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Abstract 
 

While cardiac diseases are increasing in the past years, heart monitoring has become crucial to 

assess the heart behavior and detect any arrhythmia if available. Electrocardiograms or ECG 

signals, are records of the electrical activity of the heart that illustrates the way the 

depolarization wave flow in each heartbeat; A proper study of an ECG signal’s characteristics 

is the gold standard of providing effective diagnostics for cardiac diseases. 

The aim of this work is to provide an automatic approach of analyzing and detecting 

arrhythmias using deep neural networks or to be more specific, 2-dimensional convolutional 

neural networks. The great performance in extracting the spatial features of input image data 

is what contributed in CNNs popularity and is what makes it more suitable than any other 

model. In this study a CNN architecture was proposed and discussed in terms of performance, 

and the impact of deep learning techniques which are batch normalization and dropout on it. 
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General introduction 
 

       According to the World Health Organization (WHO), cardiovascular diseases 

(CVDs) are the number one cause of death today. Over 17.7 million people died from CVDs in 

the year 2017 all over the world which is about 31% of all deaths. Arrhythmia is a representative 

type of CVD that refers to any irregular change from the normal heart rhythms. There are 

several types of arrhythmias including atrial fibrillation, premature contraction, ventricular 

fibrillation, and tachycardia. Although single arrhythmia heartbeat may not have a serious 

impact on life, continuous arrhythmia beats can result in fatal circumstances. For example, 

prolonged premature ventricular contraction (PVCs) beats occasionally turn into a ventricular 

tachycardia (VT) or ventricular fibrillation (VF) beats which can immediately lead to heart 

failure [1]. 

       Monitoring the heart health state and early detection of cardiac arrhythmias is a key factor 

in being able to properly manage them and avoid later complications, for that matter we use 

ECG (Electrocardiogram) signals which are a graph of voltage versus time of consecutive 

heartbeats that allows us to visualize and diagnose the human heart behavior. 

        In this work we focus on analyzing and classifying heartbeat arrythmias. A deep learning 

approach using 2-dimensional convolutional neural network (2D CNN) is proposed to classify 

the ECG heartbeats extracted from the recordings of the MIT BIH arrythmia database into 

four different classes, being Normal heartbeat (N), Left bundle branch block (LBBB), Right 

bundle branch block (RBBB) and Premature ventricular contraction (PVC). However, before 

feeding our data to the neural network we need to do some preprocessing including filtering 

and segmentation, also since 2D CNNs accept only 2D images as inputs we need to convert 

the segmented heartbeats into grayscale images of dimension 200×200. 

      Prior works have been done to classify ECG heartbeat images into different classes, 

different 2D CNNs architectures have been used and achieved good accuracies, for instance, 

Nahom Ghebremeskel1 and Vahid Emamian2 [2] have achieved accuracy of 90%, also 

XUEXIANG XU and HONGXING LIU [3] have achieved 99.43% accuracy after using 4 

convolutional layers , 2 pooling layers and 2 fully connected layers. These previous work’s 

results illustrate the outstanding performance of 2D CNNs on classifying input images. 

       This report mainly consists of three chapters in which we introduce all the theories and 

methodologies used to obtain the results that are finally demonstrated and discussed in the last 

chapter. The first chapter titled “Generalities about deep learning and electrocardiograms” 

gives us an understanding about the cardiovascular system in all its aspects and ECG signals 

characteristics in addition all the needed details to understand how neural networks learn from 

given data. “ECG Preprocessing and CNNs” being the second chapter in which we discuss 

how from an ECG recording we get a grayscale image of single heartbeats, as well as 

describing the underlying working of a CNN model. The third chapter is the final chapter 

where the experimental results are displayed and discussed. 
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1.1 Introduction 

                         

        The heart is a vital organ whose function is to pump blood all over the body. Any 

irregularity in the heart’s pumping mechanism might be a sign of a serious problem, therefore, 

early detection of any abnormality might save lives. Luckily, we have been able to assess the 

heart’s behavior by means of electrocardiogram signals or ECG, where cardiologists interpret 

the signal and conclude whether the heart beating rhythm is normal or not. However, going 

through every patient’s heart recording is time consuming and exhausting. For that, artificial 

intelligence can substitute for human intelligence. By using deep learning models to diagnose 

the patient’s ECG recording, cardiologists can devote their time and energy on more complex 

tasks. In this chapter, we will focus on getting familiar with electrocardiograms and the different 

types of heart arrhythmias, in addition to understanding the deep learning structure and its pillar 

algorithms.  

 

1.2 Human heart and electrocardiography 

 

     In a cardiovascular system the heart is the most important organ, about the size of a fist, 

located inside the thoracic cage, its function is to pump blood within the body to provide a 

steady supply of oxygen to the brain and other vital organs; It also works with other body 

systems to control the heart rate and blood pressure. 

    

1.2.1 Anatomy of the heart  

  

     The human heart is located in the middle of the chest between the lungs; It sits behind and 

slightly to the left of  the breastbone; It consists of four chambers two upper chambers called 

left and right Atria; Two lower chambers called left and right Ventricles; A wall labeled Septum 

of the heart that separates the right and left sides of the heart, this latter is divided into two parts 

the Interventricular Septum isolating the two ventricles and interatrial septum isolating the two 

atria; Four valves that control the blood flow, two of them being the Mitral and the Tricuspid 

valves, they allow the movement of the blood from the atria to the ventricles, the other two 

valves being the Aortic and Pulmonary valves, they move blood out of the ventricles to the 

lungs and the rest of the body. Figure 1.1 illustrates the Chambers and valves of the heart. 
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                  Chambers of the heart.                                                 Valves of the heart. 

 

 Figure 1.1: Chambers and valves of the heart [4]. 

  

     Human heart also consists of blood vessels through which the heart pumps blood, which are 

divided into three types, Arteries that carry oxygenated blood from the heart to the body and 

lungs; Veins that transfer deoxygenated blood to the heart and small blood vessels called 

Capillaries where the body exchanges oxygenated and deoxygenated blood. Figure 1.2 

illustrates the different blood vessels of the heart. 

 

 

 

                                        Figure 1.2: Major blood vessels of the heart [4]. 
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1.2.2 Electrical activity of the heart  

      

     The heart has to pump blood constantly in order to keep us alive; The heart’s electrical 

conduction system is a network of nodes, cells and signals specialized for this job; It determines 

both the heart rate and the heart contraction pattern. 

     The Sinoatrial node (SA node), located in the right Atrium acts as a natural pacemaker for 

the heart; It leads the beating pattern, it is where the electrical impulse begin and then this latter 

continues to spread all over the atria causing the muscle in the atrium to contract; The 

Atrioventricular node ( AV node) ,  also situated on the right atrium receives the impulse and 

delays it to ensure that the blood has been completely ejected to the ventricles, afterwards the 

signal follows the pathway through the atrioventricular bundle towards the apex of the heart 

along the right and left bundle branches spreading all over the ventricles completing the 

electromechanical cycle of a heartbeat. Figure 1.3 demonstrates the electrical pathway of the 

heart. 

 

 

 

Figure 1.3: Normal electrical pathway of the heart [4]. 

 

 

1.2.3 Electrocardiography and ECG signals 

 

     Regular monitoring of the heart’s activity plays a major role in early detection of several 

heart diseases; for that we use Electrocardiography, which is the measurement of electrical 

activity in the heart and the recording of such activity as a visual trace (on paper or on an 

oscilloscope screen), using electrodes placed on the skin of the limbs and chest [5]. Resulting 

in a graph of voltage versus time of consecutive heartbeats called Electrocardiograms or ECG. 
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1.2.3.1 ECG signals  

 

     ECG signal illustrates how the depolarization wave flow during each heartbeat, Figure 1.4 

shows an ECG heartbeat. A heartbeat in an ECG signal has different parts namely the P wave 

which represents the Atrial depolarization in regards to the Sinoatrial node triggering; Followed 

up by the QRS complex resulted by the ventricular contraction and lastly the T wave 

representing the ventricular repolarization. 

     ECG can be divided into various segments and intervals namely the PR interval; The PR 

segment; The QRS interval; The ST segment and the QT interval.       

 

PR interval: The PR interval is the time from the onset of the P wave to the start of the QRS 

complex. It reflects conduction through the AV node. It is about 0.12 to 0.2 seconds in duration 

[6]. 

PR segment: The PR segment is the portion of the ECG from the end of the P wave to the 

beginning of the QRS complex [7]. 

QRS interval: It is the time duration that covers the QRS complex from beginning to end. 
ST segment: During the ST segment, all the ventricular myocardium is depolarized. All have 

positive charges. So, there is nothing potential difference to be recorded by the voltmeter (ECG 

machine). So, you have a flat line [7]. 

QT interval: Important because it captures the beginning of ventricular depolarization to the 

ventricular repolarization. It covers the entire ventricular activity [7]. 

 

 

 

Figure 1.4:  ECG heartbeat [8]. 
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1.2.3.2 ECG derivations 

 

     An ECG is recorded using either electrodes or sticky patches, placed on the body surface, 

typically over the chest, the left arm, the right arm and the left leg. These electrode wires are 

connected to the EKG machine with recordings from twelve different angles, called 12-lead 

EKG, resulting in six limb leads and six chest leads. 

