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Abstract  
Photovoltaic (PV)  power generation has been an active research topic in the recent few years. 
One of the main goals of researchers in grid integrated PV systems is to improve the 
performance of the system in terms of efficiency, availability and reliability. For this reason, it 
is crucial to develop efficient methods for PV system’s fault detection and diagnosis.  

In this report, an automatic fault detection and diagnosis approach is proposed for a grid 
connected PV system. The main objective is to improve the classification accuracy and reduce 
the detection time. 

This method merges the benefits of machine learning (ML) technique and statistical process 
monitoring approaches. The analytic methods were first investigated for fault detection due 
to their quick implementation time. Kernel based independent component analyses KICA 
techniques was developed to overcome the shortcomings of principle component analysis PCA 
based fault detection. The support vector machines SVM classifier was built mainly for fault 
diagnosis and classification, such that feature extraction step is done using both KICA and PCA 
to optimize the best model. In this work the “one to one” classification SVM algorithm is used. 

To validate our method, fault detection and diagnosis of a lab implemented grid-connected 
PV system was performed.  In this experiment, 7 typical PV systems faults were injected. The 
experiments were carried out for about 15 seconds in each fault scenario, and several 
measurements were recorded. Data samples were filtered, smoothed then processed through 
PCA and KICA to set the thresholds for fault detection, then the obtained reduced data sets 
were used to train the multi-layer SVM classifiers. 
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GENERAL INTRODUCTION  
The over-use of fossil-based energy sources in the last few decades is becoming a growing 
problem, especially with the technological advancement. These sources not only are limited 
in nature, but also has serious environmental impacts.  

  Exploiting renewable and green energy alternatives have become an ultimate goal for 
Scientists and engineers. One of the most common renewable energy forms is the 
photovoltaic or the solar energy. This technology works based on the photovoltaic effect, 
which is the process of generating an electric current in a photovoltaic cell when it is exposed 
to sunlight.   

  Although PV systems may be a promising solution, scientists are aware of the many 
challenges that this technology faces. This process is heavily based on theoretical research, 
expensive, and not to mention unpredictable as it depends on the environmental conditions. 
As a result, system monitoring and fault detection techniques had become a mandatory 
process in PV systems to ensure maximum efficiency and reliable power generation.  

  Early detection of faults is essential to maintain the normal functioning of the system, and 
many methods and techniques are proposed in this topic. These methods are classified into: 
Model-Based methods, Electrical Signals-Based methods, and Process History-Based methods. 
Process History-Based methods are adopted by several researchers and widely applied due to 
the high computers performance, speed and their large memory storage that can handle the 
complexity of calculations and huge amount of acquired data. 

  The main aim of this project is to realise a data driven fault detection and diagnosis approach 
that merges the benefits of analytic methods and machine learning classifiers. The proposed 
method consider an analytic kernel independent analyses KICA threshold for early detection 
and a support vector machines SVM multi-classifier for diagnosis. The model is then applied 
to differentiate between 7 types of faults in a lab implemented grid connected PV system. In 
order to evaluate the efficiency of the KICA based SVM model, False Alarms Rate (FAR), Fault 
Detection Rate (FDR), and Detection Delay (DD) are considered in addition to the training and 
testing accuracy of the SVM classifier.  

This project is organized as follows: 

- Chapter 1: an introduction to problematic and purpose of this work, a brief 
introduction of the theoretical background of GCPV systems and the typical faults, an 
overview of the numerous FD strategies. 

- Chapter 2:  an elaboration on the PCA-SVM and KICA-SVM based FDAD approach. 
- Chapter 3:  the training and testing results and corresponding discussions. 
- Chapter 4:  general conclusion and achievements we made through this work, in 

addition to future work.
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CHAPTER 1: THEORITICAL BACKGROUND 
 

1.1- INTRODUCTION 

Photovoltaic systems, in either a stand-alone or a grid connected configuration, are the most 
promising renewable power plants. However, it is important to acknowledge the great 
challenges that faces PV power generation. This source although available, faces many 
problems, which affect the reliability of the systems. Fault detection and diagnosis methods 
had become a necessity in order to assure an optimal system performance. 

  This chapter presents a brief description of PV systems and its most common faults, system 
monitoring steps and an overview of the most common Fault detection and diagnosis 
methods.  

 

1.2- PV system description  

  Photovoltaic systems rely on the photovoltaic technology to produce electricity. Meaning, 
PV panels convert physical energy (sunlight) into electric current. Typical PV systems can be in 
the form of stand-alone or grid connected systems.  

  Stand-alone PVS are usually used as utility power alternate [1]. The most common 
configuration consists of PV array, DC choppers, a storage battery and some type of controller 
or regulator.  

  A few examples of such systems are solar streetlights, solar water pumping, and rooftop 
home solar PV systems. Figure 1.1 shows the schematic view of a stand-alone PV system.  

 

                                                     Figure 1.1: Stand-alone PV system typical configuration 
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  Grid-connected PV systems are designed to operate in parallel with the utility grid as shown 
below. We can find two types: systems that interact with the utility power grid and without 
containing a backup storage (battery), and systems that interact with the grid while including 
a battery [1]. The main components for this type of configurations are: PV array, DC-DC 
converter (although it can be disposable for some systems), DC-AC inverter and controllers. 
This scheme is demonstrated in figure1.2.  

 

 

                                            Figure 1.2: Grid-connected PV system typical configuration 

 

1.2.1-  DC converter 

  The DC-DC converter ensures that the PV output voltage is kept at a suitable level that 
corresponds to the grid demand. There are two main types of converters depending on the 
direction of voltage change:  

 Boost converters: A boost converter is a switching device intended to boost (or 
increase) the input voltage higher output voltage 

  Buck converters: A buck or step-down converter is a switching device intended to buck 
(or lower) the input voltage to a lower output voltage.  
 

1.2.2-   AC inverter 

  The DC part (PV array + DC-DC converter) is connected to the ac grid via a DC-AC inverter. 
The inverter is used to step down and modulate the output voltage according to the grid 
demand. The control of the power flow to the grid is based on the control of active and 
reactive power. 

1.2.3-   MPPT control 

  Due to the low efficiency of PV power generators under the changing environmental 
conditions, it is desirable to operate the system under maximum power point. The 
maximization of the power is achieved using a maximum power point tracker MPPT. To 
evaluate an MPPT algorithm, there are a few aspects to consider, such as tracking speed, 
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stability, simplicity and cost of implementation, and tracking efficiency. The basic idea of these 
controllers is to use a specific algorithm to search for peak power point and thus to allow the 
converter to extract the maximum power available from the PV module [3]. Among these 
techniques we mention: 

 Perturb and observe.  
 Incremental conductance. 
 Parasitic Capacitance.  
 Constant voltage based Peak Power Tracking. 
 Constant current based peak power Tracking. 

  The perturb and observe algorithm is the most popular MPPT algorithm. It operates by 
constantly measuring the PV array voltage and current then constantly perturbing the voltage 
by adding a small disturbance. The output power is then observed to determine the next 
control signal, if the power increases the disturbance will continue, else the perturbation 
direction will be reversed. Figure 1.3 sums up the P&O algorithm. 

                             

                                            Figure 1.3: perturb and observe algorithm for MPPT [4] 

 

 

1.3- Effect of Temperature and irradiance on PV arrays 

  As mentioned previously, the cell parameter are directly affected by any change in the 
environmental conditions. Both the PV cell current and voltage are functions of irradiance, with 
coefficients determined by the manufacturer in the datasheet of the PV panel.  
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  Figure 1.4 demonstrates the relationship between temperature change and the PV output 
power. We clearly notice that the most affected parameter by temperature variation is the PV 
voltage, Voc values shows that the higher the temperature, the lower he voltage. 

  On the other hand, Figure 1.5 demonstrates the relationship between change in solar 
irradiance and the PV power. In this the case, it is mostly the current that is effected as we can 
see from the short circuit current Isc values. The more the irradiance is increased, the more 
current will flow. 

 

                
Figure1.4: effect of temperature on PV cell [6]                      Figure1.5: effect of irradiance effect on PV cell [6] 

 

1.4- PV systems common faults 

  The PV system usually operates in harsh outdoor conditions and might be subjected to 
various faults that we can classify into three main sections: 

1-  Physical faults 

  These are mainly degradation faults that effects the physical condition of the PV array like 
internal or external damage, cracks, or aging effects.   

2-  Environmental faults 

  These faults include mainly soiling and dust accumulation, bird drops, and temporary or 
permanent shading. 

3-  Electrical faults 

Includes faults in both: 

- AC part of the system:  mainly the Inverter and the grid. 

- DC part of the system: PV array + DC-DC converter. 
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These faults include:  

- Line-line faults: created by unintentional low impedance current path in a PV 
array. 

-   Ground faults, either in PV modules, arrays, or in the whole systems: 
Ground faults are similar to line-line faults; however, the low impedance path 
is from current-carrying conductors to ground/earth. 

PV system common electrical faults are listed in Figure 1.6.  

 

 

                                              Figure 1.6: GCPV system common electrical faults. 

 

1.5- System monitoring 

  PV system monitoring is a crucial step to ensure the efficiency, reliability and safety of the 
system. Monitoring systems collect the PV system data and transmit it to the control station 
in order to evaluate these criteria and keep track of meeting the grid demands and detect any 
anomalies.  

  The general scheme of PV monitoring systems involves 4 main steps: data acquisition, data 
transmission, data storage, and data analyses.    

