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Abstract
Multi Input Multi Output (MIMO) systems theory is concerned with complex dynamical systems with multiple input

(control) variables ur that regulate multiple output variables ym. In general, a MIMO system is a collection of independent
or interconnected Single Input Single Output (SISO) subsystems that can be conditionally represented. The system’s
separate subsystems are referred to as direct (or forward path) channels, and each one establishes a connection between
the appropriate scalar input and output.

This project deals with nonlinear multivariable system control; the work will begin with linearizing the model around
a suitable equilibrium point and extracting the system’s transfer function matrix representation. The RGA will be used to
select the optimal pairings, and two observers will be designed to estimate the states and decouple disturbance and noise.
The system will be influenced by two types of faults under the scope of Fault Tolerant Control: actuator faults and sensor
faults, both abrupt and random faults are estimated. Finally, P and PI controllers are used to design the system’s regulation
and tracking mode responses in order to improve system performance, particularly settling time.

A simulation under Matlab Simulink will be carried on to simulate and control the system.

Key words: MIMO systems, linearization, observers, fault tolerant control, estimation, regulation, tracking.
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General introduction

Automation is at the heart of the technology that allows machines to perform tasks with minimal human intervention.
The aim is to focus the labor on sophisticated creative challenges; instead of mundane, repetitive tasks that are performed
in a better, faster, and more efficient way by machines, thereby making it a revolutionary domain for the development and
the better performance of a production cycle.

In industrial production, the use of so-called MIMO systems, which are machines with the ability to perform multiple
tasks simultaneously, i.e., a single set of machinery is designed to perform several tasks simultaneously.

The controlling process of MIMO systems often faces a challenging problem due to the cross-coupling effects that
occur between the inputs and the outputs; thus, a single input may influence all system outputs. Boksenbom and Hood
first mentioned this problem in 1950 [1]. However, coupling was only treated as a complicated design idea and had not
been widely explored at that instant. With the rapid development of manufacturing, methodologies aiming at eliminating
or decreasing multi-loop interaction issues have received enough attention in the past decades.

In the 1980s, Professor Waller mentioned that one of the subjects of great research activity in chemical process control in
the U.S. today is interaction analysis, in which coupling between inputs and outputs in MIMO systems is studied [1]. Such
a problem can be solved using decouplers, which allow achieving efficient control by eliminating such cross-coupling
effects. If properly designed, decouplers permit deriving control inputs for fully-actuated and over-actuated MIMO
systems to attain reference tracking of the individual outputs. Nevertheless, the reference tracking for individual outputs
is almost unachievable in under-actuated MIMO systems with decoupling control methods.

In recent decades, the frequent use of MIMO systems led to the emergence of decoupling control algorithms study.
The main idea of the decoupling algorithm proposed by Boksenbom and Hood is to make the overall closed-loop transfer
function of the controlled MIMO system diagonal. So far, this is still the primary solution to the coupling problem. Some
other remarkable contributions have been made based on this idea. For example Mesarovic divided the controlled systems
with identical inputs and outputs into two different categories, i.e., P-canonical and V-canonical systems based on system
transfer function; correspondingly. Sonquist and Morgan proposed a state space approach of decoupling control in a
necessary and sufficient condition of the solvability of square system decoupling problem based on state-space was put
forward by Falb and Wolovich. Then, the equivalent condition for transfer function expressed system was obtained by
Gilbert [1].

Within the general framework of the multi-loop control of multi-variable systems, considerable attention will be given
to the analysis of interactions. In this perspective, it is most likely to seek for system compensation so that:

- Each input affects only one output.

- The disturbance on a single output, with zero inputs, only affects this same output.

This report is divided into the following sections:

Chapter 1: it introduces multivariate systems and their main characteristics, such as representation, frequency response,
directions in multivariable systems, and singular value decomposition, as well as the pivotal concept of stability in control
theory.

Chapter 2: it covers the important notions on the existing interactions phenomenon in multivariable systems which
causes a lot of problems for control. For a good analysis, couplings must be measured using well defined interactions
measurement techniques, then the system is decoupled using decoupling algorithms. This choices are essential and
decisive for the desired performance. Both approaches are presented, in this chapter, with illustration examples.

Chapter 3: it discusses the issue of component failure and proposes a solution, namely the concept of fault-tolerant
control, to reduce the impact of faults. It also addresses the problem of measurements in a system where some parameters
are difficult to measure, in which case the estimation approach for states and faults using observers is followed. Correction
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methods are a key area of analyzing multivariable systems; it is critical to comprehend the specifications. To address this,
design compensators are presented with the goal of improving system performance characteristics.

Chapter 4: it presents a simulation of a three-tank hydraulic stand. This chapter is an important part of my research
since it attempts to evaluate the practical relevance of the methodologies discussed in the previous chapters. Simulink
software is used for the simulation.

Finally, this thesis includes a general conclusion where all the results obtained are summarized and discussed in details,

xi



Chapter 1

Generalities on MIMO systems

1.1 Introduction
In industrial automation, the most used systems are usually multivariate at the strategic variable level. Such systems

have specific characteristics and are analyzed differently.

Controlling these systems is a fundamental object in the subject of automatic control, and it necessitates a methodical
approach to attain the desired results. In this regard, numerous control techniques have been developed with the goal of
minimizing the phenomena of interactions between the system’s variables.

This chapter provides an overview on multivariable systems, their properties, and how they can be represented.

1.2 Multivariable systems

1.2.1 Definition
Multiple variable systems are simply defined as systems with more than one input u = (u1,u2,u3, ...,ur) and/or more

than one output y = (y1,y2,y3, ...,ym); where each output is influenced by more than one input, that is, a change in a single
input may cause changes in many outputs, such that:

– u: is the input vector, with dimension (r×1).

– y: is the output vector, with dimension (m×1).

– r: is the number of inputs.

– m: is the number of outputs.

Figure 1.1: Multivariable system.

1.2.2 Representation
Multiple Inputs Multiple Outputs (MIMO) systems can be represented in more than one form:

1



1.2. Multivariable systems Chapter 1. Generalities on MIMO systems

1.2.2.1 State-variable Form

A state-variable representation of a system consists of a set of n first-order differential equations and an algebraic output
equation:

ẋ = f (x,u)

y = g(x,u)
(1.1)

Such that:

– f : is function matrix.

– g: is function matrix.

The full form of f and g is shown below:

f (x,u) =


f1(x1, . . . ,xn,u1, . . . ,ur)
f2(x1, . . . ,xn,u1, . . . ,ur)

...
fn(x1, . . . ,xn,u1, . . . ,ur)



g(x,u) =


g1(x1, . . . ,xn,u1, . . . ,ur)
g2(x1, . . . ,xn,u1, . . . ,ur)

...
gm(x1, . . . ,xn,u1, . . . ,ur)


The expended form for Eq 1.1 is of the form:

ẋ1 = f1(x1, . . . ,xn,u1, . . . ,ur)

ẋ2 = f2(x1, . . . ,xn,u1, . . . ,ur)
...
ẋn = fn(x1, . . . ,xn,u1, . . . ,ur)

(1.2)


y1 = g1(x1, . . . ,xn,u1, . . . ,ur)

y2 = g2(x1, . . . ,xn,u1, . . . ,ur)
...
ym = gm(x1, . . . ,xn,u1, . . . ,ur)

(1.3)

Such that: x= [x1, . . . ,xn]
T is the state vector. u and y are called the control input and the system output respectively.

1.2.2.2 State-space representation

Dynamic systems can be represented with differential equations where the behavior of a system can be described as
a function of its current state and an external input. The state-space representation is simply a repackaging of the high
order differential equations into a set of first order differential equations that focus on this relationship, this repackaging
makes the system easier to analyze as it focuses on the underlined behavior of the interconnected system as well as how
the system is effected by a single or multiple external inputs.

This representation offers a great advantage during simulation since the vector of derivatives is built first and then it is
integrated to obtain the states, the state space representation is given by:{

ẋ(t) = A(t)x(t)+B(t)u(t)
y(t) =C(t)x(t)+D(t)u(t)

(1.4)

Such that:

– x(t): is the states vector, with dimensions (n×1).

– y(t): is the outputs vector, with dimensions (m×1).

2



1.2. Multivariable systems Chapter 1. Generalities on MIMO systems

– u(t): is the control vector, with dimensions (r×1).

– A(t): is the states dynamics matrix, with dimensions (n×n).

– B(t): is the inputs matrix, with dimensions (n× r).

– C(t): is the output matrix, with dimensions (m×n).

– D(t): is the direct transmission matrix, with dimensions (m× r).

The relation between the number of inputs and outputs and the dimensions of the matrices is demonstrated in the
following illustration.

Figure 1.2: Illustration of the relation between the dimensions of matrices and the number of I/O .

For an LIT (Linear Time Invariant) system, the matrices A(t), B(t), C(t), and D(t) become constant and Eq 1.4 can be
written as follows: {

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

(1.5)

Expending the state equation yields the following form:

d
dt


x1
x2
...

xn

=


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann




x1
x2
...

xn

+


b11 . . . b1r
b21 . . . b2r

...
. . .

...
bn1 . . . bnr


u1

...
ur

 (1.6)

For the output form, the expended representation is as follows:
y1
y2
...

ym

=


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cm1 cm2 . . . amn




x1
x2
...

xn

+


d11 . . . d1r
b21 . . . d2r

...
. . .

...
dm1 . . . dmr


u1

...
ur

 (1.7)

The derivatives of the state variables are clearly expressed in terms of the states and the inputs in the matrix-based state
equations. The state vector is expressed in this manner as the direct outcome of vector integration. Fig 1.3 depicts the
block diagram representation. This generic block diagram shows matrix operations from input to output in terms of the
A, B, C, and D matrices, but, does not include individual variable paths.

Figure 1.3: Vector block diagram for a linear system described by state-space representation
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1.2. Multivariable systems Chapter 1. Generalities on MIMO systems

1.2.2.3 Transfer function matrix representation

It is an approach for representing a process linear model based solely on the relationship between inputs and outputs.
To obtain it, for a discrete time system, the Z transfer is applied, while for continuous time equivalent is the Laplace
transform, yielding the following formula:

Y (s) = G(s)U(s) (1.8)

Such that:

– s : is the Laplace constant.

– Y (s) : is the Laplace transform of y(t).

– U(s) : is the Laplace transform of u(t).

– G(s) : is a matrix relating Y (s) and U(s).

The extended form of Eq 1.8 becomes:
y1(s)
y2(s)

...
ym(s)

=


g11(s) g12(s) . . . g1r(s)
g21(s) g22(s) . . . g2r(s)

...
...

. . .
...

gm1(s) gm2(s) . . . gmr(s)




u1(s)
u2(s)

...
ur(s)


The relation between a specific output Yi(s) and a specific input Ui(s) is given by:

Yi(s) =
r

∑
j=1

gi jU j(s) (1.9)

For a system represented with a transfer function matrix, the representation may come in the form of a block diagram,
the following two figures present the most common forms of block diagrams:

a Cascade system b Positive feedback system

Figure 1.4: block diagrams of MIMO systems

• Cascade rule: for the cascade (series) interconnection of G1 and G2, the overall transfer function matrix is
G = G2G1. The order of the transfer function matrices is reversed from how they appear.

• Feedback rule: with reference to the positive feedback system, the value of v is given by v = (I −L)−1u where
L = G2G1 is the transfer function around the loop.

• Push-though rule: for matrices of appropriate dimension:

G1(I −G2G1)
−1 = (I −G1G2)

−1G1

• As a general rule, one should start from the output and write down the blocks as they appear moving towards to
the input. When exiting a positive feedback loop the following term is included (I−L)−1, for a negative feedback
loop the term is (I+L)−1; where L is the loop transfer function. Parallel branches should be treated independently,
and their contributions added together.

Remark:

For the transfer function matrix representation, all initial conditions are supposed to be equal to zero.
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1.2.3 Transition between the representations

1.2.3.1 From state-variable to state space

Nonlinear systems are complicated because of the high dependency of the system variables on each other. Also, the
nonlinear characteristic of the system abruptly changes due to some slight changes in valid parameters, thus, making
nonlinear systems hard to control. One solution for that is to linearize the nonlinear system to be able to fully analyze its
behavior.

• Equilibrium point: for a nonlinear system described by

ẋ(t) = f
(
x(t),u(t)

)
(1.10)

A point x0 ∈ Rn is called an equilibrium point if there exist a specific u0 ∈ Rr such that:

f (x0,u0) = 0n (1.11)

• Deviation variables:

In control engineering the main focus is on how things change around an operating point. In solving the equations, the
choice of using normal, full-valued, or variables is open, but then the solution will be complicated by the steady-state
information. This information is exactly the same at the start and end of the solution, but makes the algebra really
complicated. To get around this, deviation variables are normally used. Deviation variables have a value which is equal
to the full value variable minus the variables nominal, steady-state, value, i.e.

δx = x− x0 =


δx1 = x1 − x10

δx2 = x2 − x20
...
δxn = xn − xn0

(1.12)

δu = u−u0 =


δu1 = u1 −u10

δu2 = u2 −u20
...
δur = ur −ur0

(1.13)

1.2.3.2 Linearization around an equilibrium point

Due to the difficulty in analyzing nonlinear systems, it is advantageous to look for approximations of nonlinear systems.
Under specific conditions, it is possible to replace the nonlinear system with an approximate linear system. One of those
cases is when the aim is to study whether small perturbations away from an equilibrium point (of the nonlinear system)
grow or decay with time. The reason why it is not wise to linearize around non-equilibrium points is because it does not
provide useful information.

The process of linearization is a set of mathematical tools designed to represent the system in a state space representation,
it can be summarized in the following: {

ẋ = f (x,u, t) linearization−−−−−−−→ ẋ = Ax+Bu

y = g(x,u, t) linearization−−−−−−−→ y =Cx+Du
(1.14)

Such that:

A =
∂ f (x,u, t)

∂x

∣∣∣∣x = x0

u = u0

B =
∂ f (x,u, t)

∂u

∣∣∣∣x = x0

u = u0

C =
∂g(x,u, t)

∂x

∣∣∣∣x = x0

u = u0
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1.2. Multivariable systems Chapter 1. Generalities on MIMO systems

D =
∂g(x,u, t)

∂u

∣∣∣∣x = x0

u = u0
δ ẋ1
δ ẋ2

...
δ ẋn

=


∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
...

