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Perception is an imperative task for a mobile robot to be able to navigate 

autonomously inits environment. The robot can perceive its surrounding through 

one or more sensors; then, create a representative map of the environment and 

locate itself on it in real time. 

The propose of this project is to build a surveillance strategy to enable a 

mobile robot to navigate and supervise an interior environment. It consists in the 

implementation of a perception techniques, localization and navigation strategy 

on a surveillance robot. 

Hence, this project deals with ROS Navigation Stack which is powerful 

for mobile robots to move from place to place. We worked with B21r mobile 

robot of CDTA equipped with light detection and ranging (LIDAR) sensor and 

D435i depth camera. First, our work consists of building a map of the hall of 

CDTA (the Advanced Technologies Development Center) using Lidarsensor and 

Simultaneous Localization and Mapping techniques. Then, we localized our 

robot inside that map using AMCL, therefore, our B21r mobile robot is well 

localized. Second, we created a path so that our robot reaches its goal or target 

and creates a new path in case the robot faces obstacles that were not present in 

the old map. However, our robot was not able to correctly deal with its last task 

consisting in tracking the planned path; even that, its position is updated 

enabling it to achieve its desired destination, due to mechanical problem of robot 

wheel. The work is implemented using ROS melodic and Rviz tool. 
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GENERAL INTRODUCTION 
 

Nowadays, autonomous mobile robots are widely used for several purposes. Autonomous 

mobile robots which work without human intervention are required in Robotic fields. In particular, 

with the development of Lidar-based navigation technique, mobile robots could be located and 

navigate in “real time” in indoor and outdoor environment. Navigation technology is one of the 

fundamentals in field of automation and robotics. 

This master project deals with localization and Navigation which are the key technologies 

of autonomous mobile service robots, and is essentially based on SLAM (Simultaneous 

Localization And Mapping) which is considered as the fundamental basis for robot localization 

and mapping. SLAM is constructing a map using mobile robot (mapping), then determining the 

position of this robot relative to this map. As it will be presented, the robot builds the map, localizes 

itself on the map and performs navigation. The map of the environment is a basic need for a robot 

to perform actions like moving room to room, picking an object from one place and taking it to 

another one. Our project is implemented using ROS (Robot Operating System) platform and rviz 

tool. 

This project is realized in the “Advanced Technologies Development Center (CDTA)” in 

Baba Hassen, Algiers, in the robotics division, and our algorithm has been implemented on the 

B21R mobile robot in indoor environment. 

The rest of the report is organized as follow. Chapter 1 introduces mobile robots and and 

their basic components; then, it introduces the Robot Operating System (ROS) and discusses its 

fundamentals. Chapter 2 is a description of the b21r mobile robot, Lidar sensor and RGB-D 

camera. Chapter 3 explains in details the implementation of ROS Navigation Stack. Chapter 4 is 

dedicated for discussing the obtained results. The report ends up by conclusion and future work. 
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A mobile robot is a machine controlled by software. Mobile robot needs to estimate its 

location with respect to objects in its environment and to map the positions of objects that it 

encounters in its environment. 

Mobile robots may roam around their surroundings and are not restricted to a single 

physical place. Using a LIDAR sensor, the mobile robot can execute navigation and localization 

with the help of a low-power onboard computer and a remote-control system. With intel 

REALSENSE DEPTH CAMERA D435i, the mobile robot can track not only the object but the 

depth and exactly the distance of each single object. 

It is more convenient to use the open-source software ROS to realize mobile robot 

navigation. 

I.1. Motivation 

 
Robots are everywhere revolutioning every aspect of our life. The ROS navigation stack 

on the B21r mobile robot equipped with LIDAR sensor, Intel REALSENSE CAMERA D435i is 

a challenge that we wanted to accomplish. It also leads us to get familiar with the open-source 

software ROS we may be need in our professional career. 

I.2. Goal of the Project 

 
The aim of this project is to create completely a map of an indoor environment so that our 

mobile robot localizes itself inside it and creates a path to reach a given position then tracks this path avoiding 

obstacles. The robot uses RPLIDAR sensor to scan and visualize the surrounding environmentand 

to create a map and plan its route towards the destination in order to detect humans and avoid 

obstacles in the path to reach the destination. 

Additionally, a list of system requirements must be developed, as well as the structure of 

the system's components. The system is then used to carry out its functions in accordance with the 
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developed system structure. In the second chapter, the components are chosen by analyzing their 

performance and capabilities in relation to the requirements. 

Another objective is to examine how ROS can be used in the development of mobile robot, 

as well as to identify its potential benefits. 

I.3. Background and Related Work 

 
I.3.1. Definition and history of robots 

 

Robots! Robots are everywhere such as robots fighting fires, making products and items, 

saving time and lives on Mars and in the seas, in processing plants and schools, in emergency 

clinics and homes... Robots now are important and have an importance on many aspects of modern 

life, ranging from modern manufacturing to medical services, transportation, and deep space and 

ocean exploration. Robots will be as ubiquitous and individual as today's Smartphones in the future 

[1]. 

The robot "concept" was established by many creative numerous historical realizations. 

Nonetheless, the "physical" robot had to wait until the twentieth century to see the development of 

its underlying technologies. The term "robot" was coined in 1920, and it derived from the Slavic 

word "robota," which means "subordinate labor"[1]. The first robots were created around the 

middle of the twentieth century. The first industrial robot, "Unimate," designed by American 

inventor George Devol, was put to work on a General Motors assembly line in 1961[2]. They 

benefited from advancements in mechanical, control, computer, and electronic technologies. New 

designs, as always, inspire new research and discoveries, which lead to improved solutions and 

thus novel concepts. Over time, this circle produced the knowledge and understanding that gave 

birth to the field of "robotics"[1]. With the advancement of science in all research areas and the 

emergence of new ones, the field of robotics grew in importance in terms of investments and 

research, and robotics evolved into a synthesis of various disciplines, including electrical and 

electronics, computer science and engineering, mechatronics and mechanical design, control and 

automation systems, AI and cognitive systems, and so on. 
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By the time robots were fully capable of providing assistance, utility, and precision to 

human tasks and activities under human control and supervision, the need for robotic systems to 

be more independent and to process the ability to complete tasks and provide services on their own 

had become a necessity and vital part of future robots, prompting the term "autonomous robots" 

to emerge. An autonomous robot is one that acts without external influence. Artificial intelligence, 

robotics, and information engineering are all subfields of autonomous robotics. Author and 

inventor David L. Heiserma proposed and demonstrated early versions[3][4][5]. Following that, 

the robotics systems were categorized based on where they were found. The robotics systems were 

then classified according to where they fell on the "autonomy Spectrum". As the system progresses 

from manual to fully autonomous. 

I.3.2. Mobile robot today 

 

Mobile robots are being used in increasing numbers in industrial applications. They include 

both Automated Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMRs). The use of 

mobile robots is increasing as companies look for ways to deploy their existing workforces more 

effectively. 

Mobile robots are reducing the time and resources required to transport units from storage 

to production or distribution stations. According to analysts at Yokosuka, a Mitsubishi Electric 

subsidiary, AMRs are opening up new segments and applications by providing increased 

autonomy and intelligence. AMRs can be equipped with manipulator arms to assist dexterous 

human workers in manipulating large items like chassis or parts. 

