
People’s democratic republic of Algeria

Ministry of Higher Education and Scientific Research

University of M’Hamed BOUGARA, Boumerdes

A Thesis Presented in Partial Fulfillment of The requirement for the Master’s degree

Major: Control engineering

Title:

FEEDBACK MOTION PLANNING
FOR TETHERED MOBILE ROBOTS

by

• Billel HAMBLI

• Redha CHAREF

Supervisor:

• Dr. R GUERNANE

September, 2021

II

Abstract

In this report titled Feedback motion planning for tethered mobile robots, we employ many

concepts in order to arrive at a methodology by which path planning of tethered robots can be achieved

using feedback. These concepts include constructing a map of the encountered homotopic classes in our

environment, building an augmented and tether aware virtual potential field that is responsible for both

the advancement towards the goal and the retraction to the anchor of the tether, and the use of path

shortening and length calculation algorithms. For the purpose of simplicity, our approach is only

limited to the cases where there is no tether crossing while being wrapped around an obstacle. A

discrete implementation of the suggested strategy using wavefront planner is presented as a proof of

concept.

III

Acknowledgments

We would like to express our sincerest gratitude and most honest appreciation to our supervisor Dr.

GUERNANE.R, for all the invaluable guidance he provided during this project and his many

suggestions that helped refine the concepts that we tried to build. This appreciation also extends to his

role in exposing us to the very interesting and fun field of motion planning. And for all of that, we are

very grateful.

Another special appreciation goes to all the hardworking teachers and staff of our institute, and all

the people who impacted us through this journey, without forgetting all the beautiful friendships we

built while being students here and that will be maintained for the rest of our lives.

We would also like to thank and congratulate each other for delivering this project, and not giving

up despite the many obstacles we encountered in our path and the instances where we had no clear plan

on what to do.

Finally, our gratitude go to our parents and families for their consistent support and continuing

caring and belief in us.

All these individuals have influenced us and this project and we express our dearest thanks and

appreciation to them.

IV

Table of contents
Abstract..2

Acknowledgments..3

Introduction..1

Chapter 1. Theoretical Background...3

1.1 Introduction to motion planning...3

1.2 The ingredients of motion planning...4

1.3 Types of motion planning problems...5

1.3.1 Path Planning vs. Motion Planning...5

1.3.2 Online vs. Offline planning...5

1.3.3 Optimal vs. Satisfiying..5

1.3.4 Exact vs. Approximate...6

1.4 Classification of motion planners...6

1.4.1 Single vs. Multiple query planners..6

1.4.2 Completeness...6

a. Complete Planners...6

b. Resolution Complete Planners...7

c. Probabilistically Complete Planners..7

1.4.3 Global vs. Local Planners..7

1.4.4 Anytime Planners...7

1.5 Path Planning Methods...7

1.5.1 Visibility Graphs..7

1.5.2 Grid-based methods...8

1.5.3 Sampling-based methods...9

1.5.4 Virtual Potential Fields methods..9

a. Wave-Front Planner..10

Dijkstra algorithm...12

1.6 The Configuration Space..13

1.6.1 Geometric Modeling..13

V

1.6.2 Configuration space definition..14

Free space...14

Obstacle space..14

1.6.3 Configuration space construction..14

Convex Hulls...15

Jarvis’s march/ Gift-wrapping Algorithm...15

Chan’s Algorithm..17

1.7 Tethered mobile robots...17

1.7.1 Tether Constraints..18

1.7.2 Homotopy of paths and cables...20

a. Defining homotopy..20

b. Homotopy classes of curves...20

Chapter 2. Methodology for motion planning...22

2.1 Introduction..22

2.2 General strategy for a tether aware motion planning using feedback..23

2.2.1 Reachability Test..24

2.2.2 Navigation Loop..24

a. Finding the Path to Goal..24

Retraction..24

b. Calculating the shortest path distance..25

c. Following the Advancement Field...25

2.3 Motion planning procedure for tethered robots using wavefront planners..................................28

2.3.1 Reachability test in a discrete environment...28

2.3.2 Navigation Loop:...28

a. Finding the path to Goal...29

Retraction is a discrete environment...29

b. Calculating the shortest path distance..30

c. Following the advancement VPF...30

Chapter 3. Methods used for implementing a tether-aware wavefront planner.......................................31

3.1 Setting the 2-D grid environment...31

3.1.1 Constructing the C-space obstacles...32

VI

3.2 FindSpace Algorithm..33

3.2.1 Defining the homotopy space..34

3.2.2 Obtaining a rigid definition of the homotopy space..34

3.3 TightenPath algorithm..39

3.4 Curve Shorten Algorithm...42

Chapter 4. Simulation and Results...44

4.1 An overview of PyGame..44

4.2 Structure of the code...45

4.2.1 Obstacle creation mode..45

4.2.2 Tether mode...45

4.2.3 Path planning mode...45

4.3 Conducting the simulation..45

4.4 Simulation Results and discussion...46

4.4.1 Analysis of the first example...46

4.4.2 Analysis of the Second example..48

4.4.3 Analysis of the third example..49

Conclusion...53

Bibliography...54

List of figures
Figure 1.1: Given a set of polygonal obstacles, a visibility graph is constructed and then A* algorithm

is used to find the shortest path..8

Figure 1.2: The shortest path is found in Cfree, and the obstacles are in gray..8

Figure 1.3: The steps of motion planning using a wavefront planner: 1. the C-space is discretized, 2. a

wavefront propagation is initiated from the goal point, 3. the robot follows the wave down till reaching

the cell with the value 0..11

Figure 1.4: A visualization of the Dijkstra's Algorithm path searching in a discrete environment..........13

Figure 1.5: A workspace environment with a square robot..15

Figure 1.6: A configuration space where the C-space obstacles were constructed and the robot is a point

..15

VII

Figure 1.7: The rotation of the semi infinite line starting from p1 to p2 to p3 then p4...........................16

Figure 1.8: A convex hull has been constructed using the gift wrapping algorithm................................16

Figure 1.9: The reachable space by robot that's tethered by a cable of length L.....................................18

Figure 1.10: Because of the tether length constraint, the goal can be reached via some homotopy classes

(C1 and C2), but not others (C3)..19

Figure 1.11: Path homotopy: paths γ1 and γ2 between qs and qg are homotopic while path γ3 belongs

to a different homotopy class...21

Figure 2.1: 2-D augmented virtual potential field for both retraction and advancement.........................23

Figure 2.2: An example of the proposed general strategy of motion planning for tethered mobile robots

..26

Figure 2.3: Flowchart for the general strategy for a tether aware motion planning using feedback.......27

Figure 3.1: Cell Detection Algorithm demonstration...32

Figure 3.2: An example of using the vertical scanning to find the path Space..34

Figure 3.3: Tether space construction using TetherValue and creating artificial obstacles......................35

Figure 3.4: Tether space construction using BarrierValue...37

Figure 3.5: Demonstration of the TightenPath algorithm and its effect on the output of CurveShorten. 41

Figure 3.6: A demonstration of CurveShorten algorithm on a shortened discrete path...........................42

Figure 4.1: Pygame Library Logo..44

Figure 4.2: The first example where the robot advances towards the goal immediately.........................47

Figure 4.3: The second example where the robot retracts first then heads to the goal............................49

Figure 4.4: The first Part of the third example where the robot retracts and checks the distance twice..51

Figure 4.5: part 2 of the third example where the robot heads to the goal...52

Introduction 1

Introduction

Human activity in many sectors is nowadays increasingly supported or substituted by robots,

ranging from typical industrial to autonomous ones that are used for complex activities such as

space exploration. Moreover, their remarkable versatility and flexibility allows them to be

employed in a wide range of industries while handling a large number of tasks. When designing

an automated system, one of the most important problems to consider is the motion planning of

the robots, which means their ability to automatically determine a sequence of actions that are

needed to transition from a start to a goal state. In advanced robotics applications, motion

planning is certainly difficult, especially for robots with a high degree of autonomy or ones

operating in hostile environments (space, underwater, nuclear, etc.). In such environments,

wireless signal may not be strong enough for an operator to communicate to a robot. For instance,

following the Fukushima incident, robots were placed in the reactor building due to the

radioactive environment. In such situations, tethering the robot with power and communication

lines is an effective solution. While tethering solves the problem of communication and power for

mobile robots, it also creates numerous planning challenges. The cable is rigid and has a finite

length, which limits the mobile robot's workspace around the fixed base point. Furthermore, due

to obstacles, certain robot positions are only accessible through specific cable configurations (the

homotopy class of the cable).

The branch of motion planning for tethered mobile robots is unfortunately still

underdeveloped, due to the many complications of adding a tether. However, this is not a

disparaging statement but rather an optimistic one, shedding the light on the many possibilities of

applying typical motion planning techniques for solving this problem, and this is what motivated

this work.

In this report, we consider the path planning problem for a tethered mobile robot. The work

space of the tethered robot is limited by the cable of maximum length L, that connects the robot

to a fixed base. Our algorithm design uses the feedback motion planning approach to guide the

Introduction 2

robot to the goal location or retract the tether and use a shorter path in case the length L is not

sufficiently enough. Throughout this report we aim to achieve the following goals:

• Building a rigid base for tethered mobile feedback motion planning.