. . .
...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn


x=x0u=u0


δx1
δx2

...
δxn

+


∂ f1
∂u1

. . . ∂ f1
∂ur

∂ f2
∂u1

. . . ∂ f2
∂ur

...
. . .

...
∂ fn
∂u1

. . . ∂ fn
∂ur


δu1

...
δur

 (1.15)


δy1
δy2

...
δym

=


∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xn

∂g2
∂x1

...
. . .

...
∂gm
∂x1

. . . . . . ∂gm
∂xn


x=x0u=u0


δx1
δx2

...
δxn

+


∂g1
∂u1

. . . ∂g1
∂ur

...
. . .

...
∂gm
∂u1

. . . ∂gm
∂ur


δu1

...
δur

 (1.16)

1.2.3.3 From state space to transfer function

To see how the transfer function is obtained, consider the Laplace transfer of Eq 1.5:

sX(s)−X(0) = AX(s)+BU(s)

Y (s) =CX(s)+DU(s)

Reordering the first term yields:

(sI −A)X(s) = BU(s)+X(0)

X(s) = (sI −A)−1(BU(s)+X(0))

Replacing the expression of X(s) in the output equation gives:

Y (s) =
(

C
(
(sI −A)−1B

)
+D

)
U(s)+C(sI −A)−1X(0)

Which, as can be seen, depends on the initial conditions. setting initial conditions to zero results in the well-known
expression.

Y (s) =
(

C
(
(sI −A)−1B

)
+D

)
︸ ︷︷ ︸

H(s)

U(s) (1.17)

1.2.3.4 Transfer function to state space

Although the transformation from transfer function to state-space model is not unique, a method is provided for
obtaining state variables in the form of phase variables here. When each following state is defined as the derivative
of the preceding state variable, the state variables are phase variables.

dny(t)
dtn +an−1

dn−1y(t)
dtn−1 + . . . +a1

dy(t)
dt

+a0y(t) = b0u(t) (1.18)

A convenient way to chose the state variables is to choose the output y(t) and its n−1 derivatives as the state variables.
They are called phase variables :

x1 = y

x2 =
dy
dt

...

xn =
dn−1y
dtn−1

(1.19)
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1.2. Multivariable systems Chapter 1. Generalities on MIMO systems

Differentiating both sides of the system Eq 1.19 yields:

ẋk =
dky
dtk , ∀k ∈ {0,n} (1.20)

making ẋi =
diy
dt i , the system Eq 1.19 can be written also as:

x1 = y

x2 =
dy
dt

=
dx1

dt
= ẋ1

x3 =
d2y
dt2 =

dx2

dt
= ẋ2

...

xn =
dn−1y
dtn−1 =

dxn−1

dt
= ẋn−1

(1.21)

Substituting the definitions Eq 1.19 and Eq 1.20 into Eq 1.18 yields:

ẋn +an−1xn + · · ·+a1x2 +a0x1 = b0u (1.22)

The n− th order differential equation Eq 1.18 is equivalent to a system of n first order differential equations obtained
from the definitions of the derivatives from Eq 1.21 together with the ẋn that results from Eq 1.22:

ẋ1 = x2

ẋ2 = x3

...
ẋn−1 = xn

ẋn =−a0x1 −a1x2 −·· ·−an−1xn +b0u

(1.23)

In a matrix-vector form the set of equations in Eq 1.23 become:



ẋ1
ẋ2
ẋ3
...

ẋn−1
ẋn


=



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

. . .
0 0 0 0 . . . 1

−a0 −a1 −a2 −a3 . . . −an−1





x1
x2
x3
...

xn−1
xn


+



0
0
0
...
0
b0


u (1.24)

Eq 1.24 is the phase-variable form of the state equation. This form is easily recognized by the pattern of 1’s above the
main diagonal and 0’s for the rest of the state matrix, except for the last row that contains the coefficients of the differential
equation written in reverse order. The output equation is:

y = x1

Or, in vector form

y =
[
1 0 0 0 . . . 0

]


x1
x2
x3
...

xn−1
xn


+0 ·u (1.25)
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1.2.4 Controlability and Observability

The controlability gramian, P ∈ Rn×n, and the obsevability gramian, Q ∈ Rn×n, which are hermitian non negative
definite matrices are obtained, for discrete time case, using the following formulas:{

P = ∑
∞
k=0 AkBBT (Ak)T

Q = ∑
∞
k=0 AkCTCAk (1.26)

And do satisfy the Lyapunov equations: {
AP+PAH +BBH = 0
AHQ+QA+CHC = 0

(1.27)

For a continuous time analysis, the gramian matrices are:{
P =

∫
∞

0 eAτ BBT eAT τ dτ

Q =
∫ t

0 eAT τCTCeAτ dτ
(1.28)

State controlability and state observability can also be examined by considering the matrices

Wc ≜
[
B AB . . . An−1B

]
(1.29)

Wo ≜


C

CA
...

CAn−1

 (1.30)

The system (A,B) is state controllable if Wc has full rank n. Similarly, the system (A,C) is state observable if Wo has
full rank n.

1.3 Characteristics of a multivariable system

1.3.1 Frequency response (FR)
The frequency response is obtained by replacing s by jω in the transfer function G(s) (or transfer function matrix for a

MIMO system). it can be used to describe system’s response to sinusoidal of varying frequencies.

This interpretation has the benefit of being immediately related to the time domain and at each frequency ω the complex
number G( jω) has a physical meaning. It provides the frequency response to an input sinusoidal of frequency ω .

For a stable linear system described by y = G(s)u interpreting frequency response means applying a sinusoidal signal
with frequency ω[rad/s] and magnitude u0, such that:

u(t) = u0sin(ωt +α)

The output signal is also a sinusoidal of the same frequency, but, with different amplitude and phase shift from the
input.

y(t) = y0sin(ωt +β )

Using the Laplace transform y0/u0 and Φ are obtained as follows:

y0

u0
= |G( jω)| , Φ = ∠G( jω)[rad]≜ β −α (1.31)
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1.3.1.1 Shortcut method to find FR

The shortcut method consists of the following steps:

• Set s = jω in G(s) to obtain G( jω).

• Rationalize G( jω) to have it in the form of G( jω) = R+ jIM, where R and IM are functions of ω .

• Simplify G( jω) by multiplying the numerator and denominator by complex conjugate of the denominator.

• The amplitude ratio and phase angle of G(s) are given by:

|G( jω)|=
√

R2 + IM2 , Φ = tan−1
(

IM
R

)

1.3.2 Directions in multivariable systems
For a Single Input Single output (SISO) system described by y = Gu [2], the gain is given by:

|y(ω)|
|u(ω)|

=
|G( jω)u(ω)|

|u(ω)|
= |G( jω)|

The gain in this case is dependent on ω , but is independent on the magnitude |u(ω)|. For the case of a MIMO
system, due to the nature of input and output (vectors), a measure appropriate for vectors is called for, that is, the vector
2-norm:

||u(ω)||2 =
√

r

∑
j=1

|u j(ω)|2 =
√

u2
10 +u2

20 + · · ·+u2
r0

||y(ω)||2 =
√

m

∑
j=1

|y j(ω)|2 =
√

y2
10 + y2

20 + · · ·+ y2
m0

(1.32)

The gain of the system transfer function matrix G(s) is

||y(ω)||2
||u(ω)||2

=
||G( jω)u(ω)||2

||u(ω)||2
(1.33)

In the MIMO case, the gain depends on frequency ω , but is independent of the norm ||u(ω)||2. it is, however, dependent
on the direction of the input vector u.

The MIMO gain given above is known as the induced 2-norm, its maximum and minimum values are computed as the
maximum and minimum singular values of G respectively.

max
u̸=0

||Gu||2
||u||2

= max
||u||2=1

||Gu||2 = σ̄(G)

min
u̸=0

||Gu||2
||u||2

= min
||u||2=1

||Gu||2 = σ(G)

Example 1.1:

Considering the five different inputs shown below such that (||ui||2 = 1, i ∈ {1,2,3,4,5}):

u1 =

[
1
0

]
, u2 =

[
0
1

]
, u3 =

[
0.7071
0.7071

]
, u4 =

[
0.7071
−0.7071

]
, u5 =

[
0.6
−0.8

]
The system is a 2×2 system described by:

G1 =

[
5 4
3 2

]
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The inputs ui lead to the following outputs yi:

y1 =

[
5
3

]
, y2 =

[
4
2

]
, y3 =

[
6.36
3.54

]
, y4 =

[
0.7071
0.7071

]
, y5 =

[
−0.2
0.2

]
The corresponding 2-norms are as follows:

y1 = 5.83, y2 = 4.47, y3 = 7.3, y4 = 1.00, y5 = 0.28

Plotting a functional plot of the matrix gain as a function of a parameterized input direction gives:

Figure 1.5: The gain of G.

The maximum and minimum gains are achieved at distinct vactor directions.

1.3.3 Singular Value Decomposition (SVD)
Definition 1: A matrix U is said to be unitary if

UH =U−1

All the eigenvalues of a unitary matrix have absolute value equal to 1, and all its singular values are equal to 1. Where:
UH denotes the Hermitian form of matrix U , i.e. ui j = ū ji.

Definition 2: Any complex m× r transfer function matrix G can be factorized into a singular value decomposition [3].
using the following formula :

G
m×r

= U
m×m

Σ
m×r

V H
r×r

(1.34)

Such that: {
UUH = Im

VV H = Ir

And Σ ∈ Cm×r is matrix containing a diagonal matrix Σ1 of real, non-negative singular values, σ , arranged in a
descending order as in:

Σ =



[
Σ1

0

]
f or m > r

[
Σ1 0

]
f or m < r or Σ1 =


σ1 0 0

0
. . . 0

0 0 σk

 , k = min(m,r)

Σ1 f or m = r

10



1.4. Stability Chapter 1. Generalities on MIMO systems

The scalars σi are called singular values of the matrix G( jω), and are the squre roots of the eigenvalues of the matrix
G∗G, i.e. σi =

√
λi(G∗G).

Example 1.2:

Consider the following transfer function matrix [4]:

G =

[
4 0
3 −5

]
=⇒ G∗G =

[
25 −15
−15 25

]
The eigenvalues of the matrix are λ1 = 40,λ2 = 10. Thus, the resulting eigenvectors are:

eig1 =

[
−1
1

]
⇒ σ1 =

√
(−1)2 +11 = 1.41421

eig2 =

[
1
1

]
⇒ σ2 =

√
12 +11 = 1.41421

v1 =
1

1.41421

[
−1
1

]
=

[
−0.7071
0.7071

]
v2 =

1
1.41421

[
1
1

]
=

[
0.7071
0.7071

]
Therefore, we have V = [v1,v2], and U is calculated using the formula ui =

1
σi

G · vi. The final result is shown
below:

G =UΣV H =

[
−0.44722 0.89443
−0.89443 −0.44722

][
6.32456 0

0 3.16228

][
−0.70711 0.70711
0.70711 0.70711

]H

1.4 Stability
Stability is the most important concept in control engineering. A system is said to be stable, if its output is under

control. Otherwise, it is said to be unstable. A stable system produces a bounded output for a given bounded input.

For an LTI system represented in state space form where [A,B,C,D] are minimal realization, the system is said to be
stable if and only if all eigenvalues of A have a negative real part.

1.5 Conclusion
This chapter introduced the multivariable systems, and the different forms they can be represented in, these forms are

state-variable, state-space, and the transfer function matrix representation. In order to have more flexibility when working
with these forms, this chapter explained the transition process between them, in this course, it addresses the equilibrium
point and the linearization method for nonlinear systems.

Finally, in the framework of system characterization, this chapter tackles the concept of stability, the frequency response,
directions in multivariable systems, and the singular value decomposition.

11



Chapter 2

Analysis of interactions in MIMO systems

2.1 Introduction
As noted previously, MIMO systems encounter the dilemma of coupling, which leads to a number of control issues.

Several tools have been introduced to tackle this issue; such techniques aim to analyze the system and more importantly
allow the selection of the optimal input/output pairs.

Technique selection is critical and decisive for achieving the desired performance as well as the optimal control
configuration to ensure a weak interaction between loops.

This chapter covers a variety of issues that arise when working with multivariable systems, beginning with the coupling
phenomenon and the general techniques for dealing with it. Also, it introduces several decoupling algorithms.

2.2 Interactions in multivariable systems
Compared to single-input single-output (SISO) systems, the control design for MIMO systems is more elaborate. One

reason for this, as mentioned above, is that different parts of a multivariable system may intersect and cause couplings in
the system.

2.2.1 Definition:
Couplings in a multivariable system in close loop can be defined as the effect of one input Ri(s) on all outputs

{Yj(s) ∀ j ̸= i}.

Example 2.1:

Consider a shower with separate hot and cold water flow controls. This is a MIMO system with two inputs, hot and
cold water flows, which are used to control the two outputs, the flow from the tap and the temperature of the effluent
water. Changing one of the inputs will obviously affect both of the outputs. This indicates that the system has significant
couplings. In other words, interactions occur when a change in one input affects multiple outputs [5].

Fig. 2.1 shows a schematic representation of the system. Gi j denotes the transfer function between input u j and output
yi. If the selected input/output pairing is y1 → u1 and y2 → u2 then the transfer functions G12 and G21 represent the cross
couplings (channel interactions) in the system.

12



2.3. Interaction measures Chapter 2. Analysis of interactions in MIMO systems

Figure 2.1: Block diagram of TITO system.

2.3 Interaction measures

2.3.1 Relative Gain Array (RGA)
The most commonly used interactions measure is the Relative Gain Array (RGA) developed by Bristol (1966). The

RGA analyzes the plant’s steady-state properties and suggests an option for the pairing problem in the case of a decoupled
(decentralized) control structure, this type of structure will be diagonal, and the RGA also specifies which pairings should
be avoided due to potential stability and performance issues [5].

