identify which images are real and which 

are generated. The generator and discriminator are trained to optimize different cost 

functions, with the generator trying to minimize it and the discriminator trying to maximize 

it. A mathematical representation of GANs was presented in [146] as follows: 

Determining the fixed distribution of data, Pdata(x), can be challenging. Therefore, it is 

common to assume that Pdata(x) follows a Gaussian mixture distribution and use the 

maximum likelihood method. However, this can be difficult to calculate when dealing with 

complex models, which can limit the overall performance. As an alternative, the 

distribution Pg(x) can be calculated using artificial neural networks (ANNs).  

The generator, an ANN with parameter θg, takes a random variable z from a given 

distribution and maps it to a pseudo-sample distribution using the ANN. The generated 

data is represented as G(z) and its distribution as Pg(z). With the parameter θg, various 

complex distributions can be generated from a simple input distribution. The goal of the 

generator is to minimize the difference between Pg(x), the generated images, and Pdata(x), 

the input image distribution 

𝐺 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐺(𝑃𝑔, 𝑃𝑑𝑎𝑡𝑎)  (3-4) 

As the precise forms of the distributions are not known, it is not possible to calculate the 

difference directly. To address this, another neural network, referred to as the 

discriminator, is created to learn the difference between the two distributions. The original 

GAN [147] employed a binary classifier [148] with the discriminator's parameters denoted 
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as θd, which outputs a value of 1 for a real sample x and 0 for any other input. The loss was 

measured using binary cross-entropy, a commonly used function in binary classification. 

𝐿𝑜𝑠𝑠 = −(𝑦𝑙𝑜𝑔(ŷ) + (1 − 𝑦)𝑙𝑜𝑔(1 − ŷ))  (3-5) 

 

 y : the label of a given sample 

ŷ:  the probability that the model's prediction for a sample is a positive example. 

If the model correctly classifies a sample, ŷ is set to 1; otherwise, it is set to 0. Positive 

cases are assigned to Pdata  and negative cases are assigned to Pg.  

Basically, GANs are structured such that the Discriminator aims to minimize its output (D, 

G), while the Generator works to increase the Discriminator's output and thus to decrease 

its loss. To express this in a formula: 

𝑉(𝐺, 𝐷) = 𝐸𝑥𝑃𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑥𝑃𝑔[𝑙𝑜𝑔(1 − 𝐷(𝑥))]  (3-6) 

Where:  

P(z) represents the distribution of the generator 

x is a sample from the distribution Pdata(x) 

z is a sample from the distribution P(z) 

D(x) is the Discriminator neural network 

G(z) is the Generator neural network 

The generator G aims to maximize the output of the discriminator D when presented with 

a generated (fake) sample, in order to trick the discriminator. Meanwhile, the 

discriminator attempts to differentiate real data from generated samples. Therefore, the 
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discriminator aims to maximize V(G, D) while the generator aims to minimize it, creating 

a minimax relationship. 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐺, 𝐷) = 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝐸𝑥𝑃𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑧𝑃𝑧 [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]  (3-7) 

The training process of a GAN involves alternating updates to the generator and 

discriminator parameters, such as: 

- The Discriminator is trained while the Generator remains inactive. During this 

phase, the network only goes through forward propagation and no backpropagation 

occurs. 

The Discriminator is trained on real data for n epochs to test if it can correctly 

identify them as real. It is also trained on fake generated data from the Generator to 

see if it can correctly identify them as fake.". (Figure 3-10) 

 

- The Generator is trained while the Discriminator remains inactive.  

After the Discriminator has been trained on the generated fake data, the Generator 

can use these predictions to improve its performance by generating data that is more 

likely to fool the Discriminator. ( Figure 3-11) 

The process of alternately training the Generator and Discriminator is repeated until 

Pdata(x) approaches Pg(x) .  
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Figure 3-10 The GAN behavior if the discriminator labels the fake image as real, the 

discriminator is updated to better spot the fakes. 

 

 

 

Figure 3-11 The GAN behavior during a fake image generation. The generator receives 

random numbers, which produces a fake image. If the discriminator labels it as fake, the 

generator is updated. But the discriminator is untouched. 