Autonomous robots are becoming more and more viable for a wide range of tasks. They 

can react in real time to their operating environments, avoiding obstacles such as human and 

determining the most efficient paths to reduce transit times and increase efficiency. Vision, 

navigation, and artificial intelligence advancements have made them viable for new roles [6]. 

I.3.3. The idea of mobile robot 

 

AMRs have the ability to understand their operating environment, allowing them to 

navigate around obstacles and operate safely even when human operators are present. AMRs can 
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use data from cameras, laser scanners and other sensors to understand their environment and make 

the decisions needed to move around it. 

The robot can create a map of its surroundings using the principles of triangulation to detect 

and locate reference points by feeding the data into Simultaneous Localization and Mapping 

(SLAM) algorithms. These references can be used by the robot to determine its current position 

and provide the information needed to move around within it. SLAM allows robot operators to 

modify their route using a laptop or other device, with the ability to make additional changes if 

necessary. It also offers a flexible alternative to AGVs guided by magnetic tape. 

The second option provided by SLAM is autonomous navigation, in which the robot can 

choose the fastest route between two points or extend its journey in response to additional 

information from the fleet management system (FMS). This same autonomous decision-making 

allows it to respond to the presence of obstacles and people, making AMRs safer to deploy 

alongside human workers. 

I.3.4. Types of Robots 

 

 Surveillance mobile robots 

 

One of the important applications of the robots is surveillance. The surveillance is the 

operation of monitoring humans, locations and areas. Surveillance mobile is a system that 

composed by two parts. 

The first part is a reactive navigation system in which a mobile robot moves avoiding 

obstacles in environment using sensors. Sensors are used to collect information about the robot 

and the environment. A robotic system requires an environment map (the mapping) to plan its 

route and navigate through it, and information about its position on the map (localization) in order 

to navigate for its current location to any other location represented in the environment map. The 

second part of the system uses camera for detection (like human detections or face detections...). 

Surveillance robots can be found in all the normal environments (e.g: aerial, ground, 

surface water, underwater or space). An illustration is shown in figure1.1 
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Figure1.1. Surveillance mobile robot. 

 
 

Surveillance robot can be found in any of the following types. Each robot has its own task 

and capabilities. It is not easy to define robots and not easy to categorise them. Some types of 

robots are described as follow. 

 Aerospace robot: includes all types of flying robots that can operate in space such as 

Mars... An example is shown in figure 1.2. 

 Drones: also called uncrewed aerial vehicle, they come in different sizes and have different 

levels of autonomy. An illustration is shown in figure 1.3. 

 Industrial: consist of a manipulator arm designed to perform repetitive tasks. See figure 

1.4. 

 Military & security: used in Iraq and Afghanistan. Military robots include ground systems 

as the one shown in figure 1.6; while security robot include autonomous mobile systems. 

 Medical: are robotic machines utilized in health sciences as illustrated in figure 1.5. 

 Underwater: are robots that consist of deep-sea submersibles like Aquanaut as shown in 

figure 1.7.... 
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Figure1.2.Aerospace robot. Figure1.3. Navigational robot Drones. 
 

Figure1.4.Industrial robots. Figure1.5. Medical robots. 
 

Figure1.6. Military robots. Figure1.7. Autonomous underwater robot. 

 
 

The types of robots that were presented seem to be very unlike; however, their functions or 

their abilities given are all the same. They differ in their tasks and the complexity of robot operating 

system. The principal abilities in a fully autonomous robot are: 

1. Perception: 

 Mapping and environment modelling 

 Localization 
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2. Decision: 

 

 

 
3. Actuation: 

 

 Planning for paths and tasks 

 Collision avoidance 

 Path execution 

 Task accomplishment 

 
I.3.5. Sensors of mobile robot 

 

a) Perception sensors 

 
Sensors are critical components of autonomous mobile robots; without them, they would 

be unable to gather information about the environment in which they operate and navigate. 

Nowadays, a wide range of sensors are available, each with its own set of capabilities and 

designations, but the information they provide is frequently inconsistent or even contradictory. 

An active or passive sensor can be used. Passive sensors simply receive energy from the 

environment and translate it into a meaningful form for the control units or systems, whereas active 

sensors emit energy into the environment in order to observe certain characteristics. 

b) Requirement sensors 

 
The following sensors, shown in figure 1.8, should be present in all mobile robots: 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 

1.8. Mobile robot equipped with various sensor types [7]. 
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 Global positioning system (GPS): Global positioning system is a simple device 

used with the robot for determining the location using satellite [8], complex math and general 

relativity. It is often used with sonar sensor; the mobile robot’s position and obstacle 

avoidance will be determined by a combination of GPS and sonar sensor. The mobile robot 

should navigate according to the waypoint that is present to the GPS module. 

 Light detection and ranging (LIDAR): is a remote sensing system that uses a laser 

signal to measure the distance to an object and then receives its reflection. It can also be used 

to accurately map out its surrounding. Mobile robot uses LIDAR to map the environment 

and detect and avoid obstacles. 

 Camera and its working: the depth camera D435i is part of the intel Real sense 

D400 series of camera. D435i combines the robust depth sensing capabilities of the D435 

with the addition of an inertial measurement unit (IMU). IMU helps to refine its depth 

awareness where the camera moves. D435i used to visualise the environment using SLAM 

and tracking allowing better point-cloud alignment [9]. 

 
 

Figure 1.9. IntelRealsense camera D435i. 

 Ultrasonic sensor: is used to detect is an instrument used to detect objects that are 

far away from the robot using ultrasonic sound waves. It does not require any physical contact 

(see figure 1.10). 
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Figure 1.10. HC-SR04 Ultrasonic sensor 

 Odometry sensor: are common on mobile robots, and they show how far the robot 

has traveled based on how much the wheels have turned. 

 

Figure 1.11.Odometry sensor 

 Inertial measurement unit (IMU): An IMU, as illustrated in figure 1.12, is a set of sensors. 

The navigation of mobile robots is aided by an inertial measurement unit. The data collected 

by a robot’s IMU sensors is properly converted, and useful information such as position,  

orientation, and acceleration is calculated. 

 

 
Figure 1.12. Inertial measurement unit (IMU) 
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I.4. Robot Operating System 

 
Robot Operating System (ROS) is a meta-operating system, not an actual operating system. 

ROS is an operating system that sits on top of other operating systems and allows different 

processes to communicate with one another in real time. ROS provides a structured 

communications layer that runs on top of the operating systems of host computers [10]. The 

majority of ROS tools are compatible with peripheral hardware and can be used for a variety of 

purposes, so their use is not limited to robotics. The ROS core is made up of over two thousand 

packages, each with its own set of capabilities. 

Hence, ROS is a collection of tools that perform the functions and services of an operating 

system on a single computer or across multiple computers. These services include hardware 

abstraction, message exchange between processes, package management, and so on. The number 

of available ROS tools, according to Ademovic [11], is ROS's greatest strength. 