For a non-singular square complex matrix G, the RGA is a square complex matrix defined as:

RGA(G) = Λ(G)≜ G(0)× (G(0)−1)
T

(2.1)

where × denotes element-by-element multiplication (the Hadamard or Schur product).

Following Bristol [3]. It is possible to demonstrate that the RGA provides a measure of interactions. Assume that u j
and yi represent a specific input output pair for the multivariable plant G(s), and that the task is to use u j to control yi.
Bristol contended that there will be two extreme scenarios:

• All other loops open: uk = 0 ∀k ̸= j.

• All other loops closed with perfect control: yk = 0 ∀k ̸= i.

Perfect control is only possible at steady-state, but it is a good approximation at frequencies within the bandwidth of
each loop. We now evaluate our gain ∂yi

∂u j
for the two extreme cases:

Other loops open :
(

∂yi

∂u j

)
uk=0,k ̸= j

= gi j (2.2)

Other loops closed :
(

∂yi

∂u j

)
yk=0,k ̸=i

≜ ĝi j (2.3)

Here gi j = [G]i j is the i j′th element of G, whereas ĝi j is the inverse of the ji′th element of G−1.

ĝi j =
1

G−1
i j

(2.4)

To derive Eq.2.4 equation, it is important to denote that:

y = Gu
(

∂yi

∂u j

)
uk=0,k ̸= j

= [G]i j (2.5)

And interchange the roles of G and G−1, of u and y, and of i and j to get

u = G−1y
(

∂u j

∂yi

)
yk=0,k ̸=i

= [G−1]i j (2.6)

13



2.3. Interaction measures Chapter 2. Analysis of interactions in MIMO systems

And Eq.2.4 follows. Bristol argued that the ratio between the gains in Eq.2.2 and Eq.2.3 is a useful measure of
interactions, and defined the i j′th "relative gain" as:

λi j ≜
gi j

ĝi j
= [G]i j[G−1]i j (2.7)

2.3.1.1 Algebraic properties

The RGA has a variety of useful algebraic properties. Out of these properties we mention the following:

• Property 1: the division in eq. (2.1) normalizes the RGA in such a way that the numerical sum of each column
and row in the RGA equals one, i.e. for a n×n RGA:

n

∑
i=1

Λi j =
n

∑
j=1

Λi j = 1 (2.8)

• Property 2: the division in eq. (2.1) insures that the RGA to be scaling independent, i.e:

Λ(G) = Λ(S1GS2) (2.9)

Such that: S1 and S2 are diagonal scaling matrices of the same dimension as G.

• Property 3: for a system with a 2×2 plant G with nonzero elements only, we have the following:

a - If the number of positive elements in G(0) is odd then Λi j ∈ (0,1)

b - If the number of positive elements in G(0) is even then Λi j ∈ (−∞,0)∪ (1,∞)

• Property 4: if rows and columns are permuted in the transfer function matrix G then the rows and columns in the
RGA are permuted in the same way.

• Property 5: if the transfer function matrix, G, is diagonal or triangular, and the rows in the transfer function matrix
are permuted to produce nonzero elements along the diagonal in the case of a triangular G, the RGA equals the
identity matrix. As a result, the RGA does not differ between diagonal and triangular plants.

2.3.1.2 Pairing recommendation

In the case of a 2×2 system, the following RGA matrix is obtained:

Λ(G) =

[
λ 1−λ

1−λ λ

]

Depending on the value of λ , five different cases occur (Kinnaert, 1995):

• λ = 1: this is an ideal case when no interaction between the loops is present. The pairing should be along the
diagonal, i.e. y1 → u1,y2 → u2.

• λ = 0: this is the same situation as above, except that now the suggested pairing is along the off-diagonal, i.e.
y1 → u2,y2 → u1.

• 0 < λ < 1: now, the gain increases (i.e. Ĝi j increases) when the loops are closed, hence, there is interaction.
λ = 0.5 corresponds to the worst interaction.

• λ > 1: now, the gain decreases when the loops are closed. The interaction gets worse the larger λ is.

• λ < 0: now, even the sign changes when the loops are closed and this is highly undesirable. The more negative λ ,
the worse the interaction.

Example2.2: let us consider a 2×2 system with plant model.

y1 = g11(s)u1 +g12(s)u2 (2.10)

y2 = g21(s)u1 +g22(s)u2 (2.11)

Suppose that the aim is to control y1 using u1. Take the case where the other loop is open, that is u2 is constant or
→ u2 = 0. Then:

u2 = 0 : y1 = g11(s)u1

14



2.3. Interaction measures Chapter 2. Analysis of interactions in MIMO systems

Consider the case where the other loop is closed perfectly, i.e. y2 = 0. Because of interactions, when changing u1, u2
will also change. Setting y2 = 0 in eq. (2.11), for example, yields:

u2 =−g21(s)
g22(s)

u1

Substituting it into eq. (2.10) gives:

y2 = 0 : y1 =

(
g11 −

g21

g22
g12

)
u1 = ĝ11(s)u1

Closing the other loop results in gain changes from g11(s) to ĝ11(s), and the associated RGA element becomes

λ11(s) =
g11(s)
ĝ11(s)

=
1

1− g12(s)g21(s)
g11(s)g22(s)

Intuitively, for decentralized control, the preferable pairing variables u j and yi so that λi j is close to 1 at all frequencies,
as it means that closing the other loops has no effect on the gain from u j to yi. To be more specific, the following pairing
rule suggest:

• Pairing rule 1: the input-output pair with corresponding RGA element close to one.

• Pairing rule 2: Niederlinski Index have to be positive.

• Pairing rule 3: larger RGA elements are not appropriate for input-output pairing.

• Pairing rule 4: RGA elements corresponding to the input-output pair must be positive.

Example 2.3: RGA for the wood and binary distillation column whose transfer function matrix is given by:

G(s) =

 12.8e−s

16.7s+1
−18.9e−3s

21.0s+1

6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1


The steady-gain matrix is obtained from the transfer function matrix by setting s = 0, giving:

G(0) =
[

12.8 −18.9
6.6 −19.4

]
The inverse and transpose of inverse matrices are as follows:

G−1(0) =
[

0.157 −0.153
0.053 −0.104

]
, (G−1(0))T =

[
0.157 0.053
−0.153 −0.104

]
Applying es. (2.11) yields the RGA of the system:

Λ =

[
2.0 −1.0
−1.0 2.0

]
The RGA strongly advocates that the input-output pairs should be u1 → y1 and u2 → y2.

2.3.1.3 The Niederlinski Index (NI)

The NI is best used with the RGA to check if the recommended pairs are realizable in terms of stability. It is defined as
follows:

NI =
|G(0)|

∏
n
i=1 gii

(2.12)

When all control loops are closed, a negative value for NI indicates that the system will be integrally unstable for all
possible controller parameter values.

Given the transfer function, the RGA is used to obtain a tentative loop pairing, then the NI is used to determine the
stability of the closed loop system using the recommended RGA pairing, and finally simulation runs are used to verify if
the recommended pairings are suitably stable.
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2.3.1.4 The zeta ratio for a 2×2 system

Considering a TITO system with a steady-state gain matrix given by:

K = G(0) =
[

k11 k12
k21 k22

]
Therefore, the RGA is:

Λ =
1
|K|

[
k11k22 −k12k21
−k12k21 k11k22

]
While the NI is given by:

NI =
k11k22 − k21k12

k11k22

Setting:

ζ =
k21k12

k11k22

Rewriting the RGA and NI in terms of ζ yields:

Λ =
1

1−ζ

[
1 −ζ

−ζ 1

]
and NI = 1−ζ

Both RGA and NI can thus be said to be functions of ζ .

As a result, the unique ratio - the zeta ratio - can fully characterize a 2×2 system, and the smaller the value of ζ , the
more perfect the diagonal pairing. However, there are many more ratios to consider for higher order systems.

2.3.2 Dynamic Relative Gain Array (DRGA)
Bristol (1966) calculated the RGA using only the plant steady-state gain, G(0). This is most likely due to the fact that

in the process industry, the steady state measure is frequently far easier to obtain than the dynamic counterpart G(jω)
[5].

However, a dynamic extension of the RGA was later proposed.

DRGA(G) = Λ(G( jω))≜ (G( jω))× (G( jω)−1)
T

(2.13)

When analyzing a system, it is recommended to use this dynamic RGA and investigate the behavior of Λ(G) in the
relevant frequency range. As Skogestad and Postlethwaite (1996) pointed out, it is often enough to require Λ(G( jω))
to be close to the identity matrix at the crossover frequency to avoid instability. A pairing that results in negative RGA
elements, on the other hand, should be avoided for any frequency of interest [5].

2.3.3 Nonsquare Relative Gain Array (NSRGA)
Definition: nonsquare plants are defined as multivariable plants with unequal number of inputs and outputs, based on

this definition, it is possible to distinguish two types: more inputs than outputs or more outputs than inputs [6].

2.3.3.1 Control configuration selection of Nonsquare Multivariable plans

Nonsquare plant analysis and control theory is not as sophisticated as one may think, despite the fact that they are
often encountered in many engineering disciplines. The squaring down procedure is the primary control approach for
nonsquare plants. To obtain a square plant, the requisite number of outputs or inputs are added or eliminated from the
transfer function matrix. The nonsquare plants can then be controlled using well-established control paradigms. However,
each of these methods has its own set of issues. Adding unneeded outputs and inputs increases expenses and maintenance
concerns; eliminating manipulated inputs reduces degrees of freedom for attaining desired responses; deleting outputs
results in less reliable measurable information about plant performance.

Consider the linear multivariable plant described by the following transfer function matrix model.

Y (s) = G(s)U(s) (2.14)
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2.3. Interaction measures Chapter 2. Analysis of interactions in MIMO systems

Such that:

– G(s) is a m× r matrix

– Y (s) is m×1 output vector.

– U(s) is the r×1 input vector.

for this case, the following condition is considered: m > r.

It is not possible to derive the RGA definition. This is readily apparent from the plant’s lack of functional controllability.
As a result, the concept of perfect control is adjusted to accommodate this circumstance.

RGAN(G) = Λ
N(G) = G(0)× (G(0)+)T (2.15)

Such that the (+) indicates the Moore-Penrose pseudo inverse.

Example 2.4: consider the steady state of a side stream distillation column with the following transfer function matrix
(Chang and Yu 1990) [6].

G(0) =


−9.811 0.374 −11.3
5.984 −1.986 5.24
2.38 0.0204 −0.33

−11.67 −0.176 4.48


Its pseudo inverse is as follows:

G(0)+ =

−0.0245 0.0010 0.0117 −0.0622
−0.2748 −0.5509 0.0205 −0.0473
−0.0762 −0.0191 −0.0060 0.0530


Applying eq. (2.15) gives the NSRGA:

Λ
N =


0.2406 −0.1028 0.8606
0.0061 1.0940 −0.1001
0.0277 0.0004 0.0020
0.7256 0.0083 0.2375


2.3.4 Gramian based interaction measures

Gramians are matrices that describe the controllability and observability features of a particular stable system. They
may be calculated for both continuous and discrete time systems. For the sake of clarity, only the continuous time scenario
is considered in this study.

Let’s consider the system described by the following state-space representation:{
ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

Such that:

– A ∈ Rn×n.

– B ∈ Rn×r.

– C ∈ Rm×n.

– D = 0m×r.
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2.3.4.1 Hankel singular value (HSV)

In order to extract valuable information from the matrices P and Q, the product PQ is calculated, the eigenvalues,
λi(i = 1,2, ...,n), also known as the HSV are non negative and used to build an interaction measure.

Elementary system

Considering the previous MIMO system described by (A, B, C, 0), it is possible have a set of SISO systems where
each one have a single input ui(i ∈ 1,2, ...,r), and a single output y j( j ∈ 1,2, ...,m), each SISO system is described with
(A,bi,cT

j ,0).

The gramian Pi and Qi therefore satisfy: {
APi +PiAT +bibT

i = 0
AT Q j +Q jA+ c jcT

j = 0
(2.16)

Such that:

– bi is the ith column of matrix B.

– c j is the jth column of matrix CT .

Therefore, obtaining the pair (Pi,Qi) and the HSV associated with it gives a description of the pair (ui,yi)’s ability to
control and to observe the system state.

It is possible, therefore, to prove that:

P =
r

∑
i=1

Pi Q =
m

∑
j=1

Q j

From the gramian decomposition it can be shown that the product PQ for the MIMO system is given by:

PQ =

(
r

∑
i=1

Pi

)(
m

∑
j=1

Q j

)
=

r,m

∑
i, j=1

PiQ j

2.3.4.2 The Hankel interaction Index Array (HIIA)

The Hankel norm [5], for a stable MIMO system represented by (A,B,C,0), considering a subsystem (i, j) given by
(A,b∗ j,ci∗,0), calculating the Hankel norm for each fundamental subsystem and arranged in a matrix as follows :

|Σ̃H |i j = ||Gi j||H (2.17)

A normalized version is called the Hankel interaction Index Array (HIIA) given by:

|ΣH |i j =
||Gi j||H

Σkl ||Gi j||H
(2.18)

The aim is to sum the corresponding elements in ΣH and then find the simplest control structure that gives a sum as
close as possible to one.

2.3.4.3 Participation matrix PM

In order to make profit of the previous analysis in terms of quantifying and comparing, it is required to use the trace of
the product PiQi which is a convenient basis to measure the interactions and the ability of different controller structures
[6].

