
People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdès

Institute of Electrical and Electronic Engineering

Department of Electronics

Project Report Presented in Partial Fulfilment of

the Requirements of the Degree of

‘MASTER’

In: Electronics

Option: Computer Engineering

ROS Navigation STACK on the B21r

mobile robot.

Presented by:

- DELHOUM Nabil

- LAKREB Samira

Supervisors:

- Dr.BELAIDI Hadjira

- Dr. KAHLOUCHE Souhila

Registration Number: 2021/2022

Abstract

i

Abstract

Perception is an imperative task for a mobile robot to be able to navigate

autonomously inits environment. The robot can perceive its surrounding through

one or more sensors; then, create a representative map of the environment and

locate itself on it in real time.

The propose of this project is to build a surveillance strategy to enable a

mobile robot to navigate and supervise an interior environment. It consists in the

implementation of a perception techniques, localization and navigation strategy

on a surveillance robot.

Hence, this project deals with ROS Navigation Stack which is powerful

for mobile robots to move from place to place. We worked with B21r mobile

robot of CDTA equipped with light detection and ranging (LIDAR) sensor and

D435i depth camera. First, our work consists of building a map of the hall of

CDTA (the Advanced Technologies Development Center) using Lidarsensor and

Simultaneous Localization and Mapping techniques. Then, we localized our

robot inside that map using AMCL, therefore, our B21r mobile robot is well

localized. Second, we created a path so that our robot reaches its goal or target

and creates a new path in case the robot faces obstacles that were not present in

the old map. However, our robot was not able to correctly deal with its last task

consisting in tracking the planned path; even that, its position is updated

enabling it to achieve its desired destination, due to mechanical problem of robot

wheel. The work is implemented using ROS melodic and Rviz tool.

ACKNOWLEDGEMENT

ii

Acknowledgement

First of all, we are thankful to Allah, the most gracious and the most

merciful for helping us accomplish this work in such a hard time.

We would like to thank and express our great gratitude to Dr.BELAIDI

HADJIRA, our project’s supervisor and Madam KAHLOUCHE SOUHILA, our

project co-supervisor for their professional assistance, support, advice and

guidance during our work on this project and being there whenever we had that

confusion or a question.

Finally, we would like to thank jury members and all IGEE teachers.

DEDICATION

iii

DEDICATION

IN THE NAME OF ALLAH THE MOST BENEFICIANT THE MERCIFULL

This work is dedicated to our loving and caring Parents who are cause of

our success. And great gratitude and love for our sisters and brothers for their love

and support.

This work is also dedicated to our beloved grandparents and all

our closest friends for their continuous encouragement.

Thank you.

vi

TABLE OF CONTENTS

Abstract... i

Acknowledgement .. ii

Dedication ..iii

Table of Contents… ... vi

List of Figures… ... ………….. ……..xi

List of Abbreviations… .. …..xii

GENERAL INTRODUCTION .. 1

CHAPTER 01: State of the art ... 3

I.1. Motivation ... 3

I.2. Goal of the Project .. 3

I.3. Background and Related Work ... 4

I.3.1. Definition and history of robots .. 4

I.3.2. Mobile robot today... 5

I.3.3. The idea of mobile robot .. 5

I.3.4. Types of Robots ... 6

I.3.5. Sensors of mobile robot ... 9

I.4. Robot Operating System ... 12

I.4.1ROS Overview .. 13

I.4.2. ROS nodes ... 14

I.4.3. ROS messages ... 14

I.4.4 ROS topics ... 15

I.4.5 ROS services .. 15

I.5. The Navigation Stack—System Overview... 15

I.5.1. AMCL and Map_server ... 16

1.5.2.Local and Global costmaps .. 16

I.5.3.Local and Global planners .. 17

I.6. Conclusion ... 17

CHAPTER 02.. 19

II.1. System Requirements .. 19

II.2. System Hardware .. 19

II.2.1. Description of The B21r mobile robot of CDTA ... 20

II.2.1.1. Synchronous drive mobile robot B21r .. 21

vii

II.2.1.2Wheels design ... 22

II.2.2. RPLIDAR A2 ... 23

II.2.2.1. System connection ... 24

II.2.2.2Mechanism ... 24

II.2.2.3.Communication interface ... 25

II.2.3. Intel Real sense Camera D435i ... 26

II.3. Overall System .. 28

II.4. Conclusion .. 29

CHAPTER 03.. 31

III.1. The system Network .. 31

III.2. ROS tools .. 31

III.2.1. Rviz .. 31

III.2.1.1. Transform (tf) ... 32

III.3. ROS Navigation Stack ... 33

III.3.1. Mapping .. 34

III.3.1.1. Mapping using LIDAR ... 37

III.3.1.2. Mapping using D435i Camera... 39

III.3.1.3. Map saving ... 41

III.3.2. Robot-Localization .. 41

III.3.3. Path Planning .. 43

III.3.4. Obstacle avoidance.. 45

III.4. CONCLUSION.. 46

CHAPTER 04.. 48

VI.1. Visual-SLAM .. 48

VI.2. Comparing LiDAR SLAMS ... 49

VI.2.1. Scenario 01: Time Consuming ... 50

VI.2.2. Scenario 2: localization in SLAMs .. 53

VI.3. Localization (AMCL) .. 54

VI.4. Navigation stack .. 56

VI.4.1 Testing our navigation stack ... 56

VI.4.2 Random move and interrupted speed of the robot .. 56

VI.4.3 serial sniffer interceptty .. 58

VI.4.4.Robot wheels’ response ... 59

VI.5. Conclusion... 61

viii

Conclusion .. 63

References and Bibliography ... 65

ix

LISTE OF FIGURES

Figure1.1.Surveillance mobile robot…………………………………………………………………………... 7
Figure1.2.Aerospace robot…………………………………………………………………………………….. 8
Figure1.3.Navigational robot Drones………………………………………………………………………….. 8
Figure1.4.Industrial robots…………………………………………………………………………………….. 8
Figure1.5.Medical robots……………………………………………………………………………………… 8
Figure1.6.Military robots……………………………………………………………………………………… 8
Figure1.7.Autonomous underwater robot…………………………………………………………………….. 8
Figure 1.8.Mobile robot equipped with various sensor types………………………………………………… 9
Figure 1.9.IntelRealsense camera D435i……………………………………………………………………… 10
Figure 1.10. HC-SR04 Ultrasonic sensor…………………………………………………………………….. 11
Figure 1.11.Odometry sensor…………………………………………………………………………………. 11
Figure 1.12. Inertial measurement unit (IMU)………………………………………………………………… 11
Figure 1.13. Illustration of ROS nodes and messages………………………………………………………… 13
Figure 1.14. Visualisation of ROS concepts…………………………………………………………………... 14
Figure 1.15. Overview of a typical system running the Navigation Stack…………………………………….. 16
Figure 2.1: The B21r mobile robot……………………………………………………………………………. 20
Figure 2.2: The B21r and its onboard sensors………………………………………………………………… 21
Figure 2.3: The platform geometry of a synchronous drive mobile robot……………………………………. 22
Figure 2.4: Decentred adjustable wheels……………………………………………………………………… 22
Figure 2.5. The RPLIDAR A2M8…………………………………………………………………………….. 23
Figure 2.6.The RPLIDAR A2M8 system composition……………………………………………………….. 24
Figure 2.7. TOF ranging schematic…………………………………………………………………………… 25
Figure 2.8.RPLIDAR Power Interface………………………………………………………………………… 26
Figure 2.9. Active Infrared (IR) Stereo Vision Technology…………………………………………………….. 27
Figure 2.10. Depth Measurement (Z) versus Range (R)………………………………………………………………………………… 28
Figure 2.11.Shematic diagram of mobile robot……………………………………………………………….. 29
Figure 3.1. ROS visualization tool (Rviz)……………………………………………………………………….. 32
Figure 3.2. TF Frames………………………………………………………………………………………….. 32
Figure 3.3. ROS Navigation steps…………………………………………………………………………….. 33
Figure 3.4. Hector Slam flowchart…………………………………………………………………………….. 35
Figure 3.5. Gmapping Slam flowchart…………………………………………………………………………. 36
Figure 3.6. V-SLAM flowchart…………………………………………………………………………………. 37
Figure 3.7. LIDAR sensor running on Rviz……………………………………………………………………... 38
Figure 3.8. Hector-SLAM on rviz using lidar…………………………………………………………………... 39
Figure 3.9. D435i camera running on rviz……………………………………………………………………... 40
Figure 3.10. Starting visual slam with d435i camera………………………………………………………….. 41
Figure 3.11. AMCL node and topics related…………………………………………………………………… 42
Figure 3.12. Particle localization………………………………………………………………………………. 43

x

Figure 3.13. Local and global costmaps…………………………………………………………………………. 44
Figure 3.14. path planning………………………………………………………………………………………. 45
Figure 3.15. the velocity of B21r mobile robot…………………………………………………………………. 46
Figure 4.1. Map builded using visual SLAM……………………………………………………………………... 48
Figure 4.2. map of the CDTA hallway using HECTOR SLAM…………………………………………………….. 49
Figure 4.3. map of the CDTA hallway using Gmapping SLAM…………………………………………………... 50
Figure4.4-a.Hector's time stops needed during each minute to eliminate errors while mapping………………………... 52
Figure 4.4-b. Gmapping's time stops needed during each minute to eliminate errors whilemapping……………………………. 52
Figure 4.5. different errors may happen when mapping……………………………………………………….. 52
Figure 4.6. error of sudden moves……………………………………………………………………………… 54
Figure 4.7-a. AMCL localization results Cloud in starting pose………………………………………………… 55
Figure 4.7-b. AMCL localization results Cloud in final pose……………………………………………………. 55
Figure 4.8-a. random response with constant angular velocity=0.1m/s………………………………………. 57
Figure 4.8-b. random response with constant linear velocity=0.1m/s………………………………………….. 57
Figure 4.9-a. Normal robot’s response after the setup of interceptty to a constant angular velocity of
0.1m/s……..