• Improving on the traditional distance calculation algorithms for the tether.

• Implementing this methodology for wavefront planners.

• Ensuring simplicity and consistency in the approach.

The following report will be structured as follows:

• In Chapter I, the concept of motion planning is introduced along with a classification of

planners and methods that can be used to solve a motion planning problem. This is

followed by a definition of the configuration space and the different methods for its

construction. Homotopy and homotopic equivalence are then discussed, leading to our

final section of this chapter which is tethered mobile robots and the main constraints

imposed on the robot due to the inclusion of the tether.

• Chapter II serves as a display of the general strategy for applying feedback planning to

tethered robots. The general procedure is presented first, then, the extended strategy for

discrete environment is explained.

• Chapter III includes the used methods and are individually delved into one by one and

explained in detail. These are algorithms used for the construction of the C-space, the

recognition of the different homotopy classes, the preservation of homotopy, as well as the

retraction and advancement and finally the path length and reduction algorithms.

• Chapter IV includes the results of our applied research, where the simulation tool that is

PyGame is discussed first. A coding approach is then introduced to explain the many

phases and modes for code execution. Some chosen results are then presented; these

results cover the many cases that we try to tackle in our methodology. The simulation

results are discussed and classified. This is followed by a review of the suggested Motion

planning methodology and comparison of the simulated results to the expected results.

Chapter 1.Theoretical Background 3

Chapter 1. Theoretical Background

This chapter will serve as an overview of the theory needed to examine this report. The reader

will be first introduced motion planning, types of motion planning problems, types of planners, as

well as the different methods for tackling a motion planning problem which will include

Feedback motion planning. Then, one of the most important concepts of motion planning that is

the Configuration space is defined, along with the approach to construct C-space obstacles, where

a general idea about Convex Hulls and some of the most well-known algorithms employed to

construct them are presented.

Half-way through this chapter, Tethered mobile robots will be introduced to the reader who’ll

be familiarized with the many advantages and cases for the tether use, in addition to the different

constraints that will be imposed on the robot’s motion and reachable space. Here, the effect of the

initial configuration of the tether or alternatively its homotopy class on reachability is shown.

Necessitating the discussion about homotopy and homotopic classes.

1.1 Introduction to motion planning

Motion planning can be defined as the computational problem of finding a robot’s motion

plan, or a consecutive set of actions to move from a start state to a goal state, while avoiding the

obstacles in the environment and satisfying the constraints. Motion planning tackles problems in

many areas, allowing many applications such as surgical planning, automated parking, robotics

arms and other various applications.

Motion planning is often called The Piano’s Mover Problem [1], which refers to a classic

problem where a piano must be moved to a certain location in the room for the purpose of a

furniture rearrangement. This problem demonstrates the many issues that can face the motion

planning process from the collision prevention with furniture, to the prediction of the necessary

steps to move the piano.

Chapter 1.Theoretical Background 4

Robot motion planning usually ignores dynamics and other differential constraints and

focuses primarily on the translations and rotations required to reach the goal state. However,

recent work does consider other aspects, such as uncertainties, differential constraints, modeling

errors, and optimality.

1.2 The ingredients of motion planning

A motion planning problem is often characterized by many ingredients, each of which

presents a certain aspect of the problem [2]. These components are discussed below.

State. Planning problems involve a state space that captures all possible situations that could

arise. The state could, for example, represent the position and orientation of a robot, the locations

of tiles in a puzzle, or the position and velocity of a helicopter. the state space is usually

represented implicitly by a planning algorithm. In most applications, the size of the state is too

large to be explicitly represented.

Time. All planning problems involve a sequence of decisions that must be applied over time.

Time might be explicitly modeled, as in a problem such as driving a car as quickly as possible

through an obstacle course. Time may also be implicit, as in the case of solving the Piano

Mover’s Problem, the particular speed of moving the piano is not specified in the plan.

Actions. A plan that handles the problem generates actions that manipulate the states. In the

planning formulation, it must be specified how the state changes when actions are applied over

time. For most motion planning problems, explicit reference to time is avoided by directly

specifying a path through a continuous state space.

Initial and goal states. A planning problem usually involves starting in some initial state and

trying to arrive at a specified goal state or any state in a set of goal states. The actions are selected

accordingly to make this happen.

Feasibility or Optimality. a feasible plan that causes arrival at a goal state, regardless of its

efficiency. An optimal plan optimizes performance of a feasible plan in some carefully specified

manner, in addition to arriving in a goal state.

Chapter 1.Theoretical Background 5

A plan. In general, a plan imposes a specific strategy or behavior on a decision maker. A plan

may simply specify a sequence of actions to be taken; however, it could be more complicated.

1.3 Types of motion planning problems

Motion planning problems vary from one another depending on many factors that can include

time, cost of operation, degree of precision and the desired outcome [3].

1.3.1 Path Planning vs. Motion Planning

Path planning is a purely geometric subset of motion planning that is aimed to find a non-

collision path q (s), where s∈ [0,1]such that: q (0)=qsta rtand q (1)=qgoal(assuming [0 ;1] is

scalable). On the other hand, motion planning isn’t necessarily geometric as the goal there is to

transition from a start state to a goal state.

1.3.2 Online vs. Offline planning

Depending on the complexity of the problem, in terms of the number of obstacles or the

unpredictability of their movement a corresponding planner is chosen accordingly. Offline

planners are usually slower and used to process the available and non-changing data and come up

with a plan to be executed with no further processing, whereas Online planners react to the

environment and constantly come up with plans until the goal state is reached.

1.3.3 Optimal vs. Satisfiying

In some cases, finding a feasible plan is not enough, as on top of that the minimization of

some cost parameter J might be desirable or even essential for the task at hand, such that:

J=∫
0

T

L (x (t) ,u (t)), in most cases, finding the optimal motion plan might be

computationally exhausting and time consuming, and in some situations a compromise is taken to

obtain a satisfying solution.

Chapter 1.Theoretical Background 6

1.3.4 Exact vs. Approximate

In a time interval [0;T], if the state x(T) is close enough to the goal state xgoal, x(T) may be

accepted as an approximate solution if : ‖x (T)− x goal‖<ϵ .

1.4 Classification of motion planners

A planner is a term that refers to an algorithm or a technique that is used to find a path or a set

of transitional states between a start and a goal state. Planners can be classified into different

categories, depending on the aspect of comparison. Consequently, different classifications

naturally arise and are mentioned below.

1.4.1 Single vs. Multiple query planners

Single query planners are algorithms that are designed for an unchanging environment, with a

built-in data set to represent C free, which makes them highly efficient for their chosen

environment. On the other hand, Multiple query planners tend to be general purpose planners that

perform the processing for each problem from scratch and don’t store data on the environment.

1.4.2 Completeness

Generally, completeness is the first measure to look into when designing or evaluating

planners, which are then sorted in one the following categories.

a. Complete Planners

This type of planners is guaranteed to find a solution in a finite amount of time, if one exists,

or report a failure in the case where no feasible plan is possible, at the condition that a complete

representation of the C-space is provided.

b. Resolution Complete Planners

It is a weaker claim to completeness, that is present in discretely represented environments.

These planners are guaranteed to find a solution in a finite amount of time, if one exists in a

discretized representation of the problem.

Chapter 1.Theoretical Background 7

c. Probabilistically Complete Planners

These planners’ probability of finding a solution, if one exists, is 1 as t → ∞. Sampling

methods such PRM and RRT are a great demonstration for this concept.

1.4.3 Global vs. Local Planners

Motion planning algorithms can be classified to global and local planners. Global algorithms

plan a motion from the starting to the goal configuration in a static environment, using a pre-

planned map. A pre-planned map may be insufficient for a robot to be able to reach its goal in the

case of dynamic environment with moving obstacles. This necessitate the use of a local planner.

1.4.4 Anytime Planners

These planners continue to search for better solutions after a first one is found, and can be

stopped at any time after finding the first solution.

1.5 Path Planning Methods

1.5.1 Visibility Graphs

Here, we represent the complex high dimensional space C free , by a one-dimensional roadmap

R or Visibility Graph with the following properties:

 Reachability: From every point q∈ C free, a free path to a point q ' ∈ Cfreecan be found

trivially.

 Connectivity: For each connected component of C free, there is one connected component

of R.

A visibility graph is a network of intervisible locations in computational geometry and robot

motion planning, typically for a set of points and obstacles in the Euclidean plane. Each vertex in

the network is a point location, and each edge denotes a visible link between them. In other

words, if the line segment linking two points does not pass through any obstacles, an edge is

drawn between them in the graph.

Chapter 1.Theoretical Background 8

For example: for a polygonal robot with polygonal obstacles, we construct an undirected

visibility graph, where the weight associated with each edge is the Euclidean distance between

the nodes, then use the A* algorithm to find the shortest path from the start point to the goal

point.

1.5.2 Grid-based methods

Grid-based approaches overlay a grid on the configuration

space, and assume each configuration is identified with a grid

point. At each grid point, the robot is allowed to move to

adjacent grid points as long as the line between them is

completely contained within (this is tested with collision

detection). These methods are easy to implement and can

return optimal solutions, but for a fixed resolution, the

memory and time required to search the grid grows

exponentially with the number of dimensions of the space.