One very important characteristic of ROS is that it is completely open source. ROS was 

created with the goal of reusability of robotic SW in mind. Quigley [12] claims that writing SW 

for robots is difficult, especially as the scale and scope of robotics expands. HW can vary greatly 

between different types of robots, making code reuse extremely difficult. Furthermore, because 

robot SW is tightly coupled, extracting reusable code can be difficult, and ROS was created to 

address these issues. 

To explain ROS, used the following five statements to summarize its philosophical goals [13]: 

 
ROS is peer-to-peer: ROS nodes are execution units that communicate directly or through 

publish/subscribe mechanisms. 

ROS is tools-based: a microkernel design, as well as a number of small tools and modules. 

 
ROS is multi-lingual: It has support for C++, Python, Octave and LISP. 

 
ROS is ‘thin’: It makes use of the Catkin build system to segment code into packages and libraries. 

 
ROS is free and open source: ROS is distributed under the terms of the BSD license, which allows 

the development of both non-commercial and commercial projects. 
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I.4.1. ROS Overview 

 

Data is transferred between ROS nodes using internet protocol (IP)-based communication. 

ROS divides the robotic SW into ROS nodes, which can be run on a single machine or across a 

distributed computer cluster. ROS nodes communicate with one another via publish/subscribe 

channels, but they can also provide callable services to other nodes. One master node (roscore) 

acts as a name server in a running ROS system, allowing other nodes to find each other and form 

direct connections. This architecture encourages node reuse by reducing coupling between nodes. 

The same ROS nodes, for example, can be used without modification in both the robot and the 

simulator. 

Nodes, messages, topics, and services are the core concepts of the ROS implementation. 

 
The ROS Master is responsible for providing naming and registration services to the rest 

of the ROS system's nodes. Individual nodes can communicate with one another thanks to the 

Master. These nodes communicate with each other peer-to-peer once they have found each other. 

Nodes would be unable to locate one another, exchange messages, or invoke services without the 

Master. 

 

Figure 1.13. Illustration of ROS nodes and messages 
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The ROS concepts (nodes, messages, and topics) and their relationships are illustrated in 

Figure 1.14. Services, which are a type of communication between nodes, don't use the 

publish/subscribe mechanism and instead directly invoke the services of the other node. 

 

 

Figure 1.14. Visualisation of ROS concepts 

 
In the subsections below, the ROS core concepts—nodes, topics, messages, and services— 

are explained in depth. 

I.4.2. ROS nodes 

 

In the ROS ecosystem, a node is a process that performs computation and can be thought 

of as a single unit of execution. Nodes can communicate with one another using a client-server 

architecture, in which each node is given a specific task and can act as both a client and a server 

at the same time. Nodes should complete their own tasks and report back to the rest of the network. 

This architecture has a significant advantage in terms of fault tolerance (as each node is an isolated 

part of the system). 

I.4.3. ROS messages 

 

Over 200 predefined messages are available in ROS, as well as the ability to create custom 

messages. The publish/subscribe mechanism is used to send messages between ROS nodes. The 

ROS message would be published to a specific ROS topic by one ROS node, while the other ROS 

node would subscribe to that ROS topic and receive the sent ROS message. Messages in ROS are 

usually described in text files in the msgs folder of the ROS folder structure. These text files adhere 

to certain ROS message description standards. The ROS message description format is fairly 

straightforward. Each ROS message is a data structure containing either primitive types (integers, 



Chapter I State of the art 

15 | P a g e 

 

 

 

 

floats, or booleans) or an array of primitive types. Additionally, as a data type, ROS messages can 

contain other ROS messages or an array of ROS messages. ROS messages can also be exchanged 

in direct communication between nodes, known as ROS Services, and the messages must be stored 

in the srv folder in this case. 

I.4.4. ROS topics 

 

ROS nodes communicate with one another via topics: we publish to a topic to send 

messages, and we subscribe to a topic to receive messages. 

When ROS nodes communicate using the publish/subscribe mechanism, ROS topics are 

used. Each ROS topic has its own name, which nodes can use to publish or subscribe to it. 

I.4.5. ROS services 

 

ROS services are used when nodes need to communicate directly with one another. The 

publish/subscribe mechanism is bypassed in this case, and nodes can communicate directly with 

one another using the defined request and reply messages. Even so, because ROS services are a 

form of direct communication, they improve system performance while simultaneously reducing 

system decoupling. 

I.5. The Navigation Stack—System Overview 

 
Navigation Stack is a set of resources that are useful so a robot is capable of planning and 

tracking a path while it avoids from obstacles that appear on its path. Navigation Stack needs 

SLAM systems to complete its task. SLAM allows a robot to locate itself and create a map of its 

surroundings. Some of SLAM tools are introduced in chapter 3. 

The system overview of this task is shown in figure 1.15; as it can be seen, there exists 

three types of nodes: provided nodes, optional provided nodes and platform specific nodes[13]. 

 Provided nodes: are responsible mainly by managing the costmaps and for 

path planning functionalities. 
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 The optional provided nodes: amcl and map_server, since a static map is 

optional these nodes are also optional because they are related to static map functions. 

 The platform specific nodes: such as sensor reading nodes and base controller 

nodes. They are nodes related to our robot. 

 

 

Figure 1.15. Overview of a typical system running the Navigation Stack [15]. 

 
I.5.1. AMCL and Map_server 

 

Map_server contains two nodes. Map_server provides static map data as a ros service while 

map_saver saves a dynamically generated map to a file. 

AMCL is a localization system that runs on a known map; it needs a static map and it will 

only work after a map is created. It randomly distributes particles in a known map, representing 

the possible robot locations based on the Monte Carlo localization approach, then uses a particle 

filter to determine the actual robot pose [14]. 

I.5.2. Local and Global costmaps 
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While the global costmap represents the whole environment, the local costmap is, in 

general, a scrolling window that moves in the global costmap in relation to the robot current 

position. The local and global 2D costmaps are the topics containing the information that 

represents the projection of the obstacles in a 2D map, as well as a security inflation radius, an area 

around the obstacles that guarantee that the robot will avoid any objects, no matter what is its 

orientation. These projections are associated to a cost, and the robot objective is to achieve the 

navigation goal by creating a path with the least possible cost [14]. 

I.5.3. Local and Global planners 

 

The global planner takes the current position of the robot and the goal and create the path 

of lower cost in respect to the global costmap, then, it will send the trajectory to local planner. The 

local planner will execute each segment of the global planner. Local planner is as smaller part of 

global planner. Local planner given a path to follow (provided by global planner) will provide 

velocity commands in order to move the robot and starts following the path. If it finds obstacles, 

local planner can re-compute the path in order to avoid them [14]. 

I.6. Conclusion 

 
This chapter was a thorough examination of the Robot Operating System (ROS) and mobile 

robot, as well as their implementation. The chapter began with an overview of mobile 

robot technology and its background. Following that, we talked about the basic components of a 

mobile robot. Then we looked at various sensors and components that are commonly used in 

mobile robots. Following that, we introduced the Robot Operating System (ROS) and discussed 

its fundamentals (nodes, messages, topics, services) 
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CHAPTER 02 

HARDWARE SYSTEM 
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After the first chapter, which was about generalities of mobile robot and a detailed 

discussion about ROS and ROS Navigation Stack. In this chapter we will take a look at the B21r 

mobile robot and at the necessary hardware requirements. First, this chapter introduced the B21r 

mobile robot of CDTA and the light detection and ranging sensor and D435i camera that are used 

in our project while components will be described separately and how being connected to the B21r. 