            1.5.1- data acquisition systems 

   Data acquisition system DAS is used to collect data from different sensors then digitalize this 
data to send it to the control centre for processing and presentation.  
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1.5.2- data transmission systems 

  These systems are used to transfer data from a point to another. The components of any 
communication system include transmitters for sending the information, a communication 
channel that carries the data, either wired or wireless communication can be used, and 
receiver that record and presents the data  

1.5.3- data storage  

  Data storage is mandatory process before performing data analyses. The collected data is 
usually stored in an SD (secure digital) card. SD cards allow lower electromagnetic interference 
and prepare an easy solution for data storage while having a good storage capacity [7]. 

  A database system called My Sequel is also used for storing data. The data is stored HTML 
format, giving better performance and data storage with easy access.  

1.5.4- data analyses 

  Data analyses is performed to evaluate the system’s performance. Various system analyses 
techniques had been developed. Nowadays, standard guidelines are generally used. The 
guidelines explain energy generation, system losses, and solar sources [8]. 

  

1.6- Fault detection in PV systems 

  The demand of safe and reliable operation of processes in the industry has propelled 
researchers into the fault detection and diagnosis methods. Various approaches had been 
developed by researcher. The efficiency of each approach is evaluated according to these 
criteria: 

- Quick detection of the faults. 
- The ability to distinguish between the different faults having similar symptoms. 
- Robustness of the detection system to noise and uncertainties.  
- The reliability of the detection system. 

 We can categorize fault detection and diagnosis techniques into 3 main classes. 

 

1.6.1- Approaches based on the system’s model 

  This methods heavily rely on the mathematical description of the system. In the model based 
methods, a priori knowledge about the model is assumed. This knowledge can be classified 
into qualitative or quantitative. [9] 
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 qualitative models 

  Qualitative based fault diagnosis methods use the input-output relationship of the process 
and the system’s dynamics to describe the system behaviour in qualitative terms centred 
around different units in a process [9]. Qualitative fault detection include abstraction 
hierarchy, fault trees, diagraphs and fuzzy systems [10]. 

 

 Quantitative models 

  In quantitative models, the system dynamics is expressed in terms of mathematical 
functional relationships between its inputs and outputs. Quantitative model-based fault 
diagnosis is broadly classified into: analytical redundancy, parity space, Kalman filter (KF), 
parameter estimation and diagnostic observers. [9] 

a) Analytical redundancy: model based fault diagnosis require two major steps: 
inconsistencies (or residuals) generation, and choosing a decision rules for diagnosis. 
 [9].The analytical redundancy schemes for fault diagnosis are basically signal 
processing techniques using state estimation, parameter estimation, adaptive filtering 
for residual generation.  
 

b) Parity space: the idea of this approach is to check the consistency (parity) of the input-
output relationship of the plant. In theory, under steady-state operating conditions, 
the residual generated by the parity equations method is zero. However, in reality, the 
residual are non-zero due to input–output measurement and process noise beside to 
some modelling errors.  
 

c) Kalman filters:  Kalman filter is a recursive algorithm for state estimation which is 
designed on the basis of the system model in its normal operating mode to achieve 
minimum estimation error. The prediction error of the KF is then used to form fault 
detection residual.  
 

d) Parameter estimation: used to estimate the parameter drifts that are not measured 
directly [9]. 
 

e) Diagnostic observers: there is exist different types of diagnostic observers for residual 
generation. We mention: residual generation using Eigen structure assignment, 
residual generation using unknown input observer, Residual generation using bilinear 
observer [9]. 

 

1.6.2- Approaches based on the system’s electrical signals 

  These methods detect any faulty behaviour by measuring different electrical signals and 
comparing them to the healthy mode ones. Many approaches based on this techniques can 
be used, we mention:  
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a) Hardware redundancy:  It is the classical approach for fault detection and diagnosis as 
it uses multiple sensors and actuators in order to measure a particular variable. A 
major drawback for this technique is the reliance on electrical equipment, leading to 
extra weight and cost. 

 

b) Limit checking: The process variables are measured and compared to known limit for 
each variable. Firstly, the variables thresholds are established based on the healthy 
measurements then they are compared with the measured values. 

c) Frequency analysis: Most plant variables exhibit a typical frequency spectrum under 
normal operating conditions, using frequency analysis, any deviation from this can be 
interpreted as abnormality. 
 

1.6.3- Approaches based on the system’s historical data  

  These methods have shown quite the efficiency in detecting faults within larger and more 
complex industrial processes. The fundamental principal of process history based approach 
is to transform acquired data into a priori knowledge about the system, also known as 
feature extraction. These features will be used to generate a model to be applied in real 
processes for residual generation.   

  In general, history-based fault diagnosis methods are broadly classified into Fuzzy Logic, 
neural networks, clustering, self-organising maps (SOM), analytic methods, experts systems 
and pattern recognition. [11].  

 

1.7- Multivariate Statistical Process Monitoring 

  Multivariate statistical process monitoring MSPM is an approach used to extract meaningful 
information from collected large data in order to obtain the model description of the said 
process. MSPM methods are applied on data under normal operating conditions of the 
process to construct some statistics for monitoring the process. The fundamental tasks of 
MSPM are dimensionality reduction and feature extraction. 

  Principle component analyses is one of the most widely used techniques in MSPM due to its 
simplicity and efficiency in detecting faults. It was originally used in chemical process control 
[12] and has recently been applied in GCPV systems.  

  PCA is also widely used as a feature extraction tool. This method identify a fewer possible 
independent features that cause most of the process variation. Due to its application in 
dimensionality reduction, this approach have seen a great success when combined with DL 
and ML tools. Hichri at al. in [13] have developed a PCA based ML technique for fault 
classification aiming to reduce the computational time of the KNN and SVM algorithms by 
applying PCA for dimensionality reduction of the data. Similarly, PCA-SVM-Based Automated 
Fault Detection and Diagnosis for Vapor-Compression Refrigeration Systems was investigated 
in [14]. The results had shown better performance when compared to SVM without PCA. 
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  Along with classical PCA, several PCA based methods have been developed to solve the 
problems related to the system’s behaviour. Kernel techniques for example are becoming 
really popular when dealing with nonlinear systems, Cho et al. in [16] proposed different 
methods based on the kernel PCA for fault detection. Bin Shams in [17] and Kallas et al. in [18] 
recently proposed nonlinear PCA for fault diagnosis and more generally for process 
monitoring. Yan Liang, and Ming Y. Gong [19] Proposes a novel fault detection method based 
on SIP-PCA algorithm for non-Gaussian process where the survival information potential (SIP) 
is used to characterize the non-Gaussian randomness of the process data. 

   Adaptive Multivariate Statistical Process Control for Monitoring Time-Varying Processes 
based on a recursive PCA model was discussed in [20]. Also, [15] proposed a real-time fault 
detection in PV systems under MPPT using PMU and high frequency multi-sensor data through 
online PCA-KDE-based multivariate KL divergence. This approach was developed to overcome 
the shortcoming of the classical PCA approach. 

 

1.8- Machine learning in Fault diagnosis 

As mentioned in the previous sections, the fundamental idea of history-based fault diagnosis 
is to generate a model of the process which relates the measured inputs to measured outputs 
[9]. This process can be quite computationally complex, thus generating such models using 
machine learning algorithms could be more efficient. 

Machine learning algorithms are mainly divided into 2 sections as shown in figure 1.7:  

- Supervised learning 
- Unsupervised learning 

 

 

                                                             Figure 1.7: Machine learning methods. 
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8.1.1- Supervised Learning 

  Supervise ML approaches use labelled datasets for training the algorithm. The training set 
teach the models to yield the desired output. It includes inputs and correct outputs, which 
allow the model to learn over time. The algorithm measures its accuracy through the loss 
function, adjusting until the error has been sufficiently minimized. Supervised learning is 
divided into two main classes: Classification and Regression [21]. 

a) Classification: uses an algorithm to accurately assign test data into specific classes. It 
recognizes specific entities within the dataset and attempts to draw some conclusions 
on how those entities should be labelled or defined. Common classification algorithms 
are linear classifiers, support vector machines (SVM), decision trees, k-nearest 
neighbour, and random forest [21].  

b) Regression: is used to understand the relationship between dependent and 
independent variables. Linear regression, logistical regression, and polynomial 
regression are popular regression algorithms [21]. 
 

8.1.2- Unsupervised Learning 

  This machine learning algorithms are used to analyze and cluster unlabeled data sets. These 
algorithms search automatically for hidden patterns in data. [21] 

  Unsupervised learning models are used mainly for clustering, association and dimensionality 
reduction 

a) Clustering: is a data mining technique for grouping unlabeled data based on their 
similarities or differences. This technique is usefull for market segmentation, image 
compression, etc. 
 

b) Association: is another type of unsupervised learning method that uses different 
rules to find relationships between variables in a given dataset. 

 
8.1.3- Fault diagnosis using ML classification 

  Machine learning algorithm have become popular in fault detection system due to their 
reliability, adaptability and robustness. The application of these algorithms have helped in 
developing a reliable and effective solution for fault diagnosis. These systems do not need 
prior knowledge on the system mathematical model for their operation and only rely on 
history datasets. The fault detection in IMs is divided into multiple stages like data acquisition, 
data processing, feature extraction and implementation of ML algorithms for fault 
recognition.  