58

Figure 4.9-b.Normal robot’s response after the setup of interceptty to a constant linear velocity of 0.1m/s… 58
Figure 4.10. original path vs real path and the point chosen for test…………………………………………... 60
Figure 4.11. distance error of several points in real path from original path…………………………………... 61

xi

LISTE OF TABLES

Table.4.1 number of times that we need stops while mapping for each minute………………………………...

51

Table.4.2.: Hector slam localization…………………………………………………………………… 53

Table 4.3: Gmapping localization……………………………………………………………………… 53

Table 4.4: The error between real localization and AMCL results……………………………………………... 55

Table 4.5: Manual test of the wheels’ movement……………………………………………………… 59

xii

LIST OF ABREVIATIONS

AMCL Adaptive Monte Carlo Localization

AMRs Autonomous Mobile Robots

AGVS Automated Guided vehicle

CDTA center for the development of advanced technologies

HW Hardware

HECTOR Heterogeneous Cooperating Team of Robots

IMU Inertial measurement unit

IR infrared sensor

LIDAR Light detection and ranging

ROS Robot operating system

SLAM Simultaneous Localisation and Mapping

SW Software

TF Transform Data

1 | P a g e

GENERAL INTRODUCTION

Nowadays, autonomous mobile robots are widely used for several purposes. Autonomous

mobile robots which work without human intervention are required in Robotic fields. In particular,

with the development of Lidar-based navigation technique, mobile robots could be located and

navigate in “real time” in indoor and outdoor environment. Navigation technology is one of the

fundamentals in field of automation and robotics.

This master project deals with localization and Navigation which are the key technologies

of autonomous mobile service robots, and is essentially based on SLAM (Simultaneous

Localization And Mapping) which is considered as the fundamental basis for robot localization

and mapping. SLAM is constructing a map using mobile robot (mapping), then determining the

position of this robot relative to this map. As it will be presented, the robot builds the map, localizes

itself on the map and performs navigation. The map of the environment is a basic need for a robot

to perform actions like moving room to room, picking an object from one place and taking it to

another one. Our project is implemented using ROS (Robot Operating System) platform and rviz

tool.

This project is realized in the “Advanced Technologies Development Center (CDTA)” in

Baba Hassen, Algiers, in the robotics division, and our algorithm has been implemented on the

B21R mobile robot in indoor environment.

The rest of the report is organized as follow. Chapter 1 introduces mobile robots and and

their basic components; then, it introduces the Robot Operating System (ROS) and discusses its

fundamentals. Chapter 2 is a description of the b21r mobile robot, Lidar sensor and RGB-D

camera. Chapter 3 explains in details the implementation of ROS Navigation Stack. Chapter 4 is

dedicated for discussing the obtained results. The report ends up by conclusion and future work.

General Introduction

2 | P a g e

CHAPTER 01

STATE OF THE ART

Chapter I State of the art

3 | P a g e

A mobile robot is a machine controlled by software. Mobile robot needs to estimate its

location with respect to objects in its environment and to map the positions of objects that it

encounters in its environment.

Mobile robots may roam around their surroundings and are not restricted to a single

physical place. Using a LIDAR sensor, the mobile robot can execute navigation and localization

with the help of a low-power onboard computer and a remote-control system. With intel

REALSENSE DEPTH CAMERA D435i, the mobile robot can track not only the object but the

depth and exactly the distance of each single object.

It is more convenient to use the open-source software ROS to realize mobile robot

navigation.

I.1. Motivation

Robots are everywhere revolutioning every aspect of our life. The ROS navigation stack

on the B21r mobile robot equipped with LIDAR sensor, Intel REALSENSE CAMERA D435i is

a challenge that we wanted to accomplish. It also leads us to get familiar with the open-source

software ROS we may be need in our professional career.

I.2. Goal of the Project

The aim of this project is to create completely a map of an indoor environment so that our

mobile robot localizes itself inside it and creates a path to reach a given position then tracks this path avoiding

obstacles. The robot uses RPLIDAR sensor to scan and visualize the surrounding environmentand

to create a map and plan its route towards the destination in order to detect humans and avoid

obstacles in the path to reach the destination.

Additionally, a list of system requirements must be developed, as well as the structure of

the system's components. The system is then used to carry out its functions in accordance with the

Chapter I State of the art

4 | P a g e

developed system structure. In the second chapter, the components are chosen by analyzing their

performance and capabilities in relation to the requirements.

Another objective is to examine how ROS can be used in the development of mobile robot,

as well as to identify its potential benefits.

I.3. Background and Related Work

I.3.1. Definition and history of robots

Robots! Robots are everywhere such as robots fighting fires, making products and items,

saving time and lives on Mars and in the seas, in processing plants and schools, in emergency

clinics and homes... Robots now are important and have an importance on many aspects of modern

life, ranging from modern manufacturing to medical services, transportation, and deep space and

ocean exploration. Robots will be as ubiquitous and individual as today's Smartphones in the future

[1].

The robot "concept" was established by many creative numerous historical realizations.

Nonetheless, the "physical" robot had to wait until the twentieth century to see the development of

its underlying technologies. The term "robot" was coined in 1920, and it derived from the Slavic

word "robota," which means "subordinate labor"[1]. The first robots were created around the

middle of the twentieth century. The first industrial robot, "Unimate," designed by American

inventor George Devol, was put to work on a General Motors assembly line in 1961[2]. They

benefited from advancements in mechanical, control, computer, and electronic technologies. New

designs, as always, inspire new research and discoveries, which lead to improved solutions and

thus novel concepts. Over time, this circle produced the knowledge and understanding that gave

birth to the field of "robotics"[1]. With the advancement of science in all research areas and the

emergence of new ones, the field of robotics grew in importance in terms of investments and

research, and robotics evolved into a synthesis of various disciplines, including electrical and

electronics, computer science and engineering, mechatronics and mechanical design, control and

automation systems, AI and cognitive systems, and so on.

Chapter I State of the art

5 | P a g e

By the time robots were fully capable of providing assistance, utility, and precision to

human tasks and activities under human control and supervision, the need for robotic systems to

be more independent and to process the ability to complete tasks and provide services on their own

had become a necessity and vital part of future robots, prompting the term "autonomous robots"

to emerge. An autonomous robot is one that acts without external influence. Artificial intelligence,

robotics, and information engineering are all subfields of autonomous robotics. Author and

inventor David L. Heiserma proposed and demonstrated early versions[3][4][5]. Following that,

the robotics systems were categorized based on where they were found. The robotics systems were

then classified according to where they fell on the "autonomy Spectrum". As the system progresses

from manual to fully autonomous.

I.3.2. Mobile robot today

Mobile robots are being used in increasing numbers in industrial applications. They include

both Automated Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMRs). The use of

mobile robots is increasing as companies look for ways to deploy their existing workforces more

effectively.

Mobile robots are reducing the time and resources required to transport units from storage

to production or distribution stations. According to analysts at Yokosuka, a Mitsubishi Electric

subsidiary, AMRs are opening up new segments and applications by providing increased

autonomy and intelligence. AMRs can be equipped with manipulator arms to assist dexterous

human workers in manipulating large items like chassis or parts.

Autonomous robots are becoming more and more viable for a wide range of tasks. They

can react in real time to their operating environments, avoiding obstacles such as human and

determining the most efficient paths to reduce transit times and increase efficiency. Vision,

navigation, and artificial intelligence advancements have made them viable for new roles [6].

I.3.3. The idea of mobile robot

AMRs have the ability to understand their operating environment, allowing them to

navigate around obstacles and operate safely even when human operators are present. AMRs can

Chapter I State of the art

6 | P a g e

use data from cameras, laser scanners and other sensors to understand their environment and make

the decisions needed to move around it.

The robot can create a map of its surroundings using the principles of triangulation to detect

and locate reference points by feeding the data into Simultaneous Localization and Mapping

(SLAM) algorithms. These references can be used by the robot to determine its current position

and provide the information needed to move around within it. SLAM allows robot operators to

modify their route using a laptop or other device, with the ability to make additional changes if

necessary. It also offers a flexible alternative to AGVs guided by magnetic tape.

The second option provided by SLAM is autonomous navigation, in which the robot can

choose the fastest route between two points or extend its journey in response to additional

information from the fleet management system (FMS). This same autonomous decision-making

allows it to respond to the presence of obstacles and people, making AMRs safer to deploy

alongside human workers.

I.3.4. Types of Robots

 Surveillance mobile robots

One of the important applications of the robots is surveillance. The surveillance is the

operation of monitoring humans, locations and areas. Surveillance mobile is a system that

composed by two parts.

The first part is a reactive navigation system in which a mobile robot moves avoiding

obstacles in environment using sensors. Sensors are used to collect information about the robot

and the environment. A robotic system requires an environment map (the mapping) to plan its

route and navigate through it, and information about its position on the map (localization) in order

to navigate for its current location to any other location represented in the environment map. The

second part of the system uses camera for detection (like human detections or face detections...).