 

GANs have become increasingly popular in image processing and computer vision as a 

method of data augmentation. This technique is particularly valuable in medical 

applications, where obtaining labeled medical data can be difficult.  

GANs have been extensively utilized in the field of cardiology, such as creating realistic 

cardiac images [149], producing synthetic electrocardiography signals [150], and imitating 

electronic medical histories [151]. 
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3.5.5 Model Training  

We trained a GAN model using our dataset to generate new data. Our training process 

involved using a mini-batch size of 128 for 50 epochs until the model reached convergence, 

as illustrated in Figure 3-12. The Adam optimization algorithm was used with a learning 

rate of 2*10e-4, a gradient decay factor of 0.5, and a squared gradient decay factor of 0.999. 

 

Figure 3-12 The advancement of the generator and discriminator throughout the training 

process of the GAN [3] 

 

Examples of the created images can be seen in Figure 3-13, which showcases eight 

authentic positive images from the original dataset in the first row, eight generated positive 

images in the second row, eight authentic negative images from the original dataset in the 

third row, and eight generated negative images in the fourth row. 
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Figure 3-13 Samples from the training dataset. Row 1, original positive images from the 

dataset; Row 2, generated positive images; Row 3, negative images from the dataset, 

Row 4, generated negative images. 

As outlined previously in section (3.3) , We used a  ResNet-101 model on the original 

dataset [132]. That initial experiment yielded an accuracy of 95.2%, sensitivity of 60.8%, 

specificity of 99.26%, positive predictive value of 90.48%, and negative predictive value 

of 95.57%. 

Using the images generated from the GAN, we worked on improving the performance of 

the same ResNet model, The results can be found in Table 3-5, which describe the outcome 

of the following tests: 

In the first experiment, we added 100 generated images each to the positive and negative 

training folders, resulting in a slight drop in accuracy (94.0%) and an improvement in 

sensitivity (75.2%). Despite the small decrease in accuracy, the model's Positive Predictive 

Value dropped from 90.5% to 60.6%. 

In the second experiment, we added 300 generated positive images to the training folder, 

which resulted in a significant drop in accuracy (86.9%) and sensitivity (61.6%). 
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Additionally, the Positive Predictive Value decreased from 90.5% in the first model to 

43.4% 

The third test involved relocating the 300 generated images from the previous test into the 

testing dataset to balance it out. The results showed an improvement in accuracy, 

sensitivity, and Positive Predictive Value, which were 88.2%, 75.6%, and 94.2%, 

respectively. This suggests that using generated data to balance the testing dataset is a better 

approach. 

The fourth experiment involved replacing 1000 real positive images from the training 

dataset with 1000 generated images, while moving the real images into the testing dataset.  

The processed increased the number of positive images in the test set, balancing it out. The 

results of this test showed an improvement in accuracy, sensitivity, and Positive Predictive 

Value, which were 88.2%, 75.6%, and 94.2%, respectively. This suggests that the best use 

of the generated data is to balance the testing dataset. 

All results are summed up in Table 3-5. Our highest recorded outcomes were 93% 

accuracy, slightly lower than the accuracy of the original experiment, but with a sensitivity 

of 89% and a Positive Predictive Value of 97.1% 

 

Table 3-5 The performance of the network after each test 

 NPV PPV  Accuracy  Specificity  Sensitivity  

Original  95.57 90.48  95.2  99.25 60.8  

Test 1 97.1 60.6 94.0 96.2 75.2 

Test 2 97.6 43.4 86.9 87.5 81.6 

Test 3 85.4 94.2 88.2 96.8 75.6 

Test 4 89.9 97.1 93.2 97.4 89.0 

 

Synthesizing or creating new images can be more effective than adding authentic data. The 

GAN generates images following a procedure of "fooling" the system into believing it is 
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real data. The iterative process allows the generator to learn the features of the data. This 

means the new images are more "positive" than any authentic positive images. 

It can be considered an enhancement and boost to the performance of the classification 

model. 

3.6 Conclusion 

Atherosclerosis screening from CCTA images is a critical task in cardiovascular disease 

diagnosis and follow-up, even though it is a popular research subject. It is usually done 

after a step of plaque segmentation and classification. Screening straight from CCTA 

images can be faster and more efficient, especially in emergency cases.  