For an n-dimensional configuration space and k-desired

grid points along each dimension, the C-space is represented by kn grid points. The A* can be

used to navigate this C-space grid with the following modifications:

Figure 1.1: Given a set of polygonal obstacles, a visibility graph is constructed and then A* algorithm is used to
find the shortest path

Figure 1.2: The shortest path is found in
Cfree, and the obstacles are in gray

Obs2

Obs1

G

S

Chapter 1.Theoretical Background 9

 • Determining if the robot is constrained in axis aligned direction or can move in multiple

dimensions simultaneously, in the last case the cost is the Euclidean distance.

 • If only axis-aligned motions are used, the cost-to-go should be the Manhattan distance(the

sum of the distances from only axis-aligned paths).

 • Nodes are only added to the grid space if the path to each is collision-free.

1.5.3 Sampling-based methods

Roadmaps rely on an explicit representation of the free space, As a result, as the dimension of

the configuration space grows these methods become impractical [3]. Sampling methods avoid

the explicit construction of grids, and instead employ a variety of strategies for generating

samples and for connecting the samples with paths to obtain solutions to path-planning problems.

These types of algorithms rely on a random or deterministic function to choose a sample from the

C-space, and a simple local planner to try to connect to, or move towards the new sample. These

functions are used to build up a graph or a tree representing feasible motions of the robot. The

two types of sampling-based planners are rapidly exploring random trees (RRTs) and

probabilistic roadmaps (PRMs), where the former uses a tree representation and is particularly

effective for single-query planning, while the latter is used for multiple-query planning.

1.5.4 Virtual Potential Fields methods

These methods are inspired by potential energy fields in nature, such as gravitational and

magnetic fields. For example, a charged particle navigating through a magnetic field or a marble

rolling down a hill. The basic idea is that the behavior of both the marble and particle will depend

on the shape of the environment.

In the potential field approach, the robot in the configuration space is considered as a

moving point subject to a potential field generated by the goal configuration and the obstacles in

the C-space. The target configuration produces an attractive potential, while the obstacles

generate a repulsive potential [4]. The sum of these two contributions is the total potential, which

can be seen as an artificial force applied to the robot, aimed at approaching the goal and avoiding

the obstacles. Thus, given any configuration during the robot motion, the next configuration can

be determined by the direction of the artificial force to which the robot is subjected.

Chapter 1.Theoretical Background 10

The major drawback of this method is that the robot can get stuck in local minima of the

potential field, away from the goal, even when a feasible motion to the goal exists. This may

occur, for example, when multiple obstacles surround the robot. Several solutions have been

proposed to overcome this problem, namely, the RRP (Random Path Planners), a special planner

used to avoid getting in a local minima by combining the concepts of artificial potential field with

random search techniques.

a. Wave-Front Planner

The wavefront expansion algorithm is a specialized potential field path planner that avoids

local minima by using a breadth-first search strategy. It revolves around the robot in a widening

circle. The closest neighbors are analyzed initially, and then the circle's radius is increased to

distant areas.

Before planning a path for the robot, the map is discretized into a grid. The vector data is

transformed to a two-dimensional array and saved in memory. For each cell, the potential field

path planning algorithm decides the robot's direction. This direction field is projected over the

robotic map, which includes the robot and obstacles. The planner begins with a standard binary

grid of zeros associated to free space and ones (or -1) related to obstacles. The start and goal

locations are also known to the planner. A two is assigned to the goal pixel. All zero-valued pixels

adjacent to the goal are labeled with a three in the first step. Following that, all zero-valued pixels

adjacent to threes are given the number four. This approach essentially creates a wave front from

the goal, with all pixels on the wave front having the same path length to the goal, measured with

respect to the grid, at each iteration. When the wave front reaches the pixel containing the robot

start location, the procedure ends.

Chapter 1.Theoretical Background 11

The planner then calculates a path on the grid using gradient descent, starting from the

beginning. The planner essentially calculates the path one pixel at a time. Assume that the start

pixel's value is 22. Any surrounding pixel with a value of 21 is the next pixel in the path. There

could be several options; simply select one of them. The following pixel has the value of 20.

A pseudo-code for the wave propagation algorithm is provided below, to further explain how this

process works.

Wave Propagation Algorithm

1 Initialize explorationQueue as empty

2 StartNode = (Goalx,Goaly,1) //assign goal node coordinates to starting node with flowValue 1

3 Append startNode to explorationQueue

5 While explorationQueue

6 MainNode = explorationQueue[0]

7 Pop the first element of explorationQueue

8 if flowValue of node north of MainNode = 0 and MainNode < top display border then

9 North = node north of mainNode

10 Increment flowValue of North by 1

11 Append North to explorationQueue

12 if flowValue of node south of mainNode = 0 and mainNode > bottom display border then

Figure 1.3: The steps of motion planning using a wavefront planner: 1. the C-space is discretized, 2. a
wavefront propagation is initiated from the goal point, 3. the robot follows the wave down till reaching the cell

with the value 0

Obs2

Obs1

17

16

15

14

13

12

1 1

10

9

8

18

13

12

5

21

16

15

2

1

2

22

21

20

19

18

3

2

3

17

12

1 1

10

9

8

7

6

20

15

14

3

2

3

21

20

19

18

17

2

1

2

16

15

14

13

12

1 1

10

9

8

7

19

14

13

4

22

17

16

1

0

1

Obs2

Obs1

G

Obs2

Obs1

G

Chapter 1.Theoretical Background 12

13 South = node south of mainNode

14 Increment flowValue of South by 1

15 Append South to explorationQueue

16 if flowValue of node east of mainNode = 0 and mainNode < left display border then

17 East = node east of mainNode

18 Increment flowValue of East by 1

19 Append East to explorationQueue

20 if flowValue of node west of mainNode = 0 and mainNode > right display border then

21 West = node west of mainNode

22 Increment flowValue of West by 1

23 Append West to explorationQueue

24 Return flowValue

something that we can add here that is not necessarily feedback motion planning tool but can

help finding the shortest path a wave propagation is the Dijkstra algorithm.

• Dijkstra algorithm

Dijkstra's algorithm is a very simple algorithm for finding the shortest paths between between

a start node S and a goal node G in a graph. This algorithm was conceived by computer scientist

Edsger W. Dijkstra in 1956 and published three years later [12].

Given a weighted graph as the one described by generated by a wave propagation, the

operation of the Dijkstra can summarized in the following points:

1. From the current node, all neighboring unvisited nodes are found and stored in a list.

2. From this list, the node with the smallest assigned distance measure (in this case the

measure is cost-to-go) is our new current node, and the previous node is marked as

visited, and stored in the shortest path list.

3. If the current node is the goal point, it’s marked visited and added to the shortest path list.

And the algorithm execution is terminated.

Chapter 1.Theoretical Background 13

1.6 The Configuration Space

1.6.1 Geometric Modeling

Formulating and solving motion planning problems requires defining and manipulating

complicated geometric models of a system of bodies in space [2]. The most widely used

approaches and techniques for geometric modeling are:

• Boundary Representation: In which entities are described by equations that roughly or

exactly represent the object’s surface.

• Solid Representation: In which entities are described by all points contained inside.

Let W denote our workspace that contains the robots and obstacles and can be described in a

2 D world (in which W =R2), or a 3 D world (in which W =R3). The world generally contains two

kinds of entities:

• Obstacles: Portions of the world that are “permanently” occupied, for example, as in

the walls of a building.

• Robots: Bodies that are modeled geometrically and are controllable via a motion plan.

Let O denote the Obstacle region that is the set of all points W lying in one or more obstacles.

Our goal is to represent O in the most expressive and computationally effective way.

Figure 1.4: A visualization of the Dijkstra's Algorithm path searching in a discrete environment

15

14

13

12

1 1

10

9

8

9

8

12

9

1 1

8

10

7

6

5

4

5

13

10

12

9

1 1

1

2

10

9

8

7

6

5

4

3

2

3

13

10

12

9

1 1

8

7

6

5

6

12

9

1 1

8

10

2

3

1 1

10

9

8

7

2

1

2

14

S

12

1 1

10

9

8

7

6

7

1 1

8

10

7

9

6

5

4

3

4

12

9

1 1

8

10

1

G

Obs

1

15

14

13

12

1 1

10

9

8

9

8

12

9

1 1

8

10

7

6

5

4

5

13

10

12

9

1 1

1

2

10

9

8

7

6

5

4

3

2

3

13

10

12

9

1 1

8

7

6

5

6

12

9

1 1

8

10

2

3

1 1

10

9

8

7

2

1

2

14

S

12

1 1

10

9

8

7

6

7

1 1

8

10

7

9

6

5

4

3

4

12

9

1 1

8

10

1

G

Obs

1

15

14

13

12

1 1

10

9

8

9

8

12

9

1 1

8

10

7

6

5

4

5

13

10

12

9

1 1

1

2

10

9

8

7

6

5

4

3

2

3

13

10

12

9

1 1

8

7

6

5

6

12

9

1 1

8

10

2

3

1 1

10

9

8

7

2

1

2

14

S

12

1 1

10

9

8

7

6

7

1 1

8

10

7

9

6

5

4

3

4

12

9

1 1

8

10

1

G

Obs

1

Chapter 1.Theoretical Background 14

1.6.2 Configuration space definition

Let c be a point corresponding to a unique configuration that describes the pose of the robot;

the configuration space C is the set of points corresponding to all possible configurations.