    The six limb leads are obtained from three electrodes attached to the right arm; Left arm and 

left leg; These latter are divided into two sets: 

Three bipolar limb leads: Figure 1.5 demonstrates how to obtain bipolar limb leads. The 

measurement of the voltage requires two poles, negative and positive; The ECG machine uses 

the negative pole as zero reference hence the position of the positive pole is the point of view 

[9] ; Depending on which pair is captured Lead I, II and III are obtained. 

 

   

Figure 1.5: Three bipolar limb leads demonstration [10]. 

 

Three augmented leads: These leads are unipolar, figure 1.6 demonstrates how to obtain 

augmented leads, they use one limb electrode as positive pole and takes the average of inputs 

from the other two limbs as the zero reference [9], depending on the point of view aVL 

(augmented vector left), aVR (augmented vector right) and aVF (augmented vector foot) are 

obtained. 
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Figure 1.6: Three augmented leads demonstration [10]. 

      The chest leads are unipolar leads, the corresponding chest electrode serve as the positive 

pole, the reference negative value is the same for all the chest leads and is calculated as the 

average of inputs from the three limb electrodes [9]. Figure 1.7 demonstrates how to obtain 

chest leads 

 

 

 

Figure 1.7: chest leads demonstration [10]. 

 

      Depolarization towards a lead produces positive deflection; Depolarization away from a 

lead gives a negative deflection, the reverse is true for repolarization. Thus, leads that look at 

the heart from different angles may have waves pointing in different directions [9]. 

 

1.2.4 Heart arrhythmias  

 

      An arrhythmia or cardiac arrhythmia is defined as an abnormality in the rate or the rhythm 

of the heartbeat. Meaning the heart beats too fast, too slowly or with abnormality. Arrhythmias 

are divided into three categories, Supraventricular arrhythmias; Ventricular arrhythmias and 

Bradyarrhythmia. 

 

1.2.4.1  Supraventricular arrhythmias  

 

     Supraventricular arrhythmias are defined as an irregularly fast heartbeat that affects the 

heart’s upper chambers; It exists in various types such as:  

 

 Paroxysmal supraventricular tachycardia (PSVT): A rapid but regular heart 

rhythm that comes from the atria. This type of arrhythmia begins and ends 
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suddenly [11]. 

 

 bypass tract tachycardias: A fast heart rhythm caused by an extra, abnormal 

electrical pathway or connection between the atria and ventricles [11]. 

 

 AV nodal re-entrant tachycardia (AVNRT): A fast heart rhythm caused by the 

presence of more than one pathway through the atrioventricular (AV) node [11]. 

 Atrial tachycardia: A rapid heart rhythm that starts in the atria [11]. 

 

 Atrial fibrillation: A very common irregular heart rhythm. This happens when 

many impulses begin and spread through the atria, competing for a chance to 

travel through the AV node. This results in a disorganized rapid and irregular 

rhythm [11]. 

 

 Atrial flutter: An atrial arrhythmia caused by one or more rapid circuits in the 

atrium [11]. 

 

1.2.4.2  ventricular arrhythmias 

 

     A ventricular arrhythmia is a heart rhythm problem that begins in the heart’s 

ventricles Different kinds exist namely:  

 Premature ventricular contractions (PVCs): Early, extra heartbeats that start 

out in the ventricles. Most of the time, PVCs don’t cause any symptoms or require 

treatment, but Frequent PVCs may increase the risk of developing other, more 

serious cardiac arrhythmias. This type of arrhythmia is common and can be related 

to stress, too much caffeine or nicotine, or exercise. They can be also be caused 

by heart disease or electrolyte imbalance [11]. 

 

 Ventricular tachycardia (V-tach): A rapid heartbeat that begins in the 

ventricles. The rapid rhythm keeps the heart from adequately filling with blood, 

and less blood is able to pump through the body [11]. 

 

 Ventricular fibrillation (V-fib): An erratic, disorganized firing of impulses from 

the ventricles. The ventricles quiver and can’t generate an effective contraction, 

which results in a lack of blood being delivered to your body [11]. 

 

 Long QT: While this is not an arrhythmia, a longer QT interval than normal 

increases the risk for “torsade de pointes,” a life-threatening form of ventricular 

tachycardia [11]. 
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1.2.4.3 Bradyarrhythmia 

 

     A bradyarrhythmia is a slow heart rhythm that is usually caused by an abnormality in the 

heart’s conduction system. Types of bradyarrhythmia include: 

 Sinus node dysfunction: Slow heart rhythms due to an abnormal SA node [11]. 

 

 Heart block: A delay or complete block of the electrical impulse as it travels from 

the sinus node to the ventricles [11]:  

 

   Left bundle branch block: It is a partial or a total block of the 

conducting system in the left bundle branch causing a delayed ventricle 

contraction. 

   Right bundle branch block: It is a partial or a total block of the 

conducting system in the right bundle branch causing a delayed 

ventricle contraction. 

 

1.3 Artificial intelligence and neural networks  

 

      Artificial intelligence (AI) refers to the simulation of human intelligence in machines that 

are programmed to think like humans and mimic their actions, using various complex 

algorithms and mathematical functions. The term may also be applied to any machine that 

exhibits traits associated with a human mind such as learning and problem-solving [12].  

 

1.3.1 Machine learning and deep learning  

                    

      Machine learning is a subset of AI used to build intelligent machines to learn from a huge 

amount of data using statistical techniques, and make predictions and decisions; Machine 

learning can be divided into three approaches which are Supervised learning; Unsupervised 

learning and Reinforcement learning:   

 

 Supervised learning: In supervised learning the machine learns from a labeled 

dataset, meaning, the input data is already associated with an appropriate output, 

and based on this concept the machine learns how to link the correct output to the 

input. Types of Supervised learning include Regression and Classification. 

 

 Unsupervised learning: As the name indicates, unsupervised learning is a 

technique in which datasets are not labeled; rather the learning model itself has to 

find the patterns and the underlying structure of the data and group this latter into 

https://my.clevelandclinic.org/health/diseases/17841-bradycardia
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categories based on similarities. Types of unsupervised learning include 

Clustering and Dimensionality reduction. 

 

 Reinforcement learning: Reinforcement Learning is a feedback-based Machine 

learning technique, an agent learns and adjusts to its environment, each action 

done by this agent gets feedback depending on whether the action is good or bad. 

                                

 

      Deep Learning is a subset of machine learning that uses neural networks inspired by the 

biological neural network of the human brain, in the aim of imitating human like decision 

making and problem solving. What makes deep learning particular is that it requires less human 

intervention to the detriment of large data requirements and a mathematically more complex 

algorithms compared to machine learning. 

 

 

1.3.2 Artificial Neural networks  

                            

1.3.2.1  What is an artificial Neural network?  

 

      Artificial Neural networks or ANN for short, are the foundation of deep learning models. 

Established on a set of nodes and weighted connections, they are designed to mimic the way 

biological neurons signal to one another.  

     The human brain consists of a large number of communicating neurons interconnected to 

each other creating a neural network. Figure below represents an illustration of a single 

biological neuron, consisting of a Cell body, a Nucleus and a set of Dendrites designed to 

receive information as an input to the neuron, the information is then transmitted along the 

Axon as an output for the succeeding neuron. 

 

 

 
 

 

Figure 1.8: Biological neuron [13]. 
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      Similarly, an artificial neural network is composed of several Perceptrons interconnected to 

each other. A perceptron is a mathematical representation of a biological neuron, also known 

as an artificial neuron, it consists of a set of inputs; weights; A bias; A weighted sum and an 

activation function:   

 

 Weight: A parameter that determines how much influence the input will have on 

the output. 

 

 Bias: A constant whose role is to shift the activation function to the right or to the 

left in order to fit the prediction with the data better. 

 

 Weighted sum: The sum of the inputs multiplied by their weights. 

 

 Activation function: A mathematical function that maps the input to the output, 

and decides whether the neuron should be activated or not.  

 

 

 

  

 

 

Figure 1.9: Artificial neuron demonstration. 
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Figure 1.10: Biological and artificial neurons [14]. 

 

      Figure 1.10 demonstrates a single perceptron, which takes a set of numerical inputs, 

multiply each input with the corresponding weight and adds them together with the bias, the 

result is then passed through an activation function yielding to the final output which is 

subsequently transmitted to the following perceptron. 

   

𝒚 = 𝒇(∑ 𝒘𝒊𝒙𝒊
𝒏
𝒊=𝟎 + Ɵ)                                       Equation 1.1 

 

By combining multiple perceptrons we get a single layer as illustrated in figure below.  