  We can divide ML-based algorithm for fault classification into: Support Vector Machines 
(SVM), k-Nearest Neighbors (k-NN), Artificial Neural Network (ANN), Decision trees, Bayesian 
Classifier, random forest and Convolutional Neural Network (CNN). 
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1.9-  Conclusion 

  This chapter presented an overview of fault detection and diagnosis in PV systems. Starting 
off by giving a general description of PV systems and common PV system faults and the general 
scheme for system monitoring. Then, we gave a review on various fault diagnosis approaches. 
After that, a more specific fault diagnosis techniques were tackled.  In (1.7) the multivariate 
statistical process monitoring techniques were presented, were we mentioned one of the 
most used one PCA and its application in FDAD. In (1.8) we talked about the use of machine 
learning in fault diagnosis, while explaining the supervised and unsupervised algorithms and 
how they differ.  
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CHAPTER 2: PROPOSED FAULT DETECTION AND 
DIAGNOSIS METHOD 
 

2.1- Introduction:  

  Since GCPV systems are quite complex and large, developing a fault detection technique 
based on the system’s historical data seems optimal in this case. As mentioned previously, 
multivariate statistical monitoring methods are considered to be the most popular due to their 
effectiveness and rapidity in detecting different faults. This works aims to improve the PCA 
based fault detection technique by using kernel techniques, and independent component 
analyses KICA to deal with the non-linear and non-Gaussian characteristics of the system. 
Moreover, a machine-learning technique is used to classify the detected faults by introducing 
the PCA and KICA extracted data as features for the proposed model.  

 

2.2- Principle component analyses: 

  PCA is a multivariate statistical method initially developed by Karl Pearson in 1901 and was 
later developed by hoteling in 1947. It is mainly used in monitoring processes due to its easy 
implementation and effectiveness in detecting abnormalities within systems. The basic idea 
of PCA is to find the principle components representing the main variance possible of a given 
dataset by performing a linear transformation [22]. 

Since the initial feature set is always quite large with many interrelated/correlated features, 
which greatly increases the computation time, using PCA for feature extraction and data 
compression technique always plays a significant role in solving such time complexity 
problems. 

Advantages of using PCA:  

 Removes correlated features effectively and in optimal time: Without PCA, this process 
is quite complicated and time consuming, especially if the number of features is large.  

 Improves machine learning algorithm performance: ML algorithms can take significant 
training time since they rely on huge datasets. Through PCA dimensionality reduction, 
the time taken to train the ML model can become significantly lower. 

 Reduces over fitting: this is done by removing the unnecessary features in the dataset. 
 Improves Visualization: PCA transforms a high dimensional data to low dimensional 

data so that it can be visualized easily [22]. 
 

2.2.1- Dimensionality reduction using PCA: 

  The main application of PCA is dimensionality reduction of the original correlated data set to 
an uncorrelated data set that captures most of the information of the original set.  
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  We consider the data matrix X of simulated measured parameters under “healthy” 
conditions with N samples of m variables.  

                                 X=[X1, X2, X3,………..XN]  such that X∈ 𝑅ே×௠. 

First the data matrix X is normalized to zero mean and unit variance. 

                                                                 Xnj =  ௑௜ି µ௝

ఙ௝
                                                                               (2.1) 

Where µ and σ are the mean and the standard deviation of the variable𝑋௜.  

The covariance matrix is calculated using the training data then decomposed using singular 
value decomposition (SVD). 

                                                                 Φ= ଵ

ேିଵ
 𝑋𝑛ᵀ𝑋𝑛.                                                                        (2.2) 

                                                                 Φ = Uᵀ λ U                                                                                   (2.3) 

Where:  λ= diag  [λ1,λ2,λ3,…..λm] , is the diagonal n× 𝑛 matrix of n eigenvalues in descending 
order, and U = [U1,U2,……Um] is the corresponding loading matrix consisting of the 
eigenvectors of the covariance matrix. Each eigenvalue determine the amount of variance in 
each component [23]. 

The transformed data matrix is then given by:  

                                                                   X= T Uᵀ.                                                                                                      (2.4) 

                                                                   T=X U.                                                                                           (2.5) 

Where T is the scores matrix. 

After retaining l principle components, PCA decomposes the principle data set into 2 main 
subspaces: principle subspace and residual subspace such that: 

                                      U= [𝑈෡  𝑈෱ ] Where 𝑈෡ ∈ 𝑅௠×௟ and 𝑈෱  ∈ 𝑅௠×(௠ି௟).                                              (2.6) 

                                      T= [𝑇෠   𝑇෰] Where 𝑇෠  ∈ 𝑅௠×௟ and 𝑇෰   ∈ 𝑅௠×(௠ି௟).                                          (2.7) 

                                      Λ= [𝜆መ   𝜆ም] where 𝜆መ  ∈ 𝑅௟×௟ and 𝜆ም ∈ 𝑅(௠ି௟)×(௠ି௟).                                         (2.8) 

The resulting PCA model is described by the coefficient matrix  

                                                                  𝐶መ   = 𝑈෡  𝑈෡ᵀ                                                                              (2.9) 

And the residual PCA model  

                                                                  𝐶ም = 𝑈෱  𝑈෱ᵀ                                                                                          (2.10) 

The data matrix 𝑋 is then expressed as the combination of the retained variations and non-
retained variation of 𝑋 by the projection on the principal space and residual space as follow                                   
X                                              X=𝑿𝑈෡  𝑈෡ ᵀ + 𝑿𝑈෱ 𝑈෱ᵀ = 𝑿𝑪 + 𝑿 (𝑰 − 𝑪) = 𝑋෠  + 𝑋෰                                                (2.11) 

We can summarize the feature extraction process of PCA by the flowchart in figure 2.8.  
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                                                 Figure 2.8: PCA feature extraction flowchart. 

 

2.2.2- Choosing the principle components 

  Choosing the correct number of principle components l to use is quite crucial when applying 
PCA. For that, many methods were proven efficient to determine just the right number to use.   

1. Kaiser-Guttman method (or size of variance): it is used in correlation based PCA, where 
only components whose eigenvalues that are greater than one (>1) are retained [24]. 

2.  Scree Plot:  which is a graphical method of selecting the PCs to be retained by plotting 
the amplitude of the eigenvalues versus their indices [24]. One way to use Scree Plot 
in selecting the number of PCs, is looking at the slopes of the lines connecting the 
points and when these slopes starts to become less steep (at the knee of the graph) , 
that is the number of PCs that should be retained. 

3. Cumulative percent variances CPV is one of the most adopted method in determining 
the number of PCs proposed by the author of [25]. The main concept of CPV is to retain 
those l PCs that contribute a specific cumulative percentage of total variation in 
original data (usually taken from 70 percent to 90 percent), which is calculated using:  

                                                       𝐶𝑃𝑉௟ = 
∑ ఒ೔

೗
೔సభ

∑ ఒ೔
೘
೔సభ

 100 %.                                                                  (2.12) 
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Figure 2.9: CPV for choosing PCs 

  It is important to mention that selection features using any of these methods is a trade-off. 
It may appear that the more number of components retained, the accurate the model is, in 
reality, this may enclose the sensors and the surrounding circuitry and external noises, which 
will make the model sensitive to noise and uncertainties. In the other hand, selecting lower 
components may lead to the loss of information, and this will make the model less sensitive 
to abnormalities. Thus the choice of the right number Pcs is absolutely critical. 

  

2.2.3- Fault detection using PCA: 

  PCA uses statistical signals as indices for fault detection. Two of the most used are Hotelling’s 
T² statistic developed by Hotelling [26], and the square prediction error SPE, developed by 
Jackson and Mudholkar[27]. T² computes the variation within the principle subspace and 
compares it to that of the healthy model. Whilst SPE deals with the variations within the 
residual subspace. Both these indices are static thresholds.  

  Other thresholds based on PCA were developed. Mahalanobis distance based on the 𝑇², is 
widely used and forms the global Hotelling’s 𝑇2 test. Raich and Cinar proposed a new 
combined static based on Mahalanobis distance using both SPE and 𝑇 ²[28].   

In this work, the indices considered are T² and SPE 

The Hotelling’s T² statistic is given by:  

                                                                 T²= xᵀ 𝑈෡  𝜆ିଵ 𝑈෡  ᵀx.                                                                           (2.13) 

For a given confidence level (100.(1-α)%), we define: 
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                                                             Tα= (௡²ିଵ)ఈ

௡(௡ି௟)
 Fα(α,n-α).                                                             (2.14) 

Where Fα is a critical value of Fisher distribution with n and n-α degrees of freedom. It is 
recommended that α takes the values from 95% to 99%.  

Tα defines the system’s normal behaviours meaning that any observation above this threshold 
indicates a faulty behaviour.   

The square prediction error SPE index is given by: 

                                                            SPE= 𝑋෰ᵀ 𝑋෰= ∑ 𝑋෰௝
ଶே

௝ୀଵ                                                                         (2.15) 

                                               SPEα= 𝜃1 ቂ
௛଴௖ఈ√ଶఏଶ.

ఏଵ
+ 1 +

ఏଶ௛଴(௛଴ିଵ).

ఏଵమ
ቃ

ଵ/ఒ଴

                               (2.16) 

Where:                 

                                                                 θi =∑ 𝜆௝
௜௟

௝ୀଵ                                                                            (2.17) 

and                                                                   h0=1 −
ଶఏଵఏଷ

ଷఏଶ²
                                                                              (2.18) 

cα is the value of the normal distribution with α the significance level. 

 When a faulty event occurs and it produces a change in the covariance structure of the model, 
it will be detected by SPE. 