 For example, If the robot is a circle translating in a 2-D plane (the workspace W), C is a

plane, and a configuration can be represented using two parameters (x, y).

• Free space

The free space C free is a set of all configurations where the robot avoids colliding with

obstacles.

• Obstacle space

An obstacle in C-space is the set of points that are not legal configurations, for a certain

obstacle in the workspace. The sum of these C-space obstacles is the Obstacle space Cobs.

For the planar circle-sized robot below, an obstacle in c-space is a set of (x, y)-positions of the

robot that are not allowed (because the robot would be colliding with an obstacle if it tried to

achieve that position).

1.6.3 Configuration space construction

For a planar robot capable of both x and y translation but not of rotation, the concept is easy;

we pick a reference point on the robot and swipe it around the workspace obstacle while tracing

out the reference point. That reference point will then represent our robot in C-space. Since

swiping the robot around the workspace might not be efficient, Instead the robot (or the robot’s

reference point) is placed at each vertex of the obstacles and its new node coordinates are added

to a set Mi corresponding to the current obstacle. Then each set Mi is used to construct the

corresponding C-obstacle using either the Gift Wrapping Algorithm or the Chan’s Algorithm that

will be discussed later.

Chapter 1.Theoretical Background 15

• Convex Hulls

In geometry, a subset of a Euclidean space, is convex if, given any two points in the subset,

the subset contains the whole line segment that joins them [5].

X is a convex polygonal, if and only if, for every two points x1 and x2 of X, all the points on

the line between x1 and x2 also belong to X, Implying λ x1+(1− λ) x2∈ Xsuch that λ∈ [0 ;1].

A variety of mathematical approaches have been developed to construct a convex polygonal

X given a set of points M; two of the most well known and used Algorithms are Jarvis’ March

and Chan’s Algorithm.

• Jarvis’s march/ Gift-wrapping Algorithm

In computational geometry, the gift wrapping algorithm is an algorithm for computing the

convex hull of a given set of points. It is also known as Jarvis’s March, after R. A. Jarvis, who

published it in 1973; it has O(nh) time complexity, where n is the number of points and h is the

number of vertices of the resulting convex hull, thus we can say that it is “Output Sensitive”. Its

real-life performance compared with other convex hull algorithms is favorable when n is small or

h is expected to be very small with respect to n [6].

Figure 1.5: A workspace environment with a
square robot

Obs2

Obs3

Obs1

Robot

x

y

Figure 1.6: A configuration space where the C-
space obstacles were constructed and the robot is a

point

Obs2

Obs3

Obs1

Robot

x

y

Chapter 1.Theoretical Background 16

The idea of Jarvis’s Algorithm is simple; Given a set of points M, we start from the leftmost

point (or point with minimum x coordinate value) and we build a semi-infinite line that rotates

counterclockwise around the leftmost point. The first point in M that this line intersects with is

added to the list of vertices and becomes the new center of rotation for the semi infinite line

starting from the intersection angle, this operation is repeated until the intersection point is the

left most point in M. When the latter is reached, the list of vertices will contain all nodes of the

convex hull ordered counterclockwise.

A pseudo code [6] is also provided for this algorithm, down below.

 Jarvis’s March Algorithm

// S is the set of points

// P will be the set of points which form the convex hull. Final set size is i.

1 pointOnHull = leftmost point in S // which is guaranteed to be part of the CH(S)

2 i := 0

3 Repeat

4 P[i] := pointOnHull

Figure 1.7: The rotation of the semi infinite line
starting from p1 to p2 to p3 then p4

P₁

P₂

P₃

P₄

Figure 1.8: A convex hull has been constructed
using the gift wrapping algorithm

P₁

P₂

P₃

P₄

P₅

P₆

P₇

P₈

P₉

Chapter 1.Theoretical Background 17

5 endpoint := S[0] // initial endpoint for a candidate edge on the hull

6 for j from 0 to |S| do

7
// endpoint == pointOnHull is a rare case and can happen only when j == 1

and a better endpoint has not yet been set for the loop

8 if (endpoint == pointOnHull) or (S[j] is on left of line from P[i] to endpoint)

then9 endpoint := S[j] // found greater left turn, update endpoint

10 i := i + 1

11 pointOnHull = endpoint

12 until endpoint = P[0] // wrapped around to first hull point

• Chan’s Algorithm

In computational geometry, Chan's algorithm, named after Timothy M. Chan, is an optimal

output-sensitive algorithm to compute the convex hull of a set P of n points, in 2 or 3 dimensional

space. The algorithm takes O(n⋅log(h)) time, where h is the number of vertices of the output

(the convex hull). In the planar case, the algorithm combines an O(n⋅log (n)) algorithm

(Graham scan, for example) with Jarvis march O(n⋅h) , in order to obtain an optimal

O(n⋅log (h)) time [7].

1.7 Tethered mobile robots

Many practical scenarios necessitate the use of a tether by a robot. Attaching a tether to

robots can be used to provide power (to save the mass and volume of the batteries), especially to

robots which perform high power tasks. The tether can also be used for reliable high-speed

communications (e.g., underground and underwater robots), or to track a robot’s position, or as a

safety harness (in case the robot needs to be dragged out) [8]. Tethering also helps in deploying

robot in environments with limited accessibility. For example, Nassiraei et Al. designed a

tethered sewer pipe inspection robot to work instead of a human operator to decrease the cost and

to speed-up the inspection [9]. In some cases, the cable is not essential but it can boost the task’s

performance. For example, Cables have also been used for manipulation by helping robots collect

or separate objects. These examples emphasize the need of efficient solutions for solving tethered

robot motion planning problems.

Chapter 1.Theoretical Background 18

1.7.1 Tether Constraints

In motion planning for tethered robots, along with the usual constraints that are

considered in any motion planning problem (e.g., collision avoidance, distance, etc.), two key

additional constraints are imposed on the robot's mobility due to the presence of the cable:

1. The radius of the robot’s movement is limited by the cable’s length. Consider the example

in the provided figure. The robot moves in a known, bounded workspace, 𝒲 (a subset of

ℝ2, which is of interest). One end of a cable, whose length is L, is attached on the robot

while the other end is anchored on a fixed point, base, at qb. In the absence of any

obstacles, the reachable space of robot will be the intersection of 𝒲 and a disk of radius L

centered at the base, qb.

Figure 1.9: The reachable space by robot that's tethered by a cable of length L

LObs2

Obs3

Obs1

Robot

Reachable space by the robot with obstacles Reachable space by the robot without obstacles

Chapter 1.Theoretical Background 19

2. The presence of obstacles introduces geometric constraints as well as topological

constraints. For instance, in Figure 1.9, the point can only be reached if the cable

configuration lies in the appropriate homotopy class (the homotopy classes of C1 or C2,

for example, but not the homotopy class of C3). In other words, if the robot takes the path

on the left of the obstacle O3, it must retract its cable and return to its initial position to

take one of the two other paths that gets it to the goal point qg.

1.7.2 Homotopy of paths and cables

In the previous figure, the paths C1, C2 and C3 each belong to a distinct homotopy class.

These classes of trajectories arise due to the presence of obstacles in an environment. Two

trajectories with the same start and goal coordinates are said to be in the same homotopy class, if

Figure 1.10: Because of the tether length constraint, the goal can be reached via
some homotopy classes (C1 and C2), but not others (C3).

Obs2
C1

C2

C3

Obs3

Obs1

Goal

Chapter 1.Theoretical Background 20

one can be smoothly deformed into the other without intersecting any obstacle in the

environment, otherwise, they are in distinct homotopy classes. In many applications, it is

important to distinguish between trajectories in different homotopy classes [10].

In the last decades, the classification of homotopy classes in 2-D spaces has been the subject

of many research papers exploring the various methods to do so. These methods range from

geometric to PRM-based and triangulation-based.

When planning motion for tethered robots, it is essential to employ the concept of homotopy

provided an information about obstacles is given initially. By having an idea about the different

classes in a certain environment, the motion planning for tethered robots becomes much easier as

the robot gains awareness about the tether configuration. This ensures a safe passage to the goal

respecting the initial configuration of the tether.

a. Defining homotopy

A homotopy between two continuous functions f and g from a topological space X to a

topological space Y is formally defined as a continuous function H : X × [0,1]→ Y from the

product of the space X with the unit interval [0, 1] to Y such that H (x ,0)=f (x) and

H (x ,1)=g (x) for all x∈ X .

b. Homotopy classes of curves

Two curves γ1, γ2: [0, 1] → (𝒲 / 𝒪) connecting the same start and end points, are homotopic

(or belong to the same homotopy class), if and only if one can be continuously deformed into the

other without intersecting any obstacle. This is illustrated in Figure 1.10.

Chapter 1.Theoretical Background 21

This concept of homotopy is very essential to the motion planning of tethered mobile robots,

an an important basis for Curve Shortening algorithm and retraction that will be discussed in the

following chapter.