In this chapter, we managed to do atherosclerosis screening straight from CCTA using 

transfer learning, a powerful tool in deep learning. After testing different pre-trained 

models, we achieved the best performance using ResNet101. The model scored 95.21% of 

accuracy, 99.25% of specificity, 60.8% sensitivity, 90.48% positive predictive value, and 

95.6% negative predictive value. The negative predictive value qualifies the model to be 

used clinically to discharge cases of chest pain in emergency rooms.  

The poor training can explain the low sensitivity of the model on positive images, which 

is due to the lack of them as opposed to negative images in the dataset. Intrinsic data 

imbalance is a problem open for research in medical applications. Many solutions have 

been suggested and tried throughout the literature.  

Using generated data is a novel approach to data augmentation. However, it has proven 

efficient in different applications. In this section, we used GAN-generated images to 

balance the dataset. This was to increase the number of positive images in the test dataset 

under the assumption that the data imbalance caused the sensitivity of our model to be low.  

The original model scored 95.21% accuracy and 90.48% PPV but only 60.8% sensitivity. 

The original test dataset contains 125 positive images and 1066 negative images. To 

overcome the issue, we used a Generative Adversarial Network to generate new images 
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resembling the original data. Through various experiments with the generated data, we 

were able to improve the accuracy, sensitivity, and Positive Predictive Value of our model. 

The final results, 93.2% accuracy, 97.13% Positive Predictive Value, and 89.0% 

sensitivity, are comparable to state-of-the-art methods and have significant clinical 

implications for the fast and accurate detection of this disease. 
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Chapter 4 

Cardiac Structure 

Identification from Cardiac 

MRI  

 

 

 

 

 



 

93 

4 Cardiac Structure Identification From CMRI 

4.1 Introduction 

Like all medical applications, cardiac segmentation is a critical task, having an automatic 

efficient approach is not always enough; clinicians usually ask an explanation to go along 

with the answers provided by the model. 

In order to provide machine learning algorithms with more credibility, recent research is 

headed towards finding new ways to make the algorithms more dependable. This can be 

done through a number of ways, making them interpretable, explainable, or trustworthy. 

Even though the terms can be found used interchangeably, they do not mean the same 

things. [152] 

Interpretability in a model suggests it can be easy to understand how the model operates 

and the reasoning behind its results [153] . 

Explainability offers a level of understanding of how a model operates and reaches 

decisions without explaining in detail how every step works [154]. Complex models, such 

as black boxes, can be difficult to comprehend, but techniques like partial dependence 

plots, SHapley Additive exPlanations (SHAP) dependence plots, and surrogate models 

provide insights into the relationship between input data and model outputs. 

Trustworthy AI/ML, on the other hand, refers to the ability to understand and interpret 

the reasoning behind a model's predictions. This understanding helps to clarify the nature 

and behavior of the AI/ML model and improve trust and transparency in its decision-

making process. 

In our attempt to perform an automatic yet comprehensible segmentation of cardiac 

structures we simulate the steps taken by an expert from the moment they see the image, 

to the moment they decide on its segmentation, which is illustrated in the top half of Figure 

4-1. Then, we replicated each step using a machine learning technique (lower half of Figure 

4-1). Our proposal to mimic the doctor's approach and reasoning makes our AI trustworthy.  
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Figure 4-1 Thinking process for ventricle identification vs. computerized workflow 
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The remainder of this chapter is dedicated to providing a thorough explanation of each step 

involved in the process of segmenting cardiac structures. Starting with identifying the view 

of the image, both as done by an expert, and using a classification network. This step is 

critical as it ensures that the segmentation process is applied to the correct view of the 

image. The next step is the segmentation of the ventricles using texture. Finally, the 

distinction between the left and right ventricles is made. 

4.2 View Identification 

There are two distinguished views in cardiac MRI: long axis and short axis. The two are 

essentially different in the type of information they offer. Each view had been studied 

thoroughly in the literature. Telling them apart can make the rest of the segmentation/ 

identification process easier. 

4.2.1 Long Axis vs. Short Axis 

4.2.1.1 Long Axis View 

The long axis is the line that runs through the center of the mitral valve and the left 

ventricular apex. This line provides a reference for viewing the left ventricle and its 

surrounding structures in a standardized manner. 