  

2.3- Kernel Principle component analyses: 

  It is important to note that PCA works based on 2 assumptions: Linearity of the system and 
its Gaussian distribution. These assumptions are far from reality in most processes. The kernel 
trick was developed to deal with non-linear processes such that it maps the non-linear data 
into a high dimensional space driving the system to behave in a somehow a linear way. That 
is, according to Cover’s theorem, the nonlinear data structure in the input space is more likely 
to be linear after high-dimensional nonlinear mapping [29] into a feature space F. In other 
words, KPCA performs non-linear principle components analyses. 

 

 

                               Figure2.10: (a) original dataset, (b) PCA transformation, (c) KPCA transformation. 
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We assume the mapping into the feature space is expressed by the function Ф(x) where:                                     

                                                          Ф= [Ф(x1), Ф(x2), …. Ф(xk)].  

 The covariance matrix is given by:  

                                                          C= ଵ

ே
∑ Ф(𝑋𝑗)Ф(𝑋𝑗)ᵀ.ே

௝ୀଵ                                                                        (2.19) 

Similarly to PCA, we perform singular value decomposition to find λ≥ 0 eigenvalues and   

V ∈ 𝐹/{0}  eigenvectors satisfying:    

                                                                        λV = CȑV                                                                                     (2.20) 

Where:  Cȑ is the centered covariance matrix.  

The V corresponding to the largest eigenvalues represents the principle PCs in F, where the 
rest Vs represents the residual subspace. CȑV can be expressed then by: 

                                                       CȑV= (ଵ

ே
∑ Ф(𝑥𝑗)Ф(𝑥𝑗)ᵀ) 𝑉ே

௝ୀଵ  

                                                            = ଵ

ே
∑ < Ф(𝑥𝑗), 𝑉 >  Ф(𝑥𝑗).ே

௝ୀଵ                                              (2.21) 

Where < 𝑥. 𝑦 > denotes the dot product between x and y, implying that all solutions V must 
lie in the span of {Ф(x1), Ф(x2), ……. Ф(xN)}. Hence we consider the equivalent system: 

                                             λ(Ф (xj) . V) = (Ф (xj) .CȑV) for all j=1,2,……N                                     (2.22) 

and there exist coefficients α1, α2, …….αN such that:  

                                                             V= ∑ 𝛼. Фே
௝ୀଵ (𝑥𝑗).                                                                                (2.23) 

In general, the mapping Ф(x) may not always be computationally possible although its 
existence. [30] 

To project the input space into the KPCA space, one can avoid calculating the nonlinear 
mapping and compute instead the dot product given by the kernel function given by [31]:  

                                                             K(x,y) = < Ф(𝑥), Ф(𝑦) >.                                                          (2.24) 

The kernel trick is based on the Mercer’s theorem, which states that if a kernel function is 
continuous kernel of a positive integral operator, there exists a mapping into a space where 
the kernel function acts as a dot product. [30] 

There exists several kernel functions, the most used ones are:  

 Polynomial Kernel 
                                                   K(x,y)= < 𝑥, 𝑦 > ᵈ.                                                                  (2.25) 

 Sigmoid Kernel 
                                          K(x,y)= tanh (𝛽₀ < 𝑥, 𝑦 > +𝛽1).                                                         (2.26) 
  

 Radial Basis Kernel 
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                                                  K(x,y)= exp (- 
‖௫ି௬‖²

௖
).                                                                          (2.27) 

 Linear kernel 
                                                  K(x,y) = < 𝑥, 𝑦 >.                                                                               (2.28) 

Where d, β₀, β1, and c are kernel parameters to be determined by the user. A specific choice 
for a kernel function will determine implicitly the mapping Ф(x) [32]. 

In this work the Radial Basis function is considered. It should be noted that before applying 
PCA, mean centering of the kernel matrix has to be performed. This can be done using the 
following expression:  

                                                               Kȑ = K - 1ɴ K- K 1ɴ+1ɴK1ɴ.                                                    (2.29) 

Where:                                                      1ɴ= ଵ

ே 
൥
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

൩  ∈ 𝑅ᴺˣᴺ.                                                   (2.30) 

We obtain :   

                                                                NλKα=K²α.                                                                             (2.31) 

Where α represent the column vector of [α1, α2, ……… αN]. Solving (2.31), implies the 
following equation: 

                                                                 Nλα=Kα.                                                                                (2.32)  

For all non-zero eigenvalues λi. The reader is referred to [31] for more details. 

Now, PCA is performed in the obtained F feature space to solve equation (2.32). The 
dimension of the new space can be found by retaining only l eigenvectors corresponding to l 
largest eigenvalues. [32] 

α1, α2,…..αl are normalized by requiring that the corresponding vectors in F are also 
normalized. i.e.  < 𝑣𝑘. 𝑣𝑘 > = 1. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 = 1,2, … 𝑙. 

Using:                                                    V= ∑ 𝛼ᵢФ(𝑥𝑖)ே
௝ୀଵ .                                                                           (2.33) 

We obtain 

                                                 1= < ∑ 𝛼ᵢФ(𝑥𝑖), ∑ 𝛼𝑗Ф(𝑥𝑗)ே
௝ୀଵ

ே
௜ୀଵ  

                                                    = < 𝛼௞ , 𝐾𝛼௞ > 

                                                    = λ < 𝛼௞, 𝛼௞ >.                                                                                       (2.34) 

The Pcs Pₖ are then extracted by projecting Ф(𝑥𝑖) into the eigenvectors vₖ in F where k=1,2,…l. 

                                                    Pₖ= ∑ 𝛼ᵢ < Ф(𝑥𝑖), Ф(𝑥) >ே
௜ୀଵ .                                                                   (2.35) 

 

KPCA is also used for monitoring and Fault detection using T² and SPE indicator. T² is calculated 
using kernel function:  
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                                                              T²= k(x)ᵀ VλିଵVᵀ k(x).                                                                      (2.36) 

Similarly to PCA, the control limit is calculated using the F-distribution. 

The SPE index is defined in the feature space as follow: [30] 

                                                       SPE= k(x,x) – kᵀ(x)Ck(x) and C=VᵀV.                                            (2.37) 

 

2.4- INDEPENDENT COMPONENT ANALYSIS ICA  
2.4.1- Background 

  ICA is a statistical approach that has the potential ability for blind source separation (BSS) 
without the prior information about the mixtures under the source signals that are statistically 
independent. The concept of independent component analysis is similar to that of PCA and 
KPCA. Its goal is to find a mapping that transforms the data to a feature space where the data 
becomes as statistically independent from each other as possible by maximizing some 
function A that measures “independence”.  

ICA of a random vector x consists of estimating the following generative model for the data:  

                                                                          x = As.                                                                       (2.38) 

 This model was introduced by Jutten and Hérault in their seminal paper [33], which was 
probably the earliest explicit formulation of ICA. 

The identification of the ICA model has been treated based on the following assumptions:  

1- All the independent components 𝑠௜, with the possible exception of one component, 
must be non-Gaussian.  

2- The number of observed linear mixtures m must be at least as large as the number of 
independent components n, i.e., m smaller n. 

3-  The matrix A must be of full column rank. 

Plus the assumption that both x and s are centred. These restrictions implies based on the 
assumption that the x variables are some random variables [33]. 

 

 

                                                                  Figure 2.11: ICA process. 
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  The applications of ICA can extend to feature extraction. The use of ICA for feature extraction 
is motivated by results in neurosciences that suggest that the similar principle of redundancy 
reduction explains some aspects of the early processing of sensory data by the brain. ICA has 
also applications in exploratory data analysis in the same way as the closely related method 
of projection pursuit. [34] 

  The goal of ICA is then to estimate the mixing matrix W to extract the independent 
component from the projected data. This matrix can be estimated using three main 
approaches:  

- Maximizing the non-Gaussianity: the non Gaussianity can be measured using function 
such as the negentropy function or the kurtosis function.  

- Minimizing the mutual information.  
- Maximum likelihood estimation.  

  The definition of ICA given above implies no ordering of the independent components as 
opposed to PCA. It is possible, however, to introduce an order between the independent 
components using for example the norms of the columns of the mixing matrix A, which gives 
the contributions of the independent components to the variances of the xi. A second way is 
to use the non-Gaussianity of the independent components i.e., ordering the independent 
components according to non-Gaussianity [34]. 

In this work we consider ICA by maximizing the non-Gaussianity. 

              2.4.2- measure of non-Gaussianity: 

  Maximizing the non-Gaussianity is one way of finding the independent components of data 
vectors. For that purpose, two measurements can be used: kurtosis and negative entropy. 

- Kurtosis:  

The ICs can be obtained by finding the scores, which maximizes kurtosis of extracted signals. 
The Kurtosis (K) of any probability density function (pdf) is defined as follow: 

                                               K=E [𝑥ସ] – 3 E [𝑥ସ]²                                                                  (2.39) 

The kurtosis is simple to calculate, however it should be mentioned that it is sensitive to 
outliers.  

For a whitened data Z, E [𝑍ଶ]= 1 since Z has unit variance.  