Figure 1.11: Path homotopy: paths γ1 and γ2
between qs and qg are homotopic while path γ3

belongs to a different homotopy class.

xs

xg

1

2

3

τ1

τ2
τ3

-τ2

Chapter 2.Methodology for motion planning 22

Chapter 2. Methodology for motion planning

In the following chapter, The general strategy for designing a tether-aware motion planner is

presented to the reader, which comprises of two parts that are reachability test and the navigation

loop. After that, an extension of this general strategy can be found in section 2.3, where a discrete

environment is chosen and consequently a wavefront planner is used to achieve feedback.

2.1 Introduction

Some things of high importance to note first before diving into the suggested methodology,

are as follows:

• In almost all of the rest of the report, the C-space obstacles are the ones taken into

consideration, except when smoothing the path, where the original workspace obstacles

are the employed ones.

• This general strategy only applies for the case where there’s no tether crossing when

wrapping around the obstacles for the reduced or tightened version of the tether.

Now, the goals of our proposed approach can be stated as follows:

• A 2-dimensional virtual potential field (VPF) is to be built. This virtual potential field is

the one responsible for both advancement towards the goal, as well as the retraction of the

robot.

• A map of the different homotopy classes that are present while retracting is constructed, in

order to to preserve homotopy.

• An efficient approach to calculate the shortest path taken is to be implemented.

Chapter 2.Methodology for motion planning 23

2.2 General strategy for a tether aware motion planning
using feedback

Given an initial configuration of our environment, which includes the anchor, start and goal

point as well as the tether points, the general procedure for navigation to the goal, if possible, is

presented below.

2.2.1 Reachability Test

The first step that is shared with other types of planners, is the verification that a solution is

actually possible. This assessment is done by finding the shortest path from the anchor to the goal

Figure 2.1: 2-D augmented virtual potential field for both retraction and advancement

Chapter 2.Methodology for motion planning 24

point. The distance of this path is then compared to the length of the tether L, which will decide

the continuation of execution, if the shortest distance is less than L, or the termination of our

process otherwise.

2.2.2 Navigation Loop

The next step is where the actual motion planning happens; here, a loop is continuously run

until the goal state is reached. This loop contains different blocks that interact with each other,

with each block having a distinct functionality and output.

a. Finding the Path to Goal

The shortest path from the current point of the robot to the goal « PathToGoal » is found and

is verified if it belongs to one of the explored spaces (at the first time this is run, there are no

explored spaces, so this verification step is skipped).

These explored spaces are spaces that were encountered by the robot before, and found not to

have feasible paths after the calculation of the shortest distance possible when traveling in these

spaces.

If PathToGoal doesn’t belong to one of the explored spaces, we move to the next step of the

loop (that is finding the shortest path). However, if it does belong to an already explored space,

further processing is not needed for this current point; since the shortest path of this space has

already been proven to be larger than L, this requires retraction and initiating the loop once again.

• Retraction

To do such action, a retraction space must be created from the initial tether configuration; in

this space, the retraction VPF is built and directed towards the anchor. Each time the robot is

required to retract, it follows the retraction VPF by one step. This ensures that the backtracking of

the robot respects the homotopy of the tether and prevents deviation to other homotopy classes.

Something to note, is that the retraction space is built the first time a retraction is required and

reused again whenever needed.

Chapter 2.Methodology for motion planning 25

b. Calculating the shortest path distance

PathToGoal from the current point is then added to the tether, to form our complete path. This

path is then shortened to find its length l, that is then compared to the tether length L. If l turns

out to be less than L, a solution exists and we move to the next step; if not, the space in which the

current path exists is ought to be found and added to the explored spaces.

c. Following the Advancement Field

Once the length l is enough to reach the goal, the robot follows the virtual potential field

leading to the goal point that will be eventually reached.

In order to further demonstrate the suggested strategy, a flowchart summarizing the process

described above is deployed in Figure 2.2. Preceding that, an example is shown in Figure 2.1

where the general strategy of the feedback motion planning in the presence of a tether is applied

to reach the goal from the initial configuration presented in (a). In (b), A reachability test is

performed and a solution exists, PathToGoal (red-dotted line) is then found and it doesn’t belong

to the explored spaces and l > L, hence a retraction is needed. As shown in (c), this retraction

happens due to the VPF present in the retraction space, and leading towards the anchor. After few

retractions, the robot reaches the configuration shown in (d); PathToGoal is found from this

current point and so is the shortest distance l that turns out to be smaller than L, indicating that a

solution is found. Due to this, the robot follows the advancement field as shown in (e) to finally

reach the goal as displayed in (f).

Chapter 2.Methodology for motion planning 26

Figure 2.2: An example of the proposed general strategy of motion planning for tethered mobile robots

Start

Robot

Goal

Start

Robot

Goal

a b c

fed

Chapter 2.Methodology for motion planning 27

Figure 2.3: Flowchart for the general strategy for a tether aware motion planning using feedback

if current point !=
goal point

• I nitialize exploredSpaces as empty
• L : the tether length

Find "PathT oG oal": shortest path
from current point to goal

If PathT oG oal⊂
exploredSpaces

Path = PathT oG oal + Tet her

• R eturn "l" : the length of the shortened path

Follow Vir tual potential field
leading to the goal point

if l ≤ L
Find the current space and
add it to exploredSpaces

Goal Reached

Retract

End

Start

Chapter 2.Methodology for motion planning 28

2.3 Motion planning procedure for tethered robots using
wavefront planners

After introducing the general approach for tackling the problem of motion planning for

tethered mobile robots, an extension of this strategy is then discussed in this section of the report.

The first step in tackling the problem of feedback motion planning is working on top of an

environment that best helps with the handling of the many situations a robot can encounter, while

providing a dependable and logically persistent coding approach. This is why a discrete

representation is chosen. This representation provides consistency in approaching the many steps

to design our algorithm and an aspect of reusability that will prove to be quite convenient

throughout this report. In addition to that, discrete environments offer a basis for implementing

feedback by the use of wavefront planners that were discussed in Chapter 1.

In this chapter, a discrete representation of the configuration space is assumed to be already

available. The methods to obtain such environment will be covered extensively in chapter 3. With

the discrete environment and the initial configuration at hand, the motion planning can start by

implementing the general strategy using wavefront planners.

2.3.1 Reachability test in a discrete environment

As discussed in the general strategy, a reachability test is essential for determining the

feasibility of a motion plan to the goal. In order to perform such assessment in a discrete

environment, the advancement field must be built by wave propagation starting from the goal

point as shown in Chapter 1; using this field, the shortest discrete path from the goal to the anchor

can be found using the Dijkstra algorithm. This path is further shortened to obtain its minimum

euclidean distance l using shortening algorithms that will be discussed in Chapter 3. This length l,

when compared to the maximum tether length L, determines the existence of a solution and hence

the execution of the rest of the process.

2.3.2 Navigation Loop:

This loop is run continuously until the robot reaches the goal cell, or until the current point

becomes the goal point.

Chapter 2.Methodology for motion planning 29

a. Finding the path to Goal

Since the advancement VPF has been created when performing the reachability test, finding

the path to goal denoted PathToGoal is as simple as finding the shortest path from the current

point to the goal using the Dijkstra algorithm. This obtained path is tested, to check if it belongs

to one of the explored spaces. This checking process can done using the BelongsTo Algorithm

whose pseudo-code is provided below.

This function takes as arguments PathToGoal and the list of explored spaces denoted

exploredSpaces, and returns True if PathToGoal is a subset of one of the exploredSpaces or False

otherwise.

BelongsTo Algorithm

1 For currentSpace in exploredSpaces

2 For point in PathToGoal

3 if point doesn’t belong to currentSpace then

4 Return False

5 End if

6 End for

7 Return True

After running this function, two outcomes are possible:

i. The function returns False, this will mean that the space has not been explored yet and we

move to the next step of the loop, which is the calculation of the shortest path.

ii. The function returns True, this will mean that the space is already explored and there is no

point in calculating the shortest distance as it has been already calculated and found to be not

enough, hence, a retraction is needed.

• Retraction is a discrete environment

As discussed earlier, retraction necessitates the construction of a retraction space. To do so:

1. A discretized version of the initial tether configuration is obtained using the DetectCell

algorithm that will be discussed in Chapter 3.

Chapter 2.Methodology for motion planning 30

2. The space of retraction from the discretized tether cells using the FindSpace algorithm

that is also explained in Chapter 3.

3. A wave propagation is performed from the anchor in the obtained space, as shown in

Chapter 1.

To retract, the robot moves backward in this generated potential field by one step, every time it is

required to.

b. Calculating the shortest path distance

The total path from the anchor to the goal point is found by adding the PathToGoal points that

go from the current point to the goal point, to the shortest path from the anchor to the current

point. This whole path is then smoothed using the shortening algorithms, to find the

corresponding shortest distance l.

Once the distance is calculated, a crossroad is faced. If the distance of the path “l” is larger

than “L”, a retraction is the logical follow-up, this is accompanied by finding this path’s space

and adding it to the explored spaces using the FindSpace algorithm. If the latter condition is not

satisfied, in other words “l” is smaller or equal to “L”, It is concluded that a solution is found, and

the robot can reach the goal from the current point.

c. Following the advancement VPF

Once a solution is confirmed to exist in the previous step, the robot is ought to follow the

Advancement wave and reach the goal eventually, advancing one cell at a time. When the goal is

reached, the execution of the algorithm is terminated.