This measure can be organized in a martix Φ = [φi j] ∈ Rn×n called the participation matrix, defined as:

Φi j =
trace[PiQ j]

trace[PQ]
≤ 1 (2.19)

Such that the trace of PjQi is equal to the sum of squared HSVs of the subsystem with input ui and y j. It can be shown
that the trace of PQ is equal to the sum of all trace of PjQi.
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2.3.4.4 The H2 norm

The system H2 norm [5]. For a stable and strictly proper system, i.e (D = 0), with transfer function G(s) is given
by:

||G(s)||2 =
√

1
2π

∫
∞

−∞

tr
(
GH( jω)G( jω)

)
dω (2.20)

For a system described by the state-space set of matrices (A,B,C,0) with controllability Gramian P, observability
Gramian Q, if the system is stable, continuous-time, and strictly proper, then the H2 norm can be obtained as follows:

||G||2 =
√

tr
(
BT QB

)
=
√

tr
(
CPCT

)
(2.21)

2.3.4.5 the Σ2 interaction measure

Suggested by Birk and Medvedev in 2003 [5], it is similar to the HIIA and obtained using the following formula:

|Σ2|i j =
||Gi j||2

Σkl ||Gkl ||2
(2.22)

This measure is normalized in the same manner as the HIIA and the PM, it aims to find a controller structure that
corresponds to a sum of the elements in Σ2 as close as possible to one.

Example 2.4: (A quadruple-tank process)

The system is described by the following set of matrices:

A =


−0.0159 0 0.1590 0

0 −0.0159 0 0.02651
0 0 −0.1590 0
0 0 0 −0.02651

 , B =


0.05459 0

0 0.07279
0 0.01820

0.03639 0


C =

[
1 0 0 0
0 1 0 0

]
, D =

[
0 0
0 0

]
The steady state transfer function is:

G(0) =
[

3.4326 1.1442
2.2884 4.5768

]
The RGA matrix for the system, denoted Λ, is:

Λ(G(0)) =
[

1.2 −0.2
−0.2 1.2

]
(2.23)

The gramian-based interaction matrices are:

ΣH =

[
0.2866 0.1029
0.2285 0.3821

]
(2.24)

Φ =

[
0.2809 0.0364
0.1834 0.4994

]
(2.25)

Σ2 =

[
0.3146 0.1000
0.1658 0.4195

]
(2.26)

In order to have direct element by element comparison for the sake of simplifying the analysis, it is required to calculate
the squar of the PM matrix then normalize it which results in:

Φ̄ =

[
0.2809 0.0364
0.1834 0.4994

]
(2.27)

All gramian-based interaction matrices along with the RGA matrix suggest that the optimal input/output pairing is
y1 → u1,y2 → y2.
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2.3.5 Direct Nyquist Array (DNA)
The DNA is a graphical method with the following principle:

• Draw the Nyquist graph of every diagonal element Gi j(s) of the transfer function matrix G(s) for ω varying from
0 to +∞.

• Superpose every graph with the Geshgorin circles obtained by varying ω from 0 to +∞.

• The coordinations of a circle’s center are the real and imaginary parts of Gi j(s), and the vector Rii(s) of the circle
is the sum of the modules of elements of the ith column except the one of element Gi j(s) considering the vector
Rii(s) which is given by the following formula:

Rii(s) =
m

∑
j=1, j ̸=i

|G ji(s)| (2.28)

2.3.6 Inverse Nyquist Array (INA)
Rosenbrock developed the Inverse Nyquist Array (INA), a frequency domain method. Its goal is to design compensators

for multivariable systems so that they can efficiently be decoupled, thereby being treated using univariable procedures. It
is only applicable to square, controllable systems in their original form since it necessitates the calculation of the inverse
transfer function. It is proposed to extend it to non-square systems with a given feedback structure that includes an inner
loop. The graphical interpretation as well as the new form of the basic operations are presented [3].

This method is based on the inverse characteristics Q̂(s) and Ĥ(s) resulting from the following simple relation.

Ĥ = Q̂+F (2.29)

Such that:

– Ĥ(s): the inverse of closed-loop system transfer function matrix H(s).

– Q̂(s): the inverse of open-loop system forward transfer function matrix Q(s).

– F : the feedback gain matrix.

2.3.6.1 Principle of INA

As stated before, the INA uses the inverse of the transfer function matrix of the system, its principle is as follows:

• Calculate Ĝ(s) which is the inverse of the matrix G(s), Ĝ(s) = G−1(s).

• Construct the nyquist of all diagonal elements Ĝii(s) of the matrix Ĝ for ω varying from 0 to +∞.

• obtain the Gershgorin circles for ω varying from 0 to +∞ and superpose them.

• The coordinations of a circle’s center are the real and imaginary parts of Ĝii(s), and the vector R̂ii(s) of the circle
is the sum of the modules of elements of the ith column except the one of element Ĝii(s) considering the vactor
R̂ii(s) which is given by the following formula:

R̂ii(s) =
m

∑
j=1, j ̸=i

|Ĝ ji(s)| (2.30)

2.3.6.2 Advantages of using INA

• The properties of the relation ( Ĥ = Q̂+F), such that the hat denotes the inverse of the matrix.

• The inverse transfer function tends to be more diagonally dominate than the direct one.

• The feedback gains of all but loop j become indefinitely large, the transfer function between input j and output j,
h j, approaches (q̂ j j)

−1, such that q̂ j j is the j j element of matrix Q̂.
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2.3.6.3 DNA and INA interpretation

The two methods presented allow interaction analysis, these interactions occur between the loops of the configuration
and are defined by the elements of the diagonal of the transfer matrix. This configuration presents weak interactions, if
the Geshgorin circles of each element of the diagonal of the system G(s) or Ĝ(s) according to the considered analysis
method, do not encircle the origin of the complex plane in the working frequency band of the system.

Example 2.5:

Since frequency domain analysis is not the aim of this work, only the DNA is obtained for this example is the scope of
explanation.

Let us consider the following transfer function matrix representing a multivariable system:Y1

Y2

=

 s+41
s2+2s+1

−10s−2
s2+2s+1

20
s+1

4
s+1

U1

U2

 (2.31)

Using the DNA to analyze the interactions
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Figure 2.2: DNA

2.4 General purpose decoupling algorithms
The construction of an adequate decoupler or controller will be the next crucial step after a proper input-output pairing

has been selected in a MIMO system. A centralized MIMO controller with a series of decouplers or a series of SISO
decentralized controllers can both be used to implement an effective MIMO control strategy.

2.4.1 Decentralized controller
Let G(s) be an n×n transfer function describing a MIMO system such that:

G(s) = {gi j(s), i = 1, . . . ,n, j = 1, . . . ,n} (2.32)
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The resulting decentralized controller is the diagonal matrix C(s):

C(s) =


C11(s) 0 . . . 0

0 C22(s)
. . .

...
...

. . . . . . 0
0 . . . 0 Cnn(s)

 (2.33)

Figure 2.3: Simplest decentralized control structure of TITO system.

2.4.2 Static decoupling
If the available information is limited, it is advisable to design a static decoupler. For a MIMO system with the transfer

function shown in eq. (2.34). Let the parameters ki j {i = 1, . . . ,n j = 1, . . . ,n} be steady state gains of gi j(s). The
steady state gain for matrix G(0) is obtained as follows:

G(0) = {ki j, i = 1, . . . ,n j = 1, . . . ,n} (2.34)

The static decoupler is derived as:
D = G−1(0) (2.35)

Static decouplers are recommended for various industrial processes because they require less information from the
controlled system and can minimize the danger of influence caused by model uncertainties. In the meanwhile, a static
decoupler may be easier to create than a dynamic one [7].

In a closed loop, however, a static decoupler may not provide adequate decoupling performance. It may also have
an adverse effect on the high frequency responsiveness of various MIMO processes. In systems with integral elements,
the static decoupler is recommended. This is because, when frequency rises, the magnitudes of non-diagonal terms fall
quicker than those of diagonal terms.

2.4.3 Dynamic decoupling
When compared to static decoupling, a MIMO system with a dynamic decoupler consistently outperforms static

decoupling at the cost of acquiring an accurate process model. Ideal decoupling, simplified decoupling, and inverted
decoupling are three types of dynamic decoupling algorithms that have been intensively investigated and utilized in
industrial processes. Each of these three decouplers has its own set of characteristics and drawbacks [7].

For the sake of simplicity, a TITO system will serve as an example in this part.

• Ideal decoupling

For a TITO system defined by the following:
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– C(s): controller matrix.

– D(s): decoupler matrix.

– G(s): controlled plant.

– ri: set-point signals.

– ui: control signals.

– yi: output signals.

Such that:

C(s) =
[
C1(s) 0

0 C2(s)

]
(2.36)

D(s) =
[

D11(s) D12(s)
D21(s) D22(s)

]
(2.37)

G(s) =
[

G11(s) G12(s)
G21(s) G22(s)

]
(2.38)

If the controlled system G(s) is ideally decoupled, the matrix representing the decoupled system, defined as M(s) =
G(s)D(s), should be diagonal. the matrix D(s) is therefore obtain as:

D(s) = G−1(s)M(s)

=
1

G11(s)G22(s)−G12(s)G21(s)
×
(

G22(s)M11(s) −G12(s)M22(s)
−G21(s)M11(s) G11(s)M22(s)

) (2.39)

The aim of ideal decoupling is to set M11(s) = G11(s) and M22(s) = G22(s), this results in a product matrix of the
form:

M(s) =
[

M11 0
0 M22(s)

]
(2.40)

This shows a full decoupled system, therefore, controller C1(s) and C2(s) can be designed in the same manner under
ideal decoupling. The controller does not need to be redesigned even if different loops are set in different modes.

While ideal decoupling provides obvious operational advantages, the complicated presentation of D(s), which includes
sums of transfer functions, is frequently a challenge.

Furthermore, the problem of limited applicability, as well as the sensitivity to model flaws and system dimensions of
ideal decoupling, should not be overlooked. As a result, optimal decoupling is rarely applied in real-world applications.

Figure 2.4: Ideal decoupling structure.

• Simplified decoupling
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It is the most used in literature [7]. The decoupler matrix has the form:

D(s) =
[

1 −G12(s)/G11(s)
−G21(s)/G22(s) 1

]
(2.41)

For simplified decoupling, only two decouplers are generated, there exist three alternative configurations of simplified
decoupling, two elements in different columns of matrix D(s) are set to 1. These three alternatives configurations are
obtained as:

D(s) =
[
−G22(s)/G21(s) 1

1 −G11(s)/G12(s)

]
(2.42)

D(s) =
[
−G22(s)/G21(s) −G12(s)/G11(s)

1 1

]
(2.43)

D(s) =
[

1 1
−G21(s)/G22(s) −G11(s)/G12(s)

]
(2.44)

In practice, the simplified decoupling technique is simple to implement. However, because the decoupler expression
still contains some summation elements, the controller tuning process may be problematic.

Figure 2.5: Simplified decoupling structure.

• Inverting decoupling

Inverted decoupling is another extensively used decoupling algorithm that can derive the same decoupled process model
as an ideal decoupler without using a difficult D(s) expression [7].

D11(s) = D22(s) = 1 (2.45)

This results in:

D12(s) =−G12(s)
G11(s)

D21(s) =−G21(s)
G22(s)

(2.46)

The decoupled transfer function of inverted decoupling is the same as that of ideal decoupling, and it is implemented
in the same way as simple decoupling. Therefore, it should be able to provide both ideal and simplified decoupling. This
results in three advantages:

– When inverted decoupling is used, the decoupled system behaves as if there is no interaction between control loops
and the alternate controllers are in manual mode; each decoupled loop can be kept from acting as a secondary to
other control loops.

– It can be implemented in DCS as a feed-forward input.

– When the system mode is changed, the initialization and bumpless issues will not emerge.
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Figure 2.6: Inverted decoupling structure.

2.5 Conclusion
This chapter examines and analyzes the interactions that occur between inputs and outputs in multivariable systems.

It also provides an overview of the techniques used to examine this phenomenon, such techniques aim to analyze
the degree of interaction, and suggest the best input-output pairs suitable for the application taking into consideration
stability. First, the most used decoupling method is the RGA approach to control configuration selection for steady-state
and a dynamic extension known as DRGA, as well as the NSRGA, a nonsquare RGA approach. In addition, the critical
Niederlinski tool and definitions for integrity analysis were presented. Moreover, there are the Gramian-based interaction
methods, which include the HIIA, the PM the H2 norm, and the Σ2 methods, an example is presented to compare the
suggestions of each method. Also, the direct Nyquist array and the inverse Nyquist array, are two powerful multivariable
approaches that involve stability analysis.

Finally, this chapter provides a comprehensive review of the existing cross-loop interactions analysis and decoupling
control methods. Special purpose decoupling algorithms are introduced with their properties, advantages, and application
domains.
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Chapter 3

Fault Tolerant Control

3.1 Introduction
One of the problems that face the design and analysis of MIMO systems is the component failures, to overcome that,

the concept of fault-tolerant control is found for mitigating the effects of system component failures.

Due to system design limitations or sensors expenses, some system parameters are hard/impossible to measure, to
overcome this issue, observers are designed to estimate these parameters with a high degree of accuracy, higher than the
sensed signals in some cases, and reduce the costs related to hardware redundancy of sensors.

Correction methods are a big part of analyzing multivariable systems, it is fundamental to understand that the specifications
stipulating the closed loop performances will be translated by the constraints on the frequency response of the open loop
corrected system.

Designing compensators often rises a trade-off issue between stability and rapidity, that is, increasing system response
speed often has stability risks, while aiming for a stable system results in a slow response system that does not satisfy the
design requirements.

This chapter addresses three important concepts in control engineering, the fault-tolerant control, the states and faults
estimation using observers, and the feedback control for controller design.

3.2 Fault tolerant control

3.2.1 Faults
A fault is defined as an unpermitted deviation of at least one characteristic property or parameter of the system from the

acceptable behavior. The fault is a state that may lead to a malfunction or a failure in the system. There are many types of
faults [8].

3.2.2 Fault types
Physical location classification yields the following fault types: actuator fault, sensor fault, plant component fault.

• Actuator faults: they vary from complete loss of control to loss of partial control effectiveness, such faults affect
severely the system performance since the actuator is considered as the entrance of the system [9].

• Sensor faults: they mostly include incorrect readings due to malfunction in the sensor circuit, fortunately, increasing
sensor reliability can be achieved using parallel hardware redundancy [9].

• Plant component faults: they are caused by physical parameter variations in the system, and result in changes in
the dynamical relationship between system variable.
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Figure 3.1: Location of potential faults in a control system.