Hence, the Kurtosis will be: 

                                                K (Z) = E [𝑥ସ] – 3.                                                                                     (2.40) 

Given two source signals s1 and s2, and the matrix Q=AᵀW=𝐴ିଵW. Hence, 

                                                    Y=WᵀX=WᵀAS=QS=q1s1+q2s2.                                                               (2.41) 

Using the kurtosis additively property, we have: 
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                                                   K(Y)=K(q1s1)+K(q2s2)=𝑞ଵ
ସK(s1)+𝑞ଶ

ସK(s2)                                              (2.42) 

A scaling step is performed so that s1, s2, and Y have a unit variance, meaning that Q is 
constrained to a unit circle in the 2D space. This implies that: 

                                                    E[Y2]=𝑞ଵ
ଶE[s1]+ 𝑞ଶ

ଶE[s2]= 𝑞ଵ
ଶ+𝑞ଶ

ଶ=1.                                               (2.43) 

The optimal solutions of the kurtosis in this case are the points when one of Q is zero and the 
other is nonzero either be 1 or −1 , where each vector in the matrix Q extracts only one source 
signal since Q=AᵀW=I . 

the ICs are then the ones which maximizes kurtosis of extracted signals Y=WᵀZ, where Z is the 
whitened data. Thus, the kurtosis can be expressed as: 
                                                       K(Y)=E[(WᵀZ)ସ]−3.                                                                       (2.44) 

Where the term (E[yi2])2  is set to one because W and Z have a unit lengths. 

To find the gradient of the kurtosis K(Y), the following formula is used: 

                                                     ப୏(୛ᵀ୞)

ப୛
 = E [Z(WᵀZ)ଷ].                                                                         (2.45) 

It should be highlighted that the weight vector is updated with each iteration such that:                

                                                    Wn =  Wo +η E[Z(Z(WoldᵀZ)ଷ].                                                         (2.46) 

 Considering that η is the step size for the gradient descent [34]. 
 

-  Negative entropy:   

  Negative entropy is termed negentropy, and it is defined as follows:  

                                J(y) = H(𝑦௚௔௨௦௦௜௔௡) – H(y).                                                                     (2.47) 

where H(𝑦௚௔௨௦௦௜௔௡)  is the entropy of a Gaussian random variable whose covariance matrix is 
equal to the covariance matrix of y. [33]  

The entropy of a random variable Q which has N possible outcomes is 
                                             H(Q)=−E[log 𝑝௤(q)]= –ଵ

ே
 ∑ log 𝑝௤  (𝑞௧)ே

௧ .                                                      (2.48) 

Where 𝑝௤  (𝑞௧) is the probability of the event 𝑞௧=1, 2, …, N. [34] 

The negentropy is zero when all variables are Gaussian. In this work, maximizing non-
Gaussianity using Kurtosis was considered. 
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2.5- Kernel Independent component analyses KICA: 

  Since ICA assumes that the problem is linear, it fails to separate nonlinear mixed source 
signals. To tackle this problem, a method based on the kernel trick is introduced. KICA (kernel 
independent component analyses) combines the benefits of Kernel functions in dealing with 
nonlinearities and the ICA for non-Gaussian problems.  

            2.5.1- data whitening using KPCA: 

  Before getting the linear and orthogonal scores that the ICA algorithm requires, the first step 
of KICA is to whiten the measurement matrix in the kernel space. Data whitening means 
transforming the original data set into uncorrelated set then rescale each vector to have unit 
variance. It is important to note that a mandatory centring step should be performed 
beforehand. The whitening step is usually done using PCA or KPCA [34] [35]. 

In this work, kernel principle component analyses is used. As discussed previously, this is done 
using a non-linear mapping Ф(x), where the kernel method will transforms a measurement 
vector into a higher-dimension feature space to get linear associations [30], then the ICA 
algorithm can be applied to the higher-dimension linear feature space.  

Denoting V = (α1,α2,…….,αk) the kernel eigenvectors matrix and  λ = (λ1,λ2, …., λk) the 
corresponding eigenvalues diagonal matrix, the whitening matrix can be obtained using: 

                                                            P =√𝑁 Ф 𝑉 𝜆ିଵ.                                                                        (2.49) 

Then the mapped training data in the feature space can be whitened as follow:  

                                                            𝑍௜= Pᵀ Ф = √𝑁 𝜆ିଵ Vᵀ 𝐾௜
்.                                                              (2.50) 

Where Ki is the i th row of the Gram matrix K. Whitening the data in the feature space using 
KPCA is considered to be the initial step of KICA. Choosing fewer whitened scores can reduce 
the number of ICs effectively but may lose some important information. Therefore, reducing 
the whitened scores should be done carefully. In this work, a criterion, λi/sum(λ) > 0.0001 [34], 
is used to select the whitened scores.  

          2.5.2- Online monitoring and fault detection 

  For a new data X new to be monitored, its kernel-mapping vector knew should be cantered 
as follow:  

                                        𝐾௡௘௪  = Knew - 1new K- Knew 1ɴ+1new K 1ɴ.                                                  (2.51) 

The whitened new scores are:  

                                                  𝑍௡௘௪= Pᵀ Ф(𝑥௡௘௪) = √𝑁 𝜆ିଵ Vᵀ 𝐾௡௘௪
் .                                                (2.52) 

  To estimate W and obtained the ICs, the ICA algorithm used is kurtosis.  After d ICs have been 
selected, the first index for monitoring can be given by: 

                                                                       I² =  𝑠ௗ
் . 𝑠ௗ                                                                                        (2.53) 
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Where d is the number of retained independent components. Here, the ICs with larger kurtosis 
are selected to be the dominant ones, since larger kurtosis means stronger nonGaussianity 
[35]. 

  Unlike the linear methods, the SPE of KICA cannot be calculated by the residuals of the 
original measurement because the non-linear mapping Ф(x) is unknown. However, the 
residual of mapped data into the kernel space can be used to calculate SPE indirectly:   

                                                  SPE =  ‖Ф(𝑥ᶥ) Ф′(𝑥ᶥ)‖ = ‖Ф − Ф′‖²                                                        (2.54) 

  Since the distributions of I² and SPE are unknown, their control limits can be calculated by 
using the kernel density estimation KDE [36]. It is defined as non-parametric way to estimate 
the probability density function of a random variable. The kernel density for a distribution f of 
a random variable x is given by:  

                                                               D(x) =  ଵ
௡

∑ 𝐾ℎ(𝑥 − 𝑥𝑖) =  
ଵ

௡௛

௡
௜ୀଵ  ∑ 𝐾( 

௫ି௫௜

௛

௡
௜ୀଵ ).                                    (2.55) 

  When a new online measurement is available, I² new and SPE new are computed, and 
compared to that of the healthy case, if they are found to be beyond their control limits, a 
fault has occurred. 

                                                     

                                                              Figure 2.12: KICA flowchart 
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2.6-  Fault diagnosis using support vector machines  
 

2.6.1- SVM theoretical background 

  SVM or support vector machines, is one of the most popular classification techniques 
designed to solve binary classification problem.  

  The main advantage of SVM is the ability to perform both linear and non-linear classification. 
SVM training algorithm transforms training samples to a higher dimensional space that 
maximises the gap between the two classes or categories as much as possible. Then, the new 
samples are mapped into that same space and predicted to belong to one of the two classes 
based on which side of the gap they fall into. The model created is called a hyperplane. 

   A good separation of classes is achieved when the hyperplane has the largest distance to the 
nearest training-data point of any class. 

  The SVM can avoid the shortcomings of overlearning, under-learning, and biased 
optimization that easily occur in other intelligent algorithms, for example, the BP neural 
network, and it has stronger generalization ability compared to the BP neural network [36]. 

   Consider a set of training samples {𝑥𝑘, 𝑦𝑘} which takes xk ∈ 𝑅 as inputs, and yk= {1, −1} as 
labels for each class. The svm model is given as:  

                                                                 Yk =f(xk)=wᵀxk +b.                                                                (2.56) 

  A good separation is obtained given that the margin defined by ଵ

‖௪‖
 is maximized. This is 

equivalent to solving the following optimization problem. 

min ଵ
ଶ

‖𝑤‖ subject to:                           Yk (wᵀxk +b) -1 ≥ 0 ∀𝑘.                                                       (2.57) 

Hence, as for linear separable data, the optimal separating hyperplane satisfies the following 
function: 

                                                               min Q(w) =  ଵ
ଶ

‖𝑤‖ଶ.                                                              (2.58) 

Taking the noise in the data and the misclassification of hyperplane into consideration, we 
reformulate the described function of the separate hyperplane: 

                                                       𝑦௜(⟨𝑤, 𝑥௜⟩ + 𝑏) ≥ 1 − 𝜉௜ , 𝑖 = 𝑖 … , 𝑚                                                  (2.59) 

where the variable 𝜉௜ ≥ 0 represents a measure of distance from hyperplane to misclassified 
points. To find the optimal generalised separating hyperplane, the following optimal problem 
should be solved: 

                                                       𝑚𝑖𝑛
௪,௕

ଵ

ଶ
 ∥ 𝑤 ∥ଶ+ 𝐶 ∑ 𝜉௜

௠
௞ୀଵ                                                          (2.60) 

 s.t:                                                 𝑦௜(⟨𝑤, 𝑥௜⟩ + 𝑏) ≥ 1 − 𝜉௜                                                            (2.61) 
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                                                               𝜉௜ ≥ 0, 𝑖 = 𝑖 … , 𝑚  

Where the parameter C, a given value, is called error penalty. As for the above-mentioned 
data inseparable case, in order to simplify the optimal problem, define the Lagrangian to be  

ℓ(𝑤, 𝑏, 𝜉, 𝛼, 𝛾) = ଵ
ଶ

∥ 𝑤 ∥ଶ+ 𝐶 ∑ 𝜉௜
௠
௜ୀଵ  − ෌ 𝛼௜[𝑦௜(⟨𝑤, 𝑥௜⟩ + 𝑏) − 1 + 𝜉௜

௠

௜ୀଵ
] − ∑ 𝛾௜𝜉௜

௠
௜ୀଵ    

Where 𝛼, 𝛾 are the Lagrangian multipliers. We consider the minimization problem as original, 
primal problem. Consider 

                                                    𝑚𝑖𝑛
௪,௕,క

𝜃௣(𝑤) = 𝑚𝑖𝑛 
௪,௕,క

𝑚𝑎𝑥
ఈ,ఊ

ℓ(𝑤, 𝑏, 𝜉, 𝛼, 𝛾)                                    (2.62)  

When satisfying the Kuhn-Tucker condition, then the primal problem is transformed to its dual 
problem, which is 

                                                 𝑚𝑎𝑥
ఈ,ఊ

𝜃ௗ(𝛼, 𝛾) = 𝑚𝑎𝑥
ఈ,ఊ

𝑚𝑖𝑛
௪,௕,క

ℓ(𝑤, 𝑏, 𝜉, 𝛼, 𝛾)                                   (2.63) 

The objective is minimizing ℓ in (2.63) by adjusting the value of 𝑤, 𝑏, 𝜉. At the optimal point, 
derivatives of ℓ should be zero.  