Now that we have the general strategy for feedback motion planning for tethered robots using

wavefront planner, the specific methods used in this implementation will be covered in detail in

chapter 3.

Chapter 3.Methods used for implementing a tether-aware wavefront planner 31

Chapter 3. Methods used for implementing a
tether-aware wavefront planner

In the process of designing a feedback motion planner for a tethered mobile robot, many

problems have been faced, necessitating the design of some Algorithms to solve them. These

algorithms were carefully devised with a sense of reliability and reusability throughout the

procedure, with the goal of achieving the best results with the minimum of complexity, and hence

resulting in the most concise code.

Something to note, is that these Algorithms were designed for 2-dimensional discrete

environments, however extension to continuous or higher dimensional spaces may be possible,

within the computational limits and the desired performance measures.

3.1 Setting the 2-D grid environment

The first step needed before the actual motion planning is the discretization of the

environment, this is assuming that a set of polygonal obstacles are given initially.

The workspace W is discretized into a 2-D grid of "n" cells depending on the width and

height of the environment, as well as the grid resolution "D"; This latter is an environment

sensitive variable that is chosen as to accommodate the obstacle sizes, in order to avoid (if

possible) the elimination of feasible paths. Each cell of our discretized environment is 8-

connected, which entails that if all surrounding cells are not detected as obstacles, we can move

North, South, West, East, North-West, North-East, South-West and South-East. In addition, each

cell is associated with 4 n-sized arrays which are FlowValueFromGoal (used to create the

advancement VPF), FlowValueFromAnchor (used to create the backtracking VPF), TetherValue

and BarrierValue. To ease the storing of the data, an indexing is needed to transform x and y

coordinates to a 1-Dimensional array, This mapping is one-to-one and hence can be represented

by the following functions:

Chapter 3.Methods used for implementing a tether-aware wavefront planner 32

index=integer(displayWidth
CellWidth)⋅integer((y

CellWidth)−1)+integer(x
CellWidth) and

x=(i %(displayWidth
CellWidth)⋅CellWidth) and

y=integer(i
displayWidth

CellWidth
+1)⋅CellWidth

3.1.1 Constructing the C-space obstacles

After Setting up the grid, the next logical step is to construct the C- space obstacles. For

simplicity, a planar convex robot A capable of translation in both x and y directions is chosen and

the workspace obstacles O are set to be convex polygons. The process contrives of picking a

reference point on the robot (which in most cases can be the center of mass) and swiping this

latter around each workspace obstacle while ensuring that the reference point and the obstacle

edges remain in contact. The resulting set of points are used to construct the convex hull using the

gift wrapping algorithm discussed in chapter 1. The resulting polygon is the equivalent C-space

obstacle, the collection of these obstacles will form our Cobs space.

Since a discrete implementation is used to represent our space, an appropriate continuation is

to discretize the C-space obstacles as well, while distinguishing them from the free C-space. A

simple way to achieve that, is by assigning a value of -1 to cells that intersect with obstacles and

0 to the ones that don't. A zero valued array called flowValue of size 1*n is used to store this info

about our space. The values of this array are then inherited by FlowValueFromGoal and

FlowValueFromAnchor which are responsible for advancement and retraction respectively.

So how can obstacle Cells be found?

Given a polygonal C-space obstacle whose every

edge is defined by a starting point pi and an ending

point pi+1, K evenly spaced points occurring in the

straight line between pi and pi+1 are calculated, and

eventually their equivalent cell coordinates are

determined which are then stored in a list. After

removing duplicate cells from this list, all remaining

Figure 3.1: Cell Detection Algorithm
demonstration

P₁

P₂

P₃

P₄

Chapter 3.Methods used for implementing a tether-aware wavefront planner 33

cells are assigned a flowValue of -1 and so are the cells inside them. The cell detection process is

explained by the algorithm below, where K is 51.

Cell Detection Algorithm

1 Initialize crossingCells as empty

2 For i in range 0 to 51

3 u  i / 50

4 x = x1 * u + x2 * (1 - u)

5 y = y1 * u + y2 * (1 - u)

6 point =(int(x / 20) * 20, int(y / 20) * 20)

7 Append point to crossingCells

8 End for

9 cellsWithNoDuplicates = []

10 For cell in crossingCells

11 if cell is not in cellsWithNoDuplicates then

12 Append cell to cellsWithNoDuplicates list

13 End for

14 Return cellsWithNoDuplicates

3.2 FindSpace Algorithm

The algorithm that’ll be discussed here, is very essential to the retraction of the robot, as it is

the one used for finding the explored spaces and the retraction space. A general understanding of

this technique and the problems that it tries to solve will be presented first; specific use cases will

be discussed later.

Chapter 3.Methods used for implementing a tether-aware wavefront planner 34

3.2.1 Defining the homotopy space

A homotopy space is the set of all paths that can be deformed into each other without cutting

or pasting. These paths are then said to be homotopic. A mathematical description of this space S

can be as the union of all the homotopic paths Pi or S=U
i=1

n

P i .

 When trying to apply this concept to our discrete representation of the environment, an easy

solution to find the space S, given a certain path Pi that is a list of grid cells, is to perform a

vertical scanning for each cell of the path that stops when reaching the obstacles. A chosen

example of this displayed in Figure 3.2.

3.2.2 Obtaining a rigid definition of the homotopy space

With the vertical scanning, some problems might arise that necessitate the introduction for

two new variables that are TetherValue and BarrierValue, theses variables are arrays associated

with each cell.

1. TetherValue:

Figure 3.2: An example of using the vertical scanning to find the path Space

The path is discretized using detectCell Al gorithm, and
its cells are shown in blue.

The resulting tether space is displayed in pink. Th e
vertical scanning was performed on each cell of the
discrete path, and stops when reaching an obstacle.

Obs1

GG

Obs1

Obs2 Obs2

Obs3 Obs3
SS

Chapter 3.Methods used for implementing a tether-aware wavefront planner 35

This variable is used to track tether cells or path cells, to facilitate the creation of virtual

obstacles that preserve the homotopy of the space, where cells that the tether crosses have

a TetherValue of 1. When performing the vertical scanning, if a tether cell is encountered,

all the vertical cells in between will be considered as obstacles. This virtual obstacle

creation helps preserve the homotopy class. An example for the use of TetherValue is

presented in Figure 3.3.

Figure 3.3: Tether space construction using TetherValue and creating artificial obstacles

The path cells are assigned a Tet herV al ue of 1, and
virtual obstacles (in yellow) are created accordingly

Obs1

Obs2
1

1
1

11111111

1
1

1
11

1
1
1
1
1

1
1

1
1

1
1

1 1 1 1 1 1 1 1

Obs3

The Tet her space (in pink) is found by using the virtual
scanning and stopping at the C-space and virtual
obstacles

Obs1

Obs2

Obs3

G

S

The path is discretized using detectCell Al gorithm, and
its cells are shown in blue.

Obs1

Obs2

Obs3

G

S

Chapter 3.Methods used for implementing a tether-aware wavefront planner 36

2. BarrierValue:

This variable is used to prevent the space around minimas and maximas of the path to be

interfered with by other cells that have smaller or larger x values. A minima here, can be

defined as a protrusion in the path, that happens when a path surrounds or hugs an

obstacle from the left side; A maxima is also a protrusion in the path, however it happens

when a path surrounds or hugs an obstacle from the right side. The start and end point of

the path are also included, depending on their relative position to the neighborhood cells.

These maximas and minimas can be found whenever the path points change the direction

of their x- values (from increasing to decreasing or the other way around). When these

minimas and maximas are found, virtual obstacles or barriers are creating left or right to

them respectively. Figure 3.4 shows the creation of a tether space for a path that surrounds

Obstacle 1 from the left and Obstacle 3 from the right. In this case, barriers are built to the

left and right of these protrusions and are treated as obstacles. Since the path goes right at

the beginning, the start point is considered a minima and hence a barrier is constructed to

its left; the goal point is a maxima here, and hence a barrier is created to its right.

Chapter 3.Methods used for implementing a tether-aware wavefront planner 37

All these concepts can be summarized in the findSpace Algorithm.

FindSpace Algorithm

1 Input: tetherCells, flowValue, tether

2 Output: occupied space of the tether

3 Initialize verticalList as empty list

Figure 3.4: Tether space construction using BarrierValue

The path is discretized using detectCell Al gorithm, and
its cells are shown in blue.