There are two standard long-axis views in cardiac MRI: the horizontal (four chamber) view 

and the vertical view. The horizontal long-axis view is taken from a plane that passes 

through the long axis of the left ventricle and provides a good overall view of the left 

ventricle and the right ventricular free wall. It also provides clear visualization of the septal 

and lateral walls of the left ventricle and the size of the chambers. Additionally, the mitral 

and tricuspid valves can be easily seen in this view. (Refer to Figure 4-2 for reference). 

The vertical long axis view, on the other hand, is taken perpendicular to the horizontal view 

and intersects the lower third of the mitral valve and the apex of the left ventricle. This 

view provides a different perspective on the structure and function of the left ventricle and 

is useful in evaluating certain aspects of heart function.  



 

96 

 

Figure 4-2 A horizontal long axis (four chamber view) of a cardiac MRI, the image on the 

right represents the plane obtained at the red line from the image on the left. LA = Left 

Atrium, LAT = Lateral wall, LV = Left Ventricle, MV = Mitral Valve, RA = Right Atrium, 

RV = Right Ventricle, S = Septum, TV = Tricuspid Valve 

4.2.1.2 Short Axis View 

The short axis planes are positioned roughly perpendicular to the long axis of the left 

ventricle, providing cross-sectional views of both the left and right ventricles. These 

images are valuable in making volumetric measurements of the ventricles, as they show 

the true size and shape of the heart chambers. The short axis views offer important 

information for clinicians to make accurate assessments of the heart's function and health. 

By capturing cross-sectional images of the heart, it is possible to calculate the volume of 

the ventricles and track changes over time. These measurements are crucial for diagnosing 

and monitoring conditions such as heart failure or cardiomyopathies. (Refer to Figure 4-3 

for reference).  
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Figure 4-3 A short axis view of a cardiac MRI. The image on the right is obtained through 

the plane represented by the red line of the left. ANT = Anterior wall, INF = Inferior wall, 

LAT = Lateral wall, LV = Left Ventricle, P = Papillary muscle, RV = Right Ventricle, S = 

Septum 

 

 

 

4.2.2 Automatic View Classification Deep Learning  

For the task of classification, we chose to use deep learning.  

Classification is the process of assigning input data to predefined categories or classes 

based on some criterion. In deep learning, a neural network is trained on a large dataset, 

learning to extract relevant features and representations of the data. During the training 

process, the network is presented with a set of inputs and their corresponding outputs, and 

adjusts its internal weights and biases to minimize the prediction error. 

Once trained, the network can be used to make predictions on new, unseen data by passing 

it through the network and using the learned weights and biases to generate an output. This 
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allows the network to perform the classification task, assigning inputs to the appropriate 

class based on its learned representations of the data. 

4.2.2.1 Dataset   

The data used in this study is obtained from a publicly available dataset hosted on 

www.ub.edu/mnms , provided by the Multi-Centre, Multi-Vendor, and Multi-Disease 

Cardiac Segmentation (M&M) Workshop organized as part of the Statistical Atlases and 

Computational Modelling of the Heart (STACOM). The data was collected from three 

countries, Spain, Germany, and Canada, using four different types of MRI scanners 

manufactured by Siemens, General Electric, Philips, and Canon. The sample size consists 

of 375 subjects, including patients with hypertrophic and dilated cardiomyopathies and 

healthy subjects. 

The training set consists of 150 annotated images generated by two vendors and 25 

unannotated images from a third vendor. The testing set has 200 images, including 50 new 

cases from each of the previous vendors and 50 from a new vendor. The data was annotated 

by experienced clinicians from the respective institutions, the annotation included contours 

of the left ventricle (LV), the right ventricle (RV) and left ventricular myocardium (MYO) 

[155].  

To make the dataset suitable for the task at hand, we manually separated the images into 

long axis and short axis views based on the original dataset's labelling. As expected, the 

number of short axis images is much higher (6,350 images) compared to long axis images 

(1,612). Due to the elongated shape of the heart, this is a common aspect of the cardiac 

MR. We kept the unbalanced ratio through the training set and test set to imitate the results 

of the Cardiac MRI.  