Surveillance robots can be found in all the normal environments (e.g: aerial, ground,

surface water, underwater or space). An illustration is shown in figure1.1

Chapter I State of the art

7 | P a g e

Figure1.1. Surveillance mobile robot.

Surveillance robot can be found in any of the following types. Each robot has its own task

and capabilities. It is not easy to define robots and not easy to categorise them. Some types of

robots are described as follow.

 Aerospace robot: includes all types of flying robots that can operate in space such as

Mars... An example is shown in figure 1.2.

 Drones: also called uncrewed aerial vehicle, they come in different sizes and have different

levels of autonomy. An illustration is shown in figure 1.3.

 Industrial: consist of a manipulator arm designed to perform repetitive tasks. See figure

1.4.

 Military & security: used in Iraq and Afghanistan. Military robots include ground systems

as the one shown in figure 1.6; while security robot include autonomous mobile systems.

 Medical: are robotic machines utilized in health sciences as illustrated in figure 1.5.

 Underwater: are robots that consist of deep-sea submersibles like Aquanaut as shown in

figure 1.7....

Chapter I State of the art

8 | P a g e

Figure1.2.Aerospace robot. Figure1.3. Navigational robot Drones.

Figure1.4.Industrial robots. Figure1.5. Medical robots.

Figure1.6. Military robots. Figure1.7. Autonomous underwater robot.

The types of robots that were presented seem to be very unlike; however, their functions or

their abilities given are all the same. They differ in their tasks and the complexity of robot operating

system. The principal abilities in a fully autonomous robot are:

1. Perception:

 Mapping and environment modelling

 Localization

Chapter I State of the art

9 | P a g e

2. Decision:

3. Actuation:

 Planning for paths and tasks

 Collision avoidance

 Path execution

 Task accomplishment

I.3.5. Sensors of mobile robot

a) Perception sensors

Sensors are critical components of autonomous mobile robots; without them, they would

be unable to gather information about the environment in which they operate and navigate.

Nowadays, a wide range of sensors are available, each with its own set of capabilities and

designations, but the information they provide is frequently inconsistent or even contradictory.

An active or passive sensor can be used. Passive sensors simply receive energy from the

environment and translate it into a meaningful form for the control units or systems, whereas active

sensors emit energy into the environment in order to observe certain characteristics.

b) Requirement sensors

The following sensors, shown in figure 1.8, should be present in all mobile robots:

Figure

1.8. Mobile robot equipped with various sensor types [7].

Chapter I State of the art

10 | P a g e

 Global positioning system (GPS): Global positioning system is a simple device

used with the robot for determining the location using satellite [8], complex math and general

relativity. It is often used with sonar sensor; the mobile robot’s position and obstacle

avoidance will be determined by a combination of GPS and sonar sensor. The mobile robot

should navigate according to the waypoint that is present to the GPS module.

 Light detection and ranging (LIDAR): is a remote sensing system that uses a laser

signal to measure the distance to an object and then receives its reflection. It can also be used

to accurately map out its surrounding. Mobile robot uses LIDAR to map the environment

and detect and avoid obstacles.

 Camera and its working: the depth camera D435i is part of the intel Real sense

D400 series of camera. D435i combines the robust depth sensing capabilities of the D435

with the addition of an inertial measurement unit (IMU). IMU helps to refine its depth

awareness where the camera moves. D435i used to visualise the environment using SLAM

and tracking allowing better point-cloud alignment [9].

Figure 1.9. IntelRealsense camera D435i.

 Ultrasonic sensor: is used to detect is an instrument used to detect objects that are

far away from the robot using ultrasonic sound waves. It does not require any physical contact

(see figure 1.10).

Chapter I State of the art

11 | P a g e

Figure 1.10. HC-SR04 Ultrasonic sensor

 Odometry sensor: are common on mobile robots, and they show how far the robot

has traveled based on how much the wheels have turned.

Figure 1.11.Odometry sensor

 Inertial measurement unit (IMU): An IMU, as illustrated in figure 1.12, is a set of sensors.

The navigation of mobile robots is aided by an inertial measurement unit. The data collected

by a robot’s IMU sensors is properly converted, and useful information such as position,

orientation, and acceleration is calculated.

Figure 1.12. Inertial measurement unit (IMU)

Chapter I State of the art

12 | P a g e

I.4. Robot Operating System

Robot Operating System (ROS) is a meta-operating system, not an actual operating system.

ROS is an operating system that sits on top of other operating systems and allows different

processes to communicate with one another in real time. ROS provides a structured

communications layer that runs on top of the operating systems of host computers [10]. The

majority of ROS tools are compatible with peripheral hardware and can be used for a variety of

purposes, so their use is not limited to robotics. The ROS core is made up of over two thousand

packages, each with its own set of capabilities.

Hence, ROS is a collection of tools that perform the functions and services of an operating

system on a single computer or across multiple computers. These services include hardware

abstraction, message exchange between processes, package management, and so on. The number

of available ROS tools, according to Ademovic [11], is ROS's greatest strength.

One very important characteristic of ROS is that it is completely open source. ROS was

created with the goal of reusability of robotic SW in mind. Quigley [12] claims that writing SW

for robots is difficult, especially as the scale and scope of robotics expands. HW can vary greatly

between different types of robots, making code reuse extremely difficult. Furthermore, because

robot SW is tightly coupled, extracting reusable code can be difficult, and ROS was created to

address these issues.

To explain ROS, used the following five statements to summarize its philosophical goals [13]:

ROS is peer-to-peer: ROS nodes are execution units that communicate directly or through

publish/subscribe mechanisms.

ROS is tools-based: a microkernel design, as well as a number of small tools and modules.

ROS is multi-lingual: It has support for C++, Python, Octave and LISP.

ROS is ‘thin’: It makes use of the Catkin build system to segment code into packages and libraries.

ROS is free and open source: ROS is distributed under the terms of the BSD license, which allows

the development of both non-commercial and commercial projects.

Chapter I State of the art

13 | P a g e

I.4.1. ROS Overview

Data is transferred between ROS nodes using internet protocol (IP)-based communication.

ROS divides the robotic SW into ROS nodes, which can be run on a single machine or across a

distributed computer cluster. ROS nodes communicate with one another via publish/subscribe

channels, but they can also provide callable services to other nodes. One master node (roscore)

acts as a name server in a running ROS system, allowing other nodes to find each other and form

direct connections. This architecture encourages node reuse by reducing coupling between nodes.

The same ROS nodes, for example, can be used without modification in both the robot and the

simulator.

Nodes, messages, topics, and services are the core concepts of the ROS implementation.

The ROS Master is responsible for providing naming and registration services to the rest

of the ROS system's nodes. Individual nodes can communicate with one another thanks to the

Master. These nodes communicate with each other peer-to-peer once they have found each other.

Nodes would be unable to locate one another, exchange messages, or invoke services without the

Master.

Figure 1.13. Illustration of ROS nodes and messages

Chapter I State of the art

14 | P a g e

The ROS concepts (nodes, messages, and topics) and their relationships are illustrated in

Figure 1.14. Services, which are a type of communication between nodes, don't use the

publish/subscribe mechanism and instead directly invoke the services of the other node.

Figure 1.14. Visualisation of ROS concepts

In the subsections below, the ROS core concepts—nodes, topics, messages, and services—

are explained in depth.

I.4.2. ROS nodes

In the ROS ecosystem, a node is a process that performs computation and can be thought

of as a single unit of execution. Nodes can communicate with one another using a client-server

architecture, in which each node is given a specific task and can act as both a client and a server

at the same time. Nodes should complete their own tasks and report back to the rest of the network.

This architecture has a significant advantage in terms of fault tolerance (as each node is an isolated

part of the system).

I.4.3. ROS messages

Over 200 predefined messages are available in ROS, as well as the ability to create custom

messages. The publish/subscribe mechanism is used to send messages between ROS nodes. The

ROS message would be published to a specific ROS topic by one ROS node, while the other ROS

node would subscribe to that ROS topic and receive the sent ROS message. Messages in ROS are

usually described in text files in the msgs folder of the ROS folder structure. These text files adhere

to certain ROS message description standards. The ROS message description format is fairly

straightforward. Each ROS message is a data structure containing either primitive types (integers,

Chapter I State of the art

15 | P a g e

floats, or booleans) or an array of primitive types. Additionally, as a data type, ROS messages can

contain other ROS messages or an array of ROS messages. ROS messages can also be exchanged

in direct communication between nodes, known as ROS Services, and the messages must be stored

in the srv folder in this case.

I.4.4. ROS topics

ROS nodes communicate with one another via topics: we publish to a topic to send

messages, and we subscribe to a topic to receive messages.

When ROS nodes communicate using the publish/subscribe mechanism, ROS topics are

used. Each ROS topic has its own name, which nodes can use to publish or subscribe to it.

I.4.5. ROS services

ROS services are used when nodes need to communicate directly with one another. The

publish/subscribe mechanism is bypassed in this case, and nodes can communicate directly with

one another using the defined request and reply messages. Even so, because ROS services are a

form of direct communication, they improve system performance while simultaneously reducing

system decoupling.

I.5. The Navigation Stack—System Overview

Navigation Stack is a set of resources that are useful so a robot is capable of planning and

tracking a path while it avoids from obstacles that appear on its path. Navigation Stack needs

SLAM systems to complete its task. SLAM allows a robot to locate itself and create a map of its

surroundings. Some of SLAM tools are introduced in chapter 3.

The system overview of this task is shown in figure 1.15; as it can be seen, there exists

three types of nodes: provided nodes, optional provided nodes and platform specific nodes[13].

 Provided nodes: are responsible mainly by managing the costmaps and for

path planning functionalities.