Obs1

Obs2

Obs3

S

G

A b arrier is created to left or right of the path minimas
and maximas and is colored in green

Obs1

Obs2

Obs3

S

G

The tether space is created and shown in pink

Obs1

Obs2

Obs3

S

G

Chapter 3.Methods used for implementing a tether-aware wavefront planner 38

4 for cell in tetherCells

5 temp  [cell[0],cell[1]]

6 upperCell  [temp[0],temp[1]-20]

7 upperCell2  [upperCell[0],upperCell[1]-20]

8
While upperCell doesn’t intersect with obstacles and barrier != 1

9 If tetherValue of upperCell2 != 1

10 verticalList = []

11 break

12 temp  upperCell

13 upperCell  upperCell2

14 upperCell2  [upperCell[0],upperCell[1]-20]

15 Append temp to verticalList

16 End while

17 // checking lower cells

18 temp  [cell[0],cell[1]]

19 lowerCell  [temp[0],temp[1]+20]

20 lowerCell2  [lowerCell [0], lowerCell[1]+20]

21 While lowerCell doesn’t intersect with obstacles and barrier != 1

22 If tetherValue of lowerCell2 != 1

23 verticalList = []

24 break

25 temp  lowerCell

26 lowerCell  lowerCell2

27 lowerCell2 [lowerCell[0], lowerCell[1]+20]

28 Append temp to verticalList

29 End while

30 Return verticalList

Chapter 3.Methods used for implementing a tether-aware wavefront planner 39

3.3 TightenPath algorithm

When given the initial configuration of the tether, the cable might be loose or not as tight

enough around the obstacles; this loose cable when used with the shortening algorithm

CurveShorten, might give a euclidean distance that is much larger than the actual distance,

causing in many cases the elimination of some feasible paths and labeling them as not attainable

by the limits of the tether length when they actually are. To prevent such problem, a suggested

algorithm denoted TightenPath is used to tighten and remove unnecessary protrusions from the

discrete version of the path. Figure 3.5 shows the tighten path algorithm in action, where the path

in blue is tightened in a two step operation; these steps are vertical tightening and horizontal

tightening. In vertical tightening as shown in (b), the function finds the minima points on the x

values and checks if the there can be a non-intersecting line between the previous point and the

next point of these minimas; if so the minima points will be shifted to be on the same level x-

level as the previous and next points. This process is done continuously on each minima until an

intersection happens. In horizontal tightening, the same process happens but with the y values in

mind.

 TightenPath’s functionality in the discrete feedback motion planning is not limited to only

tightening the path, as it can help remove the cases of tether crossing without being wrapped

around an obstacle. TightenPath will always produce a path that has less or equal number of cells

to the original, while keeping the same homotopy class.

In the discrete implementation, this function will be used with CurveShorten to produce

improved distance calculation results. The algorithm of TightenPath can be understood by

reading the pseudo code provided below.

TightenPath Algorithm

1 Initialize start index and end index as empty and set counter to zero

2 //start the vertical scanning by varying x

3 For x in display width

4 For point in path

5 if point[0] = x then

6 if end = [] then

Chapter 3.Methods used for implementing a tether-aware wavefront planner 40

7 start  counter

8 end  counter + 1

9 else if start and end then

10 if there’s no intersection with obstacles between previous and next point

11 For j in range of start to end

12 path[j]  path[start-1]

13 End for

14 //start the horizontal scanning by varying y

15 For y in display height

16 For point in path

17 if point[1] = y then

18 if end = [] then

19 start  counter

20 end  counter + 1

21 else if start and end then

22 if there’s no intersection with obstacles between previous point and next

point then23 For j in range of start to end

24 path[j]  path[start-1]

25 End for

26 PathWithNoDuplicates = []

27 For point in path

28 if point is not in PathWithNoDuplicates then

29 Append point to PathWithNoDuplicates list

30 End for

31 Return PathWithNoDuplicates

Chapter 3.Methods used for implementing a tether-aware wavefront planner 41

Figure 3.5: Demonstration of the TightenPath algorithm and its effect on the output of CurveShorten

A l oose path that occupies 39 cells, is used as a testing
example for the Tig htenPath algorithm

The path has been tightened vertically , and horizontal
scanning is now performed.

The tightened path is generated and it occupies 35 cells

Obs1

Obs1 Obs1

Obs2

Obs2 Obs2

Obs3

In Tig htenPath, Ver tical scanning is performed first,
which will remove saddles on the right of Obstacle 2
and on the left of Obstacle 3.

Obs1

Obs2

Obs3

Obs3 Obs3

Chapter 3.Methods used for implementing a tether-aware wavefront planner 42

3.4 Curve Shorten Algorithm

 This function returns the length of the shortened path while ensuring no intersection with the

obstacles and keeping the same homotopy class [11]. Figure 3.6 shows the effect of using

CurveShorten, where we continuously check if there’s obstacle intersection with line starting

from qi to qi+1, qi+2,…, qj, qj+1,...etc. If the line qiqj+1 intersects with an obstacle, the new euclidean

distance becomes d = d+ ║qiqj║and qj becomes the new start node for the intersection check. This

process is iterated until, the final point of the path is reached, where d gives the shortened path

distance.

Figure 3.6: A demonstration of CurveShorten algorithm on a shortened discrete path

Obs

q₁

q₂

q₃

q₄
q₅

q₆

q₇

Obs

q₁

q₂

q₃

q₄
q₅

q₆

q₇

Obs

q₁

q₃

q₄
q₅

q₆

q₇

Obs

q₁

q₂

q₃
q₅

q₆

q₇

Obs

q₁

q₂

q₃

q₇

q₅

Chapter 3.Methods used for implementing a tether-aware wavefront planner 43

 Below is a pseudo-code [11] for the CurveShorten function:

CurveShorten Algorithm

1 Initialize l, i and j as 0

2 While j ≤ Length of the path -1

3 If j<n and no obstacle intersection with the line between path[i] and path[j+1]

4 j = j+1

5 Else

6 l = l + ║path[i] to path[j]║

7 i = j

8 End if

9 End While

10 Return l

Chapter 4.Simulation and Results 44

Chapter 4. Simulation and Results

After introducing the suggested methodology of feedback motion planning while under tether

constraints, an application of the proposed concept is then portrayed in this chapter by the use of

the game design library in Python known as PyGame.

We start this chapter by providing a brief introduction to the PyGame library in Python, and

its different use cases and capabilities. This is then followed a presentation of the abstract

structure of the code and some specific design choices that were made. The core of this chapter

follows next, where a batch of results for different configurations and environments were

presented, and a commentary and analysis on these obtained results is then provided. This

accompanied by some conclusions on the success of the used methods.

4.1 An overview of PyGame

Pygame is a set of Python modules designed for writing video

games that adds functionality on top of the excellent SDL library.

This allows the user to create fully featured games, multimedia

programs and other non-gaming related simulation projects in the

python language. Pygame is highly portable and runs on nearly

every platform and operating system [13].

Some other reasons that make PyGame the perfect platform for

testing our code include:

Efficient and concise code. The core of PyGame is kept simple, and extra things like GUI

libraries, and effects are developed separately outside of Pygame, resulting in fewer lines of code.

Uses optimized C and assembly code for core functions. C code is often 10-20 times faster

than python code, and assembly code can easily be 100x or more times faster than python code.

Figure 4.1: Pygame Library
Logo

Chapter 4.Simulation and Results 45

4.2 Structure of the code

In the programming approach, the motion planning process is compartmentalized by creating

three modes of operation where each corresponds to a certain phase of our problem-solving

process.

4.2.1 Obstacle creation mode

This mode is executed first, once and before all other modes. Here, a grid is set up and the

obstacles are drawn from a pre-determined list of polygons that exist within the bounds of our

environment. These obstacles are then used to construct our C-space obstacles as demonstrated in

chapter 2. A discretized representation of our C-space is stored in the variable flowValue where 0

represents a free space cell and -1 represents an obstacle space cell in the configuration space.

4.2.2 Tether mode

This mode runs after draw mode execution is finished. Here, an option is presented to the user

to either enter the coordinates of all the tether nodes in order or to use the mouse to create the

tether nodes by consecutively clicking in the free space. A function is implemented to notify the

user in real time if an edge between two consecutive nodes crosses an obstacle. By the end of this

mode, the start, anchor and goal point as well as the tether would all be defined.

4.2.3 Path planning mode

This is where the motion planning happens. The logic discussed in the navigation process of

chapter 2 is implemented here and the robot movements as well as the tether and shortened path

are animated to provide a visual representation of the methodology discussed in this thesis.

4.3 Conducting the simulation

Since Pygame is used in simulation, an appropriate unit of measurement for distance would

be pixels. An Environment size of 720 by 1280 pixels is chosen, accompanied with grid cells of

20 by 20 px which will result in 2304 cells. The boundary cells will be given flow values of -1.

This grid resolution was chosen to accommodate our obstacles and prevent the omission of any

Chapter 4.Simulation and Results 46

feasible path. A set of pre-defined polygonal obstacles are then provided to be discretized and

used in the construction of C-space obstacles. The initialization of the anchor, start, and goal

point as well as the tether configuration is left to the user. Many trials were conducted using

different environments to test the reliability of the suggested approach for tethered robots’ motion

planning.

A sample of these trials were chosen as to cover some interesting cases as well as demonstrate

the viability of our approach; these trials are to be encountered in the following section of this

chapter.

4.4 Simulation Results and discussion

For the sake of diversifying the cases for tethered mobile robots’ feedback motion planning,

different environments were chosen with different initial configurations. And some of the

obtained results are shown below. Each time the distance is measured it’s presented along with a

statement on whether or not the goal is reachable from the current point.