The new dataset partition contains 1,612 long axis images and 6,350 short axis images in 

the training set. In the testing set, there are 323 long axis images and 1,270 short axis 

images. 



 

99 

4.2.2.2 Model Training  

The deep learning model we used for the classification task is ResNet-101 which was 

previously described in detail in a previous chapter. ResNet has been widely recognized as 

a network that is relatively simple to fine-tune, making it a convenient choice for transfer 

learning. 

To avoid overfitting, we utilized data augmentation and a dropout rate of 30%. The model 

was trained for 5 epochs and achieved an accuracy of 99.0%. 

To validate the results and ensure the model was not simply memorizing the images, rather 

than properly recognizing them (a recurrent problem with small datasets), we conducted 

tests on unseen images. The model continued to perform well, with a validation accuracy 

of 98.31%. To further demonstrate the validity of the results, confusion matrices for both 

the test and validation sets are provided in Figure 4-4. 

   

Figure 4-4 The ResNet-101 model's confusion matrices on both the test set (on the right), 

and validation set (on the left) 

This step is rather interpretable, thanks to a vast body of research in the literature that 

supports the idea that classification tasks are never random. A neural network operates by 

uncovering latent features within the images, which become increasingly complex with 

each iteration. These features range from edges and shapes to textures and more, as 

depicted in Figure 4-5. This process demonstrates how a neural network progresses from 
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recognizing simple features to more complex ones, enabling it to accurately classify 

images. 

 

 

Figure 4-5 The output of different layers during a classification task 
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4.3 Ventricle Segmentation 

The ventricles are easily recognizable to a trained expert due to their distinct texture 

compared to other cardiac structures. To replicate this, we utilized an algorithm called 

Particle Swarm Optimization (PSO). 

Particle Swarm Optimization is a computational method inspired by the social behavior of 

birds and fish. Developed in 1995 by Dr. Eberhart and Dr. Kennedy [156], PSO uses a 

population-based approach to optimize a problem.  

The algorithm adheres to three key principles: cohesion, alignment, and separation. 

Cohesion refers to the tendency of particles to be attracted to the center of the group, 

alignment refers to particles following the same path as their neighbors, and separation 

refers to the avoidance of collisions through self-separation with a safety distance. 

The PSO algorithm is based on the principle that all particles have a specific objective to 

reach, which is determined by an "objective function" that should be optimized or provided 

by the user, depending on the application. This technique is commonly used to solve 

multilevel thresholding segmentation problems.  

The reason we resolved to a relatively old technique is because it is gaining back popularity 

lately. Even compared to other techniques, PSO-based image segmentation can create 

segments with great details according to a recent study [157]. 
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Figure 4-6 (a, c) Original images. (b, d) Images after segmentation with PSO [3] 

The algorithm segments the short axis view into three classes, as depicted in Figure 4-6 

(b). The first class is made up of low intensity pixels and includes the lung and the 

background of the image. The second class includes pixels of average intensity, such as the 

myocardium, and the third class includes pixels of high intensity, such as the left and right 

ventricles. 

When it comes to the long axis view shown in Figure 4-6(d) , the first class, made up of 

low intensity pixels, includes the two lungs and the background. The second class includes 

pixels of average intensity, such as the myocardium, and the third class includes pixels of 

high intensity, such as the left atrium, ventricle, right atrium, and descending aorta. 

In order to locate the left ventricle and right ventricle, the process begins by identifying the 

lung from the first class (Figure 4-7 E). By using the detected lung's position, it becomes 

possible to subsequently locate the right and left ventricles from the third class (Figure 4-7-

F). 
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Figure 4-7 Segmentation outcome after different number of iterations. [3] 

 

As illustrated in Figure 4-8, the segmentation of the long axis view results in three areas of 

focus: the aorta, the left heart (consisting of the left atrium and ventricle), and the right 

heart (consisting of the right atrium and ventricle). 
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Figure 4-8 The segmentation result on a long axis image 

 

So, to sum up, the Particle Swarm Optimization divides the short and long axis views into 

three classes based on the intensity of the pixels. The first class includes low intensity 

pixels such as the lung and background, the second class includes pixels of average 

intensity such as the myocardium, and the third class includes pixels of high intensity such 

as the ventricles. By identifying the lung in the first class, the right and left ventricles can 

be subsequently located in the third class. Additionally, the long axis view has three regions 

of interest: the aorta, the left heart (consisting of the left atrium and ventricle), and the right 

heart (consisting of the right atrium and ventricle). 