Chapter I State of the art

16 | P a g e

 The optional provided nodes: amcl and map_server, since a static map is

optional these nodes are also optional because they are related to static map functions.

 The platform specific nodes: such as sensor reading nodes and base controller

nodes. They are nodes related to our robot.

Figure 1.15. Overview of a typical system running the Navigation Stack [15].

I.5.1. AMCL and Map_server

Map_server contains two nodes. Map_server provides static map data as a ros service while

map_saver saves a dynamically generated map to a file.

AMCL is a localization system that runs on a known map; it needs a static map and it will

only work after a map is created. It randomly distributes particles in a known map, representing

the possible robot locations based on the Monte Carlo localization approach, then uses a particle

filter to determine the actual robot pose [14].

I.5.2. Local and Global costmaps

Chapter I State of the art

17 | P a g e

While the global costmap represents the whole environment, the local costmap is, in

general, a scrolling window that moves in the global costmap in relation to the robot current

position. The local and global 2D costmaps are the topics containing the information that

represents the projection of the obstacles in a 2D map, as well as a security inflation radius, an area

around the obstacles that guarantee that the robot will avoid any objects, no matter what is its

orientation. These projections are associated to a cost, and the robot objective is to achieve the

navigation goal by creating a path with the least possible cost [14].

I.5.3. Local and Global planners

The global planner takes the current position of the robot and the goal and create the path

of lower cost in respect to the global costmap, then, it will send the trajectory to local planner. The

local planner will execute each segment of the global planner. Local planner is as smaller part of

global planner. Local planner given a path to follow (provided by global planner) will provide

velocity commands in order to move the robot and starts following the path. If it finds obstacles,

local planner can re-compute the path in order to avoid them [14].

I.6. Conclusion

This chapter was a thorough examination of the Robot Operating System (ROS) and mobile

robot, as well as their implementation. The chapter began with an overview of mobile

robot technology and its background. Following that, we talked about the basic components of a

mobile robot. Then we looked at various sensors and components that are commonly used in

mobile robots. Following that, we introduced the Robot Operating System (ROS) and discussed

its fundamentals (nodes, messages, topics, services)

18 | P a g e

CHAPTER 02

HARDWARE SYSTEM

Chapter II Hardware System

19 | P a g e

After the first chapter, which was about generalities of mobile robot and a detailed

discussion about ROS and ROS Navigation Stack. In this chapter we will take a look at the B21r

mobile robot and at the necessary hardware requirements. First, this chapter introduced the B21r

mobile robot of CDTA and the light detection and ranging sensor and D435i camera that are used

in our project while components will be described separately and how being connected to the B21r.

The schematic diagram of our system will be shown at the end of this chapter.

II.1. System Requirements

To ensure effective implementation, the system must have the following characteristics.

 The mobile robot uses RPLIDAR to perceive its surrounding; then, create a representative

map and locate itself on it in real time.

 We used RGB-D camera to visualize the surrounding environment.

II.2. System Hardware

We worked with the mobile robot B21r of the Center for the Development of Advanced

Technologies (CDTA). Our system is composed of:

 Mobile robot B21r.

 A PC which is needed to handle information; it is connected to B21r mobile robot through

USB-to-USB cable.

 LIDAR sensor.

 Camera.

 Micro USB cable

 USB to USB cable

 Cable matters USB C to Micro USB cable

Chapter II Hardware System

20 | P a g e

II.2.1. Description of The B21r mobile robot of CDTA

The mobile robot B21r is the experimental platform used for the

implementation of our project equipped with LIDAR sensor and d435i Camera.

The B21R mobile robot consists of three main sections (see Figure 2.1): the

Base, the Enclosure and the Console. In the Base we find the mechanical drive and

steering components, batteries, motors and motor control electronics. The Enclosure

contains the main computer, tactile sensors, much of the power distribution system,

sonar, IR sensors and communication equipment. The camera and pan-tilt unit, which

are critical components of the vision system, are mounted on the Console's top.

Figure 2.1: The B21r mobile robot.

Chapter II Hardware System

21 | P a g e

The B21r is a synchronous drive mobile platform. It is made up of two ultrasonic sensor

belts, an encoder, an infrared belt, a laser, tactile sensors on the sides, and a CCD camera (charge-

coupled-device) (Figure 2.2).

Figure 2.2: The B21r and its onboard sensors.

II.2.1.1 Synchronous drive mobile robot B21r

The synchronous drive is a technique for reducing the effect of sliding and increasing the

traction strength. The configuration of the synchronous drive robot is similar to a robot with three

or four coupled wheels which operate at the same time with the same velocity and the same

orientation. This system is realized by two motors, one for the traction and the other for the

orientation. The whole system is linked with a chain to ensure that the wheels turn in synchronous

manner. Figure 2.3 shows the robot base with four coupled wheels linked by chains.

Chapter II Hardware System

22 | P a g e

Figure 2.3: The platform geometry of a synchronous drive mobile robot.

II.2.1.2.Wheels design

B21r comes with four decentered adjustable wheels that rotate along two axes. The system

rotates around the Y-axis, allowing the wheels to roll in order to achieve translation, and around

the K-axis, allowing for a change in orientation (Figure2.4).

Figure 2.4: Decentered adjustable wheels.

Orientation motor Displacement motor

Orientation chain
Displacement chain

r

Chapter II Hardware System

23 | P a g e

Adjustable wheel parameters:

r = the wheel radius.

Vw = the wheel linear velocity.

ωw = the wheel angular velocity.

Ωw =orientation velocity.

II.2.2. RPLIDAR A2

RPLIDAR A2 is the latest generation low cost 360-degree 2D laser scanner (LIDAR). We

used RPLIDAR A2M8 which is the enhanced version of 2D laser range scanner. It can perform

2D 360-degree laser scan and detect an obstacle located up to 12m from it. LiDAR was frequently

employed as the primary sensor in early SLAM research because it is the best sensor for

constructing a grid map for the surrounding environment. RPLIDAR A2M8 is shown in figure

2.5.

Figure 2.5. The RPLIDAR A2M8.

Chapter II Hardware System

24 | P a g e

II.2.2.1. System connection

A2M8 is made up of a range scanner core mechanical powering components and

communication and power interface (see figure 2.6). The mechanical Powering Part cause the

Scanner core to rotate at high speed and scan clockwise.

Figure 2.6. RPLIDAR A2M8 system composition.

II.2.2.2. Mechanism

The Lidar sensor on a vehicle consists of a laser transmitter and light receiver, the

transmitter sends light beam that strike nearby objects present in the range of the sensor, the beam

of light will be reflected back to the sensor when hitting an object as shown in figure 2.7. The

Chapter II Hardware System

25 | P a g e

/

Lidar system records each beam's roundtrip data, measuring time to every object in the vehicle's

vicinity and the angle of the beam relative to the sensor frame [15].

Figure 2.7. TOF ranging schematic [15].

The distance between sensor and target can be calculated with a high accuracy using the

following formula: 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸 = 𝑆𝘗𝐸𝐸𝐷 &𝐹 𝐿𝐼𝘎𝐻 × 𝑇𝐼𝑀𝐸 where “Time” is the time between

emitting and receiving the signal.

II.2.2.3. Communication interface

RPLIDAR A2M8 needs 5V DC power for powering the range scanner core and the motor

system. XH2.54-5P male socket shown in figure 2.8 used by the standard A2.

Chapter II Hardware System

26 | P a g e

Figure 2.8. RPLIDAR Power Interface.

We connected our RPLIDAR to our laptop through Micro USB cable. Flashing green light

indicates normal activity of sensor.

II.2.3. Intel Real sense Camera D435i

Our robot needs to visualize the real surroundings and get the needed information from the

real environment. The needed information from the real environment to the mobile robot is

delivered by D435i camera. RGB-D camera can provide both color and depth information in its

view field. It is possible to achieve the tasks of mapping and localization allowing better point-

cloud alignment. It is the most capable sensor for building a complete 3D scene map [16]. We

connected D435i to our PC using cable matters USB C to Micro USB cable.

The Intel RealSense D400 series depth camera uses stereo vision to calculate depth. The

stereo vision implementation consists of a left imager, right imager, and an optional infrared

projector. The infrared projector projects a non-visible static IR pattern to improve depth accuracy

Chapter II Hardware System

27 | P a g e

in scenes with low texture. The left and right imagers capture the scene and send imager data to

the depth imaging (vision) processor, which calculates depth values for each pixel in the image by

correlating points on the left image to the right image and via the shift between a point on the Left

image and the Right image. The depth pixel values are processed to generate a depth frame.

Subsequent depth frames create a depth video Stream [16].

The depth pixel value is a measurement from the parallel plane of the imagers and not the

absolute range as illustrated in figure 2.9 and 2.10 [16].

Figure 2.9. Active Infrared (IR) Stereo Vision Technology [16].

Chapter II Hardware System

28 | P a g e

Figure 2.10. Depth Measurement (Z) versus Range (R) [16].

II.3. Overall System

After collecting and assembling each component required for our robot, we connected

everything in accordance with figure 2.11, which depicts the robot's schematic diagram.

Everything has been implemented in ROS framework for visualization purposes during real-time

testing. Lidar is connected to our laptop using Micro USB cable and the camera is connected

through USB-C to Micro USB. A laptop has been used and is connected to B21r mobile robot by

USB to USB cable. It is also equipped with Ubuntu Linux OS and ROS melodic framework.

Chapter II Hardware System

29 | P a g e

Figure 2.11. Schematic diagram of our mobile robot.