Classifying faults based on their induced effects on the system performance yields two types: additive faults and
multiplicative faults.

• Additive faults: they affect the mean value of the system output signal only.

• Multiplicative faults: they affect variance and correlations of the system as well as its spectral characteristics and
dynamics.

a Additive fault. b Multiplicative fault.

Figure 3.2: Different faults induced changes.

A severity based classification of faults results in three main types of faults: drift-like faults, abrupt faults, and
intermittent faults.

• Drift-like (incipient) fault: it refers to the situation where a signal slowly deviates (linearly) from the actual value.
Until the effect on the process is corrected, it remains constant. Sensor/actuator inaccuracy or partial failure are
the sources of these faults.

• Abrupt (stepwise) fault: It is a sudden and considerable change in parameter values, it is more rapid than the
standard dynamic process. The fault’s cause and/or effects will continue until they are corrected.

• Intermittent fault: it is a malfunction that occurs at irregular intervals. This type of faults, which is common in
most systems, can be caused by a number of factors, including improper electrical wire connections to sensors,
actuators, and other components. Intermittent faults are more likely to occur as the system becomes more complex.
The detection of intermittent faults is difficult for most detection algorithms due to their inconsistent nature.

3.2.3 Faults description:
For the sake of simplicity, only additive faults are considered, for both actuator faults and sensor faults, the mathematical

description can be obtained as follows:

• Actuator faults: In the presence of an actuator fault, the linear system can be given by:

ẋ(t) = Ax(t)+Bu(t)+Fa fa(t)

y(t) =Cx(t)+Du(t)

Such that: Fa = B, and fa is a matrix containing the magnitudes of the actuators faults. For the nonlinear system,
the actuator faults are injected as follows:

ẋ(t) = f
(
x(t)
)
+

n

∑
j=1

(
g j(x(t))u j(t)

)
+

n

∑
j=1

(
Fa, j(x(t)) fa, j(t)

)
yi(t) = gi

(
x(t)
)
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Such that: Fa, j(x(t)) corresponds to the jth column of matrix G
(
x(t)
)
, and fa, j(t) corresponds to the magnitude of

the fault affecting the jth actuator.

• Sensor faults: In a similar way, considering fs as an unknown input illustrating the presence of a sensor fault, the
linear faulty system will be represented by

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)+Fs fs(t)

Where Fs can be considered as an identity matrix of proper dimensions. The affine nonlinear systems can be
defined in continuous-time through an additive component such as:

ẋ(t) = f
(
x(t)
)
+

n

∑
j=1

(
g j(x(t))u j(t)

)
yi(t) = gi

(
x(t)
)
+

m

∑
j=1

(
Fs, j(x(t)) fs, j(t)

)

3.2.4 Fault Diagnosis (FD)
It refers to the task of inferring the concurrence of faults in a process and finding their root causes using: quantitative

models, qualitative models, and historical data. since diagnosis from raw data is often difficult, quantitative and qualitative
model-based FDI techniques are combined to supervise the process and to ensure appropriate reliability and safety in the
industry [10].

3.2.5 Fault Tolerant Control Systems (FTCS)
A FTCS is a control system that can accommodate system component faults and can maintain stability and an acceptable

degree of performance not only when the system is fault free but also when there are component malfunctions. FTCS
prevents faults in a subsystem from developing into failures at the system level [9].

3.2.5.1 Classification of FTCS

There are two approaches when designing an FTCS: Passive FTCS and Active FTCS. the best approach is determined
based on the redundancy being utilized in the system, the ability to determine the faults that a system may undergo during
the design phase, and the behavior of fault-induced changes.

Figure 3.3: Classification of fault tolerant control systems.

• PFTCS: for this approach, the system can tolerate a limited number of faults that are known prior to the design of
the controller, thus, it has a limited fault tolerance capability [9].

• AFTCS: it is designed using the available resources and employs both physical and analytical system redundancy
to accommodate unanticipated faults, using FDI algorithms to identify the fault-induced changes, it can compensate
for faults by either selecting a pre-computed control law or by synthesizing a new control law on-line in real-time
[9].
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3.3 states and faults estimation
• State estimation: control of spacecraft and other systems requires reliable real-time estimates of system state.

Unfortunately, the complete state is not always observable. State Estimation takes all the telemetry seen so far
and uses it to determine the underlying behavior of the system at any point in time. It includes fault detection and
isolation and continuous system parameter estimation [11].

• Fault estimation (FE): it provides information on the fault such as the location, size, and duration. Thus, it is
especially useful for incipient faults and slow drifts, which are very difficult to detect. Also, fault estimation is
vital in FTCS which improve the system’s performance.

3.3.1 Observers:
Observers are algorithms that combine sensed signals with other knowledge of the control system to produce observed

signals. The principle of an observer is that by combining a measured feedback signal with knowledge of the control
system components, the behavior of the plant can be known with greater precision than by using the feedback signal
alone.

In other cases, observers can reduce system costs by augmenting the performance of a low-cost sensor so that the two
together can provide performance equivalent to a higher-cost sensor.

In the extreme case, observers can eliminate a sensor altogether, reducing sensor cost and the associated wiring. Phase
lag and attenuation can be caused by the physical construction of the sensor or by sensor filters, which are often introduced
to attenuate noise. The key detriment of phase lag is the reduction of loop stability.

3.3.1.1 Unknown Input Observer (UIO):

In order to design an UIO [12], the following procedure is applied. For the case of linear dynamic systems in which
system uncertainty can be modeled as an additive unknown disturbance term in the dynamic equation:{

ẋ(t) = Ax(t)+Bu(t)+Edd(t)
y(t) =Cx(t)

(3.1)

The disturbance distribution matrix Ed must be full column rank, in case it is not, matrix decomposition to the following
form is performed:

Edd(t) = E1E2d(t)

Where E1 is a full column rank matrix and E2d(t) can be considered as the new unknown input or disturbance acting
on the system.

Second, the following existence condition must be checked, (C,A1) must be a detectable pair, where:

A1 = A−Ed [(CEd)
TCEd ]

−1(CEd)
TCA

For an observer to be called Unknown Input Observer for the system described by eq. (3.1), the state estimation error
vector denoted as e(t) and defined as:

e(t) = x(t)− x̂(t) (3.2)

Must approach zero asymptotically regardless of the process of unknown inputs, d(t), in the system. Furthermore, the
structure for the full order UIO is given by the dynamic system:

ż(t) = Fobsz(t)+T Bu(t)+Ky(t)

x̂(t) = z(t)+Hy(t)
(3.3)

Where x̂ is the state estimate, z is the state of full-order dynamic observer, and Fobs,T,K,H are matrices to be designed
for the purpose of achieving the unknown input decoupling. In order to achieve this decoupling ė(t) is expended to
be:

ė(t) = (A−HCA−K1C)e(t)

+ [Fobs − (A−HCA−K1C)]z(t)

+ [K2 − (A−HCA−K1C]y(t)

+ [T − (I −HC)]Bu(t)

+(HC− I)Edd(t)

(3.4)
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Such that: K =K1+K2, and K1 is calculated using pole placement technique with the following Matlab command:

K1 = place(A’,C’,P)’.

The objective is make the estimation error a function of e(t), which means:

ė(t) = Fe(t) (3.5)

In order to satisfy Eq 3.5, the following must hold.

0 = (HC− I)Ed (3.6)

T = I −HC (3.7)

Fobs = A−HCA−K1C (3.8)

K2 = FobsH (3.9)

If all the eigenvalues in F are stable, the e(t) will approach zero asymptotically. notice that the estimation error is
not a function of Ed or d. Therefore, it approaches zero independently of the disturbance terms, achieving the desired
decoupling of the state estimate from the unknown disturbance inputs.

The disturbance estimation can be obtained by the following relation:

d̂ = (CE)+[ ˙̂y−CAx̂−CBu]

Such that (CE)+ denotes the Moore-Penrose Pseudo inverse of the matrix CE.

The following figure shows a block diagram of the UIO.

Figure 3.4: Unknown Input Observer (UIO).

3.3.1.2 Luenberger Observer

Named after David Gilbert Luenberger, a Professor in Management Science and Engineering at Stanford University,
who first introduced these methods for constructing state observers in his doctoral dissertation at Caltech. Considering a
system modeled by the n-dimensional, r-input, m-output LTI system.

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)

The Luenberger observer will employ a copy of the system with one notable difference.

ẋ(t) = Ax̂(t)+Bu(t)+L[y(t)− ŷ(t)]

ŷ(t) =Cx̂(t)+Du(t)

The term L[y(t)− ŷ(t)] injects the error between measurements and model prediction, scaled by a user-selectable
"observer gain" vector L ∈ Rn×m. This concept is logically named "output error injection", and is the key feature of
state estimation design.
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Figure 3.5: Block diagram of Luenberger observer.

To understand this state estimation algorithm, the error dynamics, e(t), is considered to be e(t) = x(t)− x̂(t) which
evolves according to

ė(t) = ẋ(t)− ˙̂x(t)
= Ax(t)+Bu(t)−Ax̂(t)−Bu(t)−L[y(t)− ŷ(t)]

= A(x(t)− x̂(t))−L[Cx(t)+Du(t)−Cx̂(t)−Du(t)]

= A(x(t)− x̂(t))−LC(x(t)− x̂)

= (A−LC)e(t)

(3.10)

The aim is to select L such that the eigenvalues of (A− LC) have negative real parts, that way, the estimation error
system is asymptotically stable. selecting L appropriately enables assigning the eigenvalues (i.e. speed) of the error
system. Mathematically, e(t)→ 0 or x̂(t)→ x(t) as t → ∞. the speed of convergence is characterized by the eigenvalues
of (L−AC)

Placement rule: as a general rule-of-thumb, the observer eigenvalues should be placed from 2 to 10 times faster than
the slowest stable eigenvalue of the system itself. if λA is the slowest stable eigenvalue of the system, we have:

−∞ < 10 ·Re[λA]≤ Re[λA−LC,i]≤ 2 ·Re[λA]< 0 ∀i

Where: λA−LC,i are the eigenvalues of A−LC, this rule ensures fast convergence of the estimations, without risking
destabilizing the system. Given that the eigenvalues of (A−LC) can be assigned arbitrarily for (A,C) observable, one
might suggest setting the eigenvalues at −1099, the reason why the choice of placing eigenvalues relatively at negative
infinity is not desirable is the sensor noise. to demonstrate more, suppose the following dynamic system:

ẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t)+n(t)

Where n(t) is the measurement noise that exists within any real-world sensor. Extracting the error dynamics for the
system yields:

ė(t) = (A−LC)e(t)−Ln(t)

A choice of eigenvalues close to negative infinity will render a very large observer gain L. This will result in an
amplified sensor noise. To summarize, there must be a balance in the trade-off between speed and robustness to noise in
order to have optimal results.

3.4 Proportional Integral Derivative (PID) Controllers
Definition:

A PID controller is an instrument used in industrial control applications to regulate temperature, flow, pressure, speed,
and other process variables. PID controllers use a control loop feedback mechanism to control process variables and are
the most accurate and stable controllers.

PID controllers have the purpose of forcing the feedback to match a certain setpoint. For example, a thermostat forces
the heating and cooling unit to turn on or off based on a set temperature. PID controllers are best used in systems with
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relatively small mass and these which react quickly to changes in energy added to the process. The controller is expected
to compensate automatically for loud changes due to frequent changes in setpoint.

Definition: Rapidity:

The character of rapidity can be perceived in two ways, either directly by observing a time or frequency response, or
indirectly through the concept of dynamic error (a rapid system enables the pursuit of an input that rapidly varies and
hence a low dynamic error) [13].

Inserting a controller can be done in different configurations, for this case, direct insertion in cascade with the the plant
is considered as shown in Fig 3.6.

Figure 3.6: Close loop configuration.

Such that:

– R(s) : reference signal.

– E(s) : error signal.

– V (s) : control signal for the plant.

– U(s) : control signal for the controller.

– Z1(s) : output disturbance.

– Z2(s) : input disturbance.

– Gc(s) : transfer function of the regulator.

– G(s) : transfer function of the plant.

The error is defined as the difference between the reference signal and the output signal. i.e. E(s) = R(s)−Y (s). and
the open loop transfer function becomes:

L(s) = Gc(s)G(s)

The controller is added to maintain an error as close as possible to zero, also, fix the output to a constant value regardless
of the disturbances (regulation), and bring the output to a predetermined value (tracking mode).

3.5 Controller types
PID controllers relate the error to the actuating signal either in a proportional (P), integral (I), or derivative (D) manner.

PID controllers can also relate the error to the actuating signal using a combination of these controls.

3.5.1 Proportional controller (P):
One type of action used in PID controllers is proportional control [14]. Proportional control is a form of feedback

control. It is the simplest form of continuous control that can be used in a closed-looped system.

A P-only control minimizes the fluctuation in the process variable, but it does not always bring the system to the desired
set point. It provides a faster response than most other controllers, initially allowing the P-only controller to respond a few
seconds faster. However, as the system becomes more complex (i.e. more complex algorithm) the response time difference
could accumulate, allowing the P-controller to possibly respond even a few minutes faster. Although the P-only controller
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does offer the advantage of faster response time, it produces deviation from the set point. This deviation is known as the
offset, and it is usually not desired in a process.

P-control linearly correlates the controller output (actuating signal) to the error (difference between measured signal
and set point). This P-control behavior is mathematically illustrated in Eq 3.11.

u(t) = Kce(t)+b (3.11)

Such that:

– u(t) : is the controller output.

– Kc : is the controller gain.

– e(t) : is the error.

– b : is the bias.

The following figure shows the bode plot of a P controller, where Kc = 1 and b = 0.
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Figure 3.7: Bode plot of a P controller.

3.5.2 Integral (I) Control
Another type of action used in PID controllers is integral control [14]. Integral control is the second form of feedback

control. It is often used because it can remove any deviations that may exist. Thus, the system returns to both a steady
state and its original setting. A negative error will cause the signal to the system to decrease, while a positive error will
cause the signal to increase. However, I-only controllers are much slower in their response time than P-only controllers
because they are dependent on more parameters. If it is essential to have no offset in the system, then an I-only controller
should be used, but it will require a slower response time. This slower response time can be reduced by combining I-only
control with another form, such as P or PD control.