 

 
 

Figure 1.11: Single neural network layer. 
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Where 𝑝 = [

𝑝1

𝑝2

⋮
𝑝𝑅

]  is the input vector, 𝑤𝑇 =

[
 
 
 
𝑤1

𝑇

𝑤2
𝑇

⋮
𝑤𝑠

𝑇]
 
 
 

  is the corresponding weight vector of each 

perceptron, 𝑏 = [

𝑏1

𝑏2

⋮
𝑏𝑠

] is the set of biases and  𝑎 = [

𝑎1

𝑎2

⋮
𝑎𝑠

]   is the output vector that is calculated 

as follow:  

 

𝒂 = [

𝒂𝟏

𝒂𝟐

⋮
𝒂𝒔

] =  

[
 
 
 
 
𝒇(𝒘𝟏

𝑻𝒑 + 𝒃𝟏)

𝒇(𝒘𝟐
𝑻𝒑 + 𝒃𝟐)

⋮
𝒇(𝒘𝒔

𝑻𝒑 + 𝒃𝒔)]
 
 
 
 

= 𝒇(𝒘𝑻𝒑 + 𝒃)                                                          Equation 1.2 

 

1.3.2.2 How does neural networks work? 

          

      Neural networks take a large set of input data called the training data, train themselves into 

identifying the patterns within this data and subsequently being able to predict the appropriate 

output for each input of a new set of data called test data. But how does the neural network 

accomplish that?   

      To help visualize the learning process of a neural network, let us examine its underlying 

structure; A neural network is a collection of nodes arranged in layers. Neurons of each layer 

are connected to the next layer through weighted arrows. There exist three types of layers in a 

neural network, an input layer, a hidden layer and an output layer:  

 

 Input layer: The first layer in the network and is responsible for passing the input 

data to the subsequent layers in the network for further processing. 

 

 Hidden layer: A hidden layer is in between the input and output layers. thus, 

hidden. And it is where all the computations are done; There can exist either one 

or multiple hidden layers in a network, the greater the number of hidden layers the 

more complex the network is. 

 

 Output layer: The last layer in the network, it predicts the final result of the input. 
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Figure 1.12: Structure of a neural network.             

 

        Samples of data are fed to the neurons of the first layer, they get multiplied to the 

corresponding weights, added together and transmitted to the next layer’s neurons, these 

neurons are associated with a numerical value called the bias which is added to the weighted 

sum, the overall sum is passed through an activation function which decides whether the current 

neuron will be activated or not; The activated neuron will transmit the output through the 

weighted tensors to the succeeding neuron and the same process will proceed throughout all the 

layers. This is known as the Forward propagation of data.  

       The prediction is made in the output layer, where the neuron with the highest probability 

determines the output. However, the prediction can be wrong as the network is yet to be trained. 

The training process of supervised learning differ from that of unsupervised learning.    

      In supervised learning, along with the input, the corresponding output is also fed to the 

network, this output is then compared to the resulting output producing an error value, this latter 

is passed backwards through the network which is known as Back propagation. Back 

propagation is the key factor in the training process, as the error is back propagated, the weights 

are tuned in a way that the error is reduced resulting in a more accurate prediction.  

     This pattern of forward propagation and back propagation is performed on all the inputs in 

the training dataset until the weights are well adjusted and the network can make precise 

predictions. After all samples of the training dataset are passed through the network, we can 

say that the network has done one epoch.  

    While supervised learning algorithm learns by continuously making predictions on the input 

data and analyzing the model’s prediction error, in unsupervised learning the model is 

uninformed of the actual output, The model learns features in the data on its own and will 

attempt to categorize the unlabeled data based on feature similarity.  

 



 

16 

 

1.3.3 Backpropagation  

 

     As mentioned earlier back propagation is an important algorithm in supervised learning, it 

is an optimization process that helps the model achieve better accuracy. Before addressing the 

working of backpropagation, we first need to define two related terms, Loss function and 

Gradient descent.  

                

1.3.3.1 Loss function  

 

     The loss function also called the cost function, is a mathematical method used to determine 

how well the deep learning model is performing, it assesses the difference between the expected 

output and the output produced by the model; The smaller the loss the better the model is 

performing. For instance, let us consider the Mean squared error loss function (MSE). 

    The loss or the error in MSE is calculated by taking the difference between the expected 

output and the model’s output for each input, the difference then is squared and divided by the 

number of data points:   

     𝑴𝑺𝑬 =  
𝟏

𝒏
∑ (𝒚𝒊 −  ŷ𝒊)

𝒏
𝒊=𝟏 ²                                                                            Equation 1.3                    

 where:  

 n: number of data points. 

  ŷ𝒊: the models output. 

  𝑦𝑖: the expected output. 

 

      MSE is a simple loss function. There exist different types of loss functions suitable for 

different models, the general idea holds the same for all of them, but each function has its own 

way for evaluating the loss.  

     Cross entropy or log loss, is one of the most used functions to measure the loss of a 

classification model whose output is a probability between 0 and 1. Its general formula for M 

given classes in a multi-class classification problem is given by: 

 

𝑪𝒓𝒐𝒔𝒔 𝒆𝒏𝒕𝒓𝒐𝒑𝒚 =  − ∑ 𝑶𝒑𝒔𝒆𝒓𝒗𝒆𝒅𝒄 × 𝑳𝒐𝒈(𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅𝒄)
𝑴
𝒄=𝟏                          Equation 1.4 

where:  

 𝑀: number of classes. 

 𝑂𝑝𝑠𝑒𝑟𝑣𝑒𝑑𝑐: The actual output 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑐: The model’s output. 
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1.3.3.2  Gradient descent  

 

     After calculating the loss function, our goal is to minimize it to the greatest extent, for that 

one more method is required which is gradient descent. Since weights in the network indirectly 

impact the loss, gradient descent works on tuning these weights until achieving better accuracy 

and minimum loss. 

      In mathematics gradient descent is a first-order iterative optimization algorithm for finding 

a local minimum of a differentiable function [15]. The concept is we calculate the gradient of 

the loss function with respect to a chosen weight, and then we take steps away from that gradient 

by a certain learning rate resulting in an updated weight. By doing this iteratively for all weights, 

we update the weights at each iteration until achieving optimal values that result in a minimum 

loss function. Figure 1.13 illustrates gradient descent. 

 

 

 

Figure 1.13: Gradient descent [16]. 

 

The equation by which the weights are updated:  

 𝑾𝒏𝒆𝒘 = 𝑾𝒄𝒖𝒓𝒓𝒆𝒏𝒕 − 𝜶 
𝝏𝑳

𝝏𝑾𝒄𝒖𝒓𝒓𝒆𝒏𝒕
                                                     Equation 1.5        

  where:  

  α: the learning rate, it determines by how much we move towards the minimum.  

  L: the loss function. 

σL

σWcurrent
 : The gradient. 
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Gradient descent can be divided into three variants:  

 Batch gradient descent: given n data points in the training set. In batch gradient 

descent we perform the forward pass on all the n data points consecutively, 

calculate the loss function and then update the weights in one iteration. In other 

words, we update the weights only once per epoch. Using this method, we obtain 

a smooth convergence of the loss function towards the local minimum but this 

would require high computation cost. 

 

 Stochastic gradient descent: in this case forward and backward passes are 

performed for each data point, and the weights are updated n times per epoch. 

Although this method is not computationally expensive, it results in noisy 

variations of the loss function. 

 

 Mini-batch gradient descent: the training set is divided into batches, where the 

batch size is greater than one and smaller than n, the forward pass is done after 

completing one batch, and the weights are updated n/batch-size times per epoch. 

This method is less noisy and more computationally expensive than stochastic 

gradient descent but not as smooth and computationally expensive as the batch 

gradient descent. 

 

    But how do we calculate the gradient? To better understand how the gradient is calculated 

let us look at the network below: 

 

 

                                      Figure 1.14: example neural network. 

 



 

19 

 

      Figure 1.14 illustrates a neural network; we will take the weight 𝑤1,1
𝑙  as an example to 

calculate the gradient of the loss function. The gradient of the loss function is denoted as:  
𝜕𝐿

𝜕𝑤1,1
𝑙 . 

      The loss function is composed of different functions, if we observe we find that the loss 

function L depends on the activation output  ŷ1 of node 𝑁1
𝑙, and this output depends on the input 

coming from the node  𝑁1
𝑙−1 which is 𝑖𝑛1,1

𝑙 , and this input depends on the weight  𝑤1,1
𝑙 ; Based 

on the chain rule the derivative of L with respect to 𝑤1,1
𝑙  is calculated from the product of the 

derivatives of the composed functions :  

 

𝜹𝑳

𝜹𝒘𝟏,𝟏
𝒍 = (

𝜹𝑳

𝜹 ŷ𝟏

) (
𝜹 ŷ𝟏

𝜹 𝒊𝒏𝟏,𝟏
𝒍 ) (

𝜹 𝒊𝒏𝟏,𝟏
𝒍

𝜹𝒘𝟏,𝟏
𝒍 )                                              Equation 1.6 

   where:  

  𝑤1,1
𝑙 : The weight to be updated. 

  L: the loss function. 

 ŷ1: output of neuron 1 of layer l 

𝑖𝑛1,1
𝑙 : input of neuron 1 of layer l 

𝛿𝐿

𝛿𝑤1,1
𝑙  : The gradient. 

 

      Backpropagation calculates the gradient of the loss function with respect to the weight, this 

calculation requires moving backwards through the network as the loss function is a 

composition of previous functions, Then the weight gets updated by means of gradient descent. 

We repeat the same process for all weights of all layers in the network up until reaching the 

first layer.  

  

1.4 Conclusion 

 

      In this chapter we have seen that a normal heart has a coherent mechanism of beating. Any 

distortion in that mechanism will lead to an arrhythmia, and detecting arrhythmias is achieved 

by a diagnosis of an electrocardiogram signal that is acquired using the 12-lead ECG method. 

