REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'enseignement Supérieur et de la Recherche Scientifique

Université M'Hamed Bougara-Boumerdes Faculté des Hydrocarbures et de la Chimie

Département Transport et Equipements des Hydrocarbures

Domaine: Sciences et Technologies

Filière: Hydrocarbure

Option : Génie mécanique : Transport et distribution des hydrocarbures

Mémoire de projet de fin d'études en vue de l'obtention du Diplôme de Master

Présenté par :

BEN MESSAI Mortada et DOUAIDI Riad

THEME

Planification optimale du pompage multiproduits (brut- Condensat) sur la ligne OB1

Soutenu publiquement le 02/07/2023

Devant le jury:

YOUNSI Karim

MENAA Abdennour

BOUHAFS Smail

TIKOBAINI Mourad

UMBB

Encadrant

UMBB

Examinateur

UMBB

Examinateur

UMBB

Examinateur

Boumerdes 2023

Remerciments

Nous tenons tout d'abord à remercier **Dieu, le tout puissant,** qui nous a donné la force et l'aide pour réaliser ce modeste travail.

Nous tenons ainsi à remercier particulièrement notre promoteur **Mr Karim YOUNGI**,

Pour son encadrement d'une rare précision, ces conseils toujours Très justes et

Pour son soutien tant scientifique qu'humain au cours de la réalisation de ce

Mémoire.

Nos sincères reconnaissances aux enseignants du département **Transport et équipements des hydrocarbures.**

Nous tenons aussi à associer ce travail à **nos familles,** à qui nous le dédions. Sans leur présence et leurs encouragements permanents, on n'aurait jamais atteint nos objectifs.

Enfin nous remercions tous ceux qui ont contribué de pré ou de loin à l'élaboration de ce modeste travail, qu'ils trouvent ici l'expression de notre profonde gratitude et respect.

Mortada & Riad

A mes chers parents Ramdane & Sabah bien-aimés,

Je les remercie pour leurs sacrifices, leur amour conditionnel et leur soutien financier et moral Leur présence et leurs efforts constants dans ma vie sont des trésors précieux. Je leur souhaite une vie longue et en bonne santé, et je les aire plus que tout.

A mon adorable fiancée "ma princesse" -Raouya-

Je souhaîte exprimer tout mon amour et ma tendresse envers elle. Sa présence dans ma vie apporte une joie immense et un lien indéfectible. Je serai toujours là pour la soutenir, l'encourager et la protéger. Mon âme bien-aimée, tu es une source infinie de bonheur et je suis reconnaissant de t'avoir dans ma vie. Je t'aime énormément.

A mes frères Hana, Maroua et Bachir bien aimés,

Bien que nous puissions avoir des différences d'opinions et de perspectives, je tiens à leur dire que je les aime infiniment. Notre lien fraternel est plus fort que nos divergences, et je serai toujours là pour eux jusqu'à la fin.

A ma petite princesse Rihab

Tu es une source infinie de bonheur et je suis reconnaissant de t'avoir dans ma vie, Sa présence dans ma vie apporte une joie immense et un lien indéfectible. Je serai toujours là pour la soutenir, l'encourager et la protéger.

À l'âme de la famille décédée, mon oncle "Naoui" et sa femme "Hafiza"

Que Dieu ait pitié d'eux et les laisse entrer dans son paradis spacieux.

A la famílle les BENMESSAI, les SELIM et les BENLOUAR

Je souhaite exprimer ma profonde gratitude et mon amour sincère envers chaque membre qui fait partie de notre famille. Votre soutien inébranlable, votre affection inconditionnelle et votre présence précieuse ont une empreinte sur ce que je suis aujourd'hui Je suis profondément reconnaissant d'avoir la chance d'appartenir à une famille aussi merveilleuse et aimante.

Mon amour pour vous tous est infini.

A tous mes précieux amis

Je tiens à exprimer toute ma gratitude et mon affection envers eux. Leur amitié précieuse et leur soutien inconditionnel ont enrichi ma vie de manière inestimable. Ensemble, nous avons partage des moments inoubliables, ri, pleure et grandi. Leur présence m'a apporté du réconfort et de la joie. Mes amis, je vous porte dans mon cœur et je suis reconnaissant(e) d'avoir la chance de vous avoir à mes côtes. Je vous aime profondément

A toute personne que je connais,

Dédicace

Je dédie cet ouvrage:

A ma douce maman,

Ma source de tendresse qui m'a toujours soutenue et donnée la patience pour que ce travail soit achevé

A mon cher père

Pour son encouragement et la confiance qu'il m'a accordé le long de mon parcours

A mes chers frères

Les mots ne suffisent guère pour exprimer l'attachement, l'amour et l'affection que je porte pour eux.

A ma famílle,

mes proches et à ceux qui me donnent de l'amour et de la vivacité.

A tous mes amís

Quí m'ont toujours encouragé, et à qui je souhaite plus de succès.

A tous ceux que j'aime

Résumé:

Ce travail a été réalisé conjointement avec la Direction Régional de Béjaia et le Département de Transport des hydrocarbures de la faculté des Hydrocarbures et de la Chimie – Boumerdes – Notre travail s'articule autour de deux parties : une partie théorique et une Partie pratique.

- La partie théorique est subdivisée en trois chapitres, dans le premier, on a présenté la direction TRC et le descriptif la ligne OB1, dans le deuxième on a étudié les modèle du calcul hydraulique d'un oléoduc, dans le troisième on a fait l'analyse du calcul hydraulique d'un pompage multi produits de la ligne OB1.
- La deuxième partie (Partie pratique) a été consacrée en premier lieu à l'analyse hydraulique de l'oléoduc OB1, le chapitre V a été concerné à l'analyse hydraulique et a l'optimisation du pompage multi produits du pipeline OB1 (l'application et les résultats), et en fin, on a terminé notre travail par une conclusion générale.

Abstract:

This work was carried out jointly with the Regional Directorate of Béjaia and the Department of Hydrocarbon Transport at the Faculty of Hydrocarbons and Chemistry – Boumerdes – Our work revolves around two parts: a theoretical part and a practical part.

- ➤ The theoretical part is divided into three chapters, in the first, we represented the TRC and described the OB1 line, in the second we studied the hydraulic calculation of an oil pipeline, in the third we made the analysis of hydraulic calculation of a multi-product pumping from the OB1 line.
- ➤ The second part (Practical part) devotes in the first place to the hydraulic analysis of the oil pipeline of the line OB1, the chapter V is concerned for the hydraulic analysis of pumping multi products OB1 (the application and the results), and in the end, we accomplish our work with a general conclusion

Définitions

Station de pompage : les stations de pompage sont situées à des intervalles réguliers le long de pipeline pour augmenter la pression (chute de pression à cause de perte par frottement) au niveau souhaité (pression d'aspiration de la prochaine station).

Vanne : est un dispositif destiné à contrôler (stopper ou modifier) le débit d'un fluide au niveau des canalisations, il existe plusieurs types selon la fonction (décharge, chasse, compensation, garde.

Raffinage : désigne l'ensemble des traitements et transformations visant à tirer du pétrole le maximum de produits à haute valeur commerciale.

GPL: est un mélange des hydrocarbures légers, stocké à état liquide et issu du raffinage du pétrole pour 40 % et de traitement du gaz naturel pour 60%. IL se compose essentiellement de propane et de butane. Le mélange peut contenir jusqu'à 0.5% de d'autres hydrocarbures légers tel que le butadiène.

GNL: gaz naturel de qualité commerciale condensé à l'état liquide.il des compose essentiellement de méthane mais comprend aussi jusqu'à 10% d'éthane et de petites quantités d'autres gaz (propane et butane). Le méthane devient liquide à une température de -161 °C à pression atmosphérique.

Pétrole brut : provient directement de l'exploitation d'un puits de pétrole à l'issue des traitements de dessablage, de décantage de l'eau, et éventuellement de séparation de la phase gazeuse à pression et température ambiantes. Il est mesuré en baril ou en m3.

Condensat : dits aussi « pentane plus (C5+) », ce nom désigne la fraction légère allant de pentane (C5H12) jusqu'à l'heptane (C7H16). Ils sont présents en solution gazeuse dans le gisement, et se condensent sous forme liquide à pression atmosphérique.

Gisement : ou un champ pétrolier, délimite une zone ou est enfouie une grande quantité de pétrole et ou une tentative pour l'en extraire peut être faite en creusant des puits. Il peut s'étendre sur plusieurs kilomètres, permettant d'avoir plusieurs puits sur un même champ.

Réservoirs tampons : se présentent généralement sous la forme d'un réservoir de grande capacité. En principe ils stockent l'énergie thermique qui n'est pas requise dans l'immédiat en vue d'une consommation ultérieure en fonction de la demande.

Turbopompe : une turbopompe est une pompe conçue pour augmenter la pression d'un liquide ou d'un gaz dans le but d'accroître la puissance ou les performances du moteur.

Trading et Shipping : ce sont des activités majeures prise en charge par chaque

E-commerce où le vendeur confie la marchandise à un transporteur afin qu'elle parvienne au client.

Pression maximal design : c'est cette pression maximale de design pour laquelle la conduite est réellement conçue, en régime permanent du réseau ou de la zone de pression, qui peut être atteinte dans une section de la canalisation en service, en tenant compte des fluctuations produites par un possible coup de bélier.

Cavitation : est un phénomène que l'on rencontre principalement dans les industries de l'hydraulique et de l'hydrodynamique. Il se manifeste par la formation de cavités de vapeur (bulle) à l'intérieur d'un liquide lorsque la pression locale diminue rapidement en dessous de la pression de vapeur du liquide.

Ecoulement gravitaire : est provoqué seulement par la seule pente du tuyau où le point désiré est à une hauteur suffisante pour que l'écoulement poursuive son chemin librement.

Effet venturi : un phénomène de la dynamique de fluide qui subit une dépression lorsqu'il est en écoulement là où la vitesse augmente, ou la section de la conduite se rétrécit (resserrement). Commissionning : est une démarche qui définit l'ensemble des tâches à mettre en oeuvre permettant d'atteindre un bon niveau de performance et créer des conditions nécessaires pour les maintenir pour une longue durée.

Cintrage : est un procédé mécanique de déformation d'un tube ou d'une barre, suivant un rayon et un angle avec une cintreuse.

Sator : est la partie stationnaire d'un moteur électrique qui va créer un champ magnétique, qui par interaction avec le champ magnétique rotorique produit le couple électromécanique

Rator : est la partie rotative du moteur, constituée d'un ensemble de bobines reliées à un collecteur rotatif qui permet de maintenir fixe la direction transversale de magnétisation du rotor lorsque celui-ci tourne.

Drainage : ensemble de procédés et opérations mis en œuvre pour faciliter l'écoulement et l'évacuation de l'eau en excès dans un sol trop humide.

Pipeline : tuyau, de différents diamètres, conçus pour le transport à grande distance de certains fluides, spécialement des carburants liquides tels que les hydrocarbures (oléoduc), et gaz naturel (gazoduc) etc.

Gaz naturel: gaz fossile, est un mélange gazeux d'hydrocarbures constitué principalement de méthane, mais comprenant toujours certaines quantités de d'autres alcanes supérieurs, et parfois un faible pourcentage de dioxyde de carbone, d'azote, de sulfure d'hydrogène ou d'hélium.

Electropompe : est une pompe qui fonctionne avec un moteur électrique.

Station portuaire : est une installation industrielle destinée pour les activités portuaires liées au chargement des navires ou transport des produits pétroliers vers les utilisateurs final (les Sommaire client). Elle est composée d'un ou plusieurs réservoirs qui peuvent être au-dessus du sol ou enterrés et un ensemble de vannes et de compteurs afin de décharger le pétrole

Sommaire

Introduction générale 1

CHAPITRE I : Présentation de la TRC Et Description de la ligne OB1

I.1.Sonatrach	2
I.1.1. Aperçue historique – SONATARCH	2
I.1.2. Activités de Sonatrach	2
I.1.2.1. Activité amont	2
I.1.2.2. Activité aval	3
I.1.2.3. Activité de commerce	3
I.1.2.4. Activité de transport par canalisation	3
I.1.3. Description du réseau de transport	4
I.2. La DRGB	5
I.2.1. Présentation de la DRGB	5
I.2.2. Description de la DRGB	6
I.2.2.1. Les bacs de stockage	6
I.2.2.2. Manifolds	7
I.2.2.3. Une gare racleur	7
I.2.2.4. Unités de pompage	7
I.2.2.5. La tour de contrôle	7
I.2.2.6. Port Pétrolier	8
I.2.3. Structure organisationnelle	9
I.3. Description de la ligne OB1	10
I.3.1. Caractéristiques	10
I.3.2. L'oléoduc OB1 24" / 22"	11
I.3.2.1. Le premier tronçon	11
I.3.2.1. Le deuxième tronçon	11
I.3.2.1. L'oléoduc OGI	11
I.3.3. Les stations	11
I.3.3.1. Terminal départ SP1	13
I.3.3.2. la station SPI Bis	14
I.3.3.3. la station SP2	14

I.3.3.4. La station SP3	15
I.3.3.5. Terminal arrivée	16
I.3.4. D'autres caractéristiques de fonctionnement	17
Charitan II a Dantin this are a calcul budanchi and diana diana	
<u>Chapitre II :</u> Partie théorique, calcul hydraulique d'un oléoduc	
Introduction	18
II.1. La canalisation	18
II.1.1. Diamètre et l'épaisseur du pipeline	18
II.1.1.1 L'épaisseur moyenne d'une conduite	18
II.1.1.2 Le diamètre intérieur pondéré d'une conduite	18
II.1.2. Pression maximale admissible de service (PMS)	19
II.2. Caractéristiques du produit transporté	20
II.2.1. La densité (d)	20
II.2.2. La viscosité (v)	20
II.3. Formules du calcul hydraulique	21
II.3.1. Débit vitesse d'écoulement	21
II.3.2. Nombre de Reynolds (Re)	22
II.3.3. Régime d'écoulement d'un fluide	22
II.3.4. Perte de charge	24
II.3.4.1. Perte de charge linéaire	24
II.3.4.2. Perte de charge locale (singulière Hs)	25
II.3.4.3. Perte de charge total (Ht)	25
II.3.5. Charge de refoulement total (Href)	26
II.3.6 Pression hydrostatique	26
II.4. Pente hydraulique (i)	26
II.5. Point de contrôle	27
II.6. Courbe caractéristique du réseau	28
II.7. Les pompes	28
II.7.1 Définition	28
II.7.2 Ossature et principe de fonctionnement d'une pompe centrifuge	29
II.7.3 Choix de type de pompe	30

II.7.4 Caractéristiques d'une pompe	30
II.7.5. Courbe caractéristique de la pompe	30
II.7.6. Rendement de la pompe (ηp)	31
II.7.7. Puissance	32
II.7.7.1. Puissance absorbée par la pompe (Pa)	32
II.7.7.2. Puissance exigée par le moteur ou la turbine	32
II.7.8 NPSH	32
II.7.8.1 NPSH requis	33
II.7.8.2 NPSH disponible	33
II.7.9. Assemblage des pompes	33
II.7.9.1. Assemblage en série	33
II.7.9.2. Assemblage en parallèle	34
II.7.10. La charge de refoulement de station	35
II.8. Point de fonctionnement	35
II.9. Méthode de régulation sur pipeline	36
II.9.1. La variation de vitesse de rotation	36
II.9.2. Nombre de pompe	38
11.5.2. Nombre de pompe	36
Chapitre III : Analyse hydraulique de l'oléoduc OB1	36
	39
Chapitre III : Analyse hydraulique de l'oléoduc OB1	
Chapitre III : Analyse hydraulique de l'oléoduc OB1 Introduction	39
Chapitre III: Analyse hydraulique de l'oléoduc OB1 Introduction III.1. SP1-Selatna	39 39
Chapitre III: Analyse hydraulique de l'oléoduc OB1 Introduction III.1. SP1-Selatna III.1.1. La pression de refoulement exigée	39 39 39
Chapitre III: Analyse hydraulique de l'oléoduc OB1 Introduction III.1. SP1-Selatna III.1.1. La pression de refoulement exigée III.1.1.1. Organigramme de calcul hydraulique	39 39 39 39
Chapitre III: Analyse hydraulique de l'oléoduc OB1 Introduction III.1. SP1-Selatna III.1.1. La pression de refoulement exigée III.1.1.1. Organigramme de calcul hydraulique III.1.2. Régime de fonctionnement	39 39 39 39 40
Chapitre III: Analyse hydraulique de l'oléoduc OB1 Introduction III.1. SP1-Selatna III.1.1. La pression de refoulement exigée III.1.1.1. Organigramme de calcul hydraulique III.1.2. Régime de fonctionnement III.1.3. Calcul de perte de charge dans les lignes	39 39 39 40 42
Chapitre III: Analyse hydraulique de l'oléoduc OB1 Introduction III.1. SP1-Selatna III.1.1. La pression de refoulement exigée III.1.1.1. Organigramme de calcul hydraulique III.1.1.2. Régime de fonctionnement III.1.1.3. Calcul de perte de charge dans les lignes III.1.1.4. Calcul de pression exigée	39 39 39 40 42 43
Chapitre III: Analyse hydraulique de l'oléoduc OB1 Introduction III.1. SP1-Selatna III.1.1. La pression de refoulement exigée III.1.1.1. Organigramme de calcul hydraulique III.1.1.2. Régime de fonctionnement III.1.1.3. Calcul de perte de charge dans les lignes III.1.1.4. Calcul de pression exigée III.1.2. La pente hydraulique	39 39 39 40 42 43
Chapitre III: Analyse hydraulique de l'oléoduc OB1 Introduction III.1. SP1-Selatna III.1.1. La pression de refoulement exigée III.1.1.1. Organigramme de calcul hydraulique III.1.2. Régime de fonctionnement III.1.3. Calcul de perte de charge dans les lignes III.1.4. Calcul de pression exigée III.1.2. La pente hydraulique III.1.3. Courbe caractéristique des conduite	39 39 39 40 42 43 43