II.4. Conclusion

In this chapter, we presented B21r mobile robot that we worked with and we described in

details the Lidar sensor and d435i camera and how they are connected to the b21r mobile robot. In

the next chapter, we will interface the components with ROS and we will detail step by step

Navigation Stack in ROS and how we built a map using either a Lidar sensor or a camera.

Chapter III Software System

30 | P a g e

CHAPTER 03

SOFTWARE SYSTEM

Chapter III Software System

31 | P a g e

Following the implementation of HW in the second chapter, now we move on to the

implementation of SW. First, we will talk about ROS navigation stack and what we need in order

to perform robot navigation and we introduced SLAM systems and some of its methods. As it will

be presented, the robot builds the map, localizes itself on the map and performs navigation.

III.1. The system Network

We installed Ubuntu 18.04 double boot and ROS Melodic in our laptop. When the laptop

boots for the first time we have the right to choose between windows and Ubuntu operating system.

Then, we connected our PC to B21 mobile robot using USB to USB cable. The B21r robot uses

RFLEX driver which provides a means of controlling and getting data from different subsystems

(Motor, Sonar, IR, System...)

III.2. ROS tools

To inspect and debug messages, ROS provides a number of GUI (Graphical User Interface)

and command-line tools. Rviz is one that is most usually used and the one that we used in our

work.

III.2.1. Rviz

Rviz is a 3D visualizer in ROS that allows you to see 2D and 3D information from

ROS topics and parameters.Rviz aids in the visualization of data such as robot models, 3D

transform data (TF), point clouds, laser and image data, and a range of sensor data [17].It was used

in this project to draw the robot's map and path, as well as its pose (see figure 3.1).

Chapter III Software System

32 | P a g e

Figure 3.1. ROS visualization tool (Rviz).

III.2.1.1. Transform (tf)

Tf is a package that allows us to track several coordinate frames throughout time.The

Navigation Stack requires the transformations in order to understand where the sensors are in

relation to the robot's center (base link).The position of the mobile robot's frames is depicted in

Figure 3.2[18].

 Figure 3.2. TF Frames.

Chapter III Software System

33 | P a g e

 Map: serves as the global reference frame and the robot’s position in respect to it should

not change significantly over time.

 Odom: when new sensor data becomes available, drifts and can generate discontinuous

jumps.

 Base_link: is attached to robot’s center.

 The base_footprint: is a simple projection of base_link on the ground. It publishes its

transform in reference to the base_link.

 Laser_link: is the center position of the laser sensor, and its transform is published in

reference to the base_link.

 Base_stabilized: is the center position of the robot, it publishes its tf in reference to the

base_link.

III.3. ROS Navigation Stack

In order to perform ROS Navigation, we need first a map of the environment that we want

to navigate (in our case we navigate the hall of CDTA). Second, we need to localize our robot

inside the map this is called localization. Then, we will need to do path planning, to calculate plans

and going from one point to another in that map while avoiding obstacles. Finally, we need to

avoid obstacles that are not shown in this map which is known as obstacle avoidance; these are the

four key points in Navigation and will be detailed step by step as illustrated in figure 3.3.

Figure 3.3. ROS Navigation steps.

Chapter III Software System

34 | P a g e

III.3.1. Mapping

Mapping is the process of using the robot's sensors to create a spatial model of the

environment around it. The map is then used for localization and navigation. One of the many

resources needed for building a map and completing navigation stack is SLAM systems.

 SLAM-Map Building and Navigation

SLAM is concerned with the tasck of building a map of an unfamiliar environment by a

mobile robot while at the same time navigating the environment using the map. The term SLAM

is an acronym for Simultaneous Localization and Mapping. Hugh Durrant-Whyte and John J.

Leonard [19] were the first to develop it.SLAM is a concept rather than a specific algorithm.SLAM

consists of a number of phases, each of which can be accomplished using a variety of different

algorithm.SLAM may be used in both 2D and 3D motion. There are a number of 2D SLAM

algorithms that rely on a laser scanning sensor, such as:

- Hector SLAM Algorithm

Hector stands for Heterogeneous Cooperating Team of Robots. This approach has been

published in 2008. Hector SLAM is an open-source method that uses a laser scan sensor (LIDAR)

to create a 2D grid map of the surrounding environment. This system uses scan matching to

determine the robot's location without any odometry. Figure 3.4 shows flowchart of the Hector

SLAM algorithm.

Chapter III Software System

35 | P a g e

Figure 3.4. Hector Slam flowchart.

 - SLAM Gmapping

Gmapping is a 2007 open source SLAM software in the ros.It is extensively used 2D lidar

package.The Gmapping algorithm can be used for locating and mapping both indoors and

outdoors.Not only does the gmapping method require 2D lidar data, but it also strongly relies on

odometer data.The flowchart for Slam Gmapping is shown in Figure 3.5.

Chapter III Software System

36 | P a g e

Figure 3.5. Gmapping Slam flowchart.

 - Visual-SLAM

Visual SLAM is a sort of SLAM system that uses 3D vision to perform location and

mapping functions. Visual-SLAM is more complex than LiDAR-SLAM because images

provide too much information, while distance measurement is challenging. A popular method

for Visual-SLAM is to estimate robot motion by matching extracted picture features under

Chapter III Software System

37 | P a g e

different positions to generate a feature map. Figure 3.6 gives a better understanding of visual

slam.

Figure 3.6. V-SLAM flowchart.

III.3.1.1. Mapping using LIDAR

To build a map using rplidar, first we need to:

 Integrate RPLidar with ROS

We start by opening a new terminal, we build the RPLIDAR ROS package by cloning the

rplidar ros package to the workspace then building the node. Then, we run the package by running

the rplidar node and viewing in the rviz. The red lines shown in figure 3.6 are the lidar data that is

being published to the ros topic /scan. We changed some parameters (the parameters are found on

the left of fig3.7) such as fixed frame to laser. We set the laser scan to topic /scan which is appeared

by clicking on the add buttom of the rviz.

Chapter III Software System

38 | P a g e

Figure 3.7. LIDAR sensor running on Rviz.

We used the two methods gmapping and hector SLAM to build a map based on RPLIDAR,

in order to know which method performs better and it will be discussed in chapter 4.

 Create a map using Hector slam OR Gmapping

After running the lidar and confirming that is working, in new terminal we cloned the

repository of Hector-SLAM or Gmapping ros packages to our source workspace folder. Then, we

built, compile then and launched hector-slam or gmapping-slam nodes; this run rviz directly as

shown in fig3.8.

To create a map we move the Lidar around the room but slowly to make sure that the map

making is working well; the final map is presented in the following chapter.

Chapter III Software System

39 | P a g e

Figure 3.8. Hector-SLAM on rviz using lidar

III.3.1.2. Mapping using D435i Camera

To create a map of the surrounding using Visual SLAM based on depth camera d435i, we

need to:

 Integrate d435i camera with ROS

We start by opening a new terminal, we cloned the Realsense2-camera ros package to the

source folder of our workspace. Then, we build the node. To start the camera node we launched

this command : roslaunch realsense2-camera rs-camera.launch

After that, we run rviz and change some parameters. We changed fixed frame to

camera_link; we published the topics: /camera/color/image_raw, camera/depth/image_rect_raw

and added a pointcloud topic /camera/depth/color/points as it is illustrated in figure 3.9.

Chapter III Software System

40 | P a g e

Figure 3.9. D435i camera running on rviz.

 Create a map using Visual SLAM

After running camera node on rviz, we installed these packages:

imu_filter_madgwick, rtabmap_ros and robot_localization by typing the following

commands in a new terminal:

o sudo apt-get install ros-melodic-imu-filter-madgwick

o sudo apt-get install ros-melodic-rtabmap-ros

o sudo apt-get install ros-melodic-robot-localization

We launched the following command and this runned rviz directly

roslaunch realsense2_camera opensource_tracking.launch

We waited a few minutes for the system to fix itself. We left out TF frames as marked only map

and camera_link (see figure 3.10).

Chapter III Software System

41 | P a g e

Figure 3.10. Starting visual slam with d435i camera.

III.3.1.3. Map saving

To perform localization, we need a pre-build map. For saving a map we just run the

following command: rosrun map_server map_saver -f my_map

To load the saved map we first get the ROS Master started and in a new terminal we type

rosrun map_server map_server my_map.yaml

III.3.2. Robot-Localization

The question of "Where is the robot now?" is answered by robot localisation.The technique

of establishing where a mobile robot is in relation to its environment is known as robot

localization.A mobile robot having sensors to track its own movement.We utilized the amcl node

to execute the localization.

 AMCL

Chapter III Software System

42 | P a g e

AMCL stand for Adaptive Monte Carlo Localization, it is a probabilistic localization

system for a robot moving in two dimensions. It uses particle filter to track a robot’s position

against a known map. The purpose of this method is to determine the position of the robot inside

the map of the surroundings.

Once the map of the desired environment is built, we start localization and for that we

launch amcl node and rviz. We set laser scan display to topic /scan in order to visualize the laser

data. We need to add Map display and choose the map-topic. To visualize localization, we need to

add PoseArray Display and configure the topic ParticleCloud. Figure 3.11 Shows how the topics

are connected to amcl node.

Figure 3.11. AMCL node and topics related

By adding Particle Cloud, we can visualize the characteristics arrows (red arrows) that are

used in order to visualize localization (see figure 3.12). We used 2D Pose estimate tool to tell rviz

where our robot is.

o 2D Pose Estimate: allows the user to set the pose of the robot in the world to initiate the

navigation stack's localization mechanism. The navigation stack is waiting for a new pose

of a new topic named initial pose to appear.