4.4 Cardiac Structure Identification 

“Structure identification” refers to the process of recognizing and labeling the various 

structures within an image of the heart. This is a crucial step in medical imaging analysis 

as it allows for a more accurate assessment of the heart. 

Doctors use various criteria to accurately identify cardiac structures, including but not 

limited to their shape, size, and position.  



 

105 

To improve the accuracy of structure identification, it is best to use an automated model. 

This requires a more refined selection of criteria, which can be achieved by using a 

statistical analysis model to determine the most valuable and relevant features for 

characterizing and recognizing the structures. 

In this study we used Analysis Of Variance, a statistical analysis model, to carefully pick 

the most informative features from a pool of potential features that we proposed. 

4.4.1 Analysis Of Variance (ANOVA) 

Analysis of Variances , or ANOVA, is a statistical method that was created by Ronald 

Fisher in 1918 [158]. Its purpose is to examine the differences in means among two or more 

groups, by assessing the variation in the data and determining its source (hence its name). 

Specifically, ANOVA compares the variation between groups with the variation within 

groups. 

4.4.1.1 Assumptions of ANOVA 

Like any other parametric test, the ANOVA test is built around a number of assumptions: 

- All groups are independent, meaning there is no subject present in a group that can 

be in a different group. 

- All groups/levels have equal sample sizes. 

- The dependent variable must be normally distributed for ANOVA to be conducted, 

meaning that the middle scores are the most frequent, and extreme scores are the 

least frequent. 

- The population variances must be equal, meaning that the deviation of scores is 

similar across all populations. 

4.4.1.2 ANOVA F-value 

The ANOVA test statistic is represented by the letter F. It is calculated by dividing 

the variance caused by the treatment by the variance due to random chance. The 

resulting F-value can indicate whether there is a significant difference between the 
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levels of the independent variable. A p-value less than 0.05 and a higher F-value 

suggest that the treatment variables are significant. 

 

Another way to express the formula for F is: 

𝑭 =
𝑀𝑆𝐸

𝑀𝑆𝑇
  (4-1) 

where: 

F is the ANOVA coefficient,  

MST is the Mean Sum of Squares due to Treatment, 

MSE is Mean Sum of Squares due to Error. 

4.4.1.3 Running an ANOVA Test  

When running an ANOVA test, the first step is to assume that all groups have the same 

variance (null hypothesis). Next, the Sum of Squares (MST) is calculated. The ANOVA 

effect size is then determined, which is used to calculate the degree of freedom (d.f). The 

F-value is then computed using equation above, which is used to determine if the group of 

variables are jointly significant and can be used to support or reject the null hypothesis. 

Finally, the decision is made to either accept or reject the null hypothesis. 

4.4.2 Results And Discussion 

After segmentation, a long-axis view image includes the right heart (made up of the right 

ventricle and right atrium), the left heart (made up of the left atrium and ventricle), and the 

aorta. In order to distinguish between these groups, eight different features were selected 

and tested for significance. 

The ANOVA test was used to identify the most significant features that distinguish the 

different groups within the long-axis view image. Table 4-1 and Figure 4-9 provide a 

detailed breakdown of the results of this analysis, including the sum square, degree of 

freedom, mean square, F-value, and the final verdict for each feature. These values are 



 

107 

important for understanding the statistical significance of the results and how they support 

or reject the null hypothesis. 

The F-value represents the ratio of the variance between groups to the variance within 

groups. A higher F-value indicates that there is a larger difference between the groups, 

which supports the alternative hypothesis that the groups are not equal. The F-value is then 

compared to the F critical value, which is determined based on the degree of freedom and 

the level of significance (usually set at 0.05). A feature is considered significant when the 

F-value is greater than the F critical value.  

Additionally, when the F-value is high and the critical value is not met, it means that the 

feature is a good criterion to distinguish between the two structures, as there is no overlap 

between them. This makes it easier to differentiate and segment the different groups in the 

image. 