III.1.4.4. Interprétation des résultats	53
III.1.4.5. Régulation de la vitesse de rotation	53
III.1.4.6. Nouveau point de fonctionnement après régulation	55
III.1.5. Rendement et calcul puissance	56
III.1.5.1. Interprétation des résultats	56
III.2. SP3-TMB	57
III.2.1. Données des calculs	57
III.2.2. Régime de fonctionnement	57
III.2.3. Point de contrôle	58
III.2.4. Interprétation des résultats	59
<u>Chapitre IV:</u> Partie théorique, calcul hydraulique d'un pompage produits OB1	multi
Introduction	60
IV.1 Avantages du pompage multiproduits.	61
IV.1.1. Problèmes rencontrés lors du PMP.	61
IV.2. Formation et importance du contaminât.	62
IV.2.1 Mécanisme de formation.	62
IV.2.2 Importance du volume du contaminât	64
IV.3. Théorie de formation du contaminât.	64
IV.4. Formules pour la détermination du volume du contaminât.	65
IV.4.1 Formules des paramètres.	67
IV.5. Influence des différents facteurs sur le processus de formation	
du contaminât pendant l'écoulement turbulent.	69
IV.5.1 Influence du mélange primaire.	69
IV.5.2 Influence de la variation de la vitesse de pompage.	70
IV.5.3 Influence des viscosités et densité des produits.	70
IV.5.4 Cas d'existence de looping sur le tracé.	71
IV.5.5 Influence de la variation de la température des produits.	72
IV.5.6 Influence du régime d'écoulement.	72

51

III.1.4.3. Le point de fonctionnement

IV.6 Calcul hydraulique pendant le PMP.	75
IV.6.1 Diamètre de la conduite.	75
IV.6.2 Débit moyen de pompage.	75
IV.6.3 Nombre de jours de pompage.	76
IV.6.4 Nombre optimal de cycle de pompage.	76
IV.6.5 Durée de pompage d'un cycle.	77
IV.6.6 Durée de pompage d'un produit i au cours de l'année	77
IV.6.7 Capacité nécessaire du parc de stockage au TD.	77
IV.6.8 Capacité nécessaire du parc de stockage au TA.	77
IV.6.9 Capacité nécessaire du parc de stockage au point de livraison.	77
IV.6.10 Capacité nécessaire du pare de stockage au point de réception.	77
IV.6.11 Volume total des parcs de stockage	77
IV.7. Réception du contaminât au TA	78
IV.7.1 Détection des interfaces.	78
IV.8. Calcul du volume du contaminât	79
IV.9. Contrôle du pompage successif.	83
IV.10. Méthode de réduction du volume du contaminât.	84
IV.10.1. Mesures préventives.	84
<u>Chapitre V :</u> Analyse hydraulique de pompage multi produits OB1	
Introduction	87
V.1. Données des tronçons entre les stations de pompage	92
V.2 Calcul des débits et vitesses	93
V.3 Calcul hydraulique du pipeline multi produit pour le choix de pompe	94
V.3.1 Interprétation	95
V.4 Calcul des débits réels pour chaque produit	95
V.4.1 Brut	95
V.4.2 Condensat	96
V.4.3. Interprétation	96
V.5. Nombre de jours de pompage pour chaque produit	98
V.5.1 Régulation de coefficient sommaire (a) de la caractéristiques des pompes	98

V.5.2.1 Brut	99
V.5.2.2 Condensat	100
V.5.3 Nouveaux nombre de jour de pompage pour chaque produit	102
V.6. Calcul du volume de contaminât	103
V.6.1 cas des limites symétriques	104
V.7 Calcul de la longueur du contaminât	105
V.8 Volume du contaminât en considérant le mélange primaire	106
V.9 Calcul de la capacité de stockage	107
<u>Chapitre VI</u> : Optimisation du nombre de cycle de pompage brut-Condensat	
sur le pipeline OB1 en tenant des capacités de stockage de Beni Mansour.	
VI.1. Contact brut condensat	108
VI.1.1 Détermination des arguments Z	108
VI.2. Détermination du nombre optimal d'un cycle de pompage	109
VI.3 Optimisation du nombre de cycle de pompage	109
VI.4 Optimisation des puissances installées.	111
VI.4.1 Cas d'un oléoduc (brut ou condensat).	111
VI.4.2 Cas d'un oléoduc (brut et condensat).	112
VI.5 Les contraintes d'optimisation de la ligne	117
VI.5.1 Cas de transit du brut	117
VI.5.2 Cas de transit du condensat	118
VI.6 Application par solveur Excel	118
VI.6.1. Optimisation par Solveur Excel	118
VI.6.2. Cellule cible	119
VI.6.3. Cellules variables	120
VI.6.4. Contraintes	120
VI.7. Application	121
VI.7.1. Détermination du volume du contaminât	121
VI .7. 2. Détermination de nombre de cycle optimale et la capacité de stockage à acquérir à Beni	100
Mansour	123

99

V.5.2 Calcul des nouveaux débits réel pour chaque produit

VI .7.3. Nombre optimal de cycle de pompage en fonction du différentiel des prix entre brut et	
condensat et la demande de la raffinerie d'Alger	128
VI .7.4. Détermination de la puissance lors du passage du brut	133
VI .7.5. Détermination de la variation de la puissance lors du passage du condensat	135
Conclusion générale	131
Références bibliographiques	
Annexe	

Liste des figures

CHAPITRE I : Présentation de la TRC Et Description de la ligne OB1

Figure I.1: Exploitation des gisements.	3
Figure I.2: Commerce par voie marine	3
Figure I.3: Canalisation aérienne.	4
Figure I.4 : Carte du réseau de transport Algérien	5
Figure I.5: La Direction Régionale de Bejaia	6
Figure I.6: Terminal nord et sud	7
Figure I.7 : Bac de stockage 4E1	7
Figure I.8 : Tour de contrôle	8
Figure I.9: Port Pétrolier	8
Figure I.10: Les épaisseurs et altitudes d'OB1	10
Figure I.11: Carte représentant la ligne OB1	12
Figure II.1: Types des régimes d'écoulement	24
Figure II.2: Pente hydraulique	27
Figure II.3 : Représentation de point de contrôle	27
Figure II.4 : Courbe caractéristique du réseau	28
Figure II.5 : Schéma d'une pompe centrifuge	30
Figure II.6 : Courbe caractéristique de la pompe	31
Figure II.7: Le NPSH requis et disponible d'une pompe	33
Figure II.8: Assemblage des pompes en série	34
Figure II.9: Assemblage des pompes en parallèle	35
Figure II.10: Point de fonctionnement optimal de la pompe	36
Figure II.11: Courbe iso vitesse d'une pompe centrifuge	38

Chapitre III : Analyse hydraulique de l'oléoduc OB1

Figure III.1: Pente hydraulique de SP1-SP1bis	44
Figure III.2: Pente hydraulique de SP1Bis-SP2	45
Figure III.3: Pente hydraulique de SP2-SP3	45
Figure III.4: Pente hydraulique de SP3-Selatna	46
Figure III.5: Courbes caractéristiques de la conduite	46
Figure III.6 : Construction de la caractéristique sommaire de la station de SP1	50
Figure III.7: Construction de la caractéristique sommaire de la station de SP1Bis	50
Figure III.8 : Construction de la caractéristique sommaire de la station de SP2	51
Figure III.9 : Construction de la caractéristique sommaire de la station de SP3	51
Figure III.10: Représentation graphique du point de fonctionnement.	52
Figure III.11: Représentation graphique du nouveau point de fonctionnement	55
Figure III.12 : Détermination du point de contrôle de la section Selatna-TMB	58
produits OB1	
produits OB1	
	61
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation	61
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation Figure. IV.2. Débit de pompage successif	63
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation	63 63
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation Figure. IV.2. Débit de pompage successif	63
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation Figure. IV.2. Débit de pompage successif Figure.IV.3. Profil des vitesses dans le cas de régime laminaire et turbulent Figure. IV.4. Formation de contaminât	63 63
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation Figure. IV.2. Débit de pompage successif Figure.IV.3. Profil des vitesses dans le cas de régime laminaire et turbulent	63 63 64
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation Figure. IV.2. Débit de pompage successif Figure.IV.3. Profil des vitesses dans le cas de régime laminaire et turbulent Figure. IV.4. Formation de contaminât Figure. IV.5: Courbe de variation de la concentration	63 63 64 67
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation Figure. IV.2. Débit de pompage successif Figure.IV.3. Profil des vitesses dans le cas de régime laminaire et turbulent Figure. IV.4. Formation de contaminât Figure. IV.5: Courbe de variation de la concentration Figure IV.6. Cas de variation du diamètre de la conduite	63 63 64 67 73
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation Figure. IV.2. Débit de pompage successif Figure.IV.3. Profil des vitesses dans le cas de régime laminaire et turbulent Figure. IV.4. Formation de contaminât Figure. IV.5: Courbe de variation de la concentration Figure IV.6. Cas de variation du diamètre de la conduite Figure IV.7: Cas d'arrêt de pompage	63 63 64 67 73
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation Figure. IV.2. Débit de pompage successif Figure.IV.3. Profil des vitesses dans le cas de régime laminaire et turbulent Figure. IV.4. Formation de contaminât Figure. IV.5: Courbe de variation de la concentration Figure IV.6. Cas de variation du diamètre de la conduite Figure IV.7: Cas d'arrêt de pompage Figure IV.8: Cas d'existence de looping	63 63 64 67 73 73
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation Figure. IV.2. Débit de pompage successif Figure.IV.3. Profil des vitesses dans le cas de régime laminaire et turbulent Figure. IV.4. Formation de contaminât Figure. IV.5: Courbe de variation de la concentration Figure IV.6. Cas de variation du diamètre de la conduite Figure IV.7: Cas d'arrêt de pompage Figure IV.8: Cas d'existence de looping Figure IV.9: Détermination des débits de pompage	63 63 64 67 73 73 74
Figure IV.1. Séquence type de transport de plusieurs produits par canalisation Figure. IV.2. Débit de pompage successif Figure.IV.3. Profil des vitesses dans le cas de régime laminaire et turbulent Figure. IV.4. Formation de contaminât Figure. IV.5 : Courbe de variation de la concentration Figure IV.6. Cas de variation du diamètre de la conduite Figure IV.7 : Cas d'arrêt de pompage Figure IV.8 : Cas d'existence de looping Figure IV.9 : Détermination des débits de pompage Figure IV.9 : Réception du contaminât (a- cas où $C_{B3} \leq C_{B4}$)	63 63 64 67 73 73 74 74 80

Figure IV.13: Racleur à disque	86
Figure IV.15 : Racleur à coupelles	86
Figure IV.16: Racleur sphérique (boule)	86
Chapitre V : Analyse hydraulique de pompage multi produits OB1	
Figure V.1: les courbes caractéristiques de la conduite et des pompes	97
Figure V.2: les courbes caractéristiques de la conduite et des pompes	101
<u>Chapitre VI</u> : Optimisation du nombre de cycle de pompage brut-Condensat	
sur le pipeline OB1 en tenant des capacités de stockage de Beni Mansour.	
Figure VI.1 : la boîte de dialogue Paramètres du solveur	119
Figures VI.2: Représentation graphique de capacité de stockage acquérir a SBM	124
en fonction du volume de la colonne du condensat	
Figure VI.3 : Données et résultats des calculs	126
Figure VI.4 : Données et résultat des calculs	127
Figures VI.5: Représentation graphique du nombre optimal de cycle	
de pompage en fonction du différentiel des prix entre brut et condensat	128
Figure VI.6 : Données et résultats des calculs	129
Figure VI.7 : Données et résultats des calculs	130
Figure VI.8 : Données et résultats des calculs	131
Figure VI.9: Données et résultats des calculs	132
Figure VI.10 : Représentation graphique de la variation de la puissance lors	
du passage du brut	134
Figures VI.11: Représentation graphique de la variation de la puissance lors	
du passage du Condensat	136

Liste des tableaux

CHAPITRE I : Présentation de la TRC Et Description de la ligne OB1

Tableau I.1: Caractéristiques de l'OB1	10
Tableau I.2: Caractéristiques de SP1	13
Tableau I.3 : Caractéristiques de SP1Bis	14
Tableau I.4 : Caractéristiques de SP2	14
Tableau I.5: Caractéristiques du SP3	15
Tableau I.6 : Caractéristiques du terminal arrivé Bejaia.	16
Tableau I.7: Caractéristiques de chaque section	17
Chapitre II : Partie théorique, Calcul hydraulique d'un oléoduc	
Tableau II.1: les coefficients de sécurité selon le règlement Algérien	19
Tableau II.2: Régimes d'écoulements	22
Chapitre III : Analyse hydraulique de l'oléoduc OB1	
Tableau III.1 : Données du calcul	41
Tableau III.2 : Détermination du régime de fonctionnement	42
Tableau III.3: Calcul des pertes de charge totales	43
Tableau III.4 : Calcul de la pression de refoulement exigée	43
Tableau III.5: Calcul de la pente hydraulique	44
Tableau III.6: Points obtenues par la lecture graphique des courbes caractéristiques des	47
pompes	
Tableau III.7 : Détermination des coefficients par la méthode de la régression linéaire	48
Tableau III.8 : Coefficients des modèles mathématiques des caractéristiques des pompes	48
Tableau III.9 : Calcul de la hauteur manométrique	49
Tableau III.10 : Calcul de la charge refoulement	49

Tableau III.11: Débit correspond au point d'intersection	53
Tableau III.12: Régulation de la vitesse de rotation des pompes	54
Tableau III.13: Calcul de rendement et puissance de la pompe	56
Tableau III.14 : Données de base de la section (Selatna-TMB)	57
Tableau III.15 : Détermination du régime de fonctionnement (Selatna-TMB)	57
Tableau III.16 : Calcul de pente i (Selatna-TMB)	58
<u>Chapitre IV :</u> Partie théorique, calcul hydraulique d'un pompage	
multi produits OB1	
Tableau.IV.1: Coefficient qui dépend des concentrations	66
Tableau IV.2: Valeurs de $Z = f(C_B)$	68
Tableau IV.3: Concentrations admissible	79
Tableau IV.4: Paramètres de racleur à coupelles	85
<u>Chapitre V :</u> Analyse hydraulique de pompage multi produits OB1	
Tableau V.1: Données du calcul	92
Tableau V.2: Calcul des débits et vitesses	93
Tableau V.3 : Calcul hydraulique du pipeline multi produit pour le choix de pompe	94
Tableau V.4 : Coefficients des modèles mathématiques des caractéristiques des pompes	94
Tableau V.5 : Calcul des débits réels de brut	95
Tableau V.6: Calcul des débits réels de condensat	96
Tableau V.7: les débits et les charges de chaque produit	97
Tableau V.8: Nombre de jour de pompage de chaque produit	98
Tableau V.9: Coefficients du modèle mathématique de la caractéristique sommaire des SP	98
Tableau V.10: : Calcul du nouveau débit réel de brut	99
Tableau V.11: Calcul du nouveau débit réel de condensat	100
Tableau V.12: caractéristiques sommaires des stations et conduite	101
Tableau V.13: Nouveaux nombres de jours de pompage de chaque produit	102
Tableau V.14: Données du calcul	103

Tableau V.15: Résultats de calcul des divers paramètres menant au calcul du volume de		
contaminât		
Tableau V.16: Calcul du volume du contaminât cas des limites symétrique		
Tableau V.17 : Calcul longueur de contaminât		
Tableau V.18: Volume de contaminât en considérant le mélange primaire		
Tableau V.19 : Calcul de la capacité de stockage		
Tableau V.20: les Capacités au terminal Départ		
<u>Chapitre VI</u> : Optimisation du nombre de cycle de pompage brut-Condensat		
sur le pipeline OB1 en tenant des capacités de stockage de Beni Mansour.		
Tableau VI.1: les modèles d'optimisation	119	
Tableau VI.2: les variables du modèle d'optimisation		
Tableau VI.3: les contraintes du modèle d'optimisation		
Tableau VI.4: Résultat de calcul obtenus par le modèle d'optimisation		
Tableau VI.5: Résultat de calcul		
Tableau VI.6: Résultat de calcul		
Tableau VI.7: Données de calcul		
Tableau VI.8: Données de calcul		
Tableau VI.9 : Les variables de calcul		
Tableau VI.10: Résultats de calcul		
Tableau VI.11: Les contraintes de calcul	134	
Tableau VI.12: Données de calcul	135	
Tableau VI.13: Données de calcul	135	
Tableau VI.14: Les variables de calcul	135	
Tableau VI.15: Résultats de calcul	135	
Tableau VI.16: Les contraintes de calcul	135	

Liste des organigrammes

Organigramme I.2.3: Structure de la DRGB	9
Chapitre II : Partie théorique, Calcul hydraulique d'un oléoduc	
Organigramme II.1.1.1: Les étapes du calcul hydraulique.	40

CHAPITRE I : Présentation de la TRC Et Description de la ligne OB1

Introduction générale

La politique de valorisation des hydrocarbures connaît aujourd'hui une nouvelle impulsion par le biais du partenariat, c'est ainsi que les exportations de brut et de condensât connaîtront une nette évolution dans un futur proche. En conséquence, une rigidité d'exploitation est attendue, cette rigidité se manifestera au niveau de la chaîne pétrolière particulièrement au niveau des ports où d'éventuels goulots d'étranglement pourront survenir si les capacités des stockages s'avèrent insuffisantes. La répercussion sur les champs en développement entraînerait la limitation de la production.

Ceci impliquerait pour TRC un programme ambitieux en matière :

- De renouvellement et de réparation
- D'accroissement des capacités de transport
- D'amélioration des conditions d'exploitations du réseau

Ce réseau possède une importante capacité de transport et de stockage, celui-ci constitue une activité stratégique dont le cœur se trouve à Haoud El Hamra (HEH).