Chapter III Software System

43 | P a g e

Figure 3.12. Particle localization

III.3.3. Path Planning

The path planning operation provides the answer to the question “how should I get to where

I’ am going?” Path planning can only be applied when a map of the environment is known. It is

defined as finding a geometrical path from the current location of the vehicle to a target location

such that it avoids obstacles. For visualizing path planning we need three elements:

o Map Display (Cost maps)

o Path Displays (plans)

o 2D Tools

We launched the command of navigation and run rviz; we added two map elements the

global costmap and the local costmap as shown in Figure.3.13, which are the main elements in

path planning. We added one path element and Pose Array for localization. We set a goal using 2D

Chapter III Software System

44 | P a g e

Nav Goal so that the global planner calculates the path to reach that goal. The 2D Nav Goal button

is used to give a goal position to the move_base node in the ROS Navigation stack through Rviz.

Figure 3.13. Local and global costmaps [20].

The goal position will send to the move_base node for moving the robot to that location;

then move_base sends this goal to the global planner which calculates a safe path to reach that goal

using global costmap. The path is clearly shown in figure 3.14.

Chapter III Software System

45 | P a g e

Figure 3.14. path planning

III.3.4. Obstacle avoidance

After creating the path, we will add path for the global planner with topic

/move_base/NavfnROS/plan. We sent 2D Nav goal so that the global planner calculates its path.

The local planner receives this path from global planner to follow but if some object comes across,

local planner will recompute the path in order to avoid it. The local planner monitors the odom

and laser data.

We launched rflex to drive the robot by running this command:

roslaunch rflex b21.launch

Then, B21r mobile robot moves taking the velocity published bay move base as an input.

the following command: rostopic echo cmd_vel will show the velocity of the robot as described

in figure 3.15.

Chapter III Software System

46 | P a g e

Figure 3.15. the velocity of B21r mobile robot

III.4. CONCLUSION

This chapter dealt with the process of ROS Navigation stack point by point. We have seen

how to integrate our lidar sensor and d435i camera in ROS operating system. In the following

chapter we will take a look at the results and discuss it.

Chapter IV Experiment, Result and discussion

47 | P a g e

CHAPTER04

RESULTS AND DISCUSSION

Chapter IV Results and discussion

48 | P a g e

During this chapter, experimental and empirical results obtained from the

implementation and the tests of the different approaches are presented. The results will be

discussed and evaluated step-by-step from mapping until path tracking.

VI.1. Visual-SLAM

For mapping, two different types of SLAMs: Visual-SLAM (obtained from the camera)

and LiDAR SLAM were implemented and tested as explained in the previous chapters. Starting

by testing the Visual SLAM, figure 4.1 illustrated the visual map in rviz created from the camera.

Figure 4.1. Map builded using visual SLAM

As it can be noticed from figure 4.1, the map is full of details and not completely clear;

moreover, it consumes more time while mapping, and sense the image in Visual-SLAM carries to

much information it is more complex. Visual SLAM is currently in the early stages of

development, with application scenarios and product landing to come. Laser-SLAM is now the

most stable and widely used positioning and navigation system, with great precision when creating

maps. For that, we preferred to use Lidar-Slam.

Chapter IV Results and discussion

49 | P a g e

VI.2. Comparing LiDAR SLAMS

After the illumination of the camera, we decided to use LiDAR SLAM for mapping.

However, two different SLAMs which are Hector SLAM and Gmapping SLAM can be

implemented to create the map. Therefore, in this section, we try to find the main differences

between the two methods and select the best one according to the obtained results.

The map built with the help of hector slam is shown in figure 4.2 and the one built using

Gmapping is the shown in figure 4.3. Both of the maps present the hallway of CDTA

Figure 4.2. map of the CDTA hallway using HECTOR SLAM

Chapter IV Results and discussion

50 | P a g e

Figure 4.3. map of the CDTA hallway using Gmapping SLAM

The two maps are made using hokuyo LiDAR, which is integrated in the robot b21, by

moving in CDTA hallway at the same speed. By comparing the two figures we can say that the

accuracy of Hector SLAM is higher than the Gmapping SLAM.

Thus, to be more accurate, the two approaches are compared in term of time consuming

and localization accuracy as detailed below.

VI.2.1. Scenario 01: Time Consuming

During the map creation, we were obliged to stop several time to arise the black point in

Gmapping; on the other hand, for Hector it was faster, it doesn’t require to stop so much. This

scenario is illustrated in table 4.1, figure 4.4(a) and figure 4.4(b).

Chapter IV Results and discussion

51 | P a g e

In order to validate this extracted conclusion about time consuming scenario, the two

approaches were run to build a map for the same area (CDTA hallway). From table 4.1, it can be

noted that Hector SLAM end up the creation of the map in 9min; while, for Gmapping it took

around 12min. The extra time spend by Gmapping was devoted to the time expend by the algorithm

to fill the blank area in the map and to arise the black point that appears in the map correspond to

fake obstacles. The delay time is variant as shown in table.4.1 and that is related to several reasons

like:

(i) The black point that appears in the map which are fake obstacles and that can be seen for

hector slam in the 4th min, 5th min and the 6th min which took 23sec, 19sec, and 21sec

respectively, and for Gmapping SLAM that happens in the 2nd ,3rd ,5th, 6th, 8th and 9th

minutes which took 33sec, 24sec, 20sec 22sec, 27sec and 33sec respectively.

(ii) The gap in the map, which happens in the 1st, 2nd, 3rd, 8th and 9th minutes for hector and

took 10sec, 11sec 12sec, 7sec and 11sec respectively, and for Gmapping appears in the 1st,

7th, 10th, 11th and the 12th minutes and took 12sec, 10sec, 22sec, 14sec and 16sec

respectively.

(iii) The stop in the 7th min for hector which spends 33sec and in the 4th min for Gmapping

which takes 47sec is explained by the people walks around; so, the process need to stop

and rotate the robot left and right in order to arise their trace from the map. In case this step

is not done, it may cause fake obstacles later.

Table.4.1 number of times that we need stops while mapping for each minute

time(min) 1 2 3 4 5 6 7 8 9 10 11 12

Hector

(sec)

10

11

12

23

19

21

33

7

11

0

0

0

Gmapping

(sec)

12

33

24

47

20

22

10

27

33

22

14

16

Chapter IV Results and discussion

52 | P a g e

Figure 4.4. Time stops needed during each minute to eliminate errors while mapping. (a)

Delay generated by Hector. (b) Delay generated by Gmapping.

Figure 4.5 shows the different problem that can appear while mapping. So, we can say

that Gmapping creates more fake obstacles and took more time to arise them; thus, it is more

time consuming.

Figure 4.5. different errors may happen when mapping

Chapter IV Results and discussion

53 | P a g e

VI.2.2. Scenario 2: localization in SLAMs

In this scenario, we try to know which slam is more accurate in localization while

mapping to do that we specify three different points in the ground of the hallway and we mark

another point in the wall and measure the distance in realty and through rviz for Hector and

Gmapping SLAMs. The obtained results are shown in table 4.2 for Hector and in table 4.3 for

Gmapping.

Table.4.2.-a: Hector slam localization

 Real world(m) Rvis (m) error(m)

p1 1.23 1.35 0.12

p2 1.77 1.90 0.13

p3 2.23 2.36 0.13

Table 4.3: Gmapping localization

 Real world(m) Rvis (m) error(m)

p1 1.23 1.4 0.17

p2 1.77 1.96 0.19

p3 2.23 2.46 0.23

So, as it can be noticed the error for localization in Gmapping is with an average of 0.1966

m, higher than the hector’s error which is around 0.1266 m.

This result was not waited because GMapping combines odometry and laser scan as

information sources; whereas, Hector Slam just employs laser scan. GMapping should

theoretically outperform Hector Slam. Therefore, according to these tests we decided to work with

Hector SLAM because is more accurate in map drawing, more accurate in localization and less

time consuming (so is less energy consuming).

Chapter IV Results and discussion

54 | P a g e

Other problems were also faced in both the slams such as: when the robot rotate with high

speed or do an abrupt movement, a glitch (errors) appears and that affect the quality of our map

and affect the estimated pose (localization). These glitches are shown in Figure.4.6.

Figure 4.6. Error caused by sudden moves.

VI.3. Localization (AMCL)

Because of the previously met and mentioned problems with SLAMs, AMCL algorithm

is chosen for localization. AMCL is the most famous and usable one and almost all the previous

master projects were based on it. Moreover, and in order to confirm our choice, we tested the

AMCL. As with the two previous scenarios, three points are selected from the map and measure

the distance between them and a specific point that we chose in the wall in reality and compare it

with what AMCL give us in rviz.

First, AMCL, map server and the hokuyo Lidar package were launched. It appears in the

map that the robot is at the initial pose from where mapping starts. Thus, a 2D estimate pose is

Chapter IV Results and discussion

55 | P a g e

returned and this period is recognized by the high number of particle clouds as shown in figure

4.7(a). After that, the robot moves and the particle clouds reduces to very small number which

means that the robot is well localized as illustrated in figure 4.7(b). The test results are shown in

table 4.4.

Figure 4.7. AMCL localization results. (a) Cloud in starting pose. (b) Cloud in final pose.

As we can see the error did not exceed 0.12 meters and we consider it as a good result with

average precision of 94.4%. AMCL also can inform us about the direction of the robot and it looks

very accurate and we can deduce that easily by comparing the direction that AMCL gives us in

rviz and the direction of the robot in real word.