4.4.1 Analysis of the first example

The first encountered simulation result is in the Figure 4.2, the anchor is presented as a black

circle and the goal point is a red circle, while the black lines constitute the tether. Initially, the

program outputs “The goal is reachable”, which signifies that a reachability test has been

assessed successfully, and that the goal is indeed reachable (from the anchor that is). The program

then outputs “The shortest distance l = 522.84 px”, followed by “A solution is found and the goal

is reachable from the current point”. It is worth mentioning that no retraction occurred during this

first example. From these results, it’s obvious that the navigation loop was initiated and that the

shortest distance of the first discovered path belonging to the first homotopy class was found to

be less than the maximum tether length L=700, hence, the robot moves towards the goal location

following the advancement VPF; this advancement field is nothing but FlowValueFromGoal that

was found by initiating a wave propagation from the goal when performing the first universal

reachability test. This first example sheds a light on:

Chapter 4.Simulation and Results 47

• the usefulness of using the wave propagation coupled with the distance calculation

algorithm which are TightenPath and CurveShorten in determining the feasibility of our

motion plan.

• The importance of the reachability test that can save a lot of the computational hassles.

Figure 4.2: The first example where the robot advances towards the goal immediately

Chapter 4.Simulation and Results 48

4.4.2 Analysis of the Second example

The second example is shown in figure 4.3. Here again the program outputs “The goal is

reachable”, indicating the existence of a possible motion plan from the anchor to the goal. The

first iteration of the navigation results in a distance of l = 861.29 px which is much larger than L,

and the following message of “A solution couldn’t be found from the current point”. The robot

subsequently retracts by multiple cells, until the configuration is that of the 3rd illustration on the

figure, where it indicates that a new tether space was found. Going from the current point of the

robot to the goal point was not possible since the distance of the shortest path preserving

homotopy was larger than L. Thus, the robot retracts as shown in B and keeps retracting until it

finds the second homotopy space which satisfies the distance with condition l = 521.36. This

results in an advancement and eventually an arrival at the goal as shown in C and D. These

results show:

• The success of findSpace algorithm in identifying the retraction space and the explored

spaces.

• An emphasis of the usefulness of the shortening algorithms.

Chapter 4.Simulation and Results 49

4.4.3 Analysis of the third example

The third example is displayed in figure 4.4 and figure 4.5, the first figure shows the

retraction step where the robot retracts twice discovering three spaces, the first space has a

shortened distance of l = 857.33 px with is more than 700 px means it’s not a feasible path. The

second space is found after the first retraction, this space has a shortened distance of l = 749.71

px which is close to L, but not enough. Hence, retraction is required once again, which leads to

Figure 4.3: The second example where the robot retracts first then heads to the goal

Chapter 4.Simulation and Results 50

the configuration shown in c, with a distance of l = 552.77 px. A solution is then found and

advancement is to be performed. In the figure 3.5, the robot seems to follow the advancement

VPF and heads towards the goal.

This example reassures once again, the viability of concepts and the general methodology

presented in chapter 2. Starting from the definition of the tether space that helped ensure a safe

retraction that respects the homotopy, to the discovery and storage of all the different spaces

encountered while retracting to the efficient distance calculation algorithms and approach.

Chapter 4.Simulation and Results 51

Figure 4.4: The first Part of the third example where the robot retracts and checks
the distance twice

Chapter 4.Simulation and Results 52

Figure 4.5: part 2 of the third example where the robot heads to the goal

Conclusion 53

Conclusion

In this work, we demonstrated a new approach for the problem of motion planning for

tethered mobile robots. This approach consists of using a discrete representation of the

environment that will be a basis for our motion planning. This research was conducted under the

condition of absence of tether crossing when wrapping around an obstacle. The robot was

assumed to be connected to a fixed base by a fixed-length cable. The objective is to find the

shortest path from the initial robot-cable configuration to a final goal position. Two constraints

imposed by the cable on the motions of a tethered robot were considered: limited radius of

movement and the topological constraints. To resolve the mentioned constraints, a grid was

overlaid in our environment and the wavefront planner was employed in it. After testing the

reachability of the goal location via some homotopy class, the planner either designs a path to the

goal using the flow field, or retracts back to search for a path in a different homotopy class in

case the tether length is not enough. We illustrated the algorithm using simulations in multiple

environments filled with obstacles (displayed in chapter 3), which proves the success of the

general strategy that was suggested in chapter 2.

The results of the implementation of our suggested approach, were very promising as

examples have shown the ability of the robot to retract to the correct homotopy class to find

solution, further consolidating the usefulness of the used techniques and methods.

When reflecting on it, this general strategy can be adapted to fit other feedback motion

planning methods, and some of the displayed techniques can be used in other motion planning

areas. An important thing to note here as well, is the possibility of expanding this approach to

include the cases where tether crossing happens when wrapping around obstacles, by creating an

augmented 3d representation of the space whenever a wrapping happens.

Bibliography 54

Bibliography

[1] J.H. Davenport, “A ‘Piano-Movers’ Problem,” SIGSAM Bull, pp. 15–17, 1986.

[2] Steven M. LaValle, Planning Algorithms. New York (NY): Cambridge University Press,

2014.

[3] F. C. P. Kevin M. Lynch, Modern Robotics: Mechanics, Planning, and Control. 2017.

[4] F. G.-B. Giuseppe Carbone, Motion and Operation Planning of Robotic Systems:

Background and Practical Approaches. 2015.

[5] Mark de Berg, Marc van Kreveld, and Mark Overmars, Computational Geometry:

Algorithms and Applications. 1997.

[6] “Gift wrapping - Wikipedia.” [Online]. Available:

https://en.wikipedia.org/wiki/Gift_wrapping

[7] “Chan’s algorithm - Wikipedia.” [Online]. Available: https://en.wikipedia.org/wiki/Chan

%27s_algorithm

[8] Stephen Cass, “DARPA Unveils Atlas DRC Robot,” Jul. 2013, [Online]. Available:

tp://spectrum.ieee.org/automaton/robotics/humanoids/darpa-unveils-atlas-drc-robot.

[9] R.J. Wood P. Chirarattananon and K.Y. Ma, “Adaptive control for takeoff, hovering, and

landing of a robotic fly,” Intell. Robots Syst. IROS, pp. 3808–3815, Nov. 2013.

[10] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological Constraints in Search-based

Robot Path Planning.”

[11] Soonkyum Kim, Subhrajit Bhattacharya, and Vijay Kumar, “Path Planning for a Tethered

Mobile Robot,” pp. 4–5.

[12] É. T. Jon Kleinberg, Algorithm Design. 2005.

[13] “Pygame wiki.” [Online]. Available: https://www.pygame.org/wiki/about

	Abstract
	Acknowledgments
	Introduction
	Chapter 1. Theoretical Background
	1.1 Introduction to motion planning
	1.2 The ingredients of motion planning
	1.3 Types of motion planning problems
	1.3.1 Path Planning vs. Motion Planning
	1.3.2 Online vs. Offline planning
	1.3.3 Optimal vs. Satisfiying
	1.3.4 Exact vs. Approximate

	1.4 Classification of motion planners
	1.4.1 Single vs. Multiple query planners
	1.4.2 Completeness
	a. Complete Planners
	b. Resolution Complete Planners
	c. Probabilistically Complete Planners

	1.4.3 Global vs. Local Planners
	1.4.4 Anytime Planners

	1.5 Path Planning Methods
	1.5.1 Visibility Graphs
	1.5.2 Grid-based methods
	1.5.3 Sampling-based methods
	1.5.4 Virtual Potential Fields methods
	a. Wave-Front Planner
	Dijkstra algorithm

	1.6 The Configuration Space
	1.6.1 Geometric Modeling
	1.6.2 Configuration space definition
	Free space
	Obstacle space

	1.6.3 Configuration space construction
	Convex Hulls
	Jarvis’s march/ Gift-wrapping Algorithm
	Chan’s Algorithm

	1.7 Tethered mobile robots
	1.7.1 Tether Constraints
	1.7.2 Homotopy of paths and cables
	a. Defining homotopy
	b. Homotopy classes of curves

	Chapter 2. Methodology for motion planning
	2.1 Introduction
	2.2 General strategy for a tether aware motion planning using feedback
	2.2.1 Reachability Test
	2.2.2 Navigation Loop
	a. Finding the Path to Goal
	Retraction

	b. Calculating the shortest path distance
	c. Following the Advancement Field

	2.3 Motion planning procedure for tethered robots using wavefront planners
	2.3.1 Reachability test in a discrete environment
	2.3.2 Navigation Loop:
	a. Finding the path to Goal
	Retraction is a discrete environment

	b. Calculating the shortest path distance
	c. Following the advancement VPF

	Chapter 3. Methods used for implementing a tether-aware wavefront planner
	3.1 Setting the 2-D grid environment
	3.1.1 Constructing the C-space obstacles

	3.2 FindSpace Algorithm
	3.2.1 Defining the homotopy space
	3.2.2 Obtaining a rigid definition of the homotopy space

	3.3 TightenPath algorithm
	3.4 Curve Shorten Algorithm

	Chapter 4. Simulation and Results
	4.1 An overview of PyGame
	4.2 Structure of the code
	4.2.1 Obstacle creation mode
	4.2.2 Tether mode
	4.2.3 Path planning mode

	4.3 Conducting the simulation
	4.4 Simulation Results and discussion
	4.4.1 Analysis of the first example
	4.4.2 Analysis of the Second example
	4.4.3 Analysis of the third example

	Conclusion
	Bibliography