A partir du terminal départ HEH, on envoie deux produits, le pétrole et le condensat vers les deux terminaux arrivés du nord à travers "OG1" vers la raffinerie d'Alger et "OB1" vers le port Bejaia, il serait donc évident d'alterner l'envoi de ces deux produits vers leurs destinations en utilisant la technique de "pompage successif ", ce qui va créer des zones de contaminations dû au mélange dans le pipeline.

Notre but serait donc d'optimiser le fonctionnement de l'oléoduc "OBI" en jouant sur les envois de brut et de condensât d'une manière à minimiser les zones de contaminations, sous les diverses contraintes de demandes et de stockage dans les différentes stations et terminaux.

Les contraintes se résument essentiellement dans :

- La satisfaction des demandes en brut et condensat au niveau du terminal maritime de Bejaia, en respectant les délais des enlèvements.
- L'alimentation de la raffinerie d'Alger en brut.
- Les capacités de stockage aux différents maillons du pipe-line.
- D'assurer le bon fonctionnement de l'oléoduc.

CHAPITRE I

Présentation de la TRC Et Description de la ligne OB1

I.1- Sonatrach

I.1.1- Aperçue historique – SONATARCH

La Sonatrach est une « Société Nationale de Transport et de Commercialisation des Hydrocarbures » créer le 31 décembre 1963, qui représente un instrument d'intervention de l'état dans le secteur pétrolier aux cotés des compagnies françaises.

C'est la plus importante compagnie d'hydrocarbures en Algérie et en Afrique. Elle intervient dans l'exploration, la production, le transport par canalisations et la commercialisation des hydrocarbures et de leurs dérivés.

La volonté de l'Algérie, de récupérer ses richesses naturelles et d'assurer pleinement le contrôle de leurs exploitations, amena à nationaliser la production des hydrocarbures le 24 février 1971 par la signature d'une ordonnance définissant le cadre d'activité des sociétés étrangères en Algérie.

Au début des années 80, la restructuration de Sonatrach se mit en œuvre, cette étape figure parmi les plus importantes dans le développement de la société. D'autres étapes ont été suivi, toutes aussi importantes, notamment la réorganisation des structures de la société en activités, tout particulièrement les activités aval et amont.

Par ailleurs, après l'ouverture du marché et les nombreux contrats de partenariats avec des compagnies étrangères, américaines notamment, ainsi qu'à l'étranger, Sonatrach a pu asseoir son statut de compagnie pétrolière « solide ».

Aujourd'hui, elle est la première entreprise du continent africain. Elle est classée la 12ème parmi les compagnies pétrolières mondiales, le 2ème exportateur de GNL et de GPL et le 3ème exportateur du gaz naturel.

I.1.2- Activités de Sonatrach

I.1.2.1- Activité amont

Elle a pour but d'exploiter les gisements ainsi que le forage et la production des hydrocarbures.

Figure I.1: Exploitation des gisements

I.1.2.2- Activité aval

Elle prend en charge le développement et l'exploitation des complexes de liquéfaction de gaz naturel, de séparation de GPL, de raffinage et de gaz industrie.

I.1.2.3 - Activité de commerce

Elle a pour missions l'élaboration et l'application de la stratégie de Sonatrach en matière de commercialisation des hydrocarbures sur le marché intérieur et à l'international par les opérations de trading et de shipping. Commerce par voie marine

Figure I.2: Commerce par voie marine

I.1.2.4- Activité de transport par canalisation

Le transport par canalisation est le moyen le plus simple, le plus sûr et le plus écologique pour transporter le pétrole. L'activité prend en charge l'acheminement des hydrocarbures de pétrole brut, de gaz, de GPL et de condensat, à partir des zones de production vers les zones de

stockage, les complexes GNL et GPL, les raffineries, les ports pétroliers ainsi que vers les pays importateurs. Elle constitue le noyau de la chaine pétrolière du groupe Sonatrach.

Figure I.3 : Canalisation aérienne.

Dans les années 50, juste après la découverte du gisement de Hassi-Messaoud, deux types de transport d'hydrocarbures étaient employés par les entreprises en cette période : l'oléoduc qui reliait Hassi-Messaoud à Touggourt et les wagons-citernes de Touggourt au port de Skikda.

Peu à peu les sociétés pétrolières présentes en Algérie ont investi dans les oléoducs en réalisant l'OB1, canalisation qui relie Haoud-EL-Hamra à Bejaia, et qui l'alimente en pétrole brut. En 1961 le GZ1 a vu le jour ; il alimente le parc d'Arzew en gaz naturel.

Sonatrach repris par la suite la construction d'autres lignes en commençant par l'OZ1 canalisation qui relie HEH à Arzew. De nos jours Sonatrach dispose de plus de 11 000 km de canalisations de transport d'hydrocarbures.

I.1.3- Description du réseau de transport

Le réseau de transport tel qu'il existe actuellement, peut être décomposé en trois parties : cette distinction tient compte du procédé d'utilisation des canalisations.

En examinant ce réseau, on constate que les gisements se trouvent tout à fait au sud du pays et ils représentent le point de départ du réseau. Ensuite vient la région de HEH au centre du réseau, que l'on pourrait assimiler au nœud d'un graphe. Puis arrivent les stations portuaires qui sont la fin du parcours du produit.

Il y a donc:

- · Les terminaux sud.
- Le terminal de HEH (centre de Dispatching de l'Hydrocarbure liquide). Les terminaux nord.

Pour assurer l'activité de transport par canalisation des hydrocarbures liquides ou gazeux du sud vers le nord du pays, SONATRACH possède 5 régions opérationnelles :

- Région Transport Centre Bejaïa (RTC).
- Région Transport Sud de Haoud El- Hamra (RTS).
- Région Transport d'In Amenas (RTI).
- Région Transport Est -Skikda (RTE).
- Région Transport Ouest Arzew (RTO).

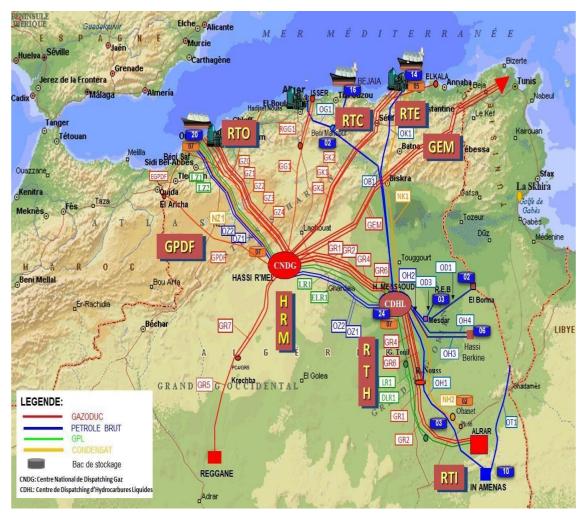


Figure I.4 : Carte du réseau de transport Algérien

I.2- La DRGB

I.2.1- Présentation de la DRGB

La Direction Régionale de Bejaïa, située à 2 km de la ville de Bejaïa, est l'une des 5 directions régionales de la Sonatrach, qui fait partie de la branche de transport des hydrocarbures par canalisation, du stockage et de la livraison des hydrocarbures liquide et

gazeux, elle est rattachée directement à la division exploitation de RTC. La DRGB s'occupe de la gestion des lignes suivantes:

- L' OB1 24" / 22": HEH Béjaia.
- L'oléoduc OG120": Béni Mansour vers la raffinerie d'Alger (Sidi Resine).
- Le gazoduc GG1 42": Hassi R'Mel -Bordj Menail.

Figure I.5: La Direction Régionale de Bejaia

I.2.2-Description de la DRGB

C'est le terminal marin de Bejaïa, il comporte :

I.2.2.1- Les bacs de stockage

I.2.2.1.a- Le terminal nord

- 12 bacs à toit flottants, d'une capacité de 35000 m³. Ils servent pour le stockage de deux produits brut et condensat.
- 1 bac à toit fixe, de 2900 m³ pour récupérer les purges de la gare racleur arrivée et les décharges des soupapes de sécurités.

I.2.2.1.b- Le terminal sud

Il est composé de 4 bacs de stockage, à toit flottants, d'une capacité de 50 000m³.

Figure I.6: Terminal nord et sud

Figure I.7: Bac de stockage 4E1

I.2.2.2- Manifolds

Il existe deux manifolds au terminal arrivé : un au nord et l'autre au sud. C'est un ensemble de canalisations et d'accessoires de vannes (Nord : 110 vannes, Sud : 56 vannes.)

Tous les collecteurs du manifold ont un diamètre égal à celui de la ligne de réception, d'aspiration et d'expédition.

I.2.2.3- Une gare racleur

Permet de récupérer les différents racleurs (outil de nettoyage) qui ont été introduit dans le pipeline pour le nettoyage (racleur ordinaire) et aussi la détection des éventuelles anomalies (racleur intelligent).

I.2.2.4- Unités de pompage

Le terminal est composé au total de 10 électropompes placées en parallèles :

Dans le terminal nord on trouve 07 pompes. Dans le terminal sud on trouve 03 pompes.

I.2.2.5- La tour de contrôle

La salle de contrôle est de forme elliptique, assure une surveillance complète sur le parc de stockage, communique avec les navires citernes et rassemble toutes les opérations de contrôle tel que :

- Pression et débit à l'arrivée de la ligne.
- Téléchargement des réservoirs avec affichage atomique.
- Pression dans les conduites de chargement.
- Installation des télécommandes de vannes.

Figure I.8 : Tour de contrôle

I.2.2.6- Port Pétrolier

Le port est situé à l'avant-port de Bejaia, il est composé de :

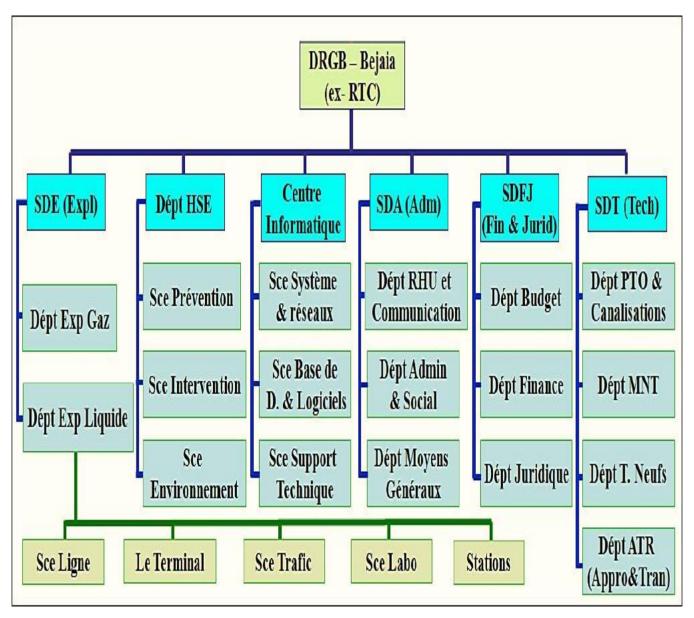

- -03 postes de chargement.
- -02 cuves ouvertes pour recevoir le ballast d'une capacité de 12000m³.
- -02 bassins de décantation continue.
- -02 groupes électropompes pour le réseau incendient.
- -01 groupe moto pompe pour le réseau incendie lors d'une coupure d'électricité.

Figure I.9: Port Pétrolier

I.2.3- Structure organisationnelle

Cet organigramme représente la forme structurelle de la société indiquant les différents départements qu'ils occupent au sein du siège de la DRGB:

Organigramme I.2.3: Structure de la DRGB

I.3- Description de la ligne OB1

I.3.1- Caractéristiques

Diamètre	24''/22''
Longueur	669,268 km
Épaisseurs	12,7 / 9,52 / 9,0 / 8,73 / 7,92 / 7,13 / 6,35 mm
Nuance d'acier	X42 et X52
Produit transportés	Pétrole Brut et Condensat
PMS design	83
Capacité design (MTA)	14
Mise en service	10novembre 1959

Tableau I.1: Caractéristiques de l'OB1

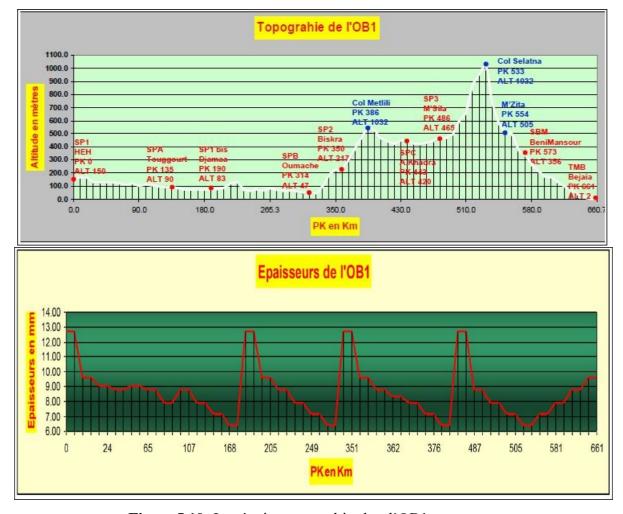


Figure I.10: Les épaisseurs et altitudes d'OB1

I.3.2- L'oléoduc OB1 24" / 22"

C'est le premier pipeline installé en Algérie. Il est fondé le 12 mars 1957 par la CFP et la SNREPAL, et a été mis en service en 1959 avec une capacité de transport de 14 MTA, d'une longueur de 669,268 Km reliant le terminal départ HEH avec le TMB.

Au PK 0 : de l'oléoduc OB1, l'altitude est de 152,477 m, il commence par décroître pour atteindre 45 m d'altitude au PK 316Km, ensuite il s'étend progressivement pour se hisser au point le plus culminant de la ligne appelé point de contrôle qui est caractérisé par une hauteur de 1029,831m au PK 542,519 Km et situé sur le col de SELATNA, c'est à partir de ce point qu'il décroît une deuxième fois pour atteindre le niveau le plus bas le TMB.

Le diamètre du pipeline varie sur deux tronçons à savoir :

I.3.2.1- Le premier tronçon:

de HEH au col SELATNA, le pipeline est de 24" de diamètre et d'une longueur de 542,519 km.

I.3.2.2- Le deuxième tronçon:

du SELATNA au TMB, le pipeline est de 22" de diamètre et d'une longueur de 126,749km sur ce tronçon l'écoulement devient gravitaire.

Le réseau de transport par canalisation de Bejaïa se compose aussi de :

I.3.2.3- L'oléoduc OG1

Mise en service en 1970, il existe un piquage sur la ligne OB1 à Beni Mansour au PK 542,519 km. Cet oléoduc assure le besoin de la raffinerie d'Alger en pétrole brut, il relie la station de Béni Mansour au terminal arrivé Sidi Resine avec une langueur totale de 144 Km, un diamètre de 20" et une capacité de transport de 4.1 MTA.

I.3.3- Les stations

La ligne HEH / Béjaia fonctionnait au départ seulement avec trois stations de pompage pour un débit maximum égal à 1800 m³/h. Plus tard, ils ont construit une quatrième station qui porte le nom SP1Bis à côté de Djamaa, pour permettre l'augmentation du débit jusqu'à 2200m³/h. Donc la ligne OB1 est constituée de quatre stations de pompage principales :

- SP1 HEH
- SP1 Bis Djamaa

SP2 Biskra et SP3 Msila

En 1967, les besoins du pétrole ont augmenté d'où l'obligation de la mise en ligne de quatre stations satellites implantées entre chaque deux station principale : SPA (Touggourt) SPB (Oumach) SPC (Oued El Fid) SPD (Beni Mansour) pour une autre augmentation du débit jusqu'à 2540 m3/h.

Actuellement, l'exploitation de la ligne se fait de 800 m³/h à 1800 m³/h et peut aller jusqu'à 2000 m³/h selon la demande du TMB.

Figure I.11: Carte représentant la ligne OB1

I.3.3.1- Terminal départ SP1

gtt	Situation géographique				
Situation geo					
		Nombre	5 EP		
		Constructeur	CEN		
TP : Turbopompe	Turbine ou	Туре	Asynchrone		
Tc: Turbocompresseur	moteur	Puissance CV	10 000		
EP : Electropompe MP: Motopompe		Nombre	5 pompes		
1 v11 • Iv1otopompe	Pompe	Constructeur	GUINARD		
		Туре	Centrifuge		
		Nombre	1		
Turboalternateur ou Groupe	Turboalternateur ou Groupe électrogène				
		Puissance KVA	250		
Consommation	Secours				

Tableau I.2: Caractéristiques de SP1

I.3.3.2- La station SP1 Bis

			Pk (km) : 189,83
Situation gé	ographique		Altitude (km) :152,47
		Nombre	2 TP
		Constructeur	NuovoPignone
TD . Trush on one o		Туре	Turbine à gaz
TP : Turbopompe Tc : Turbocompresseur	Turbine ou moteur	Puissance CV	13410.22 5 (10MW)
EP : Electropompe	Pompe ou compresseur	Nombre	2 pompes
MP: Motopompe		Constructeur	NuovoPignone
		Туре	Centrifuge
		Nombre	2 TA
		Constructeur	Solar
Turboalternateur ou Groupe	Puissance KVA	(1MW)	
Consom	Secours		

Tableau I.3 : Caractéristiques de SP1Bis

I.3.3.3- La station SP2

			Pk (km): 350,854
Situation géographique			Altitude (km) :220,11
		Nombre	5 EP
		Constructeur	ASP ROBICON
TP : Turbopompe	Turbine ou moteur	Туре	Asynchrone
Tc: Turbocompresseur		Puissance CV	2011.533 (1500KW)
EP : Electropompe		Nombre	5 pompes
MP: Motopompe	Pompe ou compresseur	Constructeur	GUINARD
	_	Туре	Centrifuge
		Nombre	1 GE
Turboalternateur ou Groupe électrog	gène	Constructeur	ROSSI GE
	Puissance KVA	630 KVA	
Consomma	Secours		

Tableau I.4 : Caractéristiques de SP2

I.3.3.4- La station SP3

Situation géograph	nique		Altitude (m): 3,329			
		Nombre	5 EP			
TP: Turbopompe		Constructeur	ASP ROBICON			
	Turbine ou	Type	Asynchrone			
	moteur -	Puissance CV	2145.635 (1600kw)			
Tc: Turbocompresseur EP: Electropompe		Nombre	5 pompes			
MP: Motopompe	Pompe ou compresseur	Constructeur	GUINARD			
		Type	Centrifuge			
		Nombre	1 GE			
Turboalternateur ou Group	Turboalternateur ou Groupe électrogène					
	Puissance KVA	630 KVA				
Consommation	Consommation					

Tableau I.5: Caractéristiques du SP3

Une pression minimale de 42 bars est nécessaire pour que le brut gravite le col de SELATNA dont l'altitude est de 1029,831 m. Les pompes sont disposées en parallèle pour garder une pression constante et augmenter le débit qui s'ajoute pour évacuer le maximum, puis il atteint le terminal par écoulement gravitaire. La colonne qui relie SP3 et le col de SELATNA doit être toujours pleine sinon on aura la création d'un vide par effet venturi qui va bousier le pipeline.