Table 4.4: The error between real localization and AMCL results

 Real world(m) Rvis (m) error(m)

p1 1.50 1.60 0.10

p2 1.89 2.01 0.12

p3 2.52 2.64 0.12

Chapter IV Results and discussion

56 | P a g e

VI.4. Navigation stack

So, after we build our map and test our localization algorithm and it met our needs; now,

we move on to our final step which is navigation. Navigation stands to path planning and path

tracking. To deal with navigation, our configuration files: Costmap Configuration, Common

Configuration, Global Configuration, Local Configuration and Base Local Planner Configuration

which are in yaml file form must be created.

The move base node of the ROS Navigation Stack will use the configuration files. Behind

the scenes, the move base node is in charge of arranging a collision-free path for a mobile robot

from the starting pose to the goal location.

Now after creating our configuration files and creating our map and testing our localization

algorithm, it is time to add all of that in our launch file to start navigating and record some results.

Also for the launch file, in the beginning we were using RPLidar; so, RPLidar package was needed

and used. However, RPLidar was damaged during the tests; thus, obliged us to replace it by

Hokuyo Lidar. for the rflex node we launched it separately not included in the launch file.

VI.4.1Testing our navigation stack

By launching the launch file and define the robot’s goal pose in rviz; the path is correctly

planned and everything seems to be well configured in the launch reflex. The robot starts moving

and stopping alternatively, it was a random movement with a random speed and random stops.

Here where our RPLlidar was broken because the robot rotates at a high speed and the Lidar was

not well fixed on the robot’s chassis; so, it fell down and damaged, and we were obliged to change

the Lidar by hokuyo.

VI.4.2. Random move and interrupted speed of the robot

By remarking this weird act in the movement of the robot, we were obliged to figure out

the problem. To evaluate the angular and the linear velocity generated by the move base, constant

Chapter IV Results and discussion

57 | P a g e

velocities are set to the robot then record its behavior corresponding to each velocity; angular and

linear velocity are tested separately. The results are shown in figure 4.8.

(i) The robot’s behavior responding to the angular velocity=0.1m/s is shown in figure

4.8(a). It can be clearly notified that the movement is not normal it is interrupted

randomly; the robot rotates and stops at a random time.

(ii) The robot’s response to a constant linear velocity of 0.1 m/s is shown in figure

4.8(b). It can be also notified that the movement is not normal it is interrupted

randomly; the robot moves and stops randomly.

Figure.4.8-a. random response with constant angular velocity=0.1m/s

Figure.4.8-b. random response with constant linear velocity=0.1m/s

Chapter IV Results and discussion

58 | P a g e

VI.4.3. serial sniffer interceptty

To solve the previously mentioned problem, we thought in Interceptty. Interceptty is a

program that sits between a serial port (or another terminal device, or a program, or a socket, or

something attached to a file descriptor) and a program that communicates with it. It records

everything that happens between the two. It accomplishes this task by first opening the real device,

generating a pseudo-tty; then, forwarding all data between the two and recording anything it sees.

It includes several settings that allow us to fine-tune the devices it utilizes; as well as, the

terminal options for the actual device.

After the installation of interceptty, the velocity test was performed another time. As

illustrated in figure 4.9 (a) and figure 4.9 (b), the results are satisfactory and the robot rotates and

moves without abrupt stops.

Figure 4.9. Normal robot’s response after the setup of interceptty. (a) Response to a

constant angular velocity of 0.1m/s. (b) Normal response to a constant linear

velocity of 0.1m/s.

The problem was solved, we come back to test our navigation stack; the robot now moves

with the velocity generated by move base as an input. After launching our launch files rflex and

interceptty, we remark that the robot is not interrupted anymore. However, the robot is not able to

track the pre-planned path correctly; it deviates left and right from the path. Nevertheless, it still

able to reach the goal with an error in the interval of 0.1m to 0.13m measured in rviz.

Chapter IV Results and discussion

59 | P a g e

VI.4.4. Robot wheels’ response

this time we face a mechanical problem and that because one wheel from the four wheels of the

robot was not response well in order to confirm that we test them manually and the test result are

shown in table 4.5.

Table 4.5: Manual test of the wheels’ movement.

 Rotation w1 Rotation w2 Rotation w3 Rotation w4 Final rotation

 W1 +60°
 W2 +60°

 W3 +60°
 W4+60°

 240°

W1 60° 60° 0° 60° 180°

W2 60° 60° 0° 60° 180°

W3 43° 35° 60° 31° 169°

W4 60° 60° 0° 60° 180°

As illustrated in table 4.5, wheel W3 is not responding correctly to the desired rotation

and the error varies from 17° to 29° for each robot’s base rotation. Once one of the wheels W1, W2

or W4 is rotated, the wheels and the robot’s base rotate at the same angle. Whereas, only W3 will

not rotate with the same angle as the others. When, W3 is rotated, it rotates alone (freely); so, the

problem was there which generate a wrong path tracking.

This problem generated a path tracking error therefore the real path followed by the robot

deviates from the preplanned path. The error’s marge between the real path and the planned one is

computed at discrete points. The distance from the starting pose to the target pose of the two paths

is also measured (the preplanned path is 5.75m whereas the path executed by the robot is 6.52m).

These results are summarized in figure 4.10 below, the green path present the preplanned path and

the black one is the path tracked by the robot. The robot has to move for an additional distance of

0.77m which is undesired. An error of 13.4% is generated by this problem which present

unsatisfactory results.

Chapter IV Results and discussion

60 | P a g e

Figure 4.10. original path vs real path and the point chosen for test

The error generated from the poor response in wheel W3 rotation is presented in figure 4.11.

It is clearly appearing that the error is random but the robot still able to reach its destination with

an error of around 0.12m which can be consider as an acceptable result.

Chapter IV Results and discussion

61 | P a g e

Figure 4.11. distance error of several points in real path from original path.

VI.5. Conclusion

This chapter summarized the different steps followed to implement our navigation strategy

starting from map building and localization to navigation. Our work was validated by some

experiment results and discussions. For map creation different slams were used, and by comparing

them hector overcome Gmapping performance which was not theoretically expected. After that,

AMCL was tested for localization and the results were fairly good. Therefore, move base node

which contains the configuration file in yaml form was created; then, our launch file which gather

all the nodes was generated too. During our work we faced some problems like the serial port was

not working well which was solved by setting up interceptty sniffer. In addition to the problem

with one of the robot’s wheels which didn’t respond correctly to the assigned rotation and causes

a considerable path tracking error. Unfortunately, this last problem was not solved because it

requires more time and it is out of the scope of our project. Although the robot did not follow the

preplanned path correctly, it still able to reach the navigation goal with small error.

Chapter IV Experiment, Result and discussion

62 | P a g e

CONCLUSION

63 | P a g e

Experiment, Result and discussion Chapter IV

 Conclusion

The goal of this work was the implementation of ROS Navigation Stack on the B21r mobile robot

equipped with Lidar sensor and RGB-D camera.

Initially, we have presented a brief overview of mobile robots, ROS and ROS Navigation stack and we

talked about basic components of mobile robots in general. We presented the B21r mobile robot. Afterward, we

described the Lidar sensor and d435i camera and their connections to our laptop. We detailed the ROS

Navigation step by step. After that, a map of the hall of CDTA was required and it was created. Then, our robot

localized itself inside the map. Next, a free path was planned to enable the robot to move from one point to

another in the created map while avoiding obstacles.

We have implemented the navigation stack in ros melodic. Different results were obtained. We used both

RGB-D and LIDAR sensor to build a map of the hall of CDTA, but according to our experiment results we

preferred to work with Lidar sensor. Then, we created a map using Hector and Gmapping slam. When we were

creating our map, glishes appeared after fast rotation and sudden stops of our B21r robot. Therefore, this affect

the quality of our map and this problem is generated when implementing the hector and gmapping slam methods.

By comparing Hector and Gmapping results we concluded that: mapping using Hector is more accurate

and less time consuming and less fake obstacles compared with Gmapping slam. Hector slam is more accurate in

localization since the average error for the robot to localize itself using gmapping was 0.1966m which was higher

than hector’s error (hector’s average error was 0.1266 m). For that, the best choice was to implement hector slam.

After that, we used AMCL for localization, because the error did not exceed 0.12m comparing to Hector

localization. Also, AMCL is very accurate by comparing the direction of the robot in real world and in Rviz.

Then we started navigating our environment and we were obliged to work with hokoyo Lidar for the reason that

our RPLidar is broken during our tests.

The path created looks good in Rviz but in reality our robot did not follow that path and the movement of

the robot is interrupted. We tried to find the problem and we gave constant velocity to the robot and we tested the

angular and the linear velocity of each wheel separately. We deduced that the problem was that the new

generation of our laptop could not communicate with the B21r mobile robot, hence we fixed the problem by

using a serial sniffer interceptty. After that, our robot movement was not interrupted but did not follow the path

64 | P a g e

correctly, we still having errors. We tested the four wheels of the robot, Hence the results confirmed that one

wheel from the four wheels is not responding well. For that the problem was mechanical and it takes time to fix

it.

For future work, we will first fix the problem of the wheel so that our robot will be able to follow the

planned path correctly. In addition, realizing a new surveillance mobile robot then implementing on it all the

required tools for mapping, localization and navigation basing on ROS is a good perspective because the B21r

mobile robot of CDTA is very old.