I-only controls are often used when measured variables need to remain within a very narrow range and require fine-tuning
control. I-control affect the system by responding to accumulated past errors. The philosophy behind the integral control
is that deviations will be affected in proportion to the cumulative sum of their magnitude.

I-control correlates the controller output to the integral of the error. The integral of the error is taken with respect to
time. It is the total error associated over a specified amount of time. This I-control behavior is mathematically illustrated
in Eq 3.12.

u(t) =
1
Ti

∫
e(t)dt +u(t0) (3.12)

Such that:

– u(t) : is the controller output.

– Ti : is the integral time.

– e(t) : is the error.

– dt : is the differential change in time.
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– u(t0) : is the controller output before integration.

The following figure shows the bode plot of a I controller.
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Figure 3.8: Bode plot of a I controller.

3.5.3 Derivative (D) Control
Another type of action used in PID controllers is the derivative control [14]. Unlike P-only and I-only controls,

D-control is a form of feed forward control. D-control anticipates the process conditions by analyzing the change in
error. It functions to minimize the change of error, thus keeping the system at a consistent setting.

The primary benefit of D controllers is to resist change in the system, the most important of these being oscillations.
The control output is calculated based on the rate of change of the error with time. The larger the rate of the change
in error, the more pronounced the controller response will be. Unlike proportional and integral controllers, derivative
controllers do not guide the system to a steady state. Because of this property, D controllers must be coupled with P, I, or
PI controllers to properly control the system.

D-control correlates the controller output to the derivative of the error. The derivative of the error is taken with respect
to time. It is the change in error associated with the change in time. This D-control behavior is mathematically illustrated
in Eq 3.13.

u(t) = Td
de
dt

(3.13)

Such that:

– u(t) : is the controller output.

– Td : is the derivative time constant

– de : is the differential change in error.

– dt : is the differential change in time.

The following figure shows the bode plot of a D controller.

34



3.5. Controller types Chapter 3. Fault Tolerant Control

M
a
g
n
it
u
d
e
 (

d
B

)

-5

0

5

10

15

20

100 101

P
h
a
s
e
 (

d
e
g
)

89

89.5

90

90.5

91

Bode Diagram

Frequency  (rad/s)

Figure 3.9: Bode plot of a D controller.

3.5.4 Proportional Integral (PI) control:
One combination is the PI-control [14], which lacks the D-control of the PID system. PI control is a form of feedback

control. It provides a faster response time than I-only control due to the addition of the proportional action. PI control
stops the system from fluctuating, and it is also able to return the system to its set point. Although the response time
for PI-control is faster than the I-only control, it is still up to 50% slower than the P-only control. Therefore, in order to
increase response time, PI control is often combined with D-only control.

PI-control correlates the controller output to the error and the integral of the error. This PI-control behavior is mathematically
illustrated in Eq 3.14.

u(t) = Kc

(
e(t)+

1
Ti

∫
e(t)dt

)
+u(t0) (3.14)

Such that:

– u(t) : is the controller output.

– Kc : is the controller gain.

– e(t) : is the error.

– Ti : is the integral time.

– dt : is the differential change in time.

– u(t0) : is the initial value of the controller.

The following figure shows the bode plot of a PI controller.
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Figure 3.10: Bode plot of a PI controller.
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3.5.5 Proportional-derivative (PD) control:
Another combination of controls is the PD-control [14], which lacks the I-control of the PID system. PD-control

is a combination of feedforward and feedback control because it operates on both the current process conditions and
predicted process conditions. In PD-control, the control output is a linear combination of the error signal and its derivative.
PD-control contains the proportional control’s damping of the fluctuation and the derivative control’s prediction of process
error.

As mentioned, PD-control correlates the controller output to the error and the derivative of the error. This PD-control
behavior is mathematically illustrated in Eq 3.15.

u(t) = Kc

(
e(t)+Td

de
dt

)
+u(t0) (3.15)

Such that:

– u(t) : controller output.

– Kc : the proportional gain.

– e(t) : the error.

– Td : is the derivative time constant

– de : is the differential change in error.

– dt : is the differential change in time.

– u(t0) : the initial of controller.

The equation indicates that the PD-controller operates like a simplified PID-controller with a zero integral term.
Alternatively, the PD-controller can also be seen as a combination of the P-only and D-only control equations. In this
control, the purpose of the D-only control is to predict the error in order to increase the stability of the closed loop
system.

P-D control is not commonly used because of the lack of the integral term. Without the integral term, the error in steady
state operation is not minimized.

The following figure shows the bode plot of a PD controller.
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Figure 3.11: Bode plot of a PD controller.

3.5.6 Proportional-Integral-Derivative (PID) Control
Proportional-integral-derivative control is a combination of all three types of control methods. PID-control is most

commonly used because it combines the advantages of each type of control. This includes a quicker response time
because of the P-only control, along with the decreased/zero offset from the combined derivative and integral controllers.
This offset was removed by additionally using the I-control. The addition of D-control greatly increases the controller’s
response when used in combination because it predicts disturbances to the system by measuring the change in error. On
the contrary, as mentioned previously, when used individually, it has a slower response time compared to the quicker
P-only control [14].
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Although the PID controller seems to be the most adequate controller, it is also the most expensive controller. Therefore,
it is not used unless the process requires the accuracy and stability provided by the PID controller.

PID-control correlates the controller output to the error, integral of the error, and derivative of the error. This PID-control
behavior is mathematically illustrated in Eq 3.16.

u(t) = Kc

(
e(t)+Td

de
dt

+
1
Ti

∫
e(t)dt

)
+u(t0) (3.16)

Such that:

– u(t) : is the controller output.

– Kc : is the controller gain.

– e(t) : is the error.

– Td : is the derivative time constant.

– de : is the differential change in error.

– dt : is the differential change in time.

– Ti : is the integral time.

– u(t0) : is the initial value of controller.

As shown in the above equation, PID control is the combination of all three types of control. In this equation, the
gain is multiplied with the integral and derivative terms, along with the proportional term, because in PID combination
control, the gain affects the I and D actions as well. Because of the use of derivative control, PID control cannot be used in
processes where there is a lot of noise, since the noise would interfere with the predictive, feedforward aspect. However,
PID control is used when the process requires no offset and a fast response time.

The following figure shows the bode plot of a PID controller.
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Figure 3.12: Bode plot of a PID controller.

Remarque: For the graphs shown above, the values of each constant is 1.

3.5.7 Summary tables:
The following tables show a summary of the advantages and disadvantages of each type of controls P,I, and D.

A guide for the typical uses of the various controllers.
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Table 3.1: Advantages and disadvantages of controls

P I D
Advantages Reduce steady-state error,

thus make the system more
stable, making the slow

response of the overdamped
system faster

Known as reset controllers,
they can set the controlled
variable back the set point.

Improve the transient
response of the system

Disadvantages Cause some offsets,
increase the maximum

overshot

Make the system unstable
due to slow respond towards

the produced error

Slow response time

Table 3.2: Estimate and uses of controls

Controller Estimates When to use
P Present Systems with slow response, systems tolerant to offset
I Back Not often used alone, as it is slow
D Forward Not used alone because of noise sensitivity, but, they minimize the

transient errors like overshoot and oscillations
PI Present and back Reduce both the rise time and the steady state errors
PD Present and forward Reduce the transients like rise time, overshoot, and oscillations
PID All of the time Often used, most robust

3.5.8 General Guidelines for Designing a PID Controller
When designing a PID controller for a given system, general guidelines to obtain the desired response are as follows:

• Obtain the transient response of the closed-loop transfer function and determine what needs to be improved.

• Insert the proportional controller, Design the value of ’Kc’ through Routh-Hurwitz or suitable software.

• Add an integral part to reduce steady-state error.

• Add the derivative part to increase damping (damping should be between 0.6-0.9). The derivative part will reduce
overshoots and transient time.

Remark: it is worth mentioning that the above steps of tuning parameters (designing a control system) are general
guidelines. There are no fixed steps for designing controllers.

3.6 Conclusion
This chapter addressed the concept of fault tolerant control providing a description of fault types based on location and

induced effects on the system performance, and how to inject faults in both nonlinear and linear systems.

It also goes over the estimation approach for both states and faults, in the process, it introduces observers in control
systems, with the UIO and Luenberger observer taken as case studies.

Finally, it discusses feedback control, for which PID controllers are described, with emphasis on the advantages,
disadvantages, and typical applications of the various types of PID controllers.
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Chapter 4

Simulation and results

4.1 Introduction
This chapter is devoted to an application of the methodologies presented in the previous chapters on a multivariate

nonlinear model of a hydraulic process experimental, called DTS-200 station shown in Fig 4.1.

Figure 4.1: Station DTS-200

System description:

The system consists of three interconnected cylindrical tanks, two pumps, five valves, pipes, a water reservoir in the
bottom denoted subscript T0, measurement of liquid levels and other elements. The pumps pump water from the bottom
reservoir to the top of the left and right tanks. A simplified scheme of the system is shown in Fig 4.2. The pump P1
controls the inflow to tank T1 while the pump P2 controls the liquid inflow to tank T2. There is no pump connected to the
middle tank T3. The characteristic of the flow between tank T1 and tank T3 can be affected by valve V1, flow between tanks
T3 and T2 can be affected by valve V2 and the outflow of tank T2 can be affected by valve V3. The system also provides the
capability of simulating leakage from individual tanks by opening the valves Vl1 and Vl2.
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Figure 4.2: Block diagram of the hydraulic system

With:

– T0 : buffer tank.

– Ti : tank i.

– Pi : feeding pump of tank i.

– hi : water level in tank i[m].

– Vli : leakage valve between tank i and buffer tank.

– Vi j : communication valve between tank i and tank j.

– µi j : viscosity coefficient of valve of communication between Tank i and Tank j.

– qi : rate of flow of pump i.

– qli : leakage flow of valve Vli.

– qi j : circulating flow of the valve of communication Vi j.

– S : cylindrical tank cross section [m2].

– Ss : cross section of communication valves and leakage valves [m2].

4.2 Mathematical model of the system
As part of our application, the configuration of the schematized process in Fig 4.3 is chosen. The latter allows to work

with a device made up of three tanks, the flow of water out of the cylindrical tanks into the buffer tank will be provided
by the outlet located at the end of tank T2, which requires the complete opening of the communication valves V13, V32
and V20, and the complete closing of leakage valves Vl1 and Vl2. The three tanks are cylinders of revolution, of section
S = 0.0154 m2.

According to the fundamental law of conservation of matter, the variation in the volume of water stored by a unit of
time by a tank is given by the difference between the flow entering the tank and the outgoing flow of the latter, i.e.:[

Water accumulation
in Tank i

]
=

[
The flow of water

entering Tank i

]
−
[

The flow of water
leaving Tank i

]
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Figure 4.3: Synoptic diagram of the experimental configuration chosen for our application

– The mass balance in tank 1 gives the following relation:

S · dh1

dt
= q1 −q13 (4.1)

– The mass balance in tank 2 gives the following relation:

S · dh2

dt
= q2 +q32 −q20 (4.2)

– The mass balance in tank 3 gives the following relation:

S · dh3

dt
= q13 −q32 (4.3)

The following state representation results in a model analysis of the system represented by three nonlinear differential
equations of prime order:

∑NL =


S · dh1

dt = q1 −q13

S · dh2
dt = q2 +q32 −q20

S · dh3
dt = q13 −q32

(4.4)

Such that: the qi j parameters represent the flow of liquid from the ith tank to the jth {i, j ∈ (1,2,3), ∀i ̸= j}, and are
calculated using Torricelli’s law

The general formula is given by:

qi j = µi j.Sn.sign
(
hi(t)−h j(t)

)
.
√

2g|hi(t)−h j(t)| (4.5)

Where:

– µi j: is the outflow coefficient.

– sign
(
hi(t)−h j(t)

)
: is the sign of the argument hi(t)−h j(t).

– g: is the acceleration as a result of gravity.

For the output flow, it is represented as follows:

q20(t) = µ20.Sn.
√

2.g|h2(t)| (4.6)
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For this study the only case considered is when the level in the three tanks respects the following inequality h1 > h3 > h2.
The resulting equations to calculate the partial flows are as follows:

q13 = µ13.Sn.sign
(
h1(t)−h3(t)

)
.
√

|h1 −h3|
q32 = µ32.Sn.sign

(
h3(t)−h2(t)

)
.
√

|h3 −h2|
q20 = µ20.Sn.

√
|h2|

(4.7)

Replacing Eq 4.7 in Eq 4.4 yields the following mathematical model:
ḣ1 =

1
S [q1 −C13.

√
h1 −h3]

ḣ2 =
1
S [q2 +C32.

√
h3 −h2 −C20.

√
h20]

ḣ3 =
1
S [C13.

√
h1 −h3 −C32.

√
h3 −h2]

(4.8)

The equivalent state space representation can be obtained easily by making:{
hi → xi, ∀(i ∈ {1,2,3})
qi → u j, ∀( j ∈ {1,2})

ẋ1 =
1
S [u1 −C13.

√
x1 − x3)]

ẋ2 =
1
S [u2 +C32.

√
x3 − x2 − (C20.

√
x20]

ẋ3 =
1
S [C13.

√
x1 − x3 − (C32.

√
x3 − x2)]

(4.9)

{
y1 = x1

y2 = x2

Such that: the state vectors is x = [x1,x2,x3]
T = [h1,h2,h3]

T whereas the control vector u = [u1,u2]
T = [q1,q2]

T , the
output vector is represented by y1(t) and y2(t).

The parameters C13, C32 and C20 are constants, they are determined experimentally.

Variable Symbol Value Unit
Cross section of the Tank S 1.54−4 m2

Cross section of the pipes Sn 0.5×10−4 m2

Coefficients C13
C32
C20

1.01×10−4

0.99×10−4

1.32×10−4

Maximal flow q1max = q2max 10−4 m3/s
Maximal level himax(i = 1,2,3) 0.60 m

Table 4.1: Parameters of the system.