I.3.3.5- Terminal arrivée

Situation géograpl	nique		Altitude (m) : 220,11		
TP: Turbopompe Tc: Turbocompresseur		Nombre	10 EP		
	Turbine ou	Constructeur	BREGUET. CEN. BSH. SW		
	moteur	Туре	Asynchrone		
		Puissance CV	6137		
EP : Electropompe	Pompe ou compresseur	Nombre	10 pompes		
MP: Motopompe		Constructeur	GUINARD		
	I I	Туре	Centrifuge		
		Nombre	1 GE		
		Constructeur	PETBOW		
Turboalternateur ou Groupe	Puissance KVA	165			
Consommation	Secours				

Tableau I.6 : Caractéristiques du terminal arrivé Béjaia

.

- Toutes les stations contiennent des pompes boosters assemblées parallèlement en cas de faible pression qui permettent de fournir la pression d'admission aux pompes principales identiques dans chaque station afin de refouler le brut après.
- Sans oublier la présence des bacs tampons à chaque station dont le rôle est le stockage du brut en cas d'une panne au niveau du pipeline ou bien la surcharge en station de départ et arriver afin de ne pas arrêter la production.

I.3.4- D'autres caractéristiques de fonctionnement:

Section	Débit (m³/h)	N° de pompe principale	N° de pompe boosté	Position de pompe	Vitesse de rotation (tr/min)	
	800	01	01			
SP1- SP2	1100	02	02			
	1400	03	02		2950	
CD4 CD4D1	1800	02	03	En série		
SP1- SP1Bis	2200	02	04			
CD4D: CD4	1800	01	-		27.60	
SP1Bis- SP2	2200	01	-	En série	3760	
	800	01	01			
	1400	02	02			
SP2-SP3	1800	03	02	En série	2950	
	2200	04	02			
	800	01	01			
SP3-TMB	1400	02	02		3560	
	1800	03	02	En parallèle		
	2200	04	02			

Tableau I.7: Caractéristiques de chaque section

Chapitre II

Partie théorique Calcul hydraulique d'un oléoduc

Introduction

Le calcul hydraulique de l'OB1 va consister en la détermination des pertes d'énergie par frottement (linéaires et locales) au cours de transport, ainsi qu'un calcul de régime de fonctionnement des stations de pompage à savoir la définition des paramètres d'exploitation des pompes et leurs puissances.

II.1- La canalisation

II.1.1- Diamètre et épaisseur du pipeline

Le diamètre et l'épaisseur d'une canalisation sont déterminés en fonction du débit, du produit transporté (viscosité, densité), et la puissance de pompage nécessaire tout en respectant le budget de l'investissement qui doit être déterminé dans une étude technico-économique.

II.1.1.1- L'épaisseur moyenne d'une conduite

Il est déterminé par la formule suivante :

$$\delta \text{moy} = \frac{\sum_{i=1}^{n} (\text{Li} \times \delta i)}{L_{T}}$$
 (II. 1. 1. 1)

Smoy: Epaisseur moyenne de la conduite en (mm).

δi: Epaisseur d'un tronçon i en (mm).

Li: Longueur d'un tronçon i en (mm).

 L_T : Longueur totale en (mm).

II.1.1.2- Le diamètre intérieur pondéré d'une conduite

Il est déterminé par la formule suivante :

$$Dint = Dext - 2 \times \delta moy \qquad (II. 1. 1. 2)$$

Dint: Diamètre intérieur pondéré la conduite en (mm).

Dext: Diamètre extérieur la conduite en (mm).

Smoy: Epaisseur moyenne de la conduite en (mm).

II.1.2- Pression maximale admissible de service (PMS)

La pression maximale admissible de service (PMS) d'une canalisation peut être définie comme une pression maximale dans les conditions d'exploitation normale que le pipeline peut supporter sans provoquer aucune déformation de métal de la canalisation. Selon la norme Algérienne, la pression maximale admissible de service est définie avec la formule suivante :

$$PMS = \frac{2 \times \sigma \times \delta moy}{D_{ext}}$$
 (II. 1. 2. a)

PMS: Pression maximale admissible de la canalisation exprimée en (MPa).

δmoy: Epaisseur moyenne de la canalisation en (mm).

Dext: Diamètre extérieur nominal en (mm).

σ: Contrainte transversale maximale supportée par le métal.

Selon le règlement Algérien, on distingue les coefficients de sécurité comme suit :

Zones	Liquide		Gaz liquéfié	
	Ke	K_{r}	Ke	$K_{\rm r}$
I	0.675	0.47	0.6	0.36
II	0.75	0.59	0.72	0.55
III	0.82	0.65		

Tableau II.1: les coefficients de sécurité selon le règlement Algérien

-Les zones I, II et III sont définies comme suit :

- **Zone I**: Comprend les emplacements qui se trouve dans les agglomérations urbaines, ou bien près des locaux isolés à usage des habitations occupant du personnel à poste fixe ou fréquent par le publique.
- **Zone II :** Comprend les emplacements situés dans les zones rurales, les pâturages, les terrains d'agriculture, les forêts et les approches d'agglomérations.
- Zone III : Comprend les terrains inhabitées, Sahara et autres régions désertique et les parties du tracé qui sont situées à plus 1km des habitants.

-La pression maximale admissible de service (PMS) est fixée comme étant la pression normale d'exploitation majorée d'une tolérance de 10%.

$$PMS = 1.1 \times Ps \qquad (II. 1. 2. b)$$

PMS: Pression maximale admissible de service en (MPa).

Ps: Pression de service en (MPa).

II.2- Caractéristiques du produit transporté

Vu le grand nombre des constituants d'un produit chimique, il est très difficile d'établir une loi qui gère son comportement, alors il est indispensable d'étudier les propriétés physicochimiques de ce produit tel que : la couleur, l'odeur, l'indice de réfraction, la densité, la viscosité et la tension de vapeur. Couramment on utilise ces trois derniers paramètres sur lesquelles sont basés les contrats de vente.

II.2.1- La densité (d)

La densité du produit pétrolier est définie comme le rapport de la masse volumique du produit sur celle de l'eau à 4°C et une atmosphère. La densité du pétrole brute varie entre 0,7 et 0,9.

$$d = \frac{\rho}{\rho_{eau}} \tag{II. 2. 1. a}$$

d : Densité du produit.

ρ: Masse volumique du produit en (kg/m³).

 ρ_{equ} : Masse volumique de l'eau à 4°C (1000 kg/m3).

II.2.2- La viscosité (u)

La viscosité d'un fluide est due aux forces de frottement qui s'opposent au glissement des couches du fluide les unes sur les autres, les phénomènes dus à la viscosité du fluide ne se produisent que lorsque ce fluide est en mouvement.

On distingue deux types de viscosités :

La viscosité dynamique ou absolue (μ) en kg/m s , La viscosité cinématique (ν) en m²/s.

La relation entre la viscosité cinématique et la viscosité dynamique est donnée par la formule ci-dessous :

$$\upsilon = \frac{\mu}{\rho}$$
 (II. 2. 1. b)

v: Viscosité cinématique en (m^2/s) .

μ: Viscosité dynamique en (kg/m s).

 ρ : Masse volumique du produit en (kg/m³).

II.3- Formules du calcul hydraulique

Dans cette partie on va présenter les formules principales pour étudier l'écoulement dans les conduites ainsi que l'évaluation des paramètres qui leurs caractérisent.

II.3.1- Débit et vitesse d'écoulement (Q)

Il est donné d'habitude en million de tonnes par an (MTA) on considère que le pipeline fonctionne 330 jours /an et le reste (35 jours) consacré à la maintenance et la réparation.

$$Q = S \times \omega \qquad (II. 3. 1. a)$$

$$S = \frac{\pi \times Dint^2}{4}$$
 (II. 3. 1. b)

$$\omega = \frac{4 \times Q}{\pi \times Dint^2}$$
 (II. 3. 1. c)

 \mathbf{Q} : le débit de fonctionnement en (m^3/s) .

S: section interne de conduit en (m²).

ω: La vitesse moyenne de fluide en (m/s).

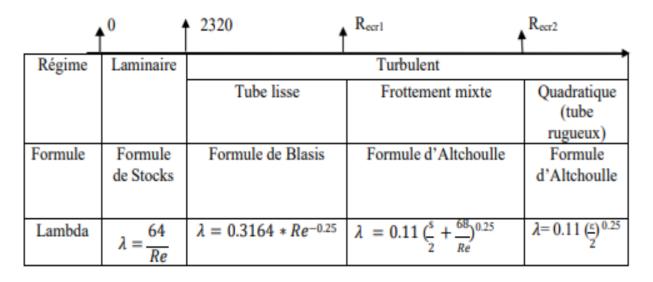
Dint : Diamètre intérieur de la conduite en (m).

II.3.2- Nombre de Reynolds (Re)

Il représente le rapport entre les forces d'inertie et les forces visqueuses, il caractérise le régime d'écoulement d'un fluide et selon sa valeur on distingue le type d'écoulement, on le définit de la manière suivante :

$$R_e = \frac{\omega \times \text{Dint}}{v} \qquad (II. 3. 2. a)$$

Re: Nombre de Reynolds.


ω: La vitesse moyenne de fluide en (m/s).

Dint : Diamètre intérieur de la conduite en (m).

v: Viscosité cinématique du produis en (m²/s).

II.3.3- Régime d'écoulement d'un fluide

Le régime d'écoulement d'un fluide est défini comme étant la façon de déplacement des particules d'un fluide dans une conduite. On distingue deux régimes d'écoulement :

Tableau II..2: Régimes d'écoulements

Avec:

$$\varepsilon = 2 \times \left(\frac{e}{D_{int}}\right)$$
 (II. 3. 3. a)

$$R_{e1} = \frac{59.5}{S_7^8}$$
 (II. 3. 3. b)

$$Re_2 = \frac{665 - (765 * (log(s)))}{S}$$
 (II. 3. 3. c)

 λ : Coefficient de perte de charge.

S: Rugosité relative.

e: Rugosité absolue en (mm).

2320, R_{ecr1} et R_{ecr2} : Sont les nombres de Reynolds critique qui séparent les zones de régimes d'écoulement.

• Régime laminaire

Quand l'écoulement se fait par filet parallèle c'est-à-dire que les lignes de courant sont toutes parallèles à l'axe de la conduite. Il se produit dans la canalisation ou la vitesse d'écoulement est faible.

• Régime turbulent

Apparait lorsqu'il y a une formation de tourbillons dans le liquide pour des vitesses d'écoulement élevées. Cet écoulement chaotique apparait au centre de la conduite alors que sur la périphérie on distingue une couche limite laminaire

On distingue trois zones:

- Zone A : Régime turbulent lisse.

- Zone B : Régime turbulent mixte.

- Zone C : Régime turbulent quadratique.

Le graphe ci-dessous représente les différents régimes d'écoulement en fonction de débit du fluide véhiculé :

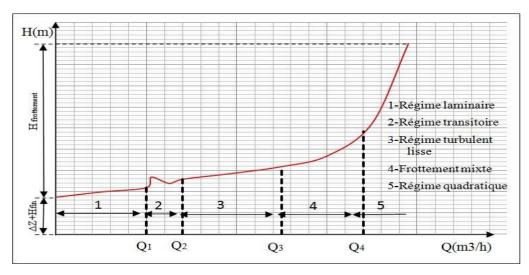


Figure II.1: Types des régimes d'écoulement

II.3.4- Les pertes de charge totales (H_T)

II.3.4.1- Perte de charge linéaire (H_L)

C'est la perte de pression due au frottement du liquide avec les parois intérieures de la canalisation durant un écoulement, la formule du calcul des pertes de charge est comme suite :

$$H_L = \frac{\lambda \times L_T \times \omega^2}{2 \times g \times Dint}$$
 (II. 3. 4. 1. a)

Donc:

$$H_L = \frac{8 \times \lambda \times L_T \times Q^2}{g \times \pi^2 \times Dint^5}$$
 (II. 3. 4. 1. b)

H_L: les pertes de charge du frottement en (m).

 λ : Coefficient de perte de charge.

L_T: Longueur du tronçon en (m).

Q:Débit de la ligne en (m³/s).

Dint : Diamètre intérieur de la conduite en (m).

g: Accélération de la pesanteur (9,81 m²/s).

II.3.4.2- Perte de charge locale (singulière H_s)

C'est la perte de pression locale au niveau des différents équipements telle que les vannes, les clapets, les rétrécissements de la conduite, on la détermine par la formule suivante :

$$H_S = \sum \xi \frac{\omega^2}{2 \times g}$$
 (II. 3. 4. 2. a)

Hs: Les Pertes de charge locale en (m).

ξ: Le Coefficient de perte de charge.

ω: La vitesse moyenne de fluide en (m/s).

Les pertes de charge locales pour les grandes longueurs de conduite peuvent être estimées comme suit :

$$Hs = (0.01 \text{ à } 0.02) \times H_L$$
 (II. 3. 4. 2. b)

II.3.4.3- Perte de charge totale

Donc les pertes de charge totales (H_T) sont :

$$H_T = 1.02 \times H_L$$
 (II. 3. 4. 3. a)

$$H_T = 0.084 \frac{\lambda \times L_T \times Q^2}{Dint^5}$$
 (II. 3. 4. 3. b)

II.3.5- Charge de refoulement total (H_{ref})

La charge de refoulement totale est la charge que la station doit fournir pour acheminer un fluide du point de départ au point d'arrivée dans les conditions recommandées, elle est déterminée à l'aide de la formule suivante :

$$H_{ref} = H_T + \Delta Z + H_{asp} \tag{II. 3. 5}$$

H_{ref}: Charge de refoulement totale en (m).

Hasp: Hauteur finale à l'arrivée en (m).

ΔZ: Différence des hauteurs en (m).

H_T:les Pertes de charges totale en (m).

II.3.6- Pression hydrostatique

Elle design la force exercée par un liquide, on l'a représenté par la formule suivante :

$$P = \rho \times g \times H \qquad (II.3.6)$$

H: Hauteur manométrique (m).

g: Accélération de la pesanteur en (m/s²).

P: Masse volumique de liquide pompé en (kg/m³).

II.4- Pente hydraulique (i)

Elle représente la perte de charge par unité de longueur, pour une conduite de diamètre D. La pente hydraulique est donnée par la formule suivante :

$$i = \frac{H_T}{L_T} = \frac{8.16 \times \lambda \times Q^2}{g \times \pi^2 \times Dint^5} = tg(\alpha)$$
 (II. 4. a)

i: Pente hydraulique.

α: Angle d'inclinaison de la pente par rapporte à l'horizontal en (°).

Donc:

$$Href = i \times LT + \Delta Z + Hasp$$
 (II. 4. b)

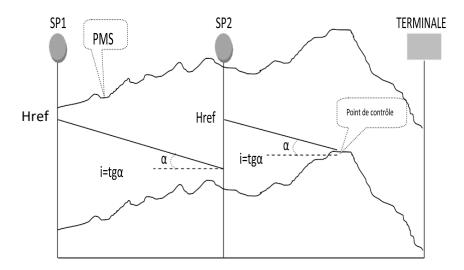



Figure II.2: Pente hydraulique

II.5- Point de contrôle

Le point de contrôle est un point sur le tracé de la conduite où de là le produit s'écoule par gravitation, sur le même profil il peut y avoir plusieurs points de contrôle, pendant l'étude hydraulique il faut faire des calculs en tenant compte uniquement du point de contrôle. Le schéma suivant représente un tracé avec un point de contrôle :

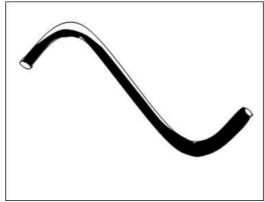


Figure II.3 : Représentation du point de contrôle

II.6- Courbe caractéristique du réseau

La courbe caractéristique du réseau est la représentation graphique de la hauteur manométrique totale (H) nécessaire à l'installation en fonction du débit.

$$H = f(Q)$$

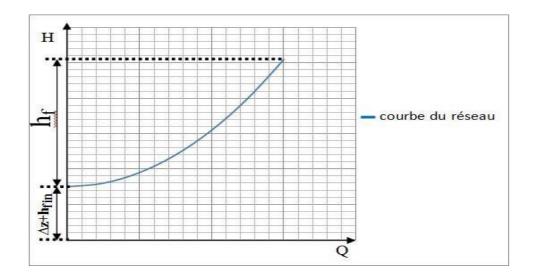


Figure II..4: Courbe caractéristique du réseau

II.7- Les pompes

II.7.1- Définition

La principale caractéristique de la pompe consiste à convertir l'énergie d'une source de mouvement (le moteur) d'abord en vitesse (ou énergie cinétique) puis en énergie de pression (énergie statique). Le rôle d'une pompe consiste en effet à donner de l'énergie au liquide pompé (énergie transformée ensuite en débit et en hauteur d'élévation) selon les caractéristiques de fabrication de la pompe elle-même et en fonction de besoins spécifiques à l'installation.