                                             
∂ℓ

∂𝑤
= 0, ⟹ ෍ 𝛼௜𝑦௜

௠

௜ୀଵ

= 0                                                               (2.64)

                           
∂ℓ

∂𝑏
= 0, ⟹ 𝑤 = ෍ 𝛼௜𝑦௜𝑥௜

௠

௜ୀଵ

                                                           (2.65) 

 
∂ℓ

∂𝜉
= 0, ⟹ 𝛼௜ + 𝛾௜ = 𝐶.                                                                (2.66)  

 

the dual quadratic optimization problem s then obtained: 

                    𝑚𝑎𝑥
ఈ

𝑊(𝛼) = 𝑚𝑎𝑥
ఈ

൝−
ଵ

ଶ
෎ ෍ 𝛼௜𝛼௝𝑦௜𝑦௝⟨𝑥௜ , 𝑥௝

௠

௝ୀଵ
⟩

௠

௜ୀଵ

+ ∑ 𝛼௞
௠
௞ୀଵ ൡ              (2.67) 

And satisfy the constrains:  

                                          0≤𝛼𝑖 ≤ 𝐶, 𝑖 = 1 . . . , 𝑚,   and ∑ 𝛼௜𝑦௜ =௠
௜ୀଵ 0                                      (2.68) 

When solving the dual quadratic optimization problem, the 𝛼𝑖 will be obtained. Then the form 
of the hyperplane can be changed to 

                                          ⟨𝑤, 𝑥௜⟩ + 𝑏 = ෍  𝛼௜𝑦௜(⟨𝑥𝑖, 𝑥௝⟩ + 𝑏)
௠

௜,௝ୀଵ
 .                                         (2.69) 

The classifier implementing the optimal separating hyperplane has following form: 

                                             f(x) = sgn (෍  𝛼௜𝑦௜(⟨𝑥𝑖, 𝑥௝⟩ + 𝑏)
௠

௜,௝ୀଵ
).                                          (2.70) 

  Usually linear classifier is not a suitable solutions, SVM uses the kernel trick for mapping the 
data into high dimensional feature space to deal with nonlinear behaviour. The classification 
problem then becomes: 
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                                      f(x) = sgn (෍  𝛼௜𝑦௜(⟨𝐾(𝑥𝑖, 𝑥௝)⟩ + 𝑏)
௠

௜,௝ୀଵ
).                                           (2.71) 

Where 𝐾(𝑥𝑖, 𝑥௝) is the kernel function. [32]

 

                   Figure 2.13: SVM architecture                  Figure 2.14: SVM data separation principle

 

2.6.2- SVM Model Selection 

  Building an SVM based model for fault detection is a relatively simple procedure. Training 
dataset and testing sets are first split. Usually the training set is composed of 70 to 80% of the 
total dataset leaving the rest for testing. An SVM training set contains two parts: one is the 
class label and the other is several features (observed variables). Thus the SVM data classifier 
will first build a model based on the training set and then use it to predict the target value of 
the data in testing set where only the observations are known. 

  The SVM based fault detection and classification algorithm can be summaries in these steps 
[39]. 

 Transform data collected from real process to the format that SVM classifier can use. 
In our model two data transforming methods were used: the PCA and the KICA to 
determine the optimal classification.  

 Try a few Kernel functions to optimize the best one for the model. The optimal 
parameters for the kernel functions are obtained using cross-validation. This thesis 
uses Gaussian RBF Kernel function. 

 Test the model using the testing data.  
 
  Originally SVM was designed for solving two class classification problems. To extend it to 
perform multi-class classification, several approaches were designed. One approach is to split 
the multi-class classification dataset into multiple binary classification ones and fit a binary 
classifier on each. This approach could be performed using either the One-vs-One method or 
One-vs-All method [39] [40]. 
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                                                           Figure 2.15: Proposed SVM model  

2.6.3-  Cross-Validation 

  As discussed previously, when solving a nonlinear classification problem, Kernel functions are 
used. Selecting the appropriate parameters is a crucial step to ensure that the classifier will 
accurately predicts unknown data. The optimal parameter searching can be accomplished 
using cross-validation algorithm [23]. 

  The cross-validation algorithm is a model validation method used to evaluate the accuracy 
of a predictive model. Cross-validation gives an insight on how the model generalizes to an 
unknown dataset by testing the model using a defined dataset during the training process. To 
perform k-fold validation, we divide the dataset randomly into k classes, with equal sizes. 
Sequentially, one data subsets is used a testing set for a predictive model with the rest of the 
subset as training set. This process is repeated k times, with every subset acting as a testing 
set once. The repeating process helps to pick out the parameters which make the overall 
misclassification rates of all the testing sets minimum.  

  This thesis uses 10-fold cross-validation algorithm to find out the overall misclassification rate 
across all testing sets.  

 

2.7- Conclusion 

In this chapter, the Principle component analyses technique for dimensionality reduction and 
process monitoring were elaborated in the aspects of mathematical modelling, principle 
components selection, and fault detection indicators. Moreover, kernel independent 
component analyses was described by first introducing each of the kernel trick, KPCA, and ICA 
techniques, then deriving monitoring statistic equations. Lastly, fault diagnosis based on 
support vectors machines was discussed by walking through the mathematical foundations of 
the SVM, the model selection steps and cross validation for parameter estimation.  
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CHAPTER 3:   Results and discussion  

  
3.1- Introduction: 

The proposed method aims to detect the injected PV faults with high accuracy, minimum 
detection time, and low false alarm rate.  

The main focus of this approach is to diagnose all the faults, especially the controllers’ 
faults which are hard to detect as the controller is designed to overcome the happening 
faults. The hybrid analytic-ML technique is designed on 2 stages:  

- Developing analytic fault indicators for a quick fault detection. 
- Training the machine learning classifier for fault diagnosis. 

Before coming to the obtained results, this chapter first provides a description on the lab 
implemented circuit, the collected data and the injected faults.  Both standard PCA and 
the proposed KICA methods are applied on the collected data, the results are then further 
injected as features for the proposed SVM classification model. The results of each method 
are then compared based on the Fault detection rate FDR and the false alarm rate FAR, 
and the ML model accuracy.  

 

3.2- System description and data acquisition: 

To evaluate our approach and ensure its reliability, a good and precise knowledge about the 
different causes of each possible fault is needed, in order to well label the data of the different 
faults. In this project, labeled data from an experiment conducted in a research laboratory in 
Malaysia is used [15]. PV array emulator and grid emulator are used instead of real PV array 
and grid, in order to be able to inject different faults in these two main parts of the GCPV 
system with accurate labeling of each fault. 
 The PV array output is generated through the programmable Chroma 62150H-1000S solar 
array emulator that allows varying effects of environmental conditions (irradiance and 
temperature). The programmable AC source Chroma 61,511 is used and set to the three phase 
mode to match a real grid system network. A DC-DC converter was implemented using a 
chopper for maintaining the output current of the PV panel emulator to a specific level as 
much as possible. A DC-AC Inverter is implemented using six IGBTs to provide a three phase 
signal that will be transmitted to the grid emulator system after rectification and 
transformation. 

 The control algorithm was implemented using the DSpace 1104 environment with MATLAB, 
which is also used for data acquisition. The grid phase synchronization is achieved using 
Voltage Oriented Control (VOC) technique in combination with Space Vector Pulse Width 
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Modulation (SVPWM). This is done by controlling the active and reactive power based on the 
grid-side signals. The output voltage is synchronized with the grid voltage through the Phase 
Lock Loop (PLL). The AC load in this work is used for protection purposes while injecting real 
faults. This MPPT controller used in this system is based on Particle Swarm Optimization (PSO) 
technique. This system is used to generate and collect real faulty data for experimental 
validation of real-time online FD. 

 

                           Figure 3.16: circuit description of the GCPV system implemented in the lab [15]. 

The real time collected measurements are: PV system voltage and current, DC voltage, grid 
voltage and grid current.  Acquired with sampling time of Ts=100 µs.  This method is designed 
and validated based on a small-scale micro-grid application where data are collected from 
sensor measurements and a virtual PMU is used to extract the positive sequence components 
from three-phase signal.  
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Table 3.1: measurement description. 

Measurements   Symbols  description 

PV outputs 

 
VPV 
IPV 
 

The output voltage and current of the PV array emulator. 

 
DC output 
 

Vdc 
 
The output voltage of the DC-DC convertor 
 

Grid three-
phase currents 

Ia 
Ib 
Ic 
|Iabc|,  𝑓௜  
 

The three phase currents of the grid after DC-AC inverter. 
Rms current and frequency of the grid. 