65 | P a g e

Chapter IV Experiment, Result and discussion

References and Bibliography

[1] Bruno Siciliano, Oussama Khatib (Eds). Springer Handbook of Robotics (Springer

Handbooks: Springer-Verlag Berlin Heidelberg 2008), page number: 01.

[2]JeremyNorman’s,historyofinformation.com.8/14/2021.https://www.historyofinformation.com/

detail.php?entryid=4071.

[3] Heiserman. David (1976). Build Your Own Working Robot. TAB Books. ISBN 0830668411.

[4] Heiserman, David (1979). How to Build Your Own Self-Programming Robot. TAB Books.

ISBN 0830612416

[5] Heiserman, David (1981). Robot Intelligence with Experiments. TAB Books. ISBN

0830696857.

[6] Mobile robots are making their move. Control Engineering Europe covering control,

instrumentation, and automation systems worldwide. (n.d.). Retrieved June 5, 2022, from

https://www.controlengeurope.com/article/189861/Mobile-robots-are-making-their-move.aspx.

[7] Lidar is set to drastically change the world and how we drive. here's how it works. Alphr.

(n.d.). Retrieved June 6, 2022, from https://www.alphr.com/technology/1006536/what-is-

lidar-how-it-works/

[8] Rajeev Thakur, Infrared Sensors for Autonomous Vehicles, Recent Development in

Optoelectronic Devices. Rutry Srivostava, IntechOpen, December 20th,2017.

[9] Depth camera d435i. Intel® RealSense™ Depth and Tracking Cameras. (2021, June 17).

Retrieved June 5, 2022, from https://www.intelrealsense.com/depth-camera-d435i.

[10] Quigley, et al, ROS: an open-source Robot Operating system, ICRA workshop on open-

source software, vol. 3, no:3,2,5,2009.

[11] Ademovic A, An introduction to robot operating system: the ultimate robot application

framework, May 10,2018, Toptal.

[12] Aleksandar Zivkovic, Development of Autonomous Driving using Robot Operating System,

Master thesis, Madrid, May 2018.

[13] Tellez R, how to start with self-driving cars using ROS, May 10,2018. The construct.

http://www.historyofinformation.com/
http://www.controlengeurope.com/article/189861/Mobile-robots-are-making-their-move.aspx
http://www.alphr.com/technology/1006536/what-is-
http://www.intelrealsense.com/depth-camera-d435i

66 | P a g e

Chapter IV Experiment, Result and discussion

[14] Guimarães, R. L., de Oliveira, A. S., Fabro, J. A., Becker, T., & Brenner, V. A. (1970,

January 1). Ros Navigation: Concepts and tutorial. SpringerLink. Retrieved June 21, 2022,

from https://link.springer.com/chapter/10.1007/978-3-319-26054-9_6

[15] SLAMTEC A2M8 Rplidar A2 low cost 360-degree Laser Range Scanner instructions.

Manuals+. (2021, September 23). Retrieved June 21, 2022, from

https://manuals.plus/slamtec/a2m8-rplidar-a2-low-cost-360-degree-laser-range-scanner-

manual

[16] Intel® realsense™ depth camera D400-series Datasheet. (n.d.). Retrieved June 21, 2022,

from https://www.mouser.com/pdfdocs/Intel_D400_Series_Datasheet.pdf

[17] Joseph, L. (n.d.). Ros Robotics projects. O'Reilly Online Learning. Retrieved June 22, 2022,

from https://www.oreilly.com/library/view/ros-robotics-

projects/9781783554713/ch01s04.html

[18] ROS.org, How to set up hector_slam for your robot (2015),

http://wiki.ros.org/hector_slam/ Tutorials/SettingUpForYourRobot. Seen 03 Jan 2015

[19] Joseph, L. (n.d.). Ros Robotics projects. O'Reilly Online Learning. Retrieved June 22, 2022,

from https://www.oreilly.com/library/view/ros-robotics-projects/9781783554713/ch01s04.html

[20] Dost, A. B. (2020, December 8). Local vs global costmap. The Construct ROS Community.

Retrieved June 22, 2022, from https://get-help.robotigniteacademy.com/t/local-vs-global-

costmap/6752

http://www.mouser.com/pdfdocs/Intel_D400_Series_Datasheet.pdf
http://www.oreilly.com/library/view/ros-robotics-
http://wiki.ros.org/hector_slam/
http://www.oreilly.com/library/view/ros-robotics-projects/9781783554713/ch01s04.html

	People’s Democratic Republic of Algeria Ministry of Higher Education and Scientific Research
	Department of Electronics
	- DELHOUM Nabil
	- Dr.BELAIDI Hadjira
	Registration Number: 2021/2022
	Abstract
	Finally, we would like to thank jury members and all IGEE teachers.
	This work is dedicated to our loving and caring Parents who are cause of our success. And great gratitude and love for our sisters and brothers for their love and support.

	TABLE OF CONTENTS
	LISTE OF TABLES
	GENERAL INTRODUCTION
	I.1. Motivation
	I.2. Goal of the Project
	I.3. Background and Related Work
	I.3.1. Definition and history of robots
	I.3.2. Mobile robot today
	I.3.3. The idea of mobile robot
	I.3.4. Types of Robots
	Figure1.1. Surveillance mobile robot.
	Figure1.2.Aerospace robot. Figure1.3. Navigational robot Drones.
	Figure1.6. Military robots. Figure1.7. Autonomous underwater robot.
	I.3.5. Sensors of mobile robot
	b) Requirement sensors
	Figure
	Figure 1.9. IntelRealsense camera D435i.
	Figure 1.10. HC-SR04 Ultrasonic sensor
	Figure 1.11.Odometry sensor

	I.4. Robot Operating System
	I.4.1. ROS Overview
	Figure 1.13. Illustration of ROS nodes and messages
	Figure 1.14. Visualisation of ROS concepts
	I.4.2. ROS nodes
	I.4.3. ROS messages
	I.4.4. ROS topics
	I.4.5. ROS services

	I.5. The Navigation Stack—System Overview
	Figure 1.15. Overview of a typical system running the Navigation Stack [15].
	I.5.1. AMCL and Map_server
	I.5.2. Local and Global costmaps
	I.5.3. Local and Global planners

	I.6. Conclusion
	II.1. System Requirements
	II.2. System Hardware
	II.2.1. Description of The B21r mobile robot of CDTA
	II.2.1.1 Synchronous drive mobile robot B21r
	II.2.1.2.Wheels design
	II.2.2. RPLIDAR A2
	Figure 2.5. The RPLIDAR A2M8.
	II.2.2.1. System connection
	Figure 2.6. RPLIDAR A2M8 system composition.
	II.2.2.2. Mechanism
	Figure 2.7. TOF ranging schematic [15].
	II.2.2.3. Communication interface
	Figure 2.8. RPLIDAR Power Interface.
	II.2.3. Intel Real sense Camera D435i
	Figure 2.9. Active Infrared (IR) Stereo Vision Technology [16].

	II.3. Overall System
	II.4. Conclusion
	III.1. The system Network
	III.2. ROS tools
	III.2.1. Rviz
	Figure 3.1. ROS visualization tool (Rviz).
	III.2.1.1. Transform (tf)

	III.3. ROS Navigation Stack
	Figure 3.3. ROS Navigation steps.
	III.3.1. Mapping
	 SLAM-Map Building and Navigation
	- Hector SLAM Algorithm

	Figure 3.4. Hector Slam flowchart.
	 - SLAM Gmapping

	Figure 3.5. Gmapping Slam flowchart.
	 - Visual-SLAM

	Figure 3.6. V-SLAM flowchart.
	III.3.1.1. Mapping using LIDAR
	 Integrate RPLidar with ROS
	Figure 3.7. LIDAR sensor running on Rviz.
	 Create a map using Hector slam OR Gmapping
	Figure 3.8. Hector-SLAM on rviz using lidar
	III.3.1.2. Mapping using D435i Camera
	 Integrate d435i camera with ROS
	Figure 3.9. D435i camera running on rviz.
	III.3.1.3. Map saving
	III.3.2. Robot-Localization
	 AMCL
	Figure 3.11. AMCL node and topics related

	III.3.3. Path Planning
	Figure 3.13. Local and global costmaps [20].

	III.3.4. Obstacle avoidance
	roslaunch rflex b21.launch

	III.4. CONCLUSION
	VI.1. Visual-SLAM
	VI.2. Comparing LiDAR SLAMS
	Figure 4.2. map of the CDTA hallway using HECTOR SLAM
	VI.2.1. Scenario 01: Time Consuming
	Table.4.1 number of times that we need stops while mapping for each minute

	Figure 4.4. Time stops needed during each minute to eliminate errors while mapping. (a) Delay generated by Hector. (b) Delay generated by Gmapping.
	VI.2.2. Scenario 2: localization in SLAMs
	Table.4.2.-a: Hector slam localization

	VI.3. Localization (AMCL)
	Figure 4.7. AMCL localization results. (a) Cloud in starting pose. (b) Cloud in final pose.

	VI.4. Navigation stack
	VI.4.1Testing our navigation stack
	VI.4.2. Random move and interrupted speed of the robot
	Figure.4.8-a. random response with constant angular velocity=0.1m/s
	VI.4.3. serial sniffer interceptty
	Figure 4.9. Normal robot’s response after the setup of interceptty. (a) Response to a constant angular velocity of 0.1m/s. (b) Normal response to a constant linear velocity of 0.1m/s.
	VI.4.4. Robot wheels’ response
	Table 4.5: Manual test of the wheels’ movement.
	Figure 4.10. original path vs real path and the point chosen for test

	VI.5. Conclusion

	Conclusion
	References and Bibliography