Suivant le mode de déplacement des liquides à l'intérieur de la pompe, en classe ces dernières en deux grandes catégories : les pompes volumétriques et les turbopompes, ces dernières sont les plus employées.

Suivant le type de la roue et son mode d'action, on distingue :

• Les pompes centrifuges

Chapitre II

Partie théorique, calcul hydraulique d'un oléoduc

- Les pompes hélices
- Les pompes hélico-centrifuges
- Pompe à piston
- Elévatoires à hélices ou vis d'Archimède
- Les pompes rotatives

Cette classification est basée sur la forme de la trajectoire à l'intérieur du rotor de la pompe (roues radiales, semi radiales, axial).

Dans notre étude, on s'intéressera aux pompes centrifuges qui sont largement utilisées dans l'industrie des pipelines.

II.7.2- Ossature et principe de fonctionnement d'une pompe centrifuge

Elle est constituée par:

- Un distributeur : Son rôle est de guider le fluide depuis la section d'entrée de la pompe jusqu'à l'entrée de la roue, tout en lui assurant une vitesse et une direction convenable.
- Une roue : Elle constitue l'organe essentiel de la pompe, en comportant les aubages dont la concavité de la courbure est dirigée vers le sens opposés de la rotation
- Un diffuseur et volute : Sa fonction est la collecte du fluide à la sortie de la roue pour l'acheminer vers la section de sortie (section croissante) de la machine.

Le liquide arrive dans l'axe de l'appareil par le distributeur et la force centrifuge le projette vers l'extérieur de la turbine. Il achève une grande énergie cinétique qui se transforme en énergie de pression dans le collecteur où la section est croissante.

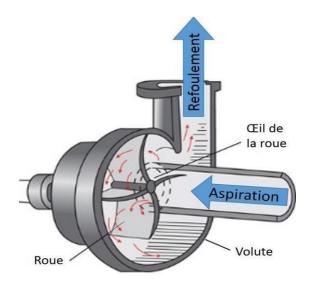


Figure II..5: Schéma d'une pompe centrifuge

II.7.3- Choix de type de pompe

Le choix se fait de façon à:

• Assurer le débit de refoulement et la hauteur manométrique totale.

- Assurer un rendement maximum.
- Vitesse de rotation importante.
- Réduire l'encombrement de façon à répondre à la construction économique.

•

II.7.4- Caractéristiques d'une pompe

- Sa vitesse de rotation
- Sa courbe caractéristique, hauteur d'élévation-débit : H = f(Q).
- Son rondement.
- Sa puissance absorbée à l'arbre en différents points de sa courbe caractéristique.
- Sa capacité d'aspiration requise exprimée par son NPSH requis en fonction du débit et de diamètre de la roue.

II.7.5- Courbe caractéristique de la pompe

Cette courbe est établie sur un banc d'essai pour un prototype de pompe puis fournie à l'exploitant pour une adaptation au réseau, la courbe est établie selon la loi suivante :

$$H_p = a - b Q^2$$
 (II.7.5)

Avec:

Hp: Hauteur manométrique totale de la pompe en (m).

a,b : Constantes qui caractérisent la pompe.

Q: Débit développé par la pompe en (m^3/h) .

La caractéristique de la pompe est représentée dans la figure ci-dessous :

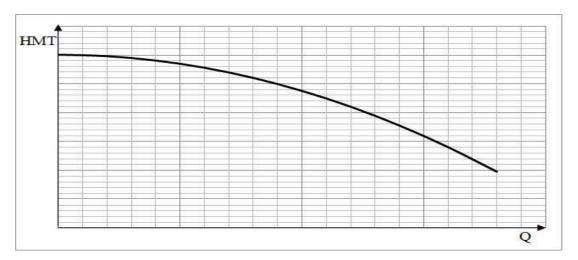


Figure II.6 : Courbe caractéristique de la pompe

II.7.6- Rendement de la pompe (η_p)

Le rendement est une grandeur sans dimension caractérisant le rapport entre l'efficacité énergétique d'un système et son efficacité théorique maximale.

On peut l'exprimer comme étant le rapport de la puissance utile communiquée au liquide pompé à la puissance absorbée par la pompe

$$\eta p = \eta \max \times \left[1 - \left(1 - \left(\frac{Qp}{Qnom}\right) \times \left(\frac{n_{nom}}{n_p}\right)\right)^2\right]$$
(II. 7. 6)

 η_p : Rendement de la pompe qui correspond au débit et la hauteur manométrique de la pompe.

 $\mathbf{Q}_{\mathbf{p}}$: Le débit de la pompe en (m³/s). ²

n_p: La vitesse de rotation de la pompe en (tour/min).

Qnom: Le débit nominal de la pompe en (m³/s).

n_{nom}: La vitesse de rotation maximale de la pompe en (tour/min).

 η_{max} : Le rendement maximal de la pompe qui correspond au débit et hauteur nominal.

II.7.7- Puissance

II.7.7.1- Puissance absorbée par la pompe (Pa)

C'est la puissance hydraulique communiquée au liquide lors de son passage à travers la pompe, cette puissance est donnée par la formule suivante :

$$P\atop a = \frac{Q \times \rho \times g \times H}{\eta p} \tag{II.7.7.1}$$

Avec:

Pa: Puissance transmise au fluide par la pompe en (Watt).

Q: Débit en (m^3/s) .

ρ: Masse volumique de liquide pompé en (kg/m³).

g: Accélération de la pesanteur en (m/s²).

H: Hauteur manométrique de la pompe en (m).

 $\eta_{\mathbf{p}}$: Rendement de la pompe.

II.7.7.2- Puissance exigée par le moteur ou la turbine (Pm)

C'est la puissance mécanique que doit fournir le moteur en tenant compte des pertes au niveau de l'accouplement avec la pompe :

$$P_{m} = \frac{P_{a}}{\eta_{acc}} \tag{II.7.7.2}$$

Pm: Puissance exigée en (Watt)

η_{acc}: Rendement d'accouplement (généralement 98%)

II.7.8- Le NPSH

Le NPSH est l'abréviation anglo-saxonne de Net Positive Succion Head, ce qui se traduit en français par Charge Totale Nette d'Aspiration, c'est le critère qui sert à définir la pression nécessaire à l'aspiration pour obtenir un bon fonctionnement de la pompe, c'est à dire pour

maintenir en tout point du fluide une pression supérieure à la pression de vapeur saturante, dans l'étude des systèmes avec pompe, on définit deux types du NPSH, le NPSH requis et le NPSH disponible.

II.7.8.1- NPSH requis (exigé)

Pour chaque pompe, il y a un NPSH minimal au-dessous duquel la cavitation apparaît, c'est ce qu'on appelle le NPSH requis, cette caractéristique est donnée par le constructeur de la machine sous forme d'une courbe en fonction du débit.

II.7.8.2- NPSH disponible

C'est la valeur du NPSH dont dispose la pompe par les conditions d'installation. Il dépend donc des conditions d'installation et d'exploitation qui sont : la nature du liquide, la pression, la température, la hauteur géométrique, le diamètre et la forme des conduites, il est indépendant de la construction de la pompe.

Il doit être toujours supérieur à le NPSH requis comme le montre le schéma suivant :

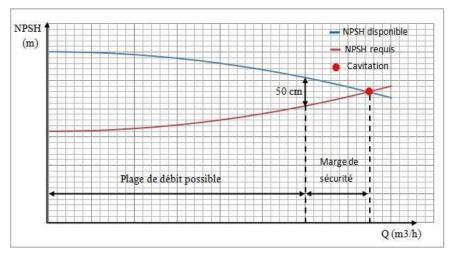


Figure II..7: Le NPSH requis et disponible d'une pompe

II.7.9- Assemblage des pompes

II.7.9.1- Assemblage en série

Dans ce type d'association les pompes sont montées les unes derrière les autres de sorte que les hauteurs manométriques des pompes en fonctionnement à un même débit s'ajoutent, il faut noter

que la pression de sortie de la première pompe est aussi la pression d'entrée de la pompe suivante, le schéma suivant montre un montage en série des pompes centrifuge :

$$H_p = \sum_{1}^{n} (\mathbf{a} - (\mathbf{b} \times \mathbf{Q2}))$$
 (II. 7. 9. 1)

Avec:

n: le nombre des pompes en série.

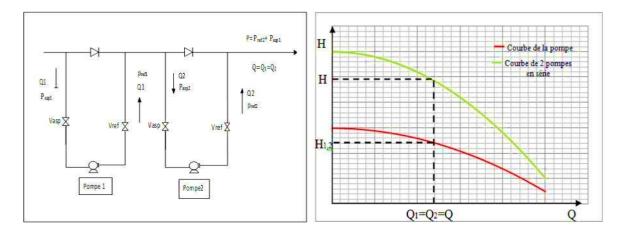


Figure II.8: Assemblage des pompes en série

II.7.9.2- Assemblage en parallèle

Lorsque le débit nécessaire ne peut être atteint au point de fonctionnement avec une seule pompe, il est possible d'associer deux ou plusieurs pompes en parallèle, chacune refoule le fluide à travers un clapet anti-retour dans la conduite de refoulement commune, dans ce type d'association les pompes sont assemblées d'une façon à avoir la même pression d'aspiration et la même pression de refoulement, il faut noter qu'après l'arrêt d'une des deux pompes centrifuges identiques le débit de la pompe qui continue à fonctionner ne devient pas égal à la moitié du débit de deux pompes en parallèle, mais il reste supérieur à la moitié, dans un processus inverse, la mise en parallèle de la deuxième pompe centrifuge de même taille ne double pas le débit de la pompe en fonctionnement, mais le débit reste légèrement inférieur au double d'une seule pompe (Q parallèle < 2 * Q unitaire).

La caractéristique équivalente à deux pompes identiques en parallèle est établie de la façon suivante :

$$Hp = \left(a - \left(\left(\frac{b}{n^2}\right) \times Q2\right)$$
 (II. 7. 9. 1)

Avec:

n : le nombre des pompes en parallèle.

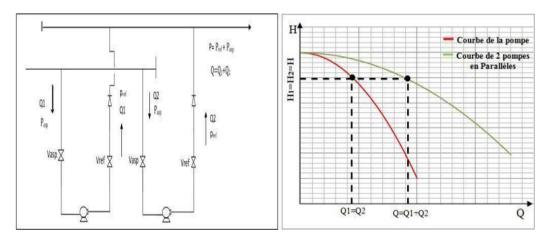


Figure II.9: Assemblage des pompes en parallèle

II.7.10- La charge refoulement de station (H_{ref-st})

Représente la charge totale fournie par la station de pompage :

$$H_{ref-st} = H_{al} + H_{pb} + \sum_{1}^{K} H_{pp}$$
 (II. 7. 10)

Avec:

H_{al}: La charge manométrique à l'entrée des pompes boosters et elle représente aussi la charge d'aspiration de la station exprimée en (m).

H_{pb}: Charges des pompes boosters en (m).

 $\sum_{1}^{K}H_{pp}\text{:}$ La somme des charges fournie par les pompes principales en série en (m)

II.8- Point de fonctionnement

Il correspond au point d'intersection entre la courbe caractéristique de la pompe et celle du réseau, c'est un point d'équilibre où l'énergie reçue par le fluide à travers la roue est consommée par la conduite.

$$H_T + \Delta Z + H_{asp} = H_{al} + \sum_{1}^{K} H_{pp} + Hpb \qquad (II.8)$$

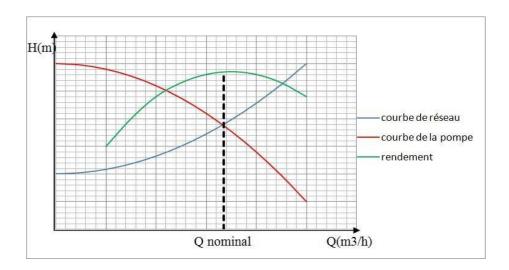


Figure II.10 : Point de fonctionnement optimal de la pompe

Remarque

Lorsque le point de fonctionnement désiré coïncide avec celui de la pompe, dans ce cas la pompe fonctionne dans les conditions optimales d'utilisation (rendement maximale de la pompe). sinon on sera dans l'obligation d'apporter des modifications sur les caractéristiques de la pompe ou sur la conduite de refoulement.

II.9- Méthode de régulation sur un pipeline

- Réduction du temps de pompage.
- Le vannage.
- Régulation par rognage de roue de la pompe.
- Régulation par construction d'un looping.
- Régulation par variation de la vitesse de rotation de la pompe.
- Régulation du nombre de pompe dans la station.

II.9.1-La variation de vitesse de rotation

Cette méthode consiste à faire varier la vitesse de rotation, à cet effet on cherche une vitesse n₂.

$$\frac{n_1}{n_2} = \frac{Q_1}{Q_2} \text{ et } \frac{n_1}{n_2} = \sqrt{\frac{H_{p1}}{H_{p2}}}$$
(II. 9. 1)

 $\boldsymbol{n_1}$, $\ \boldsymbol{n_2} \boldsymbol{:}$ Vitesse de rotation avant et après la réduction.

 $\mathbf{Q_1}$, $\mathbf{Q_2}$: Débit avant et après la réduction.

 $\boldsymbol{H_{p1}}$, $\boldsymbol{H_{p2}}$: Charge de la pompe avant et après la réduction.

Partie théorique, calcul hydraulique d'un oléoduc

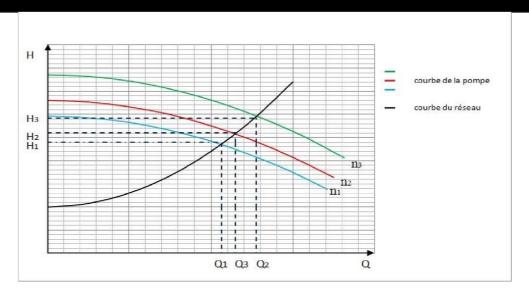


Figure II.11: Courbe iso vitesse d'une pompe centrifuge

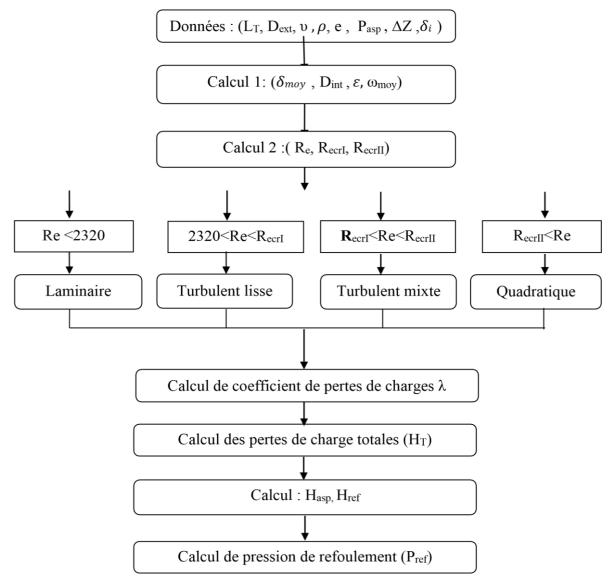
II.9.2- Nombre de pompe

Cette méthode est la plus simple, elle consiste à diminuer ou augmenter le nombre de pompe à mettre en fonctionnement selon le besoin.

Chapitre III Analyse hydraulique de l'oléoduc OB1

Introduction

Dans ce chapitre nous traiterons de l'analyse hydraulique de l'oléoduc OB1 de SP1 jusqu'au Col de Selatna constituant un point de contrôle sur le tracé. Au-delà de ce point l'écoulement se poursuivra d'une manière gravitaire jusqu'au (TMB).


III.1- SP1-Selatna

III.1.1- La pression de refoulement exigée

Les stations de l'OB1 doivent fournir une pression suffisante pour assurer le débit recommandé par le TMB, ces pressions fournies par les stations de pompage permettront de vaincre le dénivelé de la ligne, les pertes de charges linéaires dues au frottement et les pertes de charge locales au niveau de différents équipements de la ligne (vannes de sectionnement, clapets anti retour...)

III.1.1.1- Organigramme de calcul hydraulique

Cet organigramme est un récapitulatif du déroulement des étapes de calcul à suivre. L'objectif est de calculer la perte de charge dans les différents tronçons pour le débit transporté et de définir la charge de refoulement des différentes stations de pompage permettant de vaincre cette perte de charge et d'assurer une charge finale pour éviter tout risque de cavitation ainsi que les paramètres à mettre en œuvre pour obtenir cette charge tels que : nombre de pompe, vitesse de rotation etc...