We also got acquainted with neural networks, and how the whole learning process of the 

network is based on the backpropagation algorithm and gradient descent, where these latter are 

the key features in achieving a better model accuracy. 
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2  Chapter 2 
 

 ECG preprocessing and CNNs 
 

 

 

 

 

 

 

 



 

21 

 

2.1 Introduction  

 

      Early detection of heartbeat arrhythmia is important since it ensures prompt and adequate 

management to avoid later complications. With the help of deep learning, such detection 

becomes easier as it is done automatically by computers. Neural networks can implement a 

classification algorithm that will be fed a large number of heartbeats, and learn to classify them 

into the corresponding arrhythmia class, hence, detect any arrythmia if available. Different 

models can be used for classification problems, however, the great performance of CNNs in 

detecting important features in input data, is what makes it more suitable than any other model; 

But before feeding any input to any neural network, some preprocessing should be done on that 

input. In this chapter we will tackle the different preprocessing techniques used on the ECG 

signals as well as introducing the working mechanism of 2D CNN that will be used later on in 

our work. 

  

2.2 Preprocessing of ECG signals  

 

     Raw ECG data is obtained from the MIT BIH arrhythmia database. Since the neural 

network’s outcome heavily depend on the quality of input data, this raw data needs to go 

through preprocessing before feeding it into our neural network. 

 

2.2.1 MIT BIH arrhythmia database  

 

     The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-channel 

ambulatory ECG recordings, obtained from 47 subjects studied by the BIH Arrhythmia 

Laboratory between 1975 and 1979. Twenty-three recordings were chosen at random from a 

set of 4000 24-hour ambulatory ECG recordings collected from a mixed population of 

inpatients (about 60%) and outpatients (about 40%) at Boston's Beth Israel Hospital; the 

remaining 25 recordings were selected from the same set to include less common but clinically 

significant arrhythmias that would not be well-represented in a small random sample [17]. 

    The recordings were digitized at 360 samples per second per channel with 11-bit resolution 

over a 10mV range. Two or more cardiologists independently annotated each record; 

disagreements were resolved to obtain the computer-readable reference annotations for each 

beat (approximately 110,000 annotations in all) included with the database [17]. 

    The data and annotations in most PhysioBank databases are stored in a Waveform 

Database (WFDB) format, one standard category being the MIT Format: 

MIT Signal files (. dat): are binary files containing samples of digitized signals. These store 

the waveforms. 
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MIT Header files (.hea):  are short text files that describe the contents of associated signal 

files. 

MIT Annotation files (.atr): are binary files containing annotations (labels that generally refer 

to specific samples in associated signal files). 

    In order to be able to deal with signals of the MIT BIH database, one should use the WFDB 

package, which contains a set of functions for reading, writing and processing signals of the 

physiobank databases. 

 

2.2.2 Noise in ECG signals 

 

      An ECG signal might be affected by the presence of artifacts (noise) that results from either 

external or internal interference. There exist mainly four types of artifacts: 

 Powerline Interference (PLI): this kind of noise is due to the electromagnetic 

interference in the supply and the cables carrying the ECG signal, it is either a 

50Hz or 60Hz interference. PLI affects the interpretation of an ECG as it overlaps 

with T wave and P wave as shown in Figure 2.1.  

 

 Baseline wander (BW): also known as Base Line Drift and is a low frequency 

noise generally below 0.5Hz caused by displacement of electrodes with respect to 

the position of the heart due to breathing or coughing. As a result, ECG is shifted 

from zero - potential baseline, causing difficulty in ST segments’ analysis which 

is a morphology of very little electric potential. It is generally below 0.5 Hz [18]. 

 

 Muscle artifacts: caused by electrical activity of muscles in contact with 

electrodes on the body. it mainly exists between 20 Hz - 100Hz. 

 

 Motion artifact: Abrupt movements such as coughing while ECG is being 

recorded results in motion artifacts (MA) in ECGs which appear as sudden 

changes the in electric potentials [18].  

 

 

                 Powerline interference [19]                                            Baseline wander [20] 

http://physionet.org/physiotools/wag/header-5.htm
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                 Muscle artifact                                                                    Motion artifact [21] 

Figure 2.1: Different types of artifacts in ECG signals. 

 

 

2.2.3 Filtering ECG signals 

 

     Eliminating noise from an ECG signal makes the different characteristics and features of an 

ECG heartbeat more clear, therefore it helps the model in making accurate predictions. 

 Figure 2.2 illustrates the frequency spectrum of record 111 of the MIT-BIH arrhythmia 

database:  

 

 

Figure 2.2:Frequency spectrum of record 111 of the MIT-BIH database. 

 

   As we can observe there exist two spikes, one at DC and one at 60Hz representing the baseline 

wander and powerline interference respectively. In order to eliminate these noises, we propose 

cascading a highpass and lowpass Butterworth IIR digital filters of order 5.  
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For PLI: butterworth lowpass filter of order 5 and Fc=45Hz. 

For BW: butterworth highpass filter of order 5 and Fc=0.5Hz. 

Frequency response of the 5th order butterworth filters are shown below:  

 

 

 

Figure 2.3: Frequency responses of the chosen filters. 

 

   The filtering was applied using zero phase filtering technique and the results are shown below 

for both frequency and time domain. As we can see, the PLI noise has been removed and the 

baseline is corrected:  

 

 
 

 

Figure 2.4: Unfiltered signal in frequency and time domain of record 111. 
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Figure 2.5: Filtered signal in frequency and time domain of record 111. 

 

2.2.4 Pan Tompkins algorithm  

 

    Training a neural network to classify heartbeats into corresponding arrhythmias will require 

proper segmentation of the ECG signal into individual heartbeats, for that we need to leverage 

the position information of the R peaks. The method that we chose for detecting R locations 

was the Pan Tompkins algorithm, for the standard 24 h MIT BIH arrhythmia database, this 

algorithm correctly detects 99.3 percent of the QRS complexes [22]. 

    The pan Tompkins algorithm uses three different steps of processing, digital filtering, 

nonlinear transformation and decision rule. These steps are based on applying a series of filters 

to highlight the frequency components of the QRS complex and to amplify its contribution; 

Then applying adaptive thresholding to detect the peaks of the filtered signal. 

 

2.2.4.1  Filtering and nonlinear transformation 

 

Noise filtering:  noise cancellation is not only beneficial for accuracy of the deep learning 

model but also increases the detection sensitivity of the QRS complex in the pan Tompkins 

approach, as it reduces false detections due to interference present in the signal. While in Pan 

Tompkins algorithm a cascaded highpass and lowpass filters of cutoff frequencies 5Hz and 

11Hz respectively were used, we chose to run the algorithm with the previously proposed filter. 

Noise elimination of record 100 of the MIT-BIH arrhythmia database is shown below.   
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Figure 2.6: Filtered signal of record 100. 

 

Derivative:  this step is useful to enlarge the R peak of the QRS complex and reduce the P and 

T waves appearance. A five-point derivative with transfer function H(z) was applied and the 

result is shown below.  

𝑯(𝒛) =  
𝟏

𝟖 𝑻
(−𝟐𝒛−𝟐 − 𝒛−𝟏 + 𝒛𝟏 + 𝟐𝒛𝟐)                                                                 Equation 2.1 

 

 

Figure 2.7: Results of applying derivative (record 100). 

 

Squaring:  squaring is used to further intensify the slope of QRS complex and eliminate the 

slopes of T and P waves. The result is shown in figure 2.13. 

𝒚(𝒏𝑻) = [𝒙(𝒏𝑻)]²                                                                                                Equation 2.2 
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Figure 2.8: Result of squaring (record 100). 

 

Moving window integrator:  sometimes, information provided by the slope is not sufficient, 

for that we need more information about the QRS complexes. This can be achieved using a 

moving window integrator as shown below. 

𝒚(𝒏𝑻) =
𝟏

𝑵
[𝒙(𝒏𝑻 − (𝑵 − 𝟏)𝑻) + 𝒙(𝒏𝑻 − (𝑵 − 𝟐)𝑻) + ⋯+ 𝒙(𝒏𝑻)]            Equation 2.3 

Where N is the number of samples in the width of the integration window, for a sampling 

frequency of 360samples/second N is chosen to be 54.  

 

 

Figure 2.9: Result of moving window integrator (record 100). 
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2.2.4.2 Decision rule  

 

     Previous steps of the algorithm have generated a pulse-shaped waveform, the determination 

of whether or not a pulse corresponds to a QRS complex is done by the decision rule. 

 

Fiducial mark 

    The local peaks of the integrated signal are found. A peak is defined as the point in which 

the signal changes direction within a predefined interval (from an increasing direction to a 

decreasing direction). After each peak, no peak can be detected in the next 200ms [23]. 

 

Adaptive thresholding 

    Fiducial mark peaks are considered potential QRS, to confirm whether a peak is a QRS peak, 

adaptive thresholding is performed on both the integrated and filtered signals. 

   Two thresholds are used for each signal, a signal threshold THRESHOLD I1, and a noise 

threshold THRESHOLD I2, that are based upon running estimates of the noise and signal levels 

NPKI, SPKI respectively.  