The schematic diagram of our system will be shown at the end of this chapter. 

II.1. System Requirements 

 
To ensure effective implementation, the system must have the following characteristics. 

 

 
 The mobile robot uses RPLIDAR to perceive its surrounding; then, create a representative 

map and locate itself on it in real time. 

 We used RGB-D camera to visualize the surrounding environment. 

 

 

II.2. System Hardware 

 
We worked with the mobile robot B21r of the Center for the Development of Advanced 

Technologies (CDTA). Our system is composed of: 

 
 Mobile robot B21r. 

 A PC which is needed to handle information; it is connected to B21r mobile robot through 

USB-to-USB cable. 

 LIDAR sensor. 

 Camera. 

 Micro USB cable 

 USB to USB cable 

 Cable matters USB C to Micro USB cable 
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II.2.1. Description of The B21r mobile robot of CDTA 

 

The mobile robot B21r is the experimental platform used for the 

implementation of our project equipped with LIDAR sensor and d435i Camera. 

The B21R mobile robot consists of three main sections (see Figure 2.1): the 

Base, the Enclosure and the Console. In the Base we find the mechanical drive and 

steering components, batteries, motors and motor control electronics. The Enclosure 

contains the main computer, tactile sensors, much of the power distribution system, 

sonar, IR sensors and communication equipment. The camera and pan-tilt unit, which 

are critical components of the vision system, are mounted on the Console's top. 

 
 

 
Figure 2.1: The B21r mobile robot. 
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The B21r is a synchronous drive mobile platform. It is made up of two ultrasonic sensor 

belts, an encoder, an infrared belt, a laser, tactile sensors on the sides, and a CCD camera (charge- 

coupled-device) (Figure 2.2). 

 

 
Figure 2.2: The B21r and its onboard sensors. 

 
II.2.1.1 Synchronous drive mobile robot B21r 

The synchronous drive is a technique for reducing the effect of sliding and increasing the 

traction strength. The configuration of the synchronous drive robot is similar to a robot with three 

or four coupled wheels which operate at the same time with the same velocity and the same 

orientation. This system is realized by two motors, one for the traction and the other for the 

orientation. The whole system is linked with a chain to ensure that the wheels turn in synchronous 

manner. Figure 2.3 shows the robot base with four coupled wheels linked by chains. 
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Figure 2.3: The platform geometry of a synchronous drive mobile robot. 

II.2.1.2.Wheels design 

B21r comes with four decentered adjustable wheels that rotate along two axes. The system 

rotates around the Y-axis, allowing the wheels to roll in order to achieve translation, and around 

the K-axis, allowing for a change in orientation (Figure2.4). 

 

 

Figure 2.4: Decentered adjustable wheels. 

Orientation motor Displacement motor 

Orientation chain 
Displacement chain 

r 
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Adjustable wheel parameters: 

 
r = the wheel radius. 

 
Vw = the wheel linear velocity. 

ωw = the wheel angular velocity. 

Ωw =orientation velocity. 

II.2.2. RPLIDAR A2 

 

RPLIDAR A2 is the latest generation low cost 360-degree 2D laser scanner (LIDAR). We 

used RPLIDAR A2M8 which is the enhanced version of 2D laser range scanner. It can perform 

2D 360-degree laser scan and detect an obstacle located up to 12m from it. LiDAR was frequently 

employed as the primary sensor in early SLAM research because it is the best sensor for 

constructing a grid map for the surrounding environment. RPLIDAR A2M8 is shown in figure 

2.5. 

 

 

 

Figure 2.5. The RPLIDAR A2M8. 
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II.2.2.1. System connection 

A2M8 is made up of a range scanner core mechanical powering components and 

communication and power interface (see figure 2.6). The mechanical Powering Part cause the 

Scanner core to rotate at high speed and scan clockwise. 

 

 

 

Figure 2.6. RPLIDAR A2M8 system composition. 

 

 
II.2.2.2. Mechanism 

The Lidar sensor on a vehicle consists of a laser transmitter and light receiver, the 

transmitter sends light beam that strike nearby objects present in the range of the sensor, the beam 

of light will be reflected back to the sensor when hitting an object as shown in figure 2.7. The 
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Lidar system records each beam's roundtrip data, measuring time to every object in the vehicle's 

vicinity and the angle of the beam relative to the sensor frame [15]. 

 

 

Figure 2.7. TOF ranging schematic [15]. 

 

 
The distance between sensor and target can be calculated with a high accuracy using the 

following formula: 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸 = 𝑆𝘗𝐸𝐸𝐷 &𝐹 𝐿𝐼𝘎𝐻  ×   𝑇𝐼𝑀𝐸 where “Time” is the time between 

emitting and receiving the signal. 

 
II.2.2.3. Communication interface 

RPLIDAR A2M8 needs 5V DC power for powering the range scanner core and the motor 

system. XH2.54-5P male socket shown in figure 2.8 used by the standard A2. 
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Figure 2.8. RPLIDAR Power Interface. 

 

 
We connected our RPLIDAR to our laptop through Micro USB cable. Flashing green light 

indicates normal activity of sensor. 

II.2.3. Intel Real sense Camera D435i 

 

Our robot needs to visualize the real surroundings and get the needed information from the 

real environment. The needed information from the real environment to the mobile robot is 

delivered by D435i camera. RGB-D camera can provide both color and depth information in its 

view field. It is possible to achieve the tasks of mapping and localization allowing better point- 

cloud alignment. It is the most capable sensor for building a complete 3D scene map [16]. We 

connected D435i to our PC using cable matters USB C to Micro USB cable. 

 

The Intel RealSense D400 series depth camera uses stereo vision to calculate depth. The 

stereo vision implementation consists of a left imager, right imager, and an optional infrared 

projector. The infrared projector projects a non-visible static IR pattern to improve depth accuracy 
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in scenes with low texture. The left and right imagers capture the scene and send imager data to 

the depth imaging (vision) processor, which calculates depth values for each pixel in the image by 

correlating points on the left image to the right image and via the shift between a point on the Left 

image and the Right image. The depth pixel values are processed to generate a depth frame. 

Subsequent depth frames create a depth video Stream [16]. 

 

The depth pixel value is a measurement from the parallel plane of the imagers and not the 

absolute range as illustrated in figure 2.9 and 2.10 [16]. 

 
 

Figure 2.9. Active Infrared (IR) Stereo Vision Technology [16]. 
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Figure 2.10. Depth Measurement (Z) versus Range (R) [16]. 

 

 

II.3. Overall System 

 
After collecting and assembling each component required for our robot, we connected 

everything in accordance with figure 2.11, which depicts the robot's schematic diagram. 

Everything has been implemented in ROS framework for visualization purposes during real-time 

testing. Lidar is connected to our laptop using Micro USB cable and the camera is connected 

through USB-C to Micro USB. A laptop has been used and is connected to B21r mobile robot by 

USB to USB cable. It is also equipped with Ubuntu Linux OS and ROS melodic framework. 
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Figure 2.11. Schematic diagram of our mobile robot. 
 