Organigramme III.1.1.1: Les étapes du calcul hydraulique

III.1.1.2- Régime de fonctionnement

On détermine dans ce qui suit la nature du régime d'écoulement qui s'établie dans les tronçons entre les stations de l'OB1 pour un débit Q=1800m³/h

III.1.1.2.a- Données des tronçons entre les stations de pompage :

Le tableau suivant représente les données de base pour déterminer les différents paramètres nécessaires dans notre calcul :

	Symboles	Tronçons entre stations de pompage				
•	et unités	SP1-SP1Bis	SP1Bis-SP2	SP2-SP3	SP3- Selatna	
Diamètre extérieur	Dext (mm)	609,6	609,6	609,6	609,6	
La langueur	L _T (m)	189829,00	161024,58	144871,00	46786,75	
Différence d'altitude	ΔZ (m)	-63,48	131,214	233,265	576,40	
Viscosité	υ (m²/s)	0,000003	0,000003	0,000003	0,000003	
Masse volumique	ρ (kg/m³)	820	820	820	820	
Rugosité	e (mm)	0.045	0.045	0.045	0.045	
Pression d'aspiration	Pasp (bar)	10	1	1	1	

Tableau III.1: Données du calcul

III.1.1.2.b- Résultats numériques

Les tableaux suivants présentent les résultats de calcul hydraulique de l'OB1, en suivant l'organigramme et les différentes équations citées dans le chapitre II :

	Symboles	Formule	Tronçons entre stations de pompage			
Paramètres	et unités	Torride	SP1-SP1Bis	SP1Bis-SP2	SP2-SP3	SP3-Selatna
Epasseur moyen	$\delta_{moy}(mm)$	(II.1.1.1)	7,9405	7,2019	6,7401	6,9741
Diamètre intérieur	D _{int} (mm)	(II.1.1.2)	593,7194	595,1962	596,1199	595,6517
Vitesse moyanne	ωmoy(m/s)	(II.3.1.c)	1.8004	1,7984	1,7928	1,7956
Rugosité relative	3	(II.3.3.a)	0,0001516	0,0001512	0,0001510	0,0001511
Reynolds	Re	(II.3.2)	356314 ,3767	356792, 2621	356239,42 53	356519, 4045
Reynolds critique 1	RecrI	(II.3.3.b)	1 378 717,05	1382638,27	1385090,7 35	1383847,685
Reynolds critique 2	RecrII	(II.3.3.c)	23 661639	23725973	23766205	23745813

Tableau III.2 : Détermination de régime de fonctionnement

III.1.1.2.c- Interprétation

D'après les résultats le régime d'écoulement est tube lisse.

III.1.1.3- Calcul de la perte de charge dans les lignes

D'après le résultat précédent, notre régime d'écoulement est un régime turbulent hydrauliquement lisse ce qui donne :

	Symbole		Tronçons entre stations de pompage			
Paramètres	et unite	Formule	SP1-	SP1Bis-	SP2-SP3	SP3-
			SP1Bis	SP2		Selatna
Coefficient de perte de charge	λ (*10^-2)	Formule de Blasius	1.2950	1.2946	1.2951	1.2948
Les pertes de charge totale	H _T (m)	(II.3.4.3)	697,7636	588,8692	525,9074	170,4792

Tableau III.3: Calcul des pertes de charge totales

III.1.1.4- Calcul de pression exigée

Après le calcul des pertes de charges, on va calculer la pression exigée :

Symbole	Formule	Tro	ions de pompage	2	
et unité	1 office	SP1-	SP1Bis-	SP2-SP3	SP3-
		SP1Bis	SP2	SP2-SP3	Selatna
Hasp (m)	(II.3.6)	124,3131	12,4313	12,4313	12,4313
H _{ref} exigée (m)	(II.3.5)	763,2865	732,5145	771,6037	759,3145
P _{ref} exigée (bar)	(II3.6)	61,4003	58,9249	62,0693	61,0808

Tableau III.4 : Calcul de pression de refoulement exigée

III.1.2- La pente hydraulique

Pour tracer la pente hydraulique sur le profil en long on détermine sa valeur en utilisant la formule (II.4.1):

	Symbole	Tronçons entre stations de pompage			
Paramètre	et unité	SP1- SP1Bis	SP1Bis- SP2	SP2- SP3	SP3- Selatna
La pente hydraulique	<i>i</i> (*10^-	3,6757	3.6570	3.6302	3.6473

Tableau III.5: Calcul de la pente hydraulique

III.1.2.1- Représentation graphique

On peut exprimer les résultats de calcul précédents sous forme graphique comme suit :

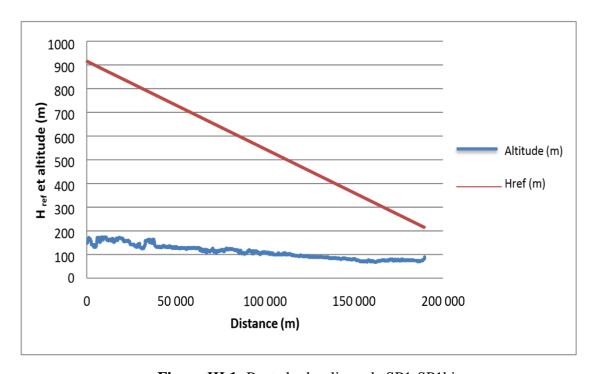


Figure III.1: Pente hydraulique de SP1-SP1bis



Figure III.2: Pente hydraulique de SP1Bis-SP2

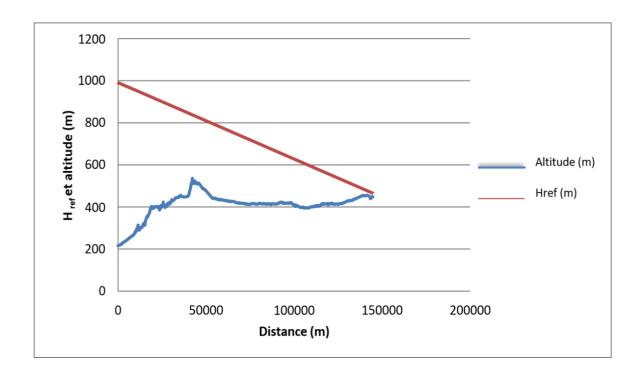
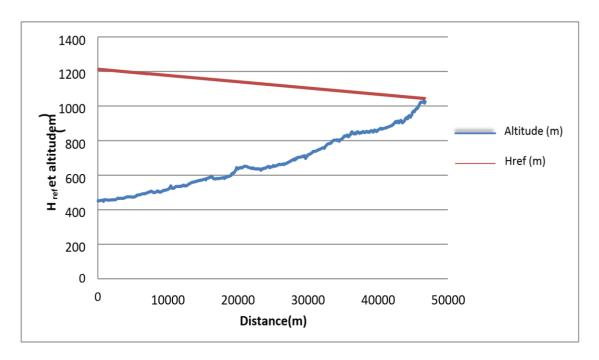



Figure III.3: Pente hydraulique de SP2-SP3

Figure III.4: Pente hydraulique de SP3-Selatna

III.1.3- Courbe caractéristique des conduites

On représente le résultat de calcul de la charge de refoulement en fonction du débit sous forme de courbe caractéristique de conduite :

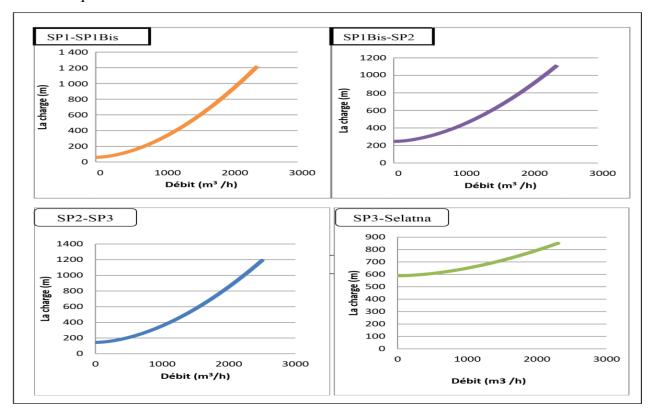


Figure III.5: Courbe caractéristique des conduites

III.1.4- Calcul de la charge de refoulement d'une station (H_{ref-st})

III.1.4.1- Charge manométrique des pompes principales et booster

Pour calculer cette charge il faut d'abord déterminer les coefficients "a" et "b" caractérisant les courbes des pompes (annexe).

III.1.4.1.a- Modélisation des courbes caractéristiques des pompes

Sur la base d'un ensemble de points caractérisé par leurs coordonnés (Hp,Q) obtenues par lecture sur le graphe de la caractéristique H,Q de la pompe, une modélisation par régression linéaire a été établie de manière à déterminer les coefficients du modèle de type $Hp = a - bQ^2$. Les points obtenus sont récapitulés dans le tableau :

		Les stations de pompages						
Débit	SP1	SP1		SP2	SP2		3	
(m^3/h)	Нрр	Hpb	Нрр	Нрр	Hpb	Нрр	Hpb	
	(m)	(m)	(m)	(m)	(m)	(m)	(m)	
600	290,5	32,6	1146,5	308	82,5	848	82,5	
800	289	31,7	1140	303	74		74	
1400	278	25.2	1120	287				
1800	265		1080	270				
2200	242		995	249				

Tableau III.6: Points obtenues par la lecture graphique des courbes caractéristiques des pompes

III.1.4.1.b- Statistique de la régression linéaire :

Ce travail a été réalisé sous Excel

Statistiques de la régression	
Coefficient de détermination multiple	0,98919797
Coefficient de détermination R^2	0,97851263
Coefficient de détermination R^2	0,97757839
Erreur-type	2,96645643
Observations	25
ANALYSE DE VARIANCE	
	Coefficients
Constante	296,303639
Variable X 1	-1,0716E-05

Tableau III.7 : Détermination des coefficients par la méthode de la régression linéaire

On a pu obtenir les coefficients indiqués sur le tableau :

Pompes	Coefficients	Les stations de pompages					
Coefficients		SP1	SP1Bis	SP2	SP3		
Principale	a	296,3036	1168,8727	313,6143	993,8947		
Timelpare	b	-1,0716E-05	-3,6058E-05	-1,3538E-05	-0,00036083		
Rooster	a	36,6645	/	99,4201	99,4201		
Booster	b	-6,1771E-06	/	-3,0694E-05	-3,0694E-05		

Tableau III.8 : Coefficients des modèles mathématiques des caractéristiques des pompes

De la modélisation des courbes caractéristiques H,Q des pompes centrifuges, nous pouvons maintenant calculer la hauteur manométrique des pompes principales et boosters ainsi que celles des stations de pompage en usant des formules :

-En série (II.7.9.1)

-En parallèle (II.7.9.2)

Remarque

Les pompes principales dans la station SP3 fonctionne avec un débit nominal de (600m³/h).

Station	Pompes boosters				Pompes principals		
	k	Assemblage	Hpb	n	Assemblage	Нрр	nH _{pp}
SP1	2	Parallèle	31.6589	3	Série	261,5679	784,7037
SP1BIS	0	/	/	1	Série	1051,9937	1051 ,9937
SP2	2	Parallèle	74,5472	3	Série	269,7320	809,1959
SP3	2	Parallèle	74,5472	3	Parallèle	/	863,9393

Tableau III.9 : Calcul de la hauteur manométrique

Maintenant on peut déterminer la charge sommaire pour chaque station à partir de la formule (II.7.10) :

Symboles et	Les stations de pompages					
unités	SP1	SP1Bis	SP2	SP3		
P _{al} (bar)	1.5	10	1	1		
Hal (m)	18,647	124,3132	12,43132	12,43132		
Href-st (m)	835,0095	1176,3069	896,1744	950,9178		

Tableau III.10 : Calcul de la charge refoulement

III.1.4.2- Représentation graphique

On représente les résultats de calcul de la charge sommaire en fonction de débit sous forme de courbes caractéristiques suivantes :

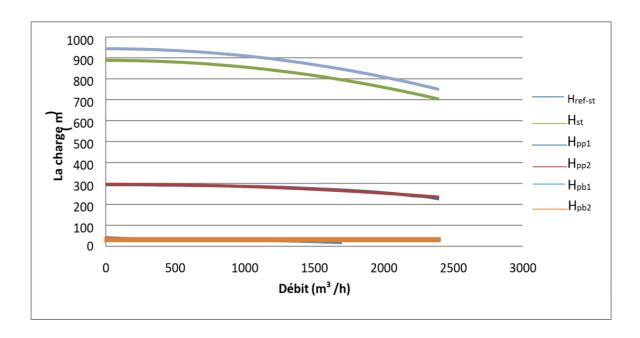


Figure III.6 : Construction de la caractéristique sommaire de la station de SP1

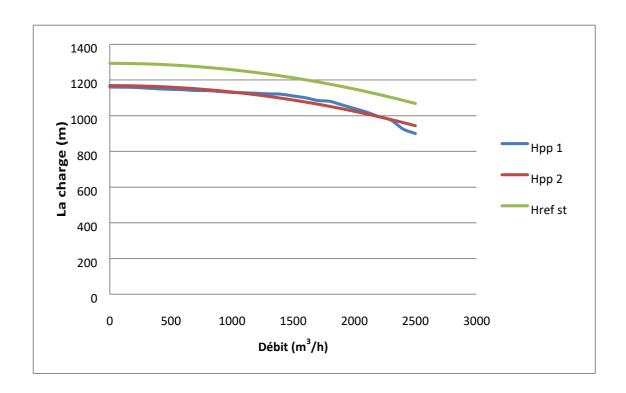


Figure III.7: Construction de la caractéristique sommaire de la station de SP1Bis

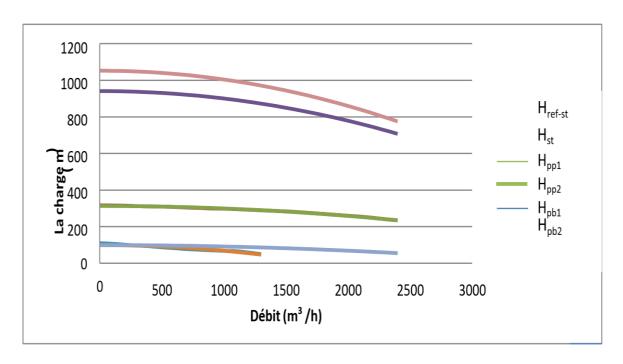


Figure III.8 : Construction de la caractéristique sommaire de la station de SP2

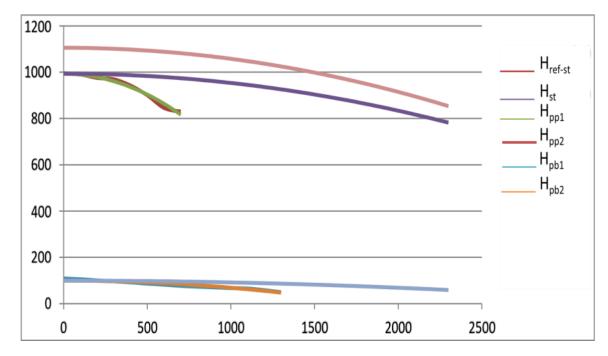


Figure III.9 : Construction de la caractéristique sommaire de la station de SP3

III.1.4.3- Le point de fonctionnement

D'après les résultats obtenus dans les calculs de la charge de refoulement exigé (caractéristique conduite) et celle de la charge sommaire (caractéristique station) et la formule (II.8) on obtient les courbes les points de fonctionnement suivants :

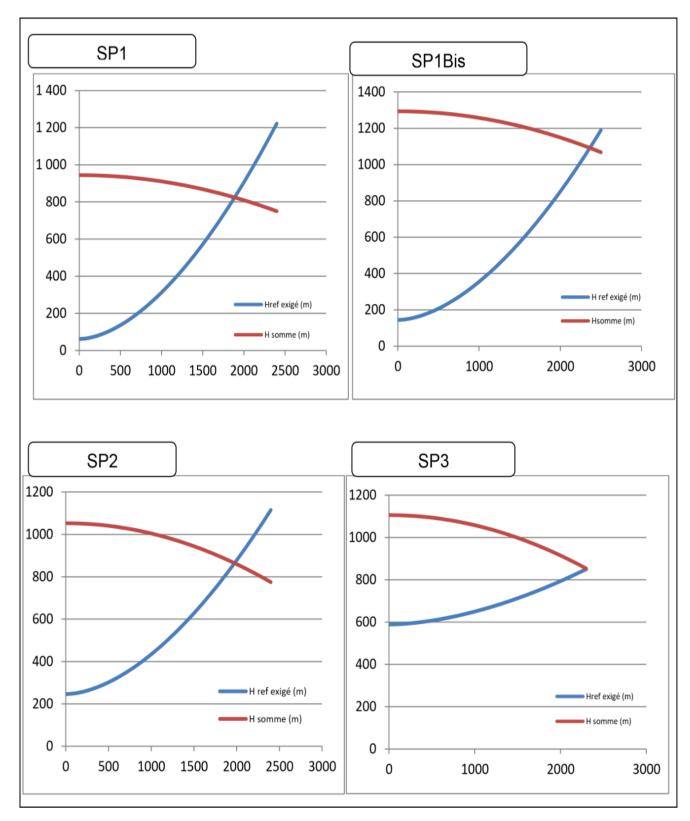


Figure III.10: Représentation graphique du point de fonctionnement.

Les stations de pompages	Débit (m³/h)
SP1	1900
SP1Bis	2300
SP2	1900
SP3	2200

Le tableau suivant défini le débit correspond au point d'intersection (graphiquement) :

Tableau III.11: Débit correspond au point d'intersection

III.1.4.4- Interprétation des résultats

On analysant les résultats du calcul hydraulique, on peut conclure que la charge de refoulements exigés (pour chaque station) afin d'acheminer le brut jusqu'au Col de Selatna pour un débit de 1800 m3/h est inférieure à la charge disponible. Nous remarquons que dans ces conditions que la charge disponible peut véhiculer des débits supérieurs à 1800 m3/h comme mentionné dans le tableau des points de fonctionnement. Donc on sera dans l'obligation de diminuer cette charge dans notre cas par une méthode de régulation en diminuant la vitesse de rotation.

$$H_{ref-st} > H_{ref-exigé par la conduit}$$

III.1.4.5- Régulation de la vitesse de rotation

Dans notre système, la méthode de régulation la mieux adaptée pour obtenir la charge exigée pour transporter un débit de 1800 m3/h est de jouer sur la variation de la vitesse de rotation.

Dans ce cas de régulation on définira le nouveau coefficient (a₁) des pompes pour avoir des charges refoulées par les stations qui coïncident avec les pressions exigées en modifiant la vitesse de rotation des pompes.