   Each potential QRS peak is compared with the thresholds, if PEAK > THRESHOLD I1 then 

PEAK is considered a candidate QRS peak and the signal level SPKI is updated. If 

THRESHOLD I2 < PEAK < THRESHOLD I1 then PEAK is considered a noise peak and the 

noise level NPKI is updated. After updating the noise and signal levels the thresholds are 

updated as well.  

 

If PEAKI is a signal peak: 

 𝑺𝑷𝑲𝑰 = 𝟎. 𝟏𝟐𝟓 𝑷𝑬𝑨𝑲𝑰 + 𝟎. 𝟖𝟕𝟓 𝑺𝑷𝑲𝑰                                                              Equation 2.4 

If PEAKI is a noise peak: 

𝑵𝑷𝑲𝑰 = 𝟎. 𝟏𝟐𝟓 𝑷𝑬𝑨𝑲𝑰 + 𝟎. 𝟖𝟕𝟓 𝑵𝑷𝑲𝑰                                                             Equation 2.5         

Updating thresholds:     

𝑻𝑯𝑹𝑬𝑺𝑯𝑶𝑳𝑫 𝑰𝟏 = 𝑵𝑷𝑲𝑰 + 𝟎. 𝟐𝟓(𝑺𝑷𝑲𝑰 − 𝑵𝑷𝑲𝑰)                                         Equation 2.6       

𝑻𝑯𝑹𝑬𝑺𝑯𝑶𝑳𝑫 𝑰𝟐 = 𝟎. 𝟓 𝑻𝑯𝑹𝑬𝑺𝑯𝑶𝑳𝑫 𝑰𝟏                                                        Equation 2.7 

Where:  

  SPKI: Signal level in integrated signal. 

  NPKI: Noise level in integrated signal. 
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   The algorithm implements a further check to confirm whether the candidate QRS peak is an 

actual QRS peak or not by taking into consideration the information provided by the filtered 

signal; The corresponding peak of the integrated signal is found in the filtered signal and 

compared to a threshold in the exact same manner as we did for the integrated signal. If the 

peak is found to be a QRS peak in the filtered signal then this peak is saved as an actual QRS 

peak location. 

 

If PEAKF is a signal peak: 

 𝑺𝑷𝑲𝑭 = 𝟎. 𝟏𝟐𝟓 𝑷𝑬𝑨𝑲𝑭 + 𝟎. 𝟖𝟕𝟓 𝑺𝑷𝑲𝑭                                                              Equation 2.8                                           

If PEAKF is a noise peak: 

𝑵𝑷𝑲𝑭 = 𝟎. 𝟏𝟐𝟓 𝑷𝑬𝑨𝑲𝑭 + 𝟎. 𝟖𝟕𝟓 𝑵𝑷𝑲𝑭                                                             Equation 2.9                                                                 

Updating thresholds:     

𝑻𝑯𝑹𝑬𝑺𝑯𝑶𝑳𝑫 𝑭𝟏 = 𝑵𝑷𝑲𝑭 + 𝟎. 𝟐𝟓(𝑺𝑷𝑲𝑭 − 𝑵𝑷𝑲𝑭)                                       Equation 2.10                                       

𝑻𝑯𝑹𝑬𝑺𝑯𝑶𝑳𝑫 𝑭𝟐 = 𝟎. 𝟓 𝑻𝑯𝑹𝑬𝑺𝑯𝑶𝑳𝑫 𝑭𝟏                                                        Equation 2.11         

 

where:  

  SPKF: Signal level in filtered signal. 

  NPKF: Noise level in filtered signal. 

 

Search back for missed QRS complexes 

     Pan Tompkins algorithm takes into consideration the possibility of missing a QRS complex 

peak. If a long period has passed without detecting any QRS peak, it is assumed that one has 

been missed, this reduces the number of false negatives, therefore a search back window is 

performed. The search back is based upon the assessment of RR intervals; Two RR intervals 

are calculated in this case considering both regular and irregular heart rhythms, one is the 

average of the eight most-recent beats. The other is the average of the eight most-recent beats 

having RR intervals that fall within certain limits. 

 

𝑹𝑹 𝑨𝑽𝑬𝑹𝑨𝑮𝑬𝟏 = 𝟎. 𝟏𝟐𝟓 (𝑹𝑹𝒏−𝟕 + 𝑹𝑹𝒏−𝟔 + ⋯+ 𝑹𝑹𝒏)                                 Equation 2.12 

Where 𝑅𝑅𝑛 is the most recent RR interval.  

𝑹𝑹 𝑨𝑽𝑬𝑹𝑮𝑨𝑬𝟐 = 𝟎. 𝟏𝟐𝟓(𝑹𝑹𝒏−𝟕
′ + 𝑹𝑹𝒏−𝟔

′ + ⋯+ 𝑹𝑹𝒏
′ )                                 Equation 2.13 
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 where 𝑅𝑅𝑛
′  is the most recent RR interval that fell between the acceptable low and high RR-

interval limits.  

The RR-interval limits are:   

𝑹𝑹 𝑳𝑶𝑾 𝑳𝑰𝑴𝑰𝑻 = 𝟗𝟐% 𝑹𝑹 𝑨𝑽𝑬𝑹𝑨𝑮𝑬𝟐                                                       Equation 2.14 

𝑹𝑹 𝑯𝑰𝑮𝑯 𝑳𝑰𝑴𝑰𝑻 = 𝟏𝟏𝟔% 𝑹𝑹 𝑨𝑽𝑬𝑹𝑨𝑮𝑬𝟐                                                   Equation 2.15 

𝑹𝑹 𝑴𝑰𝑺𝑺𝑬𝑫 𝑳𝑰𝑴𝑰𝑻 = 𝟏𝟔𝟔% 𝑹𝑹 𝑨𝑽𝑬𝑹𝑨𝑮𝑬                                                Equation 2.16 

   If a QRS complex is not found during the interval specified by the RR MISSED LIMIT, the 

maximal peak reserved between the two established thresholds is considered to be a QRS 

candidate. Also, in case of irregular heart rate the threshold is reduced by half. 

 

T-Wave Identification 

    If a QRS detection occurs within 360ms of the previous one i.e., 𝑅𝑅𝑛< 360ms, one must 

check if it is a QRS or a T wave. If the maximal slope that occurs during this waveform is less 

than half that of the QRS waveform that preceded it, it is identified to be a T wave; otherwise, 

it is a QRS complex. 

   The results of the applied algorithm [24] are shown below for different records of the MIT-

BIH arrhythmia database where the R locations are represented by a red cross on the signal. 
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     Figure 2.10: R locations on different ECG records. 

 

   After localizing the R peaks of the QRS complexes, it is time now to segment the whole ECG 

signals into individual heartbeats. We defined a single ECG beat by taking 130 samples before 

the R peak, and 170 samples after the R peak. And then converted each heartbeat into a 

grayscale image of dimension 200×200, some of the results are illustrated below. 

 

                    

    Normal heartbeat               RBBB heartbeat                   LBBB heartbeat                    PVC heartbeat 

 

       

        PVC heartbeat                

 

Figure 2.11: Grayscale extracted ECG beats. 

 

 

2.3 Classification algorithm 

 

   The Classification algorithm is a Supervised Learning technique that is used to identify the 

category of new observations on the basis of training data. In Classification, a program learns 

from the given dataset or observations and then classifies new observation into a number of 

classes or groups [25]. 

Classification is of two types [26]:   

 Binary classification: When we have to categorize given data into 2 distinct 

classes. Example On the basis of given health conditions of a person, we have to 
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determine whether the person has a certain disease or not. 

 

 Multi class classification: The number of classes is more than 2. For Example, 

On the basis of data about different species of flowers, we have to determine which 

specie does our observation belongs to. 

    

 

2.4 Convolutional neural networks 

 

  CNN is one of the most popular deep learning architectures, it usually deals with image data 

and is used in variety of applications. The word convolutional in CNN arise from the fact that 

CNNs use convolution operations in its layers, these convolutional layers help in determining 

more complex features. depending on the convolution direction CNN can come in 3 different 

dimensions 1D, 2D, 3D, but when we usually speak of CNNs we are referring to the 2D CNN. 

 

2.4.1 CNN Architecture and working 

 

   Similar to ANNs, a CNN is composed of input layer, a set of hidden layers and an output 

layer; The hidden layers are what make CNNs special, they comprise of a set of convolutional 

layers+ Rectified linear unit (ReLU) activation functions, pooling layers and finally fully 

connected layers.  

 

 

 Figure 2.12: CNN architecture for a classification problem [27]. 

 

2.4.1.1 Convolutional layers  
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   Convolutional layers are the building block of a CNN model, it is where the features are 

detected. This layer comes with a number of filters called kernels which represent 2-

dimensional array of weights that are initialized and then updated by backpropagation using 

gradient descent. They are typically smaller than the input image size; Each kernel slide across    

the image with a certain stride, and in every slide, each value of the kernel gets multiplied by 

the corresponding pixel in the image and then adds everything together producing one value, 

this process is repeatedly performed all across the image resulting in a 2-dimensional array 

called feature map, which represents the detected features from the convolutional layer. 