II.4. Conclusion 

 
 

In this chapter, we presented B21r mobile robot that we worked with and we described in 

details the Lidar sensor and d435i camera and how they are connected to the b21r mobile robot. In 

the next chapter, we will interface the components with ROS and we will detail step by step 

Navigation Stack in ROS and how we built a map using either a Lidar sensor or a camera. 
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Following the implementation of HW in the second chapter, now we move on to the 

implementation of SW. First, we will talk about ROS navigation stack and what we need in order 

to perform robot navigation and we introduced SLAM systems and some of its methods. As it will 

be presented, the robot builds the map, localizes itself on the map and performs navigation. 

III.1. The system Network 

 
We installed Ubuntu 18.04 double boot and ROS Melodic in our laptop. When the laptop 

boots for the first time we have the right to choose between windows and Ubuntu operating system. 

Then, we connected our PC to B21 mobile robot using USB to USB cable. The B21r robot uses 

RFLEX driver which provides a means of controlling and getting data from different subsystems 

(Motor, Sonar, IR, System...) 

III.2. ROS tools 

 
To inspect and debug messages, ROS provides a number of GUI (Graphical User Interface) 

and command-line tools. Rviz is one that is most usually used and the one that we used in our 

work. 

III.2.1. Rviz 

 

Rviz is a 3D visualizer in ROS that allows you to see 2D and 3D information from 

ROS topics and parameters.Rviz aids in the visualization of data such as robot models, 3D 

transform data (TF), point clouds, laser and image data, and a range of sensor data [17].It was used 

in this project to draw the robot's map and path, as well as its pose (see figure 3.1). 
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Figure 3.1. ROS visualization tool (Rviz). 
 

III.2.1.1. Transform (tf) 

Tf is a package that allows us to track several coordinate frames throughout time.The 

Navigation Stack requires the transformations in order to understand where the sensors are in 

relation to the robot's center (base link).The position of the mobile robot's frames is depicted in 

Figure 3.2[18]. 

 

 
 

 
 

  Figure 3.2. TF Frames.  
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 Map: serves as the global reference frame and the robot’s position in respect to it should 

not change significantly over time. 

 Odom: when new sensor data becomes available, drifts and can generate discontinuous 

jumps. 

 Base_link: is attached to robot’s center. 

 

 The base_footprint: is a simple projection of base_link on the ground. It publishes its 

transform in reference to the base_link. 

 Laser_link: is the center position of the laser sensor, and its transform is published in 

reference to the base_link. 

 Base_stabilized: is the center position of the robot, it publishes its tf in reference to the 

base_link. 

III.3. ROS Navigation Stack 

 
In order to perform ROS Navigation, we need first a map of the environment that we want 

to navigate (in our case we navigate the hall of CDTA). Second, we need to localize our robot 

inside the map this is called localization. Then, we will need to do path planning, to calculate plans 

and going from one point to another in that map while avoiding obstacles. Finally, we need to 

avoid obstacles that are not shown in this map which is known as obstacle avoidance; these are the 

four key points in Navigation and will be detailed step by step as illustrated in figure 3.3. 

 

Figure 3.3. ROS Navigation steps. 
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III.3.1. Mapping 

 

Mapping is the process of using the robot's sensors to create a spatial model of the 

environment around it. The map is then used for localization and navigation. One of the many 

resources needed for building a map and completing navigation stack is SLAM systems. 

 SLAM-Map Building and Navigation 

 
SLAM is concerned with the tasck of building a map of an unfamiliar environment by a 

mobile robot while at the same time navigating the environment using the map. The term SLAM 

is an acronym for Simultaneous Localization and Mapping. Hugh Durrant-Whyte and John J. 

Leonard [19] were the first to develop it.SLAM is a concept rather than a specific algorithm.SLAM 

consists of a number of phases, each of which can be accomplished using a variety of different 

algorithm.SLAM may be used in both 2D and 3D motion. There are a number of 2D SLAM 

algorithms that rely on a laser scanning sensor, such as: 

- Hector SLAM Algorithm 

 
Hector stands for Heterogeneous Cooperating Team of Robots. This approach has been 

published in 2008. Hector SLAM is an open-source method that uses a laser scan sensor (LIDAR) 

to create a 2D grid map of the surrounding environment. This system uses scan matching to 

determine the robot's location without any odometry. Figure 3.4 shows flowchart of the Hector 

SLAM algorithm. 
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Figure 3.4. Hector Slam flowchart. 

 

 
 - SLAM Gmapping 

 
Gmapping is a 2007 open source SLAM software in the ros.It is extensively used 2D lidar 

package.The Gmapping algorithm can be used for locating and mapping both indoors and 

outdoors.Not only does the gmapping method require 2D lidar data, but it also strongly relies on 

odometer data.The flowchart for Slam Gmapping is shown in Figure 3.5. 
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Figure 3.5. Gmapping Slam flowchart. 
 

 

 - Visual-SLAM 

 
Visual SLAM is a sort of SLAM system that uses 3D vision to perform location and 

mapping functions. Visual-SLAM is more complex than LiDAR-SLAM because images 

provide too much information, while distance measurement is challenging. A popular method 

for Visual-SLAM is to estimate robot motion by matching extracted picture features under 
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different positions to generate a feature map. Figure 3.6 gives a better understanding of visual 

slam. 

 

 

Figure 3.6. V-SLAM flowchart. 

 
III.3.1.1. Mapping using LIDAR 

 
To build a map using rplidar, first we need to: 

 
 Integrate RPLidar with ROS 

 
We start by opening a new terminal, we build the RPLIDAR ROS package by cloning the 

rplidar ros package to the workspace then building the node. Then, we run the package by running 

the rplidar node and viewing in the rviz. The red lines shown in figure 3.6 are the lidar data that is 

being published to the ros topic /scan. We changed some parameters (the parameters are found on 

the left of fig3.7) such as fixed frame to laser. We set the laser scan to topic /scan which is appeared 

by clicking on the add buttom of the rviz. 
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Figure 3.7. LIDAR sensor running on Rviz. 

We used the two methods gmapping and hector SLAM to build a map based on RPLIDAR, 

in order to know which method performs better and it will be discussed in chapter 4. 

 Create a map using Hector slam OR Gmapping 

 
After running the lidar and confirming that is working, in new terminal we cloned the 

repository of Hector-SLAM or Gmapping ros packages to our source workspace folder. Then, we 

built, compile then and launched hector-slam or gmapping-slam nodes; this run rviz directly as 

shown in fig3.8. 

To create a map we move the Lidar around the room but slowly to make sure that the map 

making is working well; the final map is presented in the following chapter. 
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Figure 3.8. Hector-SLAM on rviz using lidar 

III.3.1.2. Mapping using D435i Camera 

To create a map of the surrounding using Visual SLAM based on depth camera d435i, we 

need to: 

 Integrate d435i camera with ROS 

 
We start by opening a new terminal, we cloned the Realsense2-camera ros package to the 

source folder of our workspace. Then, we build the node. To start the camera node we launched 

this command : roslaunch realsense2-camera rs-camera.launch 

After that, we run rviz and change some parameters. We changed fixed frame to 

camera_link; we published the topics: /camera/color/image_raw, camera/depth/image_rect_raw 

and added a pointcloud topic /camera/depth/color/points as it is illustrated in figure 3.9. 
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Figure 3.9. D435i camera running on rviz. 