Pour commencer il faut d'abord déterminer la valeur de H'st correspondante a la charge exigée:

$$H_{ref-exig\acute{e}e} = H_{al} + H_{pb} + H'_{st}$$

Le tableau suivant récapitulera les résultats du calcul avec la formule suivante (II.9.1) :

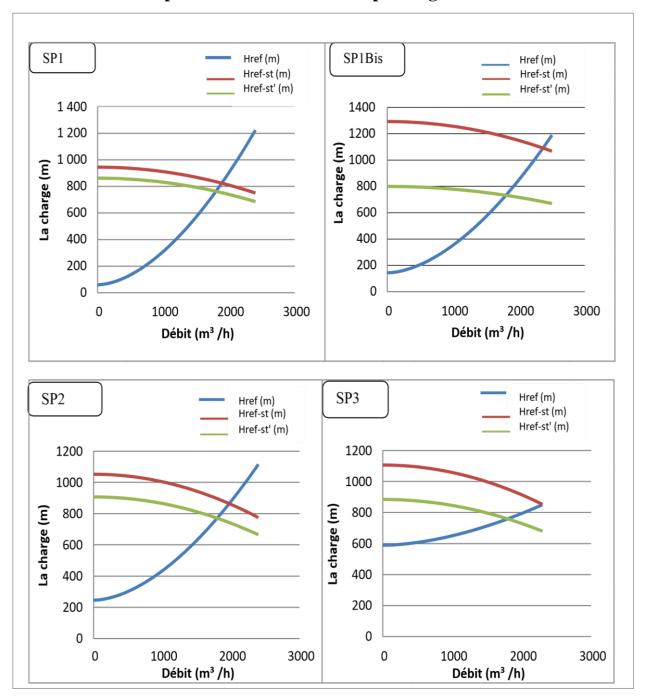

Danam Mass	Symbole et	Tro	nçons entre station	ns de pompag	e
Paramètres	unité	SP1-SP1Bis	SP1Bis-SP2	SP2-SP3	SP3-Selatna
Charge sommaire des pp	$\sum H_{pp'}(m)$	708,294	608,2013	684,4097	672,336
Charge unitaire de pp	H _{pp} , (m)	230,0982	607,972407	228,1366	224,1120
Vitesse de rotation nominale	n ₁ (tour/min)	2950	3760	2950	3560
Vitesse de rotation réduite	n ₂ (tour/min)	2802,6956	2858,9395	2712,9235	3140,52
Coefficients	aı	267,4514	675,7739	265,3353	773,47
Nouvelle charge de la pompe	H _{pp} ,, (m)	236,098	608,2013	228,2084	672,3360
Nouvelle charge de la station	H _{st} (m)	708,294	608,2013	684,6252	672,3360
Charge de refoulement disponible	H _{ref-st} , (m)	763 ,2865	732,5145	771,6037	759,3145

Tableau V.12: Régulation de la vitesse de rotation des pompes

Après avoir déterminé les nouvelles vitesses de rotation des pompes principales au niveau des stations de pompage on a obtenu les résultats qui correspondent à la charge de refoulement exigé

$$H'_{ref-st} = H_{ref-exig\acute{e}}$$

III.1.4.6- Nouveau point de fonctionnement après régulation

Figure III.11 : Représentation graphique du nouveau point de fonctionnement correspondant au débit 1800 m3/h

III.1.5- Calcul des Rendements et puissances

On termine notre calcul dans cette partie par les résultats du régime de fonctionnement des stations mentionnés dans le tableau :

Paramètres	Symboles et	Formule	Les sta	ations de pompa	ages	
	unités		SP1-SP1BIS	SP1BIS-SP2	SP2-SP3	SP3-Selatna
Débit nominal	Q nom (m ³ /s)	/	1800	1800	1800	600
Rendement max	ηmax	/	86	82,5	85,5	79,7
Rendement de pompe	$\eta_{ extsf{P}}$	(II.7.6)	0,8532	0,8202	0,8468	0,6738
Puissance absorbé par pompe	Pa (KWatt)	(II.7.7.1)	1108,996	2983,1688	1084 ,190	1337,8317
Puissance exigé par le moteur ou la turbine	P _m (KWatt)	(II.7.7.2)	1131,629	3044,0498	1106,316	1365 ,134
Puissance max de moteur ou turbine	P _m max (KWatt)	/	7360	9869,926	1480,488	1579,1874

Tableau III.13: Calcul des rendements et puissances des pompes

III.1.5.2- Interprétation des résultats

- Pour les stations de SP1, SP2 et SP3 la puissance du moteur qui correspond au débit désirer (1800 m³/h) est inférieure à la puissance disponible maximale de ce dernier.
- De même pour le cas de la turbine pour la station SP1Bis, sa puissance est inférieure à la puissance disponible maximale.

III.2- SP3-TMB

Sur le tronçon SP3-TMB nous avons deux types d'écoulement forcé jusqu'au col de Selatna ensuite gravitaire jusqu'à TMB, pour cette partie entre le col de Selatna et TMB le calcul sera consacré à la détermination de la pente hydraulique et du point de contrôle :

III.2.1- Données des calculs

Paramètres	Symbole et unité	Selatna-TMB
Diamètre extérieur	Dext (mm)	558,8
La langueur	L _T (m)	126749,07
Différence d'altitude	ΔZ (m)	-1026,502
Viscosité	υ (m²/s)	0,000003
Masse volumique	ρ (kg/m³)	820
Rugosité	e (mm)	0,045
Pression d'aspiration	Pasp (bar)	1

Tableau III.14 : Données de base de la section (Selatna-TMB)

III.2.2- Régime de fonctionnement

On déterminera le régime pour le même débit 1800 (m³/h). En suivant la même procédure de calcul que précédemment, les résultats sont mentionnés ci-dessous :

Paramètres	Symbole et unités	Formule	Selatna- TMB
L'épaisseur moyenne	$\delta_{moy} ({ m mm})$	(II. 1.1.1)	7,9329
Diamètre intérieur moyen	Dint (mm)	(II. 1.1.2)	542,9341
La vitesse moyenne	ωmoy (m/s)	(II.3.1.c)	2,1612
La rugosité relative	3	(II.3.3.a)	0,0001658
Le rynolds	Re	(II. 3.2)	391136,61
Le reynolds critique 1	RecrI	(II.3.3.b)	1244783,0676
Le reynolds critique 2	RecrII	(II.3.3.c)	21230418,7981
Le régime	/	/	Tube lisse
Coefficient de perte de charge	λ	Formule de Blasius	0,01265

Tableau III.15 : Détermination du régime de fonctionnement (Selatna-TMB)

III.2.3- Point de contrôle

Le point de control doit être déterminé graphiquement :

Il faut tracer des lignes parallèles à la pente 'i' qu'on doit calculer en utilisant la formule (II.4.1) à partir du point d'arrivée (TMB) jusqu'à l'intersection avec le profil et on fera de même à partir de chaque sommet, le dernier sommet à partir duquel la pente hydraulique ne croise plus le profil en long alors ce sommet constituera une point de contrôle sur le profil :

Paramètres	Symbole et unité	Résultat
La pente hydraulique	i	0,005656

Tableau III.16 : Calcul de pente i (Selatna-TMB)

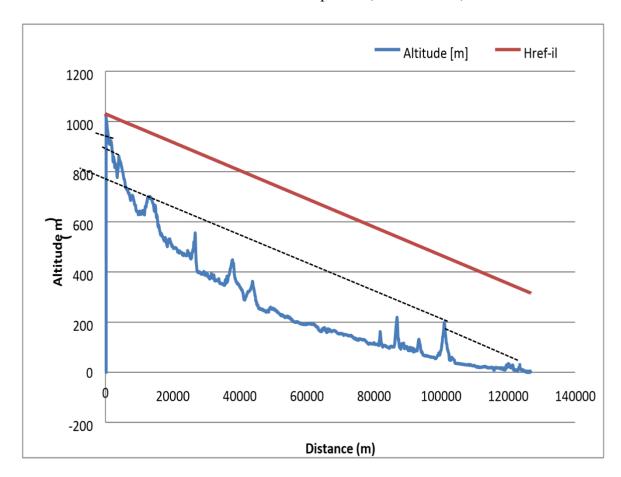


Figure III.12 : Détermination du point de contrôle de la section Selatna-TMB

III.2.4- Interprétation des résultats

On constate qu'effectivement, il existe un point de controle dans cette partie de la ligne qui est situé au PK : 542 519,73m d'une altitude de : 1029,831m, correspondant au col de SELATNA et de ce point l'écoulement sera gravitaire jusqu'au terminal TMB.

Chapitre IV Partie théorique, calcul hydraulique d'un pompage multiproduits OB1

Introduction

Le pompage multiproduits (PMP) consiste à expédier des produits différents par une seule conduite dans un ordre défini.

Le PMP est utilisé lorsque les quantités des produits transportés sont assez faibles et ne peuvent justifier, du point de vue économique, la construction de canalisation pour chacun des produits.

-Dans le cas où les débits des produits sont faibles ces canalisations ne seront pas chargées et leur coefficient d'utilisation sera faible.

On appelle coefficient d'utilisation de la conduite le rapport : $K = \frac{\text{nbre de jours de pompage}}{360}$

Les produits tamponnes sont:

- Le carburéacteur,
- Les supercarburants et le gas-oil
- Le fioul (fuel) domestique (FOD).
- Fiouls lourds par des oléoducs locaux, éventuellement réchauffes,
- Le pétrole brut, le naphta et des produits chimiques dans certains oléoducs

Dans un souci d'optimisation de la canalisation celle-ci doit être toujours pleine. Pour les pipelines multi-produits, les différentes qualités succèdent les unes aux autres. A l'interface de deux produits différents se développe une zone de mélange. En cas de compatibilité entre ces produits (exemple : gas-oil (gazole) et fuel (fioul) domestique, supercarburants et essence sans plomb...), la zone de mélange sera déversé dans le produit le moins noble et livrée au client. Pour limiter le contaminât, on pompe les diverses qualités de produits toujours dans le même ordre qui constitue une séquence dont la durée est un cycle.

Le pompage séquentiel impose donc une certaine configuration dans la succession des produits :

En cas d'incompatibilité (exemple : gazole et supercarburant, supercarburant et carburéacteur, gazole et carburéacteur...). Le mélange est qualifié de contamination, impropre à la commercialisation. Cette contamination est soutirée dans des réservoirs spécifiques du pipeline (sloop), pour un retraitement ultérieure...

Dans la séquence, un même produit peut-être réparti entre plusieurs clients et la nature de la séquence, les quantités des produits et les heures de livraison font l'objet d'un accord préalable entre les clients, (raffineurs), unités de stockage et le personnel exploitant du pipeline.

IV.1. Avantages du pompage multi-produits

Les avantages du PMP sont

- augmentation du taux d'utilisation de la conduite
- meilleur utilisation des puissances installées;
- diminution des frais d'investissement et du prix de revient du transport;
- alléger les autres moyens de transport (wagons-citernes et camions-citernes).

On désigne par contamination (contaminât, interface) le produit du mélange qui se créait au contact de deux produits successifs, différents du point de vue propriétés physiques, transportés dans une canalisation.

L'envoi des cargaisons est conditionnée par une étude préalable des séquences éventuelles de ces produits de telle façon que les conséquences de la contamination soient aussi minimes que possible (figure IV.1)

G.O	F.O.D	G.O	C.A	E.N	E.S

Figure IV.1. Séquence type de transport de plusieurs produits par canalisation

Cependant, dans certains cas, la livraison du contaminât dans l'une ou l'autre des cargaisons est impossible à cause de l'incompatibilité de certaines caractéristiques des produits (indice d'octane. Tension de vapeur, point éclair etc.). Dans ce cas le contaminât doit être retiré de la conduite avant livraison soit pour être réinjecté à très faible dose dans une cargaison, dont il n'abimera pas les caractéristiques, soit pour être retraie en raffinerie

IV.1.1. Problèmes rencontrés lors du PMP.

Plusieurs problèmes apparaissent pendant l'exploitation des ouvrages lors du PMP auxquels il faudrait trouver une solution. Ces problèmes sont les suivants:

- Evaluation du contaminât:
- Technologie de la réception des produits au T.A;
- Influence des différents facteurs sur le phénomène de la contamination ;
- Détermination du nombre optimal de cycles de pompage ;
- Calcul hydraulique du PMP;
- Détermination des capacités des réservoirs des stations de départ et d'arrivée ;
- Contrôle du pompage multi-produits ;
- Utilisation des pistons racleurs pour diminuer le contaminât ;

- Economie de l'exploitation etc.

IV.2-Formation et importance du contaminât.

IV.2.1. Mécanisme de formation.

Soit 2 produits A et B pompés successivement dans une conduite horizontale sans livraison et réception sur le trajet. Au début de la conduite se trouve le produit A. On appelle début du PMP, le moment on commence le pompage du produit B, Au début du pompage, les 2 produits dans la conduite sont face à face c'est-à-dire qu'ils sont en contact suivant un plan perpendiculaire à l'axe de la conduite (ligne 1 de la figure 2).

Au cours du pompage les 2 produits se mélangent au niveau de leur contact ce qui entraîne la formation d'une zone de contamination de ces produits. La concentration du produit B suivant la longueur de la zone varie de C_a = 0 début de la zone jusqu'à C_a = 1 à la fin de la zone du contaminât (ligne 2 figure IV 2).

La cause de la formation du contaminât au cours du pompage est la suivante

- **a)** Pour un écoulement laminaire la vitesse des produits est non uniformes le long de la section transversale (figure IV.3)
- **b**) Pour un écoulement turbulent : existence de vitesses non uniformes et mouvement turbulent non ordonné de l'écoulement (figure IV.3)
- Au moment initial L=0 (début du PMP) le produit B commence à pénétrer dans le produit A. La surface de contact des produits A et B est plane et le contaminât n'existe pas (figure IV.3)
- Après un certain temps le produit B pénétrera dans A suivant le profil des vitesses à la distance L. A partir de ce moment les tourbillons contribueront au mélange régulier des produits (position L) dans la zone de contamination
- Au moment ou le contaminât crée pénétrera dans le produit A (position 2). Le volume du contaminât augmente la longueur de la zone contaminée sera 2L et ainsi de suite

Conclusion:

Le volume du contaminât augmente pendant le déplacement des produits le long de la conduite : cependant la diffusion turbulente contribue à la séparation des produits dans la zone de contaminât. Cette zone est séparée par une surface où les concentrations des 2 produits sont égales (figure IV. 2)

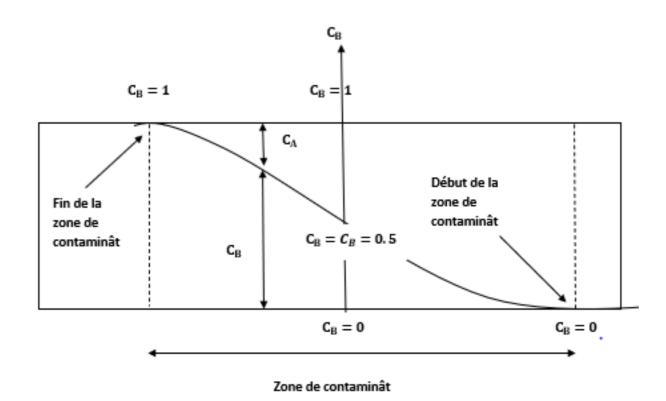


Figure. IV.2. Début de pompage successif

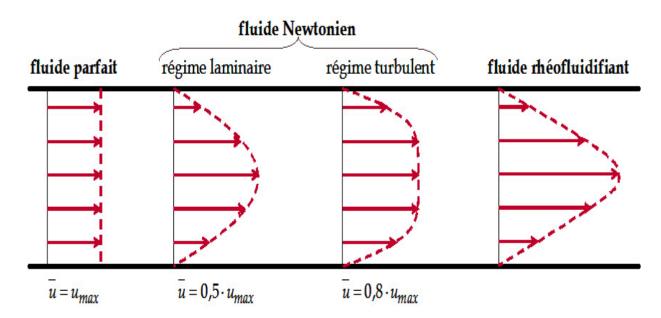


Figure.IV.3. Courbes des vitesses dans le cas de régime laminaire et turbulent

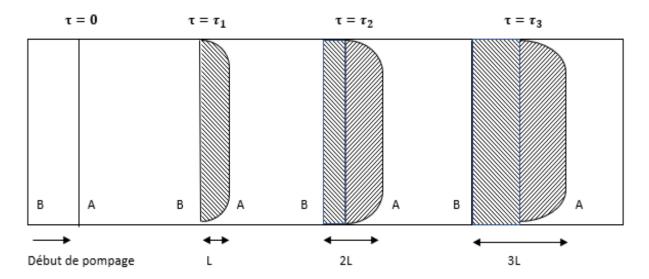


Figure. IV.4. Formation de contaminât

IV.2.2. Importance du volume du contaminât

Pendant le pompage des produits en régime laminaire le volume du contaminât est égal à environ 5 fois le volume de la conduite (voir démonstration) tandis que dans le régime turbulent il varie entre 0,5% et 1%

L'augmentation du nombre de Reynolds (turbulent) entraîne une répartition uniforme de la vitesse moyenne le long de la section de la conduite et donc une diminution du volume du contaminât. Dans le cas contraire (laminaire) il y aura une augmentation du volume du contaminât

IV.3-Théorio de formation du contaminât

La théorie est basée sur le fait que le contaminât est conditionné par la diffusion turbulente dans la zone de contact des produits. La contamination est généralement caractérisée par la courbe de variation de concentration d'un produit dans le mélange (lig.6)

Soit:

Q - débit dans la conduite

Q A- débit du produit A dans la zone de contamination ;

Q B - débit du produit B dans la zone de contamination ;

Dans une section du contaminât nous pouvons écrire : $\mathbf{Q} = \mathbf{Q}_A + \mathbf{Q}_B$ ou bien : $\mathbf{C}_A + \mathbf{C}_B = \mathbf{1}$ (IV. 3)

Chapitre IV Partie théorique, calcul hydraulique d'un pompage multi produits OB1

Avec

 $C_A = \frac{Q_A}{Q}$: concentration du produit A dans le mélange

 $C_B = \frac{Q_B}{o}$: concentration du produit B dans le mélange

Le phénomène de contamination est le résultat de la diffusion d'un produit dans un autre. Il existe 2 types de diffusion:

- Diffusion moléculaire.
- Diffusion turbulente

Ces diffusions sont caractérisées par 2 coefficients : (m^2/s)

- Coefficient de diffusion turbulente D_T
- Coefficient de diffusion moléculaire D_m

Le rapport entre ces 2 coefficients est :

$$\frac{D_T}{D_m} = 10^7$$

Pour la suite des calculs on peut négliger la diffusion moléculaire devant la grandeur de la diffusion turbulente.