Grid three-
phase voltages 

va 
vb 
vc 
|Vabc|, 𝑓௩ 

The three phase voltages of the grid after DC-AC inverter. 
Rms voltage and frequency of the grid. 

                                                  

3.3- Fault description and analysis 

This project considers the detection of 7 faults listed in table1. All faults are injected manually 
in several experiments running from 10 to 15 seconds, where the fault is introduced between 
the 7th and 8th seconds except for the faults in the controller which were introduced around 
the 10th second. The sampling time for the data acquisition is 100us [15]. 

The faults injected can be classified into 2 sections: 

 Faults on the DC side of the system. 
 Faults on the AC side of the system. 
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Table 3.2: injected faults description. 

Faults  Fault 
side. 

           Fault type               Fault description 

F2 
 
F4 
 
 
F5 
 
 
F6 
 
 
 
F7 

 
 
 
 
 
 
DC 
Side 

 Feedback Sensor fault 
 

 PV array mismatch 
 
 

 PV array mismatch  
 
 

 MPPT controller fault. 
 
 

 
 Boost converter controller fault 

One phase sensor fault 20% 
 
10 to 20% nonhomogeneous 
partial shading. 
 
15% open circuit faults in the 
PV array. 
 
−20% gain parameter of PI 
controller in MPPT controller 
of the boost converter. 
 
+20% in time constant 
parameter of PI controller in 
MPPT/IPPT controller of the 
boost converter. 
 

 
F1 
 
 
 
 
F3 

 
 
 
AC  
Side 

 
 Three phase inverter fault 

 
 
 

 Grid anomaly (external 
connection faults) 

 
Damage of one IGBT at a time 
among the total of 6 IGBTs 
inside the threephase inverter. 
 
Intermittent voltage sags 

 

To investigate the exact time for each fault injection, the different PV system’ measurements 
were plotted for each experiment. The obtained plots are shown in Appendix A.  

- Inverter Fault F1: this type of fault is quite easy to detect since it affects mostly the AC 
part of the system. As demonstrated in the appendix, the fault started at ts=8.58s until 
around tf=13s.  Due to their severity, however, these faults must be detected at their 
early stages within a limited delay time. 

- Feedback current sensor fault F2: this fault effect the DC side of the PV system. The 
fault is injected at ts=8s and lasts the remaining of the experiment. 

- Intermittent voltage sags fault F3: similarly to the inverter fault, this fault effect the AC 
side of the grid. The fault happened around ts=6.5s and lasted for the remaining 
experiment.  

- Array mismatch faults F4 and F5: both shading fault F4 and open circuit array faults F5 
are challenging to detect due to the large variability in sensor data at the DC-side; 
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Fortunately, these faults are of lower severity levels causing mainly power losses as 
demonstrated by the Ipv and Vpv graphs. 
The Fault F4 was introduced at ts=8s and lasted the whole experiment, while F5 was 
introduced at ts= 8.87s. It is clear that the system shut down around tf=13s. 

- Parametric faults F6 and F7 in MPPT/ IPPT Proportional Integral (PI) controller: these 
faults are classified as DC side faults. Controller fault F7 indicates an increased time-
constant parameter whereas F6 is a biased gain in the PI controller which results in a 
reduced MPPT/ IPPT trajectory tracking performance without affecting the stability 
of the closed-loop system. This can be clearly seen from the Vdc and Vpv curves, as 
only a small variation in the voltages is shown. These faults are widely common in 
practice. Both faults were injected at ts=10.5s and lasted the remaining of the 
experiment.  
 

3.4- Proposed fault detection and diagnosis method 

In this project, fault detection using both PCA-SVM and KICA-SVM is applied. Both methods 
are compared using fault detection rate indicator and false alarms rate indicator.  

The experiment is applied on data under MPPT mode, where ¾ of the data set is used for 
training the models while the rest is used for validation. 

 

3.4.1- FD using Principle component analyses   

Since the measurements are highly noisy and corrupted, a pre-processing stage was 
performed where a smoothing moving average filter was applied.  

such that :                        𝑥௜ =  
ଵ

∑ ௥ೢ
೔సభ

 𝑟௜𝑦௝ି௪ା௜.                                                                              (3.1) 

Where  𝑦௜. = 𝑦௜௝   for j = 1 to 7 represents the ith row vector measurement of all variables. r is 
a weighting factor that controls the smoothing , and w is the window length.  

After filtering and smoothing the original data set, dimensionality reduction using Principle 
component analyses was performed. The data was first centered to 0 mean and unit variance. 

To choose the number of PCs, CPV method was used. As discussed previously, this method 
observe the explained (or the variance) percentage for each component. 

Figure 3 illustrates the number of components versus the CPV of each one. The highest 
contributing components are retained. In his work, the first 4 components represents over 
80% of the total variance. 
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                                            Figure 3.17: Explained variance by each principle component. 

 

To perform PCA fault detection, first PCA is applied on the whole set of healthy data and 
retains only the first 4 components. The control limits of T² and SPE are calculated to set the 
thresholds. The faulty sets are then projected into the principle subspace.  Then, monitoring 
statistics were calculated so that the systems fault can be detected. 

For validations, we chose to illustrate the results applied on 3 sample data, one for each fault 
type. For the AC part we chose the inverter fault F1, while for the DC part we chose the open 
circuit fault in the PV array F5.  Since detecting controller faults is such a challenge, we focused 
also on the detection of the MPPT fault F6. 

Figures 16 and 17 represent the obtained PCA results applied on the faulty set F1. The 
threshold was obtained considering 95% tolerance. Similarly Figure 18,19 represent the 
obtained PCA results applied on the faulty set F5 circuit , and figures 20,21 represent the 
obtained PCA results applied on the faulty set F6.  

 

 

                                                 Figure 3.18: T² fault indicator for inverter fault F1. 
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                                               Figure 3.19: SPE fault indicator for inverter Fault F1. 

 

                                            Figure 3.20: T² fault indicator for open circuit faults F5. 

 

                                           Figure 3.21: SPE fault indicators for open circuit faults F5. 

 

                                         Figure 3.22:  T² indicator for MPPT controller fault F6.  
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                                      Figure 3.21: SPE fault indicator for MPPT controller fault F6

 

3.4.2- Discussion 

PCA was successful in detection only some of the faults including F1, F2, F3 and F5. However, 
it can be clearly seen that it fails to show when exactly the fault is cleared. Also, It can be 
noticed that the rate of false alarms is quite high, and the detection was a little delayed in 
some cases such as F5 and F4, considering that the faults were introduced between the 7th 
and 8th second. In the case of F6, both T² and SPE could not detect any deviation from the 
healthy case meaning that PCA is ineffective in detecting controller faults. The same case for 
F7. 

Our guess was that the reasons for these results were the nonlinear nature of real time 
processes, also the heavy assumption made when using PCA that the process follow a 
Gaussian distribution. To investigate a solution for this problem, the KICA technique is 
proposed.  

3.4.3- FD using Kernel independent component analyses  

As mentioned previously, KICA is implemented in 2 steps: KPCA for mapping the nonlinearities 
to a higher dimensional linear Feature space, then ICA for mapping the data into a subspace 
where data is as independent from each other as possible.  

For performing the kernel PCA, the Radial Basis function was used. Since there is no 
theoretically proven way to find the kernel parameter, it was found by trying and testing 
repeatedly until good detection results were obtained.  Eventually, setting c=20 has led to 
satisfactory detection results. 

A step for data whitening was necessary before finding the ICs. In this work, KPCA is used for 
mapping the data into a high dimension linear subspace and Whitening the signals. Using the 
kurtosis algorithm, the mixing matrix W is obtained, then the ICs are estimated. The projected 
data is then used to estimate the monitoring statistics I² and SPE.  

Similarly to the PCA approach, the model was validated on the faulty data sets. We 
demonstrated 3 faulty samples: F1 (inverter faults), F5 (open circuit faults) and F6 (MPPT 
controller faults). 
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                                             Figure 3.22: I² fault indicator for inverter fault F1. 

 

 

                                              Figure 3.23: SPE fault indicator for inverter fault F1 

 

 

                                          Figure 3.24: I² fault indicator for open circuit faults F5. 

 



CHAPTER 3: Results and discussion   
 

38 
 

 

                                           Figure 3.25: SPE fault indicator for 20% open circuit faults F5. 

 

 

                                             Figure 3.26: I² fault indicator for MPPT controller faults F6. 

 

   

                                            Figure 3.27: SPE fault indicator for MPPT controller faults F6. 

3.4.4- Discussion 

In this case we can clearly see an improvement in detecting F1 and F5 faults using the I² 
monitoring index, such that the detection lasted for the whole fault duration. Also, the delay 
detection time is noticeably small especially in F1, F2,F3 and F5.   



CHAPTER 3: Results and discussion   
 

39 
 

As mentioned before, the SPE indices were calculated from the residuals of the projected data 
in feature linear space when using KPCA. SPE could detect the F1 and F5 faults effectively but 
we notice a considerable delay time and higher false alarms especially in the case of the 
controller fault F6. 

The MPPT boost controller fault F6 was also successfully detected using KICA on the contrary 
to the PCA technique.  

3.4.5- Method evaluation using FDR and FAR 

To evaluate the efficiency of each algorithm, the following indices were used. 

- Fault detection rate:  

                                      FDR = ௡

ே
× 100.                                                                                                (3.2) 

Where N is the total number of the faulty samples within the detecting interval and n is the 
number of correctly detected samples.  