 Create a map using Visual SLAM 

 
After running camera node on rviz, we installed these packages: 

imu_filter_madgwick, rtabmap_ros and robot_localization by typing the following 

commands in a new terminal: 

o sudo apt-get install ros-melodic-imu-filter-madgwick 
 

o sudo apt-get install ros-melodic-rtabmap-ros 
 

o sudo apt-get install ros-melodic-robot-localization 
 

We launched the following command and this runned rviz directly 

 
roslaunch realsense2_camera opensource_tracking.launch 

 

 
We waited a few minutes for the system to fix itself. We left out TF frames as marked only map 

and camera_link (see figure 3.10). 
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Figure 3.10. Starting visual slam with d435i camera. 

 
III.3.1.3. Map saving 

To perform localization, we need a pre-build map. For saving a map we just run the 

following command: rosrun map_server map_saver -f my_map 

To load the saved map we first get the ROS Master started and in a new terminal we type 

rosrun map_server map_server my_map.yaml 

 
III.3.2. Robot-Localization 

 

The question of "Where is the robot now?" is answered by robot localisation.The technique 

of establishing where a mobile robot is in relation to its environment is known as robot 

localization.A mobile robot having sensors to track its own movement.We utilized the amcl node 

to execute the localization. 

 AMCL 
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AMCL stand for Adaptive Monte Carlo Localization, it is a probabilistic localization 

system for a robot moving in two dimensions. It uses particle filter to track a robot’s position 

against a known map. The purpose of this method is to determine the position of the robot inside 

the map of the surroundings. 

Once the map of the desired environment is built, we start localization and for that we 

launch amcl node and rviz. We set laser scan display to topic /scan in order to visualize the laser 

data. We need to add Map display and choose the map-topic. To visualize localization, we need to 

add PoseArray Display and configure the topic ParticleCloud. Figure 3.11 Shows how the topics 

are connected to amcl node. 

 

 

Figure 3.11. AMCL node and topics related 

 
 

By adding Particle Cloud, we can visualize the characteristics arrows (red arrows) that are 

used in order to visualize localization (see figure 3.12). We used 2D Pose estimate tool to tell rviz 

where our robot is. 

o 2D Pose Estimate: allows the user to set the pose of the robot in the world to initiate the 

navigation stack's localization mechanism. The navigation stack is waiting for a new pose 

of a new topic named initial pose to appear. 
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Figure 3.12. Particle localization 
 

 

III.3.3. Path Planning 

 
The path planning operation provides the answer to the question “how should I get to where 

I’ am going?” Path planning can only be applied when a map of the environment is known. It is 

defined as finding a geometrical path from the current location of the vehicle to a target location 

such that it avoids obstacles. For visualizing path planning we need three elements: 

o Map Display (Cost maps) 
 

o Path Displays (plans) 
 

o 2D Tools 
 

We launched the command of navigation and run rviz; we added two map elements the 

global costmap and the local costmap as shown in Figure.3.13, which are the main elements in 

path planning. We added one path element and Pose Array for localization. We set a goal using 2D 
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Nav Goal so that the global planner calculates the path to reach that goal. The 2D Nav Goal button 

is used to give a goal position to the move_base node in the ROS Navigation stack through Rviz. 

 

 

Figure 3.13. Local and global costmaps [20]. 

 
The goal position will send to the move_base node for moving the robot to that location; 

then move_base sends this goal to the global planner which calculates a safe path to reach that goal 

using global costmap. The path is clearly shown in figure 3.14. 
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Figure 3.14. path planning 
 

III.3.4. Obstacle avoidance 

 
After creating the path,   we   will   add   path   for the   global   planner   with   topic 

/move_base/NavfnROS/plan. We sent 2D Nav goal so that the global planner calculates its path. 

The local planner receives this path from global planner to follow but if some object comes across, 

local planner will recompute the path in order to avoid it. The local planner monitors the odom 

and laser data. 

We launched rflex to drive the robot by running this command: 

 
roslaunch rflex b21.launch 

 
Then, B21r mobile robot moves taking the velocity published bay move base as an input. 

 
the following command: rostopic echo cmd_vel will show the velocity of the robot as described 

in figure 3.15. 
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Figure 3.15. the velocity of B21r mobile robot 

 

III.4. CONCLUSION 

 
This chapter dealt with the process of ROS Navigation stack point by point. We have seen 

how to integrate our lidar sensor and d435i camera in ROS operating system. In the following 

chapter we will take a look at the results and discuss it. 
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During this chapter, experimental and empirical results obtained from the 

implementation and the tests of the different approaches are presented. The results will be 

discussed and evaluated step-by-step from mapping until path tracking. 

VI.1. Visual-SLAM 

 
For mapping, two different types of SLAMs: Visual-SLAM (obtained from the camera) 

and LiDAR SLAM were implemented and tested as explained in the previous chapters. Starting 

by testing the Visual SLAM, figure 4.1 illustrated the visual map in rviz created from the camera. 

 

Figure 4.1. Map builded using visual SLAM 

 
 

As it can be noticed from figure 4.1, the map is full of details and not completely clear; 

moreover, it consumes more time while mapping, and sense the image in Visual-SLAM carries to 

much information it is more complex. Visual SLAM is currently in the early stages of 

development, with application scenarios and product landing to come. Laser-SLAM is now the 

most stable and widely used positioning and navigation system, with great precision when creating 

maps. For that, we preferred to use Lidar-Slam. 
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VI.2. Comparing LiDAR SLAMS 

 
After the illumination of the camera, we decided to use LiDAR SLAM for mapping. 

However, two different SLAMs which are Hector SLAM and Gmapping SLAM can be 

implemented to create the map. Therefore, in this section, we try to find the main differences 

between the two methods and select the best one according to the obtained results. 

The map built with the help of hector slam is shown in figure 4.2 and the one built using 

Gmapping is the shown in figure 4.3. Both of the maps present the hallway of CDTA 

 

 
Figure 4.2. map of the CDTA hallway using HECTOR SLAM 
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Figure 4.3. map of the CDTA hallway using Gmapping SLAM 

 
 

The two maps are made using hokuyo LiDAR, which is integrated in the robot b21, by 

moving in CDTA hallway at the same speed. By comparing the two figures we can say that the 

accuracy of Hector SLAM is higher than the Gmapping SLAM. 

 

Thus, to be more accurate, the two approaches are compared in term of time consuming 

and localization accuracy as detailed below. 

 

VI.2.1. Scenario 01: Time Consuming 

 

During the map creation, we were obliged to stop several time to arise the black point in 

Gmapping; on the other hand, for Hector it was faster, it doesn’t require to stop so much. This 

scenario is illustrated in table 4.1, figure 4.4(a) and figure 4.4(b). 
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In order to validate this extracted conclusion about time consuming scenario, the two 

approaches were run to build a map for the same area (CDTA hallway). From table 4.1, it can be 

noted that Hector SLAM end up the creation of the map in 9min; while, for Gmapping it took 

around 12min. The extra time spend by Gmapping was devoted to the time expend by the algorithm 

to fill the blank area in the map and to arise the black point that appears in the map correspond to 

fake obstacles. The delay time is variant as shown in table.4.1 and that is related to several reasons 

like: 

 

(i) The black point that appears in the map which are fake obstacles and that can be seen for 

hector slam in the 4th min, 5th min and the 6th min which took 23sec, 19sec, and 21sec 

respectively, and for Gmapping SLAM that happens in the 2nd ,3rd ,5th, 6th, 8th and 9th 

minutes which took 33sec, 24sec, 20sec 22sec, 27sec and 33sec respectively. 