Simulating the system using Matlab Simulink software gives the following results:

0 0.5 1 1.5 2 2.5 3 3.5

Time (s) 104

20

25

30

35

40

45

50

L
e

v
e

l 
(c

m
)

X1

X2

X3

Figure 4.4: The behavior of the nonlinear system.
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Discussion:

As the figure shows, the system has a first order behavior, starting from the initial levels set previously and evolving
exponentially towards the the final values, the system passes by a transient state and finally set into a stead-state.

4.3 Linearization around an equilibrium point
The linearization process follows the steps explained in chapter 1.

First, a proper choice of the equilibrium point, and the control required to obtain it are demonstrated in the following
table:

Equilibrium point i=1 i=2 i=3
hi0 (m) 0.40 0.30 0.20
qi0(m3/s)×10−5 3.2200 2.7897

Table 4.2: Equilibrium point value.

The deviation variables for the systems are:

δx = x− x0


δx1 = x1 − x10

δx2 = x2 − x20

δx3 = x3 − x30

(4.10)

δx = u−u0

{
δu1 = u1 −u10

δu2 = u2 −u20
(4.11)

In order to do a Jacobian linearization, the states and output must be written in the form:

ẋ = f (x,u)

y = g(x,u)

The state ẋ is expended to three states, white the output y is expended to two outputs results in:
ẋ1 =

1
S [u1 −C13.

√
x1 − x3)] = f1(x,u, t)

ẋ2 =
1
S [u2 +C32.

√
x3 − x2 − (C20.

√
x20] = f2(x,u, t)

ẋ3 =
1
S [C13.

√
x1 − x3 − (C32.

√
x3 − x2)] = f3(x,u, t)

(4.12)

{
y1 = x1 = g1(x,u, t)
y2 = x2 = g2(x,u, t)δ ẋ1

δ ẋ2
δ ẋ3

=


∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3


x=x0u=u0

δx1
δx2
δx3

+


∂ f1
∂u1

∂ f1
∂u2

∂ f2
∂u1

∂ f2
∂u2

∂ f3
∂u1

∂ f3
∂u2

[δu1
δu2

]
(4.13)

[
δy1
δy2

]
=

[
∂g1
∂x1

∂g1
∂x2

∂g1
∂x3

∂g2
∂x1

∂g2
∂x2

∂g2
∂x3

]
x=x0u=u0

δx1
δx2
δx3

+[ ∂g1
∂u1

∂g1
∂u2

∂g2
∂u1

∂g2
∂u2

][
δu1
δu2

]
(4.14)

A =

−
C13

2S
√

x10−x30
0 C13

2S
√

x10−x30

0 − C32
2S

√
x30−x20

− C20
2S

√
x20

− C32
2S

√
x30−x20

C13
2S

√
x10−x30

C32
2S

√
x30−x20

− C13
2S

√
x10−x30

− C32
2S

√
x30−x20



B =

 1
S 0
0 1

S
0 0

 , C =

[
1 0 0
0 1 0

]
, D =

[
0 0
0 0

]
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• Numerical Application

Replacing with:

x = [x10,x20,x30]
T = [0.4,0.2,0.3]T and u = [u1,u2]

T = [3.2200,2.7897]T ×10−5

A =

−0.0105 0 0.0105
0 −0.0199 0.0102

0.0105 0.0102 −0.0207

 , B =

0.0065 0
0 0.0065
0 0


C =

[
1 0 0
0 1 0

]
, D =

[
0 0
0 0

]

Representing the state space in Simulink, such that it is connected to same input as the nonlinear system and the same
initial conditions are added to compares the outcomes:
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Figure 4.5: Linear system behavior with leaks

To test the accuracy of the linear system, a second operating point is chosen, such that it deviates from the original one
by 20%, thus, the new equilibrium point is Xe = [0.5,0.25,0.375]. Calculating the error between the linear system and
the nonlinear system for such deviation yields the following values:

ehi =


4.31% f or i = 1
2.86% f or i = 2
4.92% f or i = 3

The error resulting from the deviation between the nonlinear model and the linear model is:

ehi < 5%, f or i = {1,2,3}

The error between the nonlinear and the linear system is acceptable, therefore, it is safe to say that linear approximation
represents, accurately, the behavior of the nonlinear system around the chosen equilibrium point.

4.3.1 Transfer function matrix representation
The transfer function matrix is obtained using the following formula:

G(s) =
h(s)
q(s)

=C(sIn −A)−1B+D (4.15)
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Replacing the values of A,B,C, and D yields:

G(s) =

 64.94s2+2.633s+0.01989
s3+0.05101s2+0.000621s+1.031e−06

0.006943
s3+0.05101s2+0.000621s+1.031e−06

0.006943
s3+0.05101s2+0.000621s+1.031e−06

64.94s2+2.022s+0.006943
s3+0.05101s2+0.000621s+1.031e−06


4.3.2 Study of stability

To check for stability, it is mandatory first to verify is controlable and observable, the controlability and observability
matrices are:

Wc =

64.9351 0 −0.6789 0 0.0142 0.0069
0 64.9351 0 −1.2902 0.0069 0.0324
0 0 0.6789 0.6641 −0.0211 −0.0269



Wo =


1.0000 0 0

0 1.0000 0
−0.0105 0 0.0105

0 −0.0199 0.0102
0.0002 0.0001 −0.0003
0.0001 0.0005 −0.0004


Using Matlab to check, rank(Wc) = rank(Wo) = 3, thus, both the controlability and observability matrices are full rank,

the system is, therefore, controlable and observable, this means that the poles of the system are the eigenvalues of matrix
A.

Stability is an important concept is control engineering. For a system to be stable, all eigenvalues of the matrix A have
to be real strictly negative numbers.

det(λ In −A) =


λ1 =−0.0333
λ2 =−0.0158
λ3 =−0.0020

(4.16)

All the eigenvalues of the matrix A are real and have negative signs, therefore, the system is stable.

4.4 Interaction analysis using the RGA method
The RGA aims for finding the best pairing that corresponds to good controller performance. The steady-state gain that

is used in pairing analysis purpose is obtained from closed and open loop simulation of the process.

There exist two possible configurations:

1. The first possible configuration : [q1 - h1][q2 - h2]

2. The second possible configuration : [q1 - h2][q2 - h1]

Applying the RGA process explained previously in chapter 2 gives:

• The static gain matrix:

Ks = lim
s→0

G(s) =
[

1.9292 0.6734
0.6734 0.6734

]
• The inverse of the static gain matrix Ks:

K−1
s =

[
0.7963 −0.7963
−0.7963 2.2813

]

• The transpose of the matrix (Ks)
−1:

(K−1
s )T =

[
0.7963 −0.7963
−0.7963 2.2813

]
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• The relative gain matrix matrix:

RGA = Ks × [K−1
s ]T =

[
1.5363 −0.5363
−0.5363 1.5363

]

Knowing that each row corresponds to an output and each column corresponds to an input, and the fact that choosing
negative gain results in system instability, scanning the rows for columns containing the closest element to one such that
it is positive results in the following optimal configuration:{

q1 −→ h1

q2 −→ h2

4.5 Algebraic multi-variable control (decoupled)

4.5.1 Calculating the decoupler
For this case, the ideal decoupling is chosen. The open loop transfer function matrix has the following form:

G(s)D(s) = T (s) =
[

G11(s) 0
0 G22(s)

]
(4.17)

To obtain the decoupling matrix D(s) G−1(s) and M(s) are placed in Eq 4.18, thus:

D(s) = G−1(s)T (s)

=
1

G11(s)G22(s)−G12(s)G21(s)

[
G22(s)G11(s) −G12(s)G22(s)
−G21(s)G11(s) G11(s)G22(s)

] (4.18)

The numerical application yields transfer functions of the 1010. For a better analysis, the zero-pole cancellation using
the ’minreal’ function in Matlab is used to eliminate uncontrollable or unobservable states in state-space models, or cancel
pole-zero pairs in transfer functions or zero-pole-gain models. The resulting transfer function matrix has minimal order
and the same response characteristics as the original model, it allows the user to choose a certain degree of tolerance in
which if a straightforward search through the zeros and poles results in a pair within that tolerance, the pair is eliminated,
for this study an acceptable degree of tolerance is 0.00001. This reduction technique yields the following result:

D11(s)= s7+0.1273s6+0.006333s5+0.0001556s4+1.974e−06s3+1.247e−08s2+3.515e−11s+3.376e−14
s7+0.1273s6+0.006333s5+0.0001556s4+1.963e−06s3+1.188e−08s2+2.805e−11s+2.198e−14

D12(s)=− 0.0001069s5+1.028e−05s4+3.455e−07s3+4.779e−09s2+2.531e−11s+3.376e−14
s7+0.1273s6+0.006333s5+0.0001556s4+1.963e−06s3+1.188e−08s2+2.805e−11s+2.198e−14

D21(s)=− 0.0001069s5+8.835e−06s4+2.492e−07s3+2.765e−09s2+1.052e−11s+1.176e−14
s7+0.1273s6+0.006333s5+0.0001556s4+1.963e−06s3+1.188e−08s2+2.805e−11s+2.198e−14

D22(s)= s7+0.1273s6+0.006333s5+0.0001556s4+1.974e−06s3+1.247e−08s2+3.515e−11s+3.376e−14
s7+0.1273s6+0.006333s5+0.0001556s4+1.963e−06s3+1.188e−08s2+2.805e−11s+2.198e−14

4.5.2 Calculating the RGA matrix
To test the effectiveness of the ideal decoupling, the RGA method is used again for the new decoupled system. the

following result is obtained:

RGA =

[
1 0
0 1

]
Clearly, the test of the RGA shows that the new system does not include any coupling, thus, it is safe to say that the

system is ideally decoupled.

The transfer function matrix of the decoupled system is of form:

M(s) =
[

G11(s) 0
0 G22(s)

]
(4.19)
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4.6 Actuator disturbance and sensor noise

4.6.1 Actuator disturbance
Based on the fact that disturbance is a signal that represents unwanted inputs which affect the output thereby increase

the error, disturbance in the system can be modeled as an addition mass that flows out of the tanks
θT1

√
2gh1

θT2

√
2gh2

θT3

√
2gh3

Since the value of h3 is immeasurable for this case study, only leaks occurring in tanks T1 and T2 are considered.

In Simulink, it is possible to control the time of occurrence of such disturbances in order to fully observe their effect
on the behaviour of the system, the first disturbance occurs during the time interval [td11 = 5000; td12 = 10000], while the
second disturbance occurs in the following interval [td21 = 15000; td22 = 20000], also, the constants θ for both tanks are
set to a constant value:

θT1 = θT2 = 50%

For the nonlinear system, the disturbance is injected as a negative additional terms in the dynamic equations describing
the behavior of the system: 

ḣ1 =
1
S [q1 −C13.

√
h1 −h3)]−θT1

√
2gh1

ḣ2 =
1
S [q2 +C32.

√
h3 −h2 − (C20.

√
h20]−θT2

√
2gh2

ḣ3 =
1
S [C13.

√
h1 −h3 − (C32.

√
h3 −h2)]

(4.20)

For the linear system, another matrix, Ed , is introduced, this allows entering the faults correctly to the system. Since
they effect the system by reducing the level in each tank, the matrix Ed is entered with a minus sign, the state space
equations become

ẋ(t) = Ax(t)+Bu(t)−Edd(t)

y(t) =Cx(t)
(4.21)

Such that:

Ed =

1 0
0 1
0 0


Injecting the faults as previously explained gives the following graphs:
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Figure 4.6: Linear system behavior with leaks

There is an immediate disturbance in the system once the leaks are entered. Due to the flow of the liquid in a specific
direction (T1 99K T3 99K T2), the leak in tank T1 has more significant effect on the overall behaviour of the system compared
to that in tank T2. Moreover, the system returns back the original state once the leaks are over.
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4.6.2 Sensor noise
Sensor noise can be injected as a random variations of sensor output unrelated to variations in sensor input. For this

part white noise is added to the output signal, the system is then described as follows:

ẋ(t) = Ax(t)+Bu(t)−Edd(t)

y(t) =Cx(t)+Wn
(4.22)

Such that: Wn is a white noise signal characterized by:{
Mean(Wn) = 0
Var(Wn) = 1

Fig 4.7 illustrates the outputs along with the noisy output:

0 500 1000 1500 2000 2500 3000 3500

Time (s)

38

40

42

44

46

48

50

L
e

v
e

l 
(c

m
)

noisy y1

y1

a Sensor 1 noise.

0 500 1000 1500 2000 2500 3000 3500

Time (s)

19

20

21

22

23

24

25

26

L
e

v
e

l 
(s

)

Noisy y2

y2

b Sensor 2 noise.

Figure 4.7: Sensors noise.

4.7 State and faults estimation

4.7.1 Observer design
The aim of this part is to estimate with a high degree of accuracy the states of the system, due to the level of liquid in

tank (T3) being immeasurable. Also, designing an observer has a great advantages in decoupling the disturbances.

Let the system be defined by the following state space representation{
˙x(t) = Ax(t)+Bu(t)−Edd(t)

y(t) =Cx(t)
(4.23)

First, to check weather the the disturbance distribution matrix Ed is full column rank. Using MATLAB yields:
rank(Ed)=rank(C∗Ed)=2.

To design an unknown input observer for the system described by Eq 4.23, let the error; e(t), be defined as the difference
between the states x(t) and the estimations x̂(t). i.e:

e(t) = x(t)− x̂(t) (4.24)

This error must approach zero asymptotically regardless of the process of unknown inputs, d(t), in the system. Furthermore,
the structure for the full order UIO is given by the dynamic system:

ż(t) = Fobsz(t)+T Bu(t)+Ky(t)

x̂(t) = z(t)+Hy(t)
(4.25)

Such that:

– x̂: is the state estimate.

– z: is the state of full-order dynamic observer.
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– Fobs,T,K,H: are matrices to be designed for achieving the unknown input decoupling.