IV.4. Formules pour la détermination du volume du contaminât.

Le volume du contaminât est déterminé par les formules suivantes (voir démonstration) :

b) cas où
$$\frac{V_A}{V_B} > 5$$
 $V_{cont} = 2. V_{cond} ZP_{eB}^{-0.5} \left[1 + \left(\frac{D_{TA}}{D_{TB}} \right)^{0.5} \right]$ (IV. 4. b)

c) Formule approximative de Cienitzer

$$V_{cont} = 1200$$
. K. $V_{cond} (\frac{D_{int}}{L})^{0.43}$. $\lambda^{1.8}$ (IV. 4.3)

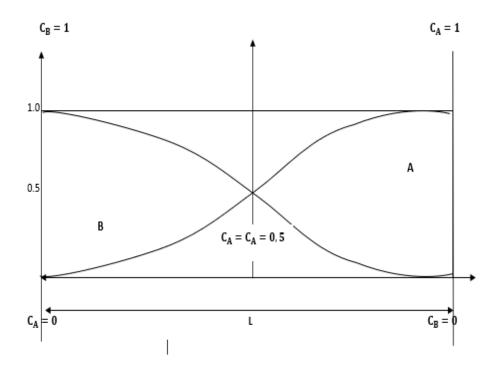


Figure. IV.5 : Courbe de variation de la concentration

Avec:

 $V_A > V_B$ où A et B pris dans un ordre arbitraire.

 V_{cont} : volume du contaminât :

 V_{cond} : volume de la conduite ;

 P_e , P_{eA} , P_{eB} : paramètres de Peclet ;

 $\mathbf{Z},\!\mathbf{Z}_3,\,\mathbf{Z}_4$: paramètres de coupure (abscisses) ;

 \mathbf{D}_{TB} , \mathbf{D}_{TA} : coefficients de diffusion turbulent pour les produits A et B respectivement

K : coefficient qui dépend des concentrations pour lesquelles en détermine le volume du contaminât (tableau. IV .1)

Limites de concentration	99-01	98-02	95-05	90-10	80-20	70-30	60-40
Coefficient K	1,645	1,452	1.163	0.906	0.595	0.371	0.180

Tableau.IV.1: Coefficient qui dépend des concentrations

IV.4.1. Formules des paramètres.

$$\text{IV.4.1.1. Paramètre de Peclet} \qquad P_{e_{moy}} = \frac{w_{moy}}{D_{T_{mov}}} \qquad \quad P_{ei} = \frac{w_{moy}}{D_{T}} \qquad \quad (\text{IV. 4. 1. 1})$$

 W_{moy} : vitesse moyenne d'écoulement ;

L : longueur totale de la conduite.

IV.4.1.2. Coefficient de diffusion turbulente (pour le régime turbulent)

a)
$$D_{Ti}=1,785W_{moy}\,D_{int}\,\sqrt{\lambda_i}$$
 (IV.4.1.2.a) -formule de Taylor

b)
$$D_{Ti}=~28,7V_{moy}~(Re\sqrt{\lambda_i})^{0,755}$$
 (IV.4.1.2.b) -formule de Neichal-Jablonsk

c)
$$D_{Ti} = 1,32.\,10^7 W_{moy} D_{int} \left(\frac{\lambda_i}{4}\right). \left(\frac{L}{D_{int}}\right)^{-0.141}$$
 (IV. 4. 1. 2. c) -formule de

Cienetzer

avec : dans les formules (IV. 1.2. a et IV. 1.2. b)

•
$$V_{moy} = \frac{3V_{leg} + V_{lourd}}{4}$$
 (IV.4.1.2.d) - viscosité cinématique ;

• Dans la formule de Cienetzer:
$$V_{moy}^{\frac{1}{3}} = 0$$
, $5\left(V_A^{\frac{1}{3}} + V_B^{\frac{1}{3}}\right)$ (IV.4.1.2.d)

• Pour les autres
$$\mathbf{Re}_{\mathbf{moy}} = \frac{\mathbf{w}_{\mathbf{D}}}{\mathbf{v}_{\mathbf{moy}}}$$
 (IV.4.1.2.e)

$$W_{\text{moy}} = \frac{W_A + W_B}{2}$$
 (IV.4.1.2.f)

 $\bullet \quad \lambda_{moy} \ = \ F_t \ Re_{moy} \quad - \ \text{Coefficient de pertes de charge}.$

IV.4.1.3. Les arguments Z_3 et Z_4 sont déterminés comme suit :

Chapitre IV Partie théorique, calcul hydraulique d'un pompage multi produits OB1

Connaissant les concentrations de coupure C_{B3} (Z_3) et C_{B4} (Z_4) on détermine erf Z_3 et erf Z_4 à partir de la formule (IV. 3.1. j) ou en se servant du tableau ci – dessous (tableau.IV.2) on fait sortir les valeurs de Z_3 et Z_4 .

$$C_{B3} = 0.5 (1 - \text{erf } Z) \text{ ou } erfZ = \frac{2}{\sqrt{\pi}} \cdot \int_0^Z e^{-Z^2} dz \rightarrow C_B = 0.5 (1 - \frac{2}{\sqrt{\pi}} \cdot \int_0^Z e^{-Z^2} dz)$$

CB3	CB4	Z	CB3	CB4	Z
0,00	1,00	2,00	0,10	0,90	0,906
0,01	0,99	1,645	0,15	0,85	0,733
0,02	0,98	1,452	0,20	0,80	0,595
0,03	0,97	1,330	0,25	0,75	0,477
0,04	0,96	1,238	0,30	0,70	0,371
0,05	0,95	1,163	0,35	0,65	0,272
0,06	0,94	1,099	0,40	0,60	0,180
0,07	0,93	1,044	0,45	0,55	0,089
0,08	0,92	0,994	0,50	0,50	0
0,09	0,91	0,948	1,00	0,00	2,00

Tableau IV.2: Valeurs de $Z = f(C_B)$

Remarque:

- 1) Pour $C_B < 0.5$; Les valeurs de Z sont > 0, Pour les valeur de $C_B > 0.5$ les Z < 0, Pour $C_B = 1$, Z = -2
- 2) Si le volume du contaminât se trouve dans les limites de concentrations symétriques dont la somme est égale à 1 (exemple : $C_{B1} = 0.01$ et $C_{B2} = 0.99$) alors $Z_3 Z_4 = 2Z$. La formule du contaminât (IV.4.1.2.b) devient :

$$V_{cond} = 4 V_{cond}.Z.Pe^{0.5}$$
 (IV.4.1.3)

3) Si, au lieu des concentrations C_B on donne C_A la formule (IV.4.1.3) ne change pas tandis que les arguments Z3 et Z_4 dans la formule (4-1) change de place (on multiplie par moins un).

IV.5. Influence de différents facteurs sur le processus de formation du contaminât pendant l'écoulement turbulent

IV.5.1 Influence du mélange primaire. (Figure IV.6)

Au début de la conduite il y a possibilité de formation d'un mélange de 2 produits A et B conditionnée par la rapidité d'ouverture et de fermeture des 2 vannes des réservoirs A et B

Ce mélange, appelé primaire, dépend de la fréquence d'ouverture et de fermeture vanne au niveau de remplissage des réservoirs ; du diamètre de la conduite et du débit d'écoulement du produits. La quantité du mélange primaire peut atteindre $180\ m^3$. (Exemple : pour une durée d'ouverture simultanée des vannes égale à $5\ mn$, pour une vitesse d'écoulement égalé à 2m/S, pour un diamètre de $0,5\ m$ le volume du contaminât est égale à $(118\ m^3\ pour\ une\ longueur\ de <math>600\ m)$.

Le rapport entre les volumes du mélange s'exprime par (voir démonstration) :

$$\frac{V_{\text{mel}}^{\text{pr}}}{V_{\text{mel}}} = \sqrt{1 + \frac{P_{\text{e}}}{16Z^{2}} (\frac{V_{\text{p}}}{V_{\text{cond}}^{2}})}$$
 (IV. 5. 1. a)

 V_{mel}^{pr} , V_{mel} : volume du mélange total en tenant compte du mélange primaire et sans mélange primaire

$$V_p = 4S_{cond}. Z \sqrt{\frac{D. L_{sup}}{W}}$$
 (IV. 5. 1. b)

V_p: volume du mélange primaire,

L_{sup}:Longueur supplémentaire

A partir de cette formule on remarque que dans le volume du contaminât l'importance du mélange primaire diminue avec l'augmentation de la longueur de la conduite, ce qui revient à dire que l'influence est beaucoup plus importante pour les conduites courtes.

IV.5.2 Influence de la variation de la vitesse de pompage. (Figure IV.6)

La vitesse de pompage peut varier soit :

- Subitement dans le cas de variation de diamètre de la conduite ou après un point de livraison des intermédiaires d'une partie des produits :
- Régulièrement à la suite d'un réglage du débit ou substitution graduelle des produits se différant par leur viscosité et densité

Le volume total du contaminât à la fin de la conduite, dans les limites de concentration C_{B3} et C_{B4} pour ce cas considéré est détermine par la formule :

$$V_{cont} = \frac{\pi d_n^2}{4} (Z_3 - Z_4)$$
 (IV. 5. 2)

 d_n : diamètre du dernier tronçon;

 $\mathbf{Z_3et}\,\mathbf{Z_4}$: abscisse des concentrations de coupure C_{B3} et C_{B4}

IV.5.3. Influence des viscosités et densités des produits.

IV.5.3.1 Influence de la variation de la viscosité

Pendant le pompage des produits de viscosités différentes la viscosité du mélange varie en fonction de la variation de la concentration des produits. Cette variation de la viscosité entraı̂ne la variation du coefficient de diffusion turbulente D_t

On sait que

$$D_T = f(\lambda); \lambda = f(R_e); R_e = f(v)$$

Dans le cas où la différence de viscosité entre 2 produits successifs est importante

$$\frac{V_A}{V_B} > 5$$

On peut écrire, à partir de la formule (IV. 4. a):

$$2P_{e}^{-0.5} \approx P_{eA}^{-0.5} + P_{eB}^{-0.5} = P_{eB}^{-0.5} \left[1 + \left(\frac{P_{eA}}{P_{eB}} \right)^{-0.5} \right] = P_{eB}^{-0.5} \left[1 + \left(\frac{D_{TA}}{D_{TB}} \right)^{0.5} \right] \quad (IV. 5. 3. 1)$$

alors la formule (IV.4.1.3) devient, pour des valeurs de concentrations symétriques, la formule (IV.4.b):

$$V_{cont} = 2. V_{cond} ZP_{eB}^{-0.5} \left[1 + \left(\frac{D_{TA}}{D_{TB}} \right)^{0.5} \right]$$

Où

 D_{TA} , D_{TB} , P_{eB} et P_{eA} : coefficient pour les produits A et B respectivement.

Remarque:

Dans le cas où les viscosités des 2 produits face à face seraient presque les mêmes alors :

$$D_{TA} \approx D_{TB} \approx D_{Tmoy}$$
 Dans ce cas on retrouve la formule (IV. 4. b)

IV.5.3.2 Influence des différences de densités (Figure IV.9)

L'influence de densité pour 2 produits différents n'est pas aussi importante que celle de la viscosité et elle peut être négligée pour des conditions normales de pompage. Cependant en cas d'arrêt accidentel du pompage cette influence peut être assez grande surtout dans les reliefs où le produit de plus grande densité se trouve en haut.

IV.5.4. Cas d'existence d'une looping sur le tracé (figure IV.10)

Dans ce cas le débit se répartie dans les 2 conduites et, pour une différence de vitesse d'écoulement (différence de diamètres), le contaminât formé se mélange avec le produit pur dans le point de connexion des 2 conduites.

Pour des diamètres égaux (donc vitesses égales) on peut évaluer l'influence de la looping sur l'importance du contaminât

$$\frac{V_{\text{mel.loop}}}{V_{\text{mel.sans.loop}}} = \sqrt{1 + 7.\frac{L_{\text{loop}}}{L}}$$
 (IV. 5. 4)

où:

 $V_{mel.loop}$: volume du contaminât dans la conduite dans le cas d'existence du looping

V_{mel.sans.loop}: volume du contaminât sans looping.

L_{loop}: longueur du looping;

L : longueur de la conduite principale.

IV.5.5. Influence de la variation de la température des produits.

Le pompage successif se produit dans des conditions non isothermes. A cause de l'échange de chaleur du milieu extérieur avec la conduite la température et la viscosité des produits varie et entraı̂ne la variation du coefficient de diffusion D_t

IV.5.6. Influence du régime d'écoulement.

Le régime d'écoulement influe sur le contaminât. Examinons de plus près les cas d'écoulement laminaire et turbulent.

La formule du coefficient de diffusion turbulent pour un régime laminaire a été proposée par Taylor sous la forme suivante :

$$D_{T.lam} = \frac{R^2.W_{moy}^2}{48.x}$$
 (IV. 5. 2)

Οù

R: rayon de la conduite;

X : coefficient de diffusion moléculaire.

Pour le régime d'écoulement turbulent Taylor, en 1954 après des recherches sur la base des travaux de Nikuradze sur la variation du profil des vitesses dans une section de la conduite, a obtenu la formule (IV.4.1.2.a) du coefficient de diffusion turbulent.

$$D_T=1,785W_{moy}D_{int}\sqrt{\lambda}$$

Les 2 dernières formules permettent de comparer les coefficients de diffusion turbulent dans le régime laminaire et turbulent

Exemple pour R=0,25; $W_{mov} = 1 \text{m/s}$; $\lambda = 0.02$; $x = 10^{-8} m^2/s$

Chapitre IV Partie théorique, calcul hydraulique d'un pompage multi produits OB1

$$\frac{D_T^{lam}}{D_T^{turb}} = \frac{R.W_{moy}}{172.x.\sqrt{\lambda}} \approx 10^6 \quad (IV. 5. 6. a)$$

En se basant sur la formule (IV. 4. a) et la formule (IV. 5.6. a) on peut écrire :

$$\frac{V_{mel}^{lam}}{V_{mel}^{turb}} = \sqrt{\frac{D_{lam}}{D_{turb}}} \approx 10^6 \qquad (IV.\,5.\,6.\,b)$$

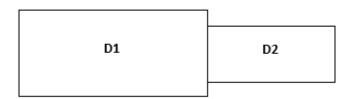


Figure IV.6. Cas de variation du diamètre de la conduite

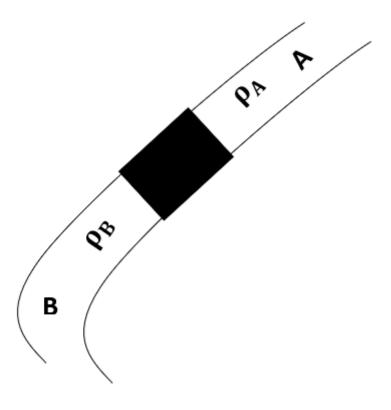


Figure IV.7 : Cas d'arrêt de pompe

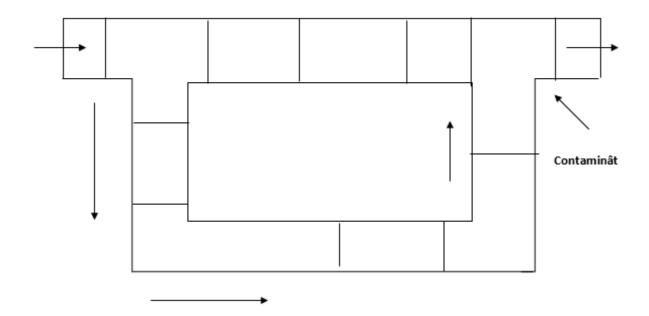


Figure IV.8 : Cas d'existence de looping

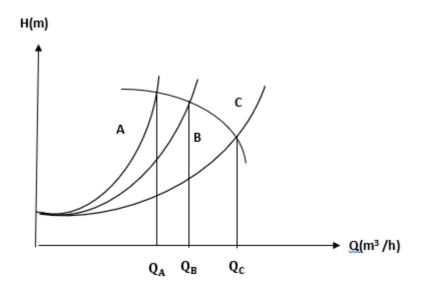


Figure IV.9 : Détermination des débits de pompage

Le volume du contaminât, pour un régime turbulent est d'environ : $V_{mel}^{turb} \approx 0.5 \%$.

 $V_{cont} \approx 0,005$. V_{cond} (Valeur confirmée par l'expérience), alors le volume du contaminât, lors du régime laminaire doit être égale à 5 fois celui de la conduite. Cela veut dire qu'il faut pomper 5 fois le volume de la conduite pour faire sortir le contaminât (voir profil des vitesses)

IV.6. Calcul hydraulique pendant le PMP.

IV.6.1. Diamètre de la canalisation.

Le diamètre de la canalisation est déterminé en fonction du débit annuel de tous les produits (somme des débits des produits) ensuite il est optimisé en tenant compte :

- Du nombre de station de pompage :
- Nombre optimal de cycle de pompage :
- Volume nécessaire des parcs de réservoirs
- Si dans la ligne on trouve nécessaire de placer des SP intermédiaires, dans ce cas on le débit volumique de la ligne en faisant le calcul pour le produit le plus visqueux.
- Si la conduite ne possède pas de SP intermédiaires dans ce