 
(ii) The gap in the map, which happens in the 1st, 2nd, 3rd, 8th and 9th minutes for hector and 

took 10sec, 11sec 12sec, 7sec and 11sec respectively, and for Gmapping appears in the 1st, 

7th, 10th, 11th and the 12th minutes and took 12sec, 10sec, 22sec, 14sec and 16sec 

respectively. 

 
(iii) The stop in the 7th min for hector which spends 33sec and in the 4th min for Gmapping 

which takes 47sec is explained by the people walks around; so, the process need to stop 

and rotate the robot left and right in order to arise their trace from the map. In case this step 

is not done, it may cause fake obstacles later. 

Table.4.1 number of times that we need stops while mapping for each minute 
 

time(min) 1 2 3 4 5 6 7 8 9 10 11 12 

Hector 

(sec) 

 

10 
 

11 
 

12 
 

23 
 

19 
 

21 
 

33 
 

7 
 

11 
 

0 
 

0 
 

0 

Gmapping 

(sec) 

 

12 
 

33 
 

24 
 

47 
 

20 
 

22 
 

10 
 

27 
 

33 
 

22 
 

14 
 

16 
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Figure 4.4. Time stops needed during each minute to eliminate errors while mapping. (a) 

Delay generated by Hector. (b) Delay generated by Gmapping. 

Figure 4.5 shows the different problem that can appear while mapping. So, we can say 

that Gmapping creates more fake obstacles and took more time to arise them; thus, it is more 

time consuming. 

 
 

Figure 4.5. different errors may happen when mapping 
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VI.2.2. Scenario 2: localization in SLAMs 

 

In this scenario, we try to know which slam is more accurate in localization while 

mapping to do that we specify three different points in the ground of the hallway and we mark 

another point in the wall and measure the distance in realty and through rviz for Hector and 

Gmapping SLAMs. The obtained results are shown in table 4.2 for Hector and in table 4.3 for 

Gmapping. 

 

Table.4.2.-a: Hector slam localization 
 

 Real world(m) Rvis (m) error(m) 

p1 1.23 1.35 0.12 

p2 1.77 1.90 0.13 

p3 2.23 2.36 0.13 

Table 4.3: Gmapping localization 
 
 

 Real world(m) Rvis (m) error(m) 

p1 1.23 1.4 0.17 

p2 1.77 1.96 0.19 

p3 2.23 2.46 0.23 

So, as it can be noticed the error for localization in Gmapping is with an average of 0.1966 

m, higher than the hector’s error which is around 0.1266 m. 

This result was not waited because GMapping combines odometry and laser scan as 

information sources; whereas, Hector Slam just employs laser scan. GMapping should 

theoretically outperform Hector Slam. Therefore, according to these tests we decided to work with 

Hector SLAM because is more accurate in map drawing, more accurate in localization and less 

time consuming (so is less energy consuming). 
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Other problems were also faced in both the slams such as: when the robot rotate with high 

speed or do an abrupt movement, a glitch (errors) appears and that affect the quality of our map 

and affect the estimated pose (localization). These glitches are shown in Figure.4.6. 

 

 
 

Figure 4.6. Error caused by sudden moves. 

 

 

VI.3. Localization (AMCL) 

 
Because of the previously met and mentioned problems with SLAMs, AMCL algorithm 

is chosen for localization. AMCL is the most famous and usable one and almost all the previous 

master projects were based on it. Moreover, and in order to confirm our choice, we tested the 

AMCL. As with the two previous scenarios, three points are selected from the map and measure 

the distance between them and a specific point that we chose in the wall in reality and compare it 

with what AMCL give us in rviz. 

First, AMCL, map server and the hokuyo Lidar package were launched. It appears in the 

map that the robot is at the initial pose from where mapping starts. Thus, a 2D estimate pose is 
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returned and this period is recognized by the high number of particle clouds as shown in figure 

4.7(a). After that, the robot moves and the particle clouds reduces to very small number which 

means that the robot is well localized as illustrated in figure 4.7(b). The test results are shown in 

table 4.4. 

 

 

 
Figure 4.7. AMCL localization results. (a) Cloud in starting pose. (b) Cloud in final pose. 

 
As we can see the error did not exceed 0.12 meters and we consider it as a good result with 

average precision of 94.4%. AMCL also can inform us about the direction of the robot and it looks 

very accurate and we can deduce that easily by comparing the direction that AMCL gives us in 

rviz and the direction of the robot in real word. 

 

Table 4.4: The error between real localization and AMCL results 
 

 Real world(m) Rvis (m) error(m) 

p1 1.50 1.60 0.10 

p2 1.89 2.01 0.12 

p3 2.52 2.64 0.12 
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VI.4. Navigation stack 

 
So, after we build our map and test our localization algorithm and it met our needs; now, 

we move on to our final step which is navigation. Navigation stands to path planning and path 

tracking. To deal with navigation, our configuration files: Costmap Configuration, Common 

Configuration, Global Configuration, Local Configuration and Base Local Planner Configuration 

which are in yaml file form must be created. 

The move base node of the ROS Navigation Stack will use the configuration files. Behind 

the scenes, the move base node is in charge of arranging a collision-free path for a mobile robot 

from the starting pose to the goal location. 

 

Now after creating our configuration files and creating our map and testing our localization 

algorithm, it is time to add all of that in our launch file to start navigating and record some results. 

Also for the launch file, in the beginning we were using RPLidar; so, RPLidar package was needed 

and used. However, RPLidar was damaged during the tests; thus, obliged us to replace it by 

Hokuyo Lidar. for the rflex node we launched it separately not included in the launch file. 

 

VI.4.1Testing our navigation stack 

 

By launching the launch file and define the robot’s goal pose in rviz; the path is correctly 

planned and everything seems to be well configured in the launch reflex. The robot starts moving 

and stopping alternatively, it was a random movement with a random speed and random stops. 

Here where our RPLlidar was broken because the robot rotates at a high speed and the Lidar was 

not well fixed on the robot’s chassis; so, it fell down and damaged, and we were obliged to change 

the Lidar by hokuyo. 

 

VI.4.2. Random move and interrupted speed of the robot 

 

By remarking this weird act in the movement of the robot, we were obliged to figure out 

the problem. To evaluate the angular and the linear velocity generated by the move base, constant 
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velocities are set to the robot then record its behavior corresponding to each velocity; angular and 

linear velocity are tested separately. The results are shown in figure 4.8. 

 

(i) The robot’s behavior responding to the angular velocity=0.1m/s is shown in figure 

4.8(a). It can be clearly notified that the movement is not normal it is interrupted 

randomly; the robot rotates and stops at a random time. 