In order to achieve this decoupling we expend ė(t) to obtain:

ė(t) = (A−HCA−K1C)e(t)

+ [Fobs − (A−HCA−K1C)]z(t)

+ [K2 − (A−HCA−K1C]y(t)

+ [T − (I −HC)]Bu(t)

− (HC− I)Edd(t)

(4.26)

As previously explained,tThe following equations must hold:

0 = (HC− I)Ed (4.27)

T = I −HC (4.28)

Fobs = A−HCA−K1C (4.29)

K2 = FobsH (4.30)

To check the second existence condition which is (C,A1) is a detectable pair, where:

A1 = A−Ed [(CEd)
TCEd ]

−1(CEd)
TCA

This gives:

H = Ed [(CEd)
TCEd ]

−1(CEd)
T

T = I −HC

A1 = TA

H =

0.5 0.5
0.5 0.5
0 0

 , T =

 0.5 −0.5 0
−0.5 0.5 0

0 0 1.0

 , A1 =

−0.0052 0.0099 0.0001
0.0052 −0.0099 −0.0001
0.0105 0.0102 −0.0207


Next, the observability condition is checked, using Matlab: rank(obsv(A1,C) = 3.

Now, applying pole placement in order to place the observer poles at [−1,−0.03+ 0.003 j,−0.03− 0.003 j] , and get
the matrix K1.

K1 =

0.6864 0.4741
0.4385 0.3226
0.4968 0.3603


Finally, the observer Fobs and K matrices are computed:

Fobs = A1 −K1C

K = K1 +K2 = K1 +FobsH

Fobs =

−0.6916 −0.4642 0.0001
−0.4333 −0.3325 −0.0001
−0.4863 −0.3500 −0.0207

 , K =

0.1085 −0.1038
0.0556 −0.0603
0.0786 −0.0579


Fig 4.8 illustrates the estimation of the states via a UIO.
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Figure 4.8: Linear system behavior with leaks

In order to better analyze the results obtained, it is required to choose different initial conditions for the observer than
those of the linear system, this difference results in a slice error that rapidly fades away as the simulation progresses.

The following figures demonstrates clearly the error occurring at an early stage of the simulation, then, soon the states
of the linear system and the estimation of he observer are a total match.
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Figure 4.9: The error in the states between the linear system and the UIO.

4.7.2 Modeling faults
For this case, two type of faults are considered: actuator faults, and sensor faults. Different scenarios may be tested for

different combinations of faults:

1. Case 1: 2 actuator faults: denoted as fa1 and fa2; which are pumps faults. The state space representation of a
system with actuator faults is as follows:

ẋ(t) = Ax(t)+Bu(t)−Edd +Fa fa

y(t) =Cx(t)

The system can be converted into an augmented form, the new state-space form becomes:

ẋa = Aaxa +Bau−Dad

ya =Cax
(4.31)
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Such that:

xa =

[
x
fa

]
, fa =

[
fa1
fa2

]
, Fa = B, Aa =

[
A Fa

02×3 02×2

]
, Ba =

[
B

02×2

]
, Da =

[
−Ed
02×2

]
, Ca =

[
C 02×2

]

For the faults, the magnitude is chosen be 10% of the maximum actuator value 10−4 m3/s, thus, fa =

[
10×10−5

10×10−5

]
2. Case 2: 2 sensor faults: there exist two sensors to measure the level of liquid in tanks T1 and T2, thus, it is possible

to represent the faults as fs1 and fs2. The following augmented system results:

ẋa = Aaxa +Bau+Dad

ya =Cax
(4.32)

Such that:

xa =

[
x
fs

]
, fs =

[
fs1
fs2

]
, Aa =

[
A 03×2

02×3 02×2

]
, Ba =

[
B

02×2

]
, Da =

[
Ed

02×2

]
, Ca =

[
C Fs

]
, Fs = I2×2

For the faults we chose the values to be as follows:

fs =

[
0,02
0.01

]

3. Case 3: faults in actuator 1 and sensor 1: the new system becomes as follows:

ẋ = Ax+Bu−Edd +b1 fa1

y =Cx+Fs1 fs1
(4.33)

Writing the system in augmented form yields:

ẋa = Aaxa +Bau−Dad

ya =Cax
(4.34)

Such that:

xa =

[
x
f

]
, f =

[
fa1
fs1

]
, B =

[
b1 b2

]
, Fs1 =

[
1
0

]
, Aa =

[
A b1 03×1

02×3 02×1 02×1

]

Ba =

 B
01×2
01×2

 , Da =

[
Ed

02×2

]
, Ca =

[
C 02×1 Fs1

]
4. Case 4: faults in actuator 2 and sensor 2: the new augmented system becomes as follows:

ẋa = Aaxa +Bau−Dad

ya =Cax
(4.35)

Such that:

xa =

[
x
f

]
, f =

[
fa2
fs2

]
, B =

[
b1 b2

]
, Fs2 =

[
0
1

]
, Aa =

[
A 03×1 b2

02×3 02×1 02×1

]

Ba =

 B
01×2
01×2

 , Da =

[
Ed

02×2

]
, Ca =

[
C 02×1 Fs2

]
For the estimation of faults, the Luenberger observer is used, it is described by the following mathematical approach:{

ˆ̇xa = Aax̂a +Bau−Dad +L(ya − ŷa)

ŷa =Cax̂a
(4.36)
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In order to obtain the matrix L, let the error, ea, be the difference between x and x̂. The error dynamics, ê(t), is given
by the following formula:

ea = xa − x̂a = (Aa −LaCa)ea (4.37)

Using the place function in Matlab to set the poles position as follows:

pi(i = 1,2,3,4,5) = {−0.03+0.03 j,−0.03−0.03 j,−0.4,−0.4,−0.5}

The estimation of faults is illustrated in the following graphs, in order to successfully evaluate the accuracy of the
estimation, the standard deviation is used. Such that:{

|e|= |x− x̂|
σ = |e|2

(4.38)

• Actuator faults:

The first actuator fault is injected at time t = 5000s for a period of time of Tf a1 = 5000s, the fault and its estimation
are illustrated in Fig 4.10.
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Figure 4.10: Actuator 1 fault and its estimation via Luenberger observer.

Now the error square graph as a function of time is:
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Figure 4.11: Standard deviation of actuator 1 fault.

The second actuator fault is injected at time t = 2000s for a period of time of Tf a2 = 10000s, the fault and its
estimation are illustrated in Fig 4.12.
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Figure 4.12: Actuator 2 fault and its estimation via Luenberger observer.
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Now the standard deviation graph as a function of time is:
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Figure 4.13: Standard deviation of actuator 2 fault.

• Sensor faults:

The first sensor fault is injected at time t = 2000s for a period of time of Tf s1 = 10000s, the fault and its estimation
are illustrated in Fig 4.14.
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Figure 4.14: Sensor 1 fault and its estimation via Luenberger observer.

Now the standard deviation graph as a function of time is:
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Figure 4.15: Standard deviation of sensor 1 fault.

The second sensor fault is injected at time t = 3000s for a period of time of Tf s2 = 10000s, the fault and its
estimation are illustrated in Fig 4.16.
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Figure 4.16: Sensor 2 fault and its estimation via Luenberger observer.

Now the standard deviation graph as a function of time is:
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Figure 4.17: Standard deviation of Sensor 2 fault.

Remarque: In order to have a better visualization, the faults are simulated separately. The previously mention scenarios
are tested, however, successfully.

The graphs, as well as the standard deviation, clearly show that the Luenberger observer was able to estimate simultaneously
actuator and sensor faults, the observer is designed for a linear model. Small size examples have illustrated the efficiency
of the proposed approach for constant faults.

Random faults:

For the following part, let’s consider a random sensor fault generated by the random number generator in Simulink.
The fault is injected in sensor 2 at time t = 1000s for a period of Tr = 14000s.

The estimation using the Luenberger observer gave the following graphs:
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Figure 4.18: Random sensor fault estimation via Luenberger observer.

The standard deviation graphs of the previous estimation is:
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Figure 4.19: Standard deviation for random sensor fault.

Remark: the error graph for all faults is zoomed for a better visualization, the magnitude of the spics is relatively small
and can be neglected.

4.8 Regulation and tracking responses

4.8.1 Regulation mode response
Designing a dynamic feedback controller for a given control system such that the output of the resulting closed-loop

system tracks (i.e. converges to) a predefined reference signal is an important feedback synthesis problem. This problem
is known as the servo problem.

Parameter Value
hd (m) [0.40, 0.20, 0.30]
IC (m) [-0.1000, -0.0500, -0.0750]

Table 4.3: Regulation mode parameters.

Using the pole placement approach, the poles are set as follows: [−0.05,−0.02+ 0.01 j,−0.02− 0.01 j], yields the
following gain for the controller:

K = 10−3 ×
[

0.3676 −0.2362 0.2366
−0.2362 0.2329 0.2315

]
Fig 4.20 illustrates the simulink representation of the regulation mode.

Figure 4.20: Simulink representation of regulation mode.

The regulated system must, as is well known, follow the evolution of the setpoint with a certain level of precision and
more or less quickly. In order to address this issue, we will monitor the system’s responses to setpoint steps, the obtained
results are as follow:

Clearly, the regulation mode yields good results in terms of following the evolution of a setpoint.
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4.8.2 Tracking mode response
For the tracking mode, a PI controller is used. The controller is also simulated using a prespecified tracking reference

signal. Mathematically, the previous statement can be expressed in in an equation form as follows:

lim
x→−∞

[y(t)− r(t)] = 0 (4.39)

By augmenting the state space system as shown in the following equation, integral action will be imparted onto the
loop

Aaug =

[
A 03×2
−C 02×2

]
, Baug =

[
B

02×2

]
The A matrix must remain square, so from inspection it can be seen that the effect of this augmentation is the addition

of a number of poles at the origin equal to the number of outputs.

The following tables shows the different parameter required for the racking mode.

Parameter Value
hd (m) [0.5000, 0.2500, 0.3750]
IC (m) [0.40, 0.20, 0.30]

Table 4.4: Tracking mode parameters.

Using the pole placement approach, the poles are set as follows: [−0.05,−0.025,−0.04,−0.06,−0.06], this yields the
following gain for the controller:

Kp =

[
0.0015 0.0001 −0.0000
0.0001 0.0013 −0.0000

]
, Ki = 10−4 ×

[
0.4722 0.0961
0.0918 0.4558

]
Fig 4.21 Simulink representation of the tracking mode

Figure 4.21: Simulink representation of tracking mode.

Figure 4.22 shows the simulated tracking response of the controller.
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Figure 4.22: System behavior in tracking mode.
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4.9. Conclusion Chapter 4. Simulation and results

Clearly, the tracking mode provides good tracking for the system. mainly reducing the step time for tank T1 from 2300s
to 150s, for tank T2, the setting time is reduced from 3000s to 600. Consequently, the setting time of tank T3 is reduced
from 3500s to 500s.

The first deviation in the level of tank T1 represents the first actuator fault, as can be seen, the fault has a minimum
effect on tank T1 and no noticeable effect on tank T2. Similarly, the first deviation in the level of tank T2 has no effect on
T1. The same remarks are noticed for when injecting sensor faults.

It is safe to say the FTC was successfully applied to minimize the effect of the injected faults on the system, and the
system is ideally decoupled where the faults in tank T1 have no effect on tank T2.

4.9 Conclusion
In this chapter, the methodology of the multiloop control of multivariable systems was highlighted, for a hydraulic

experimental station with three tanks called DTS-200, the methods developed in the earlier chapters were used.

First, on the basis of a priori model knowledge, the process was described before using non-linear differential equations
to model its dynamics.

The characteristics of the station, including stability, and interaction analysis, were then the subject of a study. By using
the latter, it was possible to select the best control configuration while still ensuring minimal interaction and asymptotic
stability.

Rejecting disturbance and noise is a crucial process in the analysis of a control system, for that disturbance in the form
of tank leakage and noise in the form of sensor false readings were injected into the system, and successfully decoupled
using well designed observers, these laters have another key rule in the analysis, which estimating both states and faults,
for this case abrupt actuator and sensor faults are injected in various scenarios to text the functionality of the observers,
moreover, a random sensor fault is injected, and well estimated with a small error percentage.

Finally, the regulation mode and tracking mode responses are obtained, from the simulation, it is clear that the regulated
system responds more quickly and without overshoot, also, it is clear that the system becomes less sensitive to the
disturbance and faults.
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General Conclusion

The work presented in this thesis falls under the category of linear control of multivariable systems. It primarily focuses
on the multi-loop control technique. The work’s main goal is to propose a methodological approach for synthesis of a
multi-loop control system for a multivariable system with at least one suitable control configuration.

First, the project begins with providing generalities on nonlinear multivariable systems and their characteristics.

Next, it covers the coupling phenomena in multivariable systems and how it effects the systems performance, in the
same scope, it offers a solution for the problem in the form of interactions measurement techniques and decoupling
algorithms

Following that, the key concepts of fault tolerance control and estimation for both states and faults, as well as the
feedback control technique for controller design are presented.

Finally, in order to test the previously discussed techniques, chapter 4 covers an application for level control in a
hydraulic system with three tanks. The simulation allowed us to illustrate the steps of the distributed control, namely the
choice of the better control configuration by exploiting the RGA method, and the synthesis of monovariable correctors
using the dominant pole compensation method. The simulation carried out have demonstrated the advantages of the
multi-loop control, since tracking and disturbance rejection have been ensured.

In light of the findings, it is possible to conclude that multi-loop control adapts well to the control of a multivariable
system when a weakly interactive command configuration is used.

The findings of this thesis are very encouraging and provide interesting avenues for future research. Furthermore, it is
important to take into consideration that the proposed technique for synthesis of a multi-loop control system was created
for systems with at least one weakly interactive command configuration.

This thesis’ methodology showed that the proposed technique for the synthesis of a multi-loop control system has been
developed for systems that have at least one command configuration weakly interactive. The methodology developed
should be able to be extended to the case of systems that do not present a control configuration. Adequate, as well as for
non-square multivariate systems.
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