- False alarm rate: 

                                      FAR = ௗ
஽

× 100.                                                                                                  (3.3) 

Where d is the number incorrectly classified samples and D is the total number of normal 
samples within the interval of detection. 

This is done for a confidence level of 95%. 

- Detection time delay DD: 
                         DD = D(𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) – D(𝑂𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒).                                                                         (3.4) 

The FDR for the PCA model shows poor results for F1 and F4 faults when using the T² indicator. 
While there is no detection for F6 and F7. F5 and F3 had the highest detection rates.  

The FDR for the KICA model showed highest results, F1, F3 and F5 were effectively detected 
with 100% efficiency. Similarly, the controller faults F6 and F7 showed quite the improvement 
as their FDR exceeded 70%. 

The shading faults F4 did not show a high detection rate, but it still improved significantly from 
the PCA model.  

FAR results were somehow low for F3 and F5 in both models with under 2%. Whereas, the 
highest FIR belongs to the shading fault F4 as it reached almost 8%. The rest of the faults also 
had a considerable amount of false alarms as their FIRs were between 4 and 7%. 
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Table 3.3: detected faults using PCA and KICA. 

FD 
methods 

Inverter  
Fault F1 

Feedback 
sensor fault 
F2 

Grid 
anomaly 
fault F3 

Partial 
shading 
fault F4 

Open 
circuit 
fault F5 

MPPT 
controller 
fault F6 

Boost 
controller 
fault F7. 

PCA           -   -     - 

KICA               
 

Table 3.4: Fault detection rates comparison between the used methods. 

 Method 
 

faults 

                            PCA              
             T2            SPE              DD               

                                   KICA 
                T2               SPE                  DD 

F1          37.3%        70%             0.02s            100%               84.26%             0s 
 

F2          70.5%       80.5%           0.05s           74.5%                  70%               0.02s 
 

F3           100%      75.44%            0s             100%               80.1%               0s 
 

F4        33.33%      33.78%            1s            71.6%             42.07%              1.5s 
 

F5        84.37%      80.69%            0s             100%             97.81%              0s 
  

F6         0%                0%            undetermined                       71%              67.01%             0.7s 
  

F7          0%           0%           undetermined              74.7%               55.8%             0.8s 
 

 

Table 5: False alarms rates in the used methods within confidence level of 95%. 

         Method                                              
 
faults f             
 

                         PCA 
 
            T2                          SPE 

                         KICA 
 
               I2                         SPE 

F1         7.20%                     1.15% 
 

             3.04%                 0.86% 

F2         7.11%                     3.58% 
 

             4.36%                 6.82% 

F3         0 %                          1.25% 
 

              0%                       1.2% 

F4        1.350%                    3.46% 
 

             7.8%                    6.07% 

F5         2.77%                     3.07% 
 

              0%                      0.7% 

F6        100%                        100%              3.6%                   4.60% 
 

F7         100%                       100%              3.56%                 6.48% 
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Although these techniques are relatively easy to implement and take little detection time, the 
problem of the high false detection rates is always present. Moreover, the issue regarding the 
kernel parameters estimation is uncertain and time consuming. 

3.5- FD using SVM 

To classify the different types of faults and improve the PCA and KICA techniques, an additional 
approach based on Machine learning tools was also implement. ML classifiers are well known 
for solving complex problems characterized by nonlinearity and high dimension. We still can 
benefit from the advantages of both PCA and KICA while solving the problems regarding these 
techniques. In this work, Multi class classification based on Support vector machines was used.  

3.5.1- The one vs. one method  

As mentioned in the previous chapter, to build a multiclass SVM classifier, one approach is to 
split the multi-class classification dataset into multiple binary classification ones and fit a 
binary classifier on each. For this purpose, the one-vs-one method is used. Based on conducted 
experiments, compared to the one-vs-all approach, the one-vs-one is more efficient to 
differentiate between the classes. The SVM in this case will build a binary classifier between 
every 2 classes.  In total, we will have k*(k-1)/2 two class classifiers.  To validate this model, 
80% of the PCA reduced data was used for training the classifier leaving 20% for testing. The 
features selected were the 4 PCs, plus T2 and SPE for the PCA-SVM model and the 4 ICs for the 
KICA-SVM model.  

The software package we used was the OSU SVM Classifier Matlab Toolbox, which is based on 
the software LIBSVM . On each dataset, we trained multi-class OVO SVM. The chosen kernel 
was the RBF kernel. The regularizing parameters C and σ were determined via 10 fold cross 
validation on the training set. 

 

                                                  Figure 28: PCA-SVM model training results
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                                                Figure 29: KICA-SVM model training results. 

 

Table 3.6: fault detection accuracy for PCA-SVM and KICA-SVM models. 

 PCA-SVM 
Train                    Testing 

KICA-SVM 
Training              Testing 

Overall model accuracy 
 

83 %                     79.72% 92%                      86% 

Helthy case F0 96%                        91% 96.6%                   92% 
 

F1 99 %                      93.88% 98 %                     95.04% 
 

F2 97 %                      92.84% 93 %                     89.96% 
 

F3 99 %                      96% 99 %                     97% 
 

F4 88 %                     83.19% 98 %                     95.86% 
 

F5 98 %                     90.66% 95 %                    91.73% 
 

F6 91 %                     82.03% 93 %                    87.24% 
 

F7 88 %                      79.6% 94 %                     80.7% 
 

                              

3.5.2- Discussion:  

The confusion matrices above represents the accuracy of classification for each fault with both 
models. These results were successfully validated as the testing results show.  
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 As expected the fault detection accuracy was the highest when detecting fault like F1, F3 and 
F5 as it reached over 90% in both models. Moreover, SVM could easily detect the controller’s 
faults F6 and F7 with high accuracy.   

The SVM model had shown good accuracy in detecting and classifying the different faults that 
occurred in the PV system. PCA based SVM had shown a significant improvement compared 
to the normal PCA threshold method. It was also able to detect faults that could not be 
detected with T2 and SPE indicators.  

KICA based SVM was more effective in detecting faults in general, is the accuracy of the model 
reached 92%. We can say that this method has achieved the goal of this work in detecting 
GCPV system faults with high accuracy, especially the controller faults (F6,F7), which we could 
not detect using the classical PCA approach.  

 

3.6-  Conclusion:  

In chis chapter PCA based SVM and KICA based SVM methods were investigated for fault 
detection and diagnosis of a grid connected PV system. This investigation aimed to detect as 
much faults as possible with assuring an optimal time detection and a lower false alarms rate. 
The evaluation criteria FDR and FAR has shown a significant superiority of the KICA method in 
detection faults, especially the controller faults that the PCA method had failed to diagnose.  

The SVM model is then built for classifying the faults using the features extracted from PCA 
and KICA. Again, KICA based SVM were more efficient in diagnosing the different faults with 
high overall accuracy compared to PCA-SVM model.   
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GENERAL CONCLUSION AND FUTUR WORK 

 
Although power generation through GCPV systems may become the main alternative for fuel 
based power systems, we cannot ignore the many challenges facing this technology. This 
process is greatly exposed to internal and external faults, depends on environmental 
parameters, not to mention that PV panels are quite costly.  

In order to reduce the cost, improve efficiency and reliability in GCPV systems, many fault 
detection system can be implemented to prevent damages of the GCPV. Both Multi statistical 
process monitoring and ML techniques had shown good results detecting and identifying 
faults in different complex process.  

In this work, KICA based threshold based on independent fault indicator I² and SPE is 
considered as an alternative for the classical PCA for fault detection. The approach is designed 
mainly to deal with nonlinear characteristic of the GCPV system and overcome the Gaussian 
assumptions that PCA technique rely on. The obtained ICs are then introduced as features for 
a one-vs-one SVM classifier for a more accurate fault diagnosis. 

The evaluation of this approach demonstrated satisfactory results in term of fault detection 
rate and detection delay, presented good results for almost all the faults that this paper 
concerns with and successfully detected the faults injected at the controller, which PCA failed 
to detect. Although the robustness of these devices to external factors, I² fault indicator shows 
good sensitivity to faults. To classify the types of faults and overcome the false alarms, SVM 
multiclass classifier was introduced. Our model had shown even better accuracy for fault 
diagnosis even in compared to the PCA based SVM.  

For future work, an adaptive fault detection technique based on KICA may be considered to 
prevent the considerable false alarm rate shown in some of the faulty scenarios. The shading 
fault specifically had proved quite a challenge as it showed the highest FAR, so developing an 
alternative approach for this kind of faults should be a priority.  
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APPENDIX A 
Appendix A represents the PV system’s 
measurements and how they change in 
each fault scenario. This appendix only 
demonstrated the most effected 
parameters in each case.  

 
      Fig.A.1 Grid current Iabc for inverter fault F1 

 
        Fig.A.2 PV current IPV for inverter fault F1 

 

          Fig.A.3 Grid frequency fi for inverter fault F1 

 

     Fig.A.4 Dc voltage Vdc for sensor fault F2 

 
Fig.A.5 Rms Grid current |Iabc| for sensor fault F2 

 
Fig.A.6 RMS Grid current |Iabc| for fault F3 

 
Fig.A.7 Grid frequency fi for fault F3 

 
Fig.A.8 PV current Ipv for shading fault F4 

 

Fig.A.9 PV voltage Vpv for inverter fault F5 



 
Fig.A.10 Grid current Iabc for open circuit fault F5 

 
FigA.11 PV Grid current for open circuit fault F5 

 
Fig.A.12 DC voltage vdc for inverter fault F6 vs 
normal case. 