 

(ii) The robot’s response to a constant linear velocity of 0.1 m/s is shown in figure 

4.8(b). It can be also notified that the movement is not normal it is interrupted 

randomly; the robot moves and stops randomly. 

 

 

 

Figure.4.8-a. random response with constant angular velocity=0.1m/s 
 

 

 

Figure.4.8-b. random response with constant linear velocity=0.1m/s 
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VI.4.3. serial sniffer interceptty 

 

To solve the previously mentioned problem, we thought in Interceptty. Interceptty is a 

program that sits between a serial port (or another terminal device, or a program, or a socket, or 

something attached to a file descriptor) and a program that communicates with it. It records 

everything that happens between the two. It accomplishes this task by first opening the real device, 

generating a pseudo-tty; then, forwarding all data between the two and recording anything it sees. 

It includes several settings that allow us to fine-tune the devices it utilizes; as well as, the 

terminal options for the actual device. 

 

After the installation of interceptty, the velocity test was performed another time. As 

illustrated in figure 4.9 (a) and figure 4.9 (b), the results are satisfactory and the robot rotates and 

moves without abrupt stops. 

 

 

 

 

 

Figure 4.9. Normal robot’s response after the setup of interceptty. (a) Response to a 

constant angular velocity of 0.1m/s. (b) Normal response to a constant linear 

velocity of 0.1m/s. 

 

The problem was solved, we come back to test our navigation stack; the robot now moves 

with the velocity generated by move base as an input. After launching our launch files rflex and 

interceptty, we remark that the robot is not interrupted anymore. However, the robot is not able to 

track the pre-planned path correctly; it deviates left and right from the path. Nevertheless, it still 

able to reach the goal with an error in the interval of 0.1m to 0.13m measured in rviz. 
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VI.4.4. Robot wheels’ response 

 

this time we face a mechanical problem and that because one wheel from the four wheels of the 

robot was not response well in order to confirm that we test them manually and the test result are 

shown in table 4.5. 

Table 4.5: Manual test of the wheels’ movement. 
 

 Rotation w1 Rotation w2 Rotation w3 Rotation w4 Final rotation 

 W1 +60°
 W2 +60°

 W3 +60°
 W4+60°

 240° 

W1 60° 60° 0° 60° 180° 

W2 60° 60° 0° 60° 180° 

W3 43° 35° 60° 31° 169° 

W4 60° 60° 0° 60° 180° 

As illustrated in table 4.5, wheel W3 is not responding correctly to the desired rotation 

and the error varies from 17° to 29° for each robot’s base rotation. Once one of the wheels W1, W2 

or W4 is rotated, the wheels and the robot’s base rotate at the same angle. Whereas, only W3 will 

not rotate with the same angle as the others. When, W3 is rotated, it rotates alone (freely); so, the 

problem was there which generate a wrong path tracking. 

 

This problem generated a path tracking error therefore the real path followed by the robot 

deviates from the preplanned path. The error’s marge between the real path and the planned one is 

computed at discrete points. The distance from the starting pose to the target pose of the two paths 

is also measured (the preplanned path is 5.75m whereas the path executed by the robot is 6.52m). 

These results are summarized in figure 4.10 below, the green path present the preplanned path and 

the black one is the path tracked by the robot. The robot has to move for an additional distance of 

0.77m which is undesired. An error of 13.4% is generated by this problem which present 

unsatisfactory results. 
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Figure 4.10. original path vs real path and the point chosen for test 

The error generated from the poor response in wheel W3 rotation is presented in figure 4.11. 

It is clearly appearing that the error is random but the robot still able to reach its destination with 

an error of around 0.12m which can be consider as an acceptable result. 
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Figure 4.11. distance error of several points in real path from original path. 

 
 

VI.5. Conclusion 

 
This chapter summarized the different steps followed to implement our navigation strategy 

starting from map building and localization to navigation. Our work was validated by some 

experiment results and discussions. For map creation different slams were used, and by comparing 

them hector overcome Gmapping performance which was not theoretically expected. After that, 

AMCL was tested for localization and the results were fairly good. Therefore, move base node 

which contains the configuration file in yaml form was created; then, our launch file which gather 

all the nodes was generated too. During our work we faced some problems like the serial port was 

not working well which was solved by setting up interceptty sniffer. In addition to the problem 

with one of the robot’s wheels which didn’t respond correctly to the assigned rotation and causes 

a considerable path tracking error. Unfortunately, this last problem was not solved because it  

requires more time and it is out of the scope of our project. Although the robot did not follow the 

preplanned path correctly, it still able to reach the navigation goal with small error. 
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 Conclusion  

 

 
The goal of this work was the implementation of ROS Navigation Stack on the B21r mobile robot 

equipped with Lidar sensor and RGB-D camera. 

Initially, we have presented a brief overview of mobile robots, ROS and ROS Navigation stack and we 

talked about basic components of mobile robots in general. We presented the B21r mobile robot. Afterward, we 

described the Lidar sensor and d435i camera and their connections to our laptop. We detailed the ROS 

Navigation step by step. After that, a map of the hall of CDTA was required and it was created. Then, our robot 

localized itself inside the map. Next, a free path was planned to enable the robot to move from one point to 

another in the created map while avoiding obstacles. 

We have implemented the navigation stack in ros melodic. Different results were obtained. We used both 

RGB-D and LIDAR sensor to build a map of the hall of CDTA, but according to our experiment results we 

preferred to work with Lidar sensor. Then, we created a map using Hector and Gmapping slam. When we were 

creating our map, glishes appeared after fast rotation and sudden stops of our B21r robot. Therefore, this affect 

the quality of our map and this problem is generated when implementing the hector and gmapping slam methods. 

By comparing Hector and Gmapping results we concluded that: mapping using Hector is more accurate 

and less time consuming and less fake obstacles compared with Gmapping slam. Hector slam is more accurate in 

localization since the average error for the robot to localize itself using gmapping was 0.1966m which was higher 

than hector’s error (hector’s average error was 0.1266 m). For that, the best choice was to implement hector slam. 

After that, we used AMCL for localization, because the error did not exceed 0.12m comparing to Hector 

localization. Also, AMCL is very accurate by comparing the direction of the robot in real world and in Rviz. 

Then we started navigating our environment and we were obliged to work with hokoyo Lidar for the reason that 

our RPLidar is broken during our tests. 

The path created looks good in Rviz but in reality our robot did not follow that path and the movement of 

the robot is interrupted. We tried to find the problem and we gave constant velocity to the robot and we tested the 

angular and the linear velocity of each wheel separately. We deduced that the problem was that the new 

generation of our laptop could not communicate with the B21r mobile robot, hence we fixed the problem by 

using a serial sniffer interceptty. After that, our robot movement was not interrupted but did not follow the path 
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correctly, we still having errors. We tested the four wheels of the robot, Hence the results confirmed that one 

wheel from the four wheels is not responding well. For that the problem was mechanical and it takes time to fix 

it. 

For future work, we will first fix the problem of the wheel so that our robot will be able to follow the 

planned path correctly. In addition, realizing a new surveillance mobile robot then implementing on it all the 

required tools for mapping, localization and navigation basing on ROS is a good perspective because the B21r 

mobile robot of CDTA is very old. 
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