 

Table 4-1 Feature extraction for long axis segmentations 

 source Sum 

square 

Degree 

of 

freedom 

Mean 

square 

F-

value 

Prb> f Verdict 

 

Centre of 

Mass X 

g 8221 3 2470.34 1.04 0.3857  Feature not 

significant 
error 10549 40 2637.3 

Total  113713 43 

Centre of 

Mass Y 

 

g 27859.5 3 9286.5 8.6 0.0002 The aorta is 

significantly 

different 

from every 

other group 

error 43202.4 40 1080.06 

Total  71061.9 43 

Area g 5.4749 

1007 

3 1.82497 

1007 

6.05 0.0017 Left heart 

and right 

heart are 

different 

than other 

groups 

Error 1.20749 

1008 

40 3.01872 

1006 

Total  1.75498 

1008 

43 
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Elongation 

Factor 

g 15.7963 3 5.26542 5.74 0.0023 Feature not 

significant Error 36.7085 40 0.91771 

Total  52.5048 43 

Heywood 

Circularity 

Factor 

 

g 3.519 3 1.17301 4.29 0.0102 Feature not 

significant Error 10.9277 40 0.27319 

Total  14.4468 43 

Moment of 

Inertia XX 

 

g 6.97888 

1012 

3 2.32629 

1012 

1.59 0.2061 Feature not 

significant 

Error 5.84062 

1013 

40 1.46015 

1012 

Total  6.5351 

1013 

43 

Moment of 

Inertia XY 

g 6.7484 

1012 

3 2.24947 

1012 

3.45 0.0253 Can be used 

to identify 

left heart Error 2.60511 

1013 

40 6.51278 

1011 

Total  3.27995 

1013 

43 

Moment of 

Inertia YY 

g 6.7484 

1012 

3 2.24947 

1012 

3.45 0.0253 Can be used 

to identify 

left heart Error 2.60511 

1013 

40 6.51278 

1011 

Total  3.27995 

1013 

43 

 

Not all of the features studied above were found to have significant variation and were thus 

not suitable for classification purposes. One example of this is the aorta, which was found 

to have a significantly lower center of mass Y with an F-value of 0.0002 compared to the 

other objects on the segmented image. This means that the center of mass Y for the aorta 

was lower than the other objects, and this difference was statistically significant. 

On the other hand, the left heart was found to have a higher moment of inertia XY and 

moment of inertia YY compared to the other subjects. This means that the left heart has a 

higher rotational inertia in the XY plane and YY plane, respectively, when compared to 
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the other subjects. These features can be used to distinguish the left heart from the other 

objects. 

Position can also be used to differentiate between the left heart and the right heart, but it 

was not used in this study due to the inconsistent nature of the dataset. This means that the 

position of the left heart and the right heart in the image may vary, making it less reliable 

as a feature to distinguish between the two. 

Table 4-2 and Figure 4-10 contain features that were tested for short-axis characterization. 

All four features that were assessed for this task were found to be useful in characterizing 

and distinguishing between the right and left ventricles on short-axis images. Specifically, 

the right ventricle was found to have high elongation and Heywood circularity, which are 

measures of how elongated and circular the right ventricle is respectively. On the other 

hand, the left ventricle can be characterized by high compactness and type factor, which 

are measures of how compact and a shape of the left ventricle respectively. 

 

Table 4-2 Feature extraction for short axis segmentation 

 Source Sum 

square 

Degree 

of 

freedom 

Mean 

sq. 

F-

value 

Prb> f Verdict 

 

Elongation g 7.7261 1 7.72607 66.58 7.03777 

10-10 

Significant 

feature 
error 4.4094 38 0.11604 

Total  12.1355 39 

Compactness 

 

g 0.20517 1 0.20517 64.61 1.01530 

10-09 

Significant 

feature error 0.12067 38 0.00318 

Total  0.32584 39 

Heywood  

Circularity 

 

g 0.5774 1 0.5774 42.74 1.04602 

10-07 

Significant  

feature Error 0.51339 38 0.01351 

Total  1.0908 39 

Type Factor g 0.42483 1 0.42483 155.14 5.47648 

10-15 

Significant 

feature Error 0.10406 38 0.00274 

Total  0.52889 39 
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Figure 4-9 Box plot representations of the ANOVA for long axis features 
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Figure 4-10 Box plot representations of the ANOVA for short axis features 

4.5 Conclusion  

Trustworthy AI is the new urging problem. After models started achieving human-like and 

even better-than-human results, experts started wondering to what extent they could rely 

on fully automated algorithms for critical tasks. Nowadays, providing a visual explanation 

of the process behind the decision-making is essential towards making the final result more 

acceptable to the clinicians. 

In this work we propose an AI model that mimics doctor reasoning, which would hopefully 

have the potential of AI models, but is also easy to follow and transparent throughout. 
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Our main contribution is separating the initial images into long-axis and short-axis views. 

This step not only follows how a human expert would proceed, but it also allows for a 

separate analysis of the two image types going forward, which allows for a more precise 

study. 

The next step would be segmenting the ventricles. For that we used  Particle Swarm 

Optimization for general segmentation, a method that proved particularly handy with multi 

class images. After segmentation, we ended up with various structures on the images, 

including heart chambers, the lungs, the aorta, and other objects. 

For accurate identification of the different objects, we applied a characterization based on 

shape descriptors and ANOVA for features selection to detect the location of each region 

of interest: lung, left and right ventricle in the short-axis view, the aorta, the left heart (left 

atrium and ventricle), and the right heart (right atrium and ventricle) in the long axis view. 

The purpose of such characterization is to provide a tool which eventually allows advanced 

segmentation locating objects of interest after a global segmentation using classification 

methods: FCM, KFCM, EM and operator’s manual and automatic thresholding. 
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General Conclusion 

Starting this PhD program, the main objective was to use Deep Learning for cardiac 

applications, a broad research subject.  

While getting familiarized with both cardiac imaging and Artificial Intelligence, many 

research problems emerged, but we came to the conclusion that there exist two main 

challenges in this field: the shortage of labeled data, particularly for the heart, and the lack 

of trustworthy Artificial Intelligence (AI) models. 

To tackle the data shortage problem, we focused on automatic screening for atherosclerosis 

from Coronary CT Angiography, a serious cardiovascular disease. The traditional method 

of screening requires segmentation, which is time-consuming. However we explored the 

use of transfer learning to screen the disease straight from CCTA images, resulting in a 

faster outcome. We have achieved an encouraging performance with scores 95.21% of 

accuracy, 99.25% of specificity, 60.8% sensitivity, 90.48% positive predictive value. The 

poor sensitivity could be due to the lack of positive images in the testing dataset. 

This is a problem commonly faced in all medical applications as a result of intrinsic data 

imbalance. In order to balance the dataset, we generated new positive images using 

Generative Adversarial Network (GAN). The generated images were added to the training 

set, while the test set remained composed of only real images, to insure accurate validation.  

The model used on the newly balanced dataset improved sensitivity from 60.8% to 89.0%, 

which suggests that : (1) data imbalance was the reason behind the poor performance of 

the model, and (2) synthesized data can be used for data augmentation to solve the problem 

of data unavailability.  

In the future, we would like to carry the work by studying the impact of using only 

generated data for the model training, how it would impact the overall performance of the 

model. We would like to study how dependent Deep learning models on data distributions 

are. 
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The second part of the thesis focused on heart structure segmentation using an AI model 

that mimics doctor reasoning; creating a mind map that describes every step the doctor use 

when manually segmenting and identifying the heart structures, then replacing each step 

with a corresponding machine learning algorithm. The goal was to achieve superior 

performance while maintaining a transparent algorithm.  

The resulting model started with separating the long axis view images from the short axis 

view images, using a ResNet-101; then we performed multiclass segmentation using 

Particle Swarm Optimization, which resulted in segmented images with the different heart 

structures. For the final step, the structure identification was done after a number of 

features, judged useful based on an ANOVA statistical study. 

The model we created describes a clear interpretation of how a human mind solves such a 

complicated task as cardiac segmentation. Our proposal to mimic the doctor's approach and 

reasoning makes our AI trustworthy, although not Explainable AI. 

This model needs to be finalized, tested, and implemented into a fully functioning software 

for clinical use, to assess how well-received it would be amidst doctors. 
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