Applying a set of filters on a single image result in a set of feature maps called a tensor.  

 

Figure 2.13: Convolution process. 

 

For a given image of dimension 𝑛ℎ × 𝑛𝑤 the convolution operation is given by the equation 

below:  

𝑪𝒐𝒏𝒗(𝒊𝒎𝒂𝒈𝒆, 𝒌𝒆𝒓𝒏𝒆𝒍) = ∑ ∑ 𝒌𝒆𝒓𝒏𝒆𝒍𝒋,𝒊 × 𝒊𝒎𝒂𝒈𝒆𝒙+𝒋−𝟏,𝒚+𝒊−𝟏
𝒏𝒘
𝒊=𝟏

𝒏𝒉
𝒋=𝟏                 Equation 2.17 

Where:  

𝒏𝒉: The height of the image. 

𝒏𝒘: The width of the image. 

 

     Two results can be obtained from this process. One in which features are reduced in 

dimensionality compared to the input, which is known as “valid padding”, the other is increased 

or remains the same which is known as “same padding”; Padding refers to the number of pixels 

added to the input image to allow the kernel to cover more space in the image. Valid padding 

refers to no padding at all, so when the kernel slides along the image, the unreached pixels are 

dropped resulting in a shrank output size, whereas same padding refers to adding pixels to the 

borders of the image so that the kernel can fit and cover all the pixels of the image.  
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Figure 2.14: Zero padding. 

 

The feature map dimension can be obtained using this formula:  

𝒅𝒊𝒎(𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒎𝒂𝒑) =
𝒏𝒉−𝒌+𝟐𝒑

𝑺
+ 𝟏 ×  

𝒏𝒘−𝒌+𝟐𝒑

𝑺
+ 𝟏                   Equation 2.18                                          

Where: 

 𝑛ℎ: the height of the input image. 

 𝑛𝑤: the width of the input image. 

 𝑘: the kernel dimensionality. 

 𝑝: the amount of padding. 

 𝑠: the stride, which is the step by which the kernel is sliding across the image. 

 

   After the feature maps are created, the next step is to pass these latter through a non-linear 

activation function usually ReLU function. Considering images are naturally non-linear the 

goal here is to enhance the non-linearity even further to compensate the linearity caused by the 

convolution operation [28], making the feature maps more adaptable to real world data. 
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Figure 2.15: Rectification process. 

 

2.4.1.2 Pooling layer  

 

     Pooling layer is responsible for dimensionality reduction of the feature map, hence 

decreasing the computational power required to process the input data. Moreover, it results in 

extracting dominant features from the images thus, training the model effectively. 

     Pooling comprises of different types, the most commonly used are max pooling and average 

pooling. Max pooling returns the maximum pixel value from the portion selected by the 

corresponding kernel, average pooling on the other hand returns the average from the portion 

selected by the kernel. The same process is repeated as the kernel slides through the entire 

feature map resulting in a reduced image dimension which is calculated as follows:  

  

 𝒅𝒊𝒎(𝒑𝒐𝒐𝒍(𝒇𝒆𝒂 𝒕𝒖𝒓𝒆𝒎𝒂𝒑)) =
𝒏𝒉−𝒌

𝑺
+ 𝟏 ×  

𝒏𝒘−𝒌

𝑺
+ 𝟏                  Equation 2.19                          

Where: 

  𝑛ℎ: the height of the input feature map. 

 𝑛𝑤: the width of the input feature map. 

 𝑘:the kernel dimensionality. 

 𝑠: the stride. 

 

 

Figure 2.16: Pooling operation. 

 

    Combining the convolutional layer + ReLU and the pooling layer creates a single hidden 

layer. Generally, the first hidden layer is designed to capture low quality features in the image, 
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nevertheless as we pass through multiple hidden layers, the model becomes sophisticated to 

detect more complex features. This whole process is known as feature extraction. 

 

2.4.1.3 Fully connected layer  

 

     After the feature extraction is done, the next step is learning the non-linear patterns of our 

data and map the input to the output by means of a classical neural network.  

    The output of the last pooling layer is flattened and converted into a column vector, and then 

fed to the neural network, forward and backward passes are done after each iteration over a 

series of epochs until the model achieves high accuracy. 

  

2.4.2 Batch normalization  

 

    The input’s distribution of a hidden layer varies as the weights of previous layers are being 

updated after each iteration. This causes instability in the network as the weights are trying to 

be adjusted to different distributions each time. This slows down the training and results in an 

unstable convergence. This phenomenon is known as Internal Covariate Shift [29].  

    Batch normalization was introduced to reduce this problem, it considers normalizing, scaling 

and shifting the inputs for each chosen layer by normalizing each activation input to have the 

same distribution over each mini-batch. even if the input values change, their mean and variance 

will remain same. This reduces the effect of previous layer’s changes on the current layer, 

therefore, makes it learn independently. 

Batch Normalizing Transform, applied to activation x over a mini-batch [29]:  

 

Figure 2.17: Batch Normalization process [29]. 
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    Where x represents a single activation of a certain layer and B represents the values of this 

activation in the mini-batch. In the first two steps, the mean and variance of inputs are calculated 

over a mini batch, then each input sample gets normalized to have mean of 0 and variance of 1, 

scaled by γ and shifted by β to set a desired distribution. γ and β are learnable parameters that 

help to set the distribution. 

 

2.4.2.1 Batch normalization in CNN 

 

    In CNN, we use batch normalization directly after the convolutional layer; We calculate the 

mean and variance for all feature maps across the mini batch.  

 

 

Figure 2.18: Mean and variance of feature map. 

the procedure of calculating the mean and variance is shown below: 

 

𝒎𝒆𝒂𝒏 =
𝟏

𝒎×𝒘×𝒉
 ∑ ∑ ∑ 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝑴𝒂𝒑[𝒎, 𝒋, 𝒌]𝒘

𝒌=𝟏
𝒉
𝒋=𝟏

𝒎
𝒊=𝟏                                  Equation 2.20 

𝒗𝒂𝒓𝒊𝒂𝒏𝒄𝒆 =  
𝟏

𝒎×𝒘×𝒉
 ∑ ∑ ∑ (𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝑴𝒂𝒑[𝒎, 𝒋, 𝒌] − 𝒎𝒆𝒂𝒏)²𝒘

𝒌=𝟏
𝒉
𝒋=𝟏

𝒎
𝒊=𝟏      Equation 2.21 

 Where: 

m: number of examples in the current minibatch.  

w: feature map width. 

h: feature map height. 
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2.4.3 Dropout  

 

     As the number of layers increase in a neural network, we will be having a large number of 

weights and biases to learn which causes overfitting, which means that the model learns so 

many details about our training data that it performs poorly on unseen data, this can be observed 

when the difference between testing and training accuracies is high. One way to solve this issue 

is by using dropout. The term “dropout” refers to randomly dropping out units in a neural 

network by a probability of p called the dropout rate, resulting in a network that contains only 

a subset of the original network. By dropping a unit out, we mean temporarily removing it from 

the network, along with all its incoming and outgoing connections [30]. A dropout rate of 0.1 

means that each neuron has 10% chance to be dropped, similarly a dropout rate of 1 means that 

all units are dropped and a rate of 0 means that all units are kept. Figure 2.19 illustrates the 

dropout layers. 

 

 

 

 

 

 

 

 

Figure 2.19: Dropout [30]. 

 

     Dropout is only used for training data; in test data all neurons are activated and the weights 

of the layer we applied dropout to are multiplied by the dropout rate p. The reason for that is 

that when neurons are all activated in test time, it puts the output neurons in an unusual regime 

producing too large values, so the trick of reducing the weight values by p is used to prevent 

this overexcitement from happening.  

 

2.4.4 Evaluation metrics  

 

    Different evaluation metrics exist to assess a deep learning model, one of them being the 

confusion matrix. Confusion matrix is an N×N matrix representing how well the model is 

performing, mainly used for classification problems where N is the number of classes. It 

compares the predicted values of the model with the actual target values and gives an overview 
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about the correct predictions and false predictions. Figure 2.20 represents a confusion matrix 

for binary classification. 

 

 

 

Figure 2.20: Confusion matrix for binary classification. 

  

    To better understand this let’s consider a binary classification of whether a patient has a heart 

disease or not:  

True positive (TP): is when the model has predicted that the patient has a heart disease and he 

actually does have a heart disease. 

True negative (TN): is when the model has predicted that the patient does not have a heart 

disease and he actually does not have a heart disease.  

False positive (FP): is when the model has predicted that the patient has a heart disease when 

he actually does not. Also known as type I error. 

False negative (FN): is when the model has predicted that the patient does not have a heart 

disease when in fact, he does have a heart disease. Also known as type II error. 

The performance of the model is assessed using what we call key performance indicators (KPI):  

Classification accuracy: (TP+TN)/(TP+TN+FP+FN). 

Misclassification rate: (FP+FN)/(TP+TN+FP+FN). 

Precision: TP/(TP+FP), it measures the model’s accuracy in classifying a sample as positive. 

Recall (sensitivity): TP/(TP+FN), it measures the model's ability to detect Positive samples.  

 

   The above example was for the case of binary classification, but what about multiclass 

classification? How are TP TN FP FN calculated?  
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Let’s consider the confusion matrix for multi class classification shown in figure 2.21:  

 

 

Figure 2.21: Confusion matrix for multi class classification. 

 

In this case we are trying to classify n classes, 𝐶1, 𝐶2…. 𝐶𝑛, hence, we have n×n matrix. 

 𝑁11represents actually 𝐶1classified as 𝐶1, 𝑁22 represents actually 𝐶2classified as 𝐶2, 𝑁𝑛𝑛 

represents actually 𝐶𝑛classified as 𝐶𝑛, therefore, we can conclude that the diagonal values 

represent the true positives TP for each class. 

   Similarly, 𝑁12 represents actually 𝐶1classified as 𝐶2, 𝑁21 represents actually 𝐶2 classified as 

𝐶1, and so on. Hence, the values off the diagonal are the errors.  

   The total number of text samples for each class is calculated by summing all values of the 

corresponding row i.e., total number of samples of class 𝐶1 = 𝑁11 + 𝑁12 + ⋯+ 𝑁1𝑛.  

   The total number of false negatives FN of a class is the sum of all values in the corresponding 

row excluding the true positive. 

   The total number of false positives FP of a class is the sum of all values in the corresponding 

column excluding the TP. 

   The total number of true negatives TN of a class is the sum of values of all rows and columns 

excluding values of corresponding row and column. 

   After calculating TP, FP, TN, FN of each class, we can continue to calculate the key 

performance indicators for each class in the same way we did with binary classification. 

  

2.5 Conclusion 

 

     In this chapter, we went through the different preprocessing steps to get our ECG data to be 

ready for further processing by a neural network; we introduced the concept of convolutional 

neural networks and the convolution operation, along with different deep learning techniques 

used to enhance the performance of a CNN, finally we explained the theory behind confusion 

matrices and how this latter is used to evaluate a deep learning model. 
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3  Chapter 3 
 

Results and discussion 
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3.1 Data collection 

 

     Different records from the MIT BIH arrhythmia database were selected to extract the 

heartbeats of the four different classes (N, LBBB, RBBB, PVC). We ensured that for each class 

the same number of heartbeats was extracted, which is around 5000 samples per class. This is 

in order to create a balanced dataset for our models. Table below shows the records used and 

the number of data samples acquired per each class. Table 3.1 demonstrates the records used to 

retrieve samples of each class. 

 

Classes Records № of samples 

N 100,101,103,105,106,108,112,114,115, 

116,119,121,123,200,201,202,203,205, 

209,210,219,221,222,223,231. 

5000 

LBBB 109,111,214. 4795 

RBBB 118,124,212. 5000 

PVC 109,105,106,116,118,119,124,200,201, 

203,204,205,208,210,215,219,221,223, 

228,233. 

5000 

 

Table 3.1:Records used to retrieve samples of each class. 

 

      As mentioned in the previous unit, the heartbeats were converted into grayscale images; 

The images and the corresponding labels were saved in separate HDF5 files data.hdf5 and 

label.hdf5.  

 

3.2 Data preparation  

 

      Our data can’t be fed directly to the neural network, some preparation needs to be done 

including splitting, reshaping, and normalization. 

      We first read our data, then using the train_test_split method from the sklearn library we 

split it into a training and a testing set with a ratio of 80/20. Table 3.2 shows the number of 

samples per class. 
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Table 3.2: Training and testing datasets. 

  

 

3.3 Experimental results  

 

       A 2D CNN model was proposed to classify the ECG heartbeat images into four different 

categories. After trying many models with different layering structure, we found that the 

architecture demonstrated in table 3.3 below works best for our classification.  

 

                            Type                    kernel size                 stride                number of kernels         Input size 

Layer 1         Conv2D+ReLU               3×3                          1                                16                        200×200×1  

Layer 2         Conv2D+ReLU               3×3                          1                                16                       200×200×16 

Layer 3        AveragePooling2D           2×2                          2                                                           200×200×16         

Layer 4         Conv2D+ReLU               3×3                          1                                16                       100×100×16 

Layer 5         Conv2D+ReLU               3×3                          1                                16                       100×100×16 

Layer 6        AveragePooling2D           2×2                          2                                                           100×100×16 

Layer 7         Conv2D+ReLU               3×3                          1                                16                         50×50×16 

Layer 8         Conv2D+ReLU               3×3                          1                                16                         50×50×16 

Layer 9        AveragePooling2D           2×2                          2                                                             50×50×16 

Layer 10   Fully connected (ReLU)                                                                       512                        25×25×16 

Layer 11   Fully connected (ReLU)                                                                       512                             512 

Layer 12       Out (SoftMax)                                                                                     4                               512  

 

Table 3.3: Architecture of proposed model. 

 

      The performance of the above model was assessed for three different approaches, one being 

CNN without Batch normalization (BN) and dropout; Second being CNN with BN, in which 

we placed BN layers after each convolutional layer, lastly CNN with dropout where we used 

Classes Trainset (№ of samples) Testset (№ of samples) 

N 4005 995 

LBBB 3828 972 

RBBB 3996 1004 

PVC 4011 989 
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two dropout layers after each fully connected layer and trained the model for different dropout 

rates.  

     As hyperparameters the model was compiled with cross entropy loss function, Adam 

optimizer with learning rate of 0.0001 and a batch size of 32. The assessment was based on 

training and testing accuracies as well as training time. The results obtained for each approach 

are reported in tables 3.4 and 3.5, and confusion matrices in figure 3.1. 

 

  Model              Epochs      Training time(s)      Training accuracy (%)      Testing accuracy (%) 

Without BN            10                  3940                          99.97                                    99.02 

And dropout 

  With BN                5                   2698                          99.98                                    99.32 

 

 

Table 3.4: Results of CNN with and without BN.  

 

Dropout rate           Epochs            Training accuracy (%) Testing accuracy (%) 

0.1                               10           99,82           99,22 

0.2                               10           99,81           99,29 

0.3                               10            99,85           99,47 

0.4                               10           99,79           99,34 

0.5                               10           99,71           99,29 

0.6                               10           99,60           99,24 

0.7                               10           99,36           99,17 

0.8                               10           98,74           99,09 

0.9                               10           98,62                                                                                                  98.68 

 

Table 3.5: Results of CNN with dropout. 
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                 Confusion matrix of CNN with dropout. 

 

            Figure 3.1: Confusion matrices of the different models. 

 

 

 

 

         
 

         Confusion matrix of CNN without BN and   

dropout. 

 

 

 
 

              Confusion matrix of CNN with BN. 
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3.4 Discussion of the results  

 

      A 2D CNN model was suggested in this study for ECG heartbeat arrythmias classification, 

three approaches were evaluated, a CNN without BN and dropout, CNN with BN and CNN 

with dropout. In this section of the chapter, we discuss the results obtained from the three 

different techniques.  

     The results recorded in table 3.4 demonstrated the performance of the CNN model and CNN 

with BN model, where BN layers placed in between the conv2D and ReLU layers. The CNN 

model has achieved a training accuracy of 99.97% and a testing accuracy of 99.02% after 10 

epochs of training, meanwhile for only 5 epochs of training on the CNN with BN model attained 

the same training accuracy of 99.98%. This highlights the effect of BN layers in accelerating 

the learning process and leading to faster convergence; As the training times of both 

architectures indicate, introducing the BN layers decreased from 3940 seconds(1h05min) to 

2698 seconds(44min), in this way, we saved time of almost 21min in our training. 

     Another promising finding is that a substantially better testing accuracy has been observed 

with a percentage of 99.32%, and that BN offers some regularization effect, meaning it 

improves the generalization of our model, while the difference between training and testing 

accuracies of the CNN model was around 1%, with BN it got reduced down to 0.66%.  

    The above observations are a proof that BN has multiple benefits in a deep learning model 

from improving learning time to improving generalization. By normalizing the inputs to each 

layer over the minibatch, we give equal importance to each input variable, thus, we reduce the 

internal covariate shift, which results in a more stable and fast training. 

    One thing to note is that our CNN without BN and dropout model does not overfit much 

(difference of 1% only between train and test accuracies), since we could provide an enough 

amount of data to the model, however, a further improvement could be done. One way of 

reducing this difference is by applying a regularization technique like dropout. Table 3.5 

demonstrates the training and testing accuracies for different dropout rates for 10 epochs of 

training; The best accuracies were achieved with a dropout rate of 0.3 where training accuracy 

was 99.85% and 99.47% testing accuracy with a difference of 0.38%.  

     Dropping out random neurons by a certain fraction while training prevents the model from 

learning the noise and the details of the training data, which results in a more generalized model. 

As the dropout rate increases the accuracy decreases which is logical since as we increase the 

rates, we are decreasing the number of units that contribute in the learning thus resulting in a 

network that lacks sufficient neurons to model the input output relationship. 

    The resulting confusion matrices shown on figure 3.1, represent a summary of prediction 

results on our classification problem, where for each class it keeps count of the number of 

correct and incorrect predictions. The outcome of the matrices indicates that our models could 

perform very well on the prediction of the four classes equally. The misclassification rates of 

the different models are shown in table below.  
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Classes   CNN without BN               CNN with BN             CNN with dropout (0.3) 

      And dropout 

N 

LBBB 

RBBB 

PVC 

            5.30e-3                             5.05e-3                                  3.28e-3 

            4.29e-3                             2.02e-3                                  1.76e-3 

            3.28e-3                             2.27e-3                                  1.76e-3 

            6.81e-3                             4.29e-3                                  3.78e-3 

 

Table 3.6: Misclassification rates for the different models. 

 

    Table 3.6 above provides information about the percentage of observations that were 

incorrectly predicted by the models. In our study correctly predicting the arrhythmias is 

important, since patient’s health depends on it, for that, we try to choose a model with the least 

misclassification rate, in our case the CNN with dropout model resulted in the least rate, 

therefore it was selected as the best model for the classification. 

 

3.5 Conclusion  

 

     Dropout and batch normalization are two powerful deep learning techniques used for 

improving model performance and generalization, the CNN without BN and dropout resulted 

in a good accuracy of 99.02%, but further improvements could be achieved with BN and 

dropout. The CNN with dropout model is the well performing one achieving a testing accuracy 

of 99.47% and the lowest misclassification rate. 
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General conclusion 
 

In this report, a CNN based model was implemented and trained for classification of ECG 

heartbeat arrythmias into four different classes (Normal beat, LBBB, RBBB, PVC). The 

model has been trained and tested using records from MIT BIH arrythmia database, that were 

filtered, segmented and converted into grayscale images of dimension 200×200 before being 

fed to the neural network. Also, the effect of dropout and batch normalization have been 

examined in terms of accuracy and training time. 

We provided an introductory about electrocardiography, where we saw that any distortion in a 

heart’s beating mechanism will lead to arrythmia, which can be detected by monitoring and 

diagnosing ECG signals. We also got acquainted with deep learning theory and how do neural 

networks learn with the help of backpropagation and gradient descent. 

After that, Pan Tompkins algorithm was introduced which is the most widely used QRS 

detection method that applies a series of filters to highlight the characteristics of an ECG 

signal followed with applying adaptive thresholding technique to detect the R peaks, these 

latter are used as a reference to segment our signals into individual heartbeats. Moreover, 2D 

CNNs architecture and its consisting layers were explained along with two deep learning 

techniques which are batch normalization and dropout. 

The experimental results are finally obtained by implementing, training and evaluating our 

CNN architecture, at first the model trained for 3940 seconds to finally achieve a testing 

accuracy of 99.02%; By adding batch normalization after each Conv2D layer, the resulting 

model trained for 2698 seconds resulting in a testing accuracy of 99.32%, this highlights the 

effect of BN in improving the training time as well as model generalization. We trained again 

the same original model and added dropout layers in between the fully connected layers, for 

different dropout rates, it was found that the rate of 0.3 works better in our case, as it achieved 

99.47% testing accuracy along with the best regularization effect and lowest misclassification 

rate. 

 

 

 
 

 



 

50 

 

References  
 

[1]  A. Singh, «ECG arrhythmia classification using a 2-D,» DataDrivenInvestor, 2018. 

[2]  Nahom Ghebremeskel1 ,Vahid Emamian2, «CLASSIFICATIONOF CARDIAC 

ARRHYTHMIA USING A 2 D CONVOLUTIONAL,» International Journal of Recent 

Scientific Research, 2019. 

[3]  XUEXIANG XU , HONGXING LIU, «ECG Heartbeat Classification Using,» IEEE 

Access, 2020. 

[4]  «Basics of the Heart,» [Online]. Available: elitecardiovascular.com. [Accessed 2022]. 

[5]  Oxford Languages, "Electrocardiography". 

[6]  M. Cadogan, "PR Interval," [Online]. Available: litfl.com. [Accessed march 2022]. 

[7]  "Segments vs. Intervals in an ECG," [Online]. Available: timeofcare.com. [Accessed 

march 2022]. 

[8]  «Electrocardiography,» [Online]. [Acessed 2022]. 

[9]  "Understanding the 12-Lead ECG System, with Animation," 26 september 2016. 

[Online]. Available: alilamedicalimages.org. [Accessed march 2022]. 

[10]  Marschall S. Runge, Cam Patterson, and George Stouffer, Netter's Cardiology, 2006.  

[11]  "Arrhythmia," [Online]. Available: my.clevelandclinic.org. [Accessed march 2022]. 

[12]  J. FRANKENFIELD, "Artificial Intelligence (AI)," 08 march 2021. [Online]. Available: 

investopedia.com. [Accessed april 2022]. 

[13]  N. Rowe. [Online]. Available: morioh.com. [Accessed  2022]. 

[14]  K. Suzuki, Artificial Neural Networks-Architectures and Applications, IntechOpen , 

2013.  

[15]  [Online]. Available: en.wikipedia.org/wiki/Gradient_descent. [Accessed le 2022]. 

[16]  S. Kansal, «Quick Guide to Gradient Descent and Its Variants,» 2020.  

[17]  «MIT-BIH Arrhythmia Database,» [Online]. Available: physionet.org. 

[18]  Unknown. [Online].  

[19]  Liangling Gu,Nanquan Zhou,Haotian Wu, «Application of Interference Canceller in 

Bioelectricity Signal Disposing,» 2011.  



 

51 

 

[20]  J. S. Karnewar, V. K. Shandilya, «Preprocessing ECG signal by eliminating various 

noises using denoising methods,» AIP Conference Proceedings, 2022. 

[21]  Falco Strasser, Michael Muma, A. Zoubir, «Motion artifact removal in ECG signals using 

multi-resolution thresholding,» semantic scholar, 2012. 

[22]  JIAPU PAN , WILLIS J. TOMPKINS, «A Real-Time QRS Detection Algorithm,» IEEE, 

1985. 

[23]  «Pan–Tompkins algorithm,» [Online]. Available: en.wikipedia.org. [Accessed 2021]. 

[24]  antimattercorrade, «Pan Tompkins QRS Detection,» 2021. 

[25]  «Getting started with Classification,» [Online]. Available: geeksforgeeks.org. [Accessed 

2022]. 

[26]  «Classification Algorithm in Machine Learning,» [Online]. Available: javatpoint.com. 

[Accessed 2022]. 

[27]  S. K. E, «Convolutional neural networks».  

[28]  S. team, «Convolutional Neural Networks (CNN): Step 1(b) - ReLU Layer,» 17 August 

2018. [Online]. Available: superdatascience.com. [Accessed may 2022]. 

[29]  Sergey Ioffe, Christian Szegedy, «Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift,» arxiv, 2015. 

[30]  Nitish Srivastava nitish,Geoffrey Hinton,Alex Krizhevsky,Ilya Sutskever,Ruslan 

Salakhutdinov, «Dropout: A Simple Way to Prevent Neural Networks from Overfitting,» 

Journal of Machine Learning Research, 2014.  

[31]  «Difference between IIR and FIR filters: a practical design guide,» april 2020. [Online]. 

Available: advsolned.com. [Accessed 2022]. 

[32]  Daniel Ho, Eric Liang, Richard Liaw, 07 june 2019. [Online]. Available: 

bair.berkeley.edu. 

[33]  J. S. Karnewar , V. K. Shandilya, «Preprocessing ECG signal by eliminating various 

noises using denoising methods,» AIP Conference Proceedings, 2022. 

 

 

 

 
 



 

52 

 

 

 

 


	Dedication and Acknowledgement
	Abstract
	Table of contents
	List of figures
	List of tables
	Abbreviations
	General introduction
	1 Chapter 1
	1.1 Introduction
	1.2 Human heart and electrocardiography
	1.2.1 Anatomy of the heart
	1.2.2 Electrical activity of the heart
	1.2.3 Electrocardiography and ECG signals
	1.2.3.1 ECG signals
	1.2.3.2 ECG derivations

	1.2.4 Heart arrhythmias
	1.2.4.1  Supraventricular arrhythmias
	1.2.4.2  ventricular arrhythmias
	1.2.4.3 Bradyarrhythmia


	1.3 Artificial intelligence and neural networks
	1.3.1 Machine learning and deep learning
	1.3.2 Artificial Neural networks
	1.3.2.1  What is an artificial Neural network?
	1.3.2.2 How does neural networks work?

	1.3.3 Backpropagation
	1.3.3.1 Loss function
	1.3.3.2  Gradient descent


	1.4 Conclusion

	2  Chapter 2
	2.1 Introduction
	2.2 Preprocessing of ECG signals
	2.2.1 MIT BIH arrhythmia database
	2.2.2 Noise in ECG signals
	2.2.3 Filtering ECG signals
	2.2.4 Pan Tompkins algorithm
	2.2.4.1  Filtering and nonlinear transformation
	2.2.4.2 Decision rule


	2.3 Classification algorithm
	2.4 Convolutional neural networks
	2.4.1 CNN Architecture and working
	2.4.1.1 Convolutional layers
	2.4.1.2 Pooling layer
	2.4.1.3 Fully connected layer

	2.4.2 Batch normalization
	2.4.2.1 Batch normalization in CNN

	2.4.3 Dropout
	2.4.4 Evaluation metrics

	2.5 Conclusion

	3  Chapter 3
	3.1 Data collection
	3.2 Data preparation
	3.3 Experimental results
	3.4 Discussion of the results
	3.5 Conclusion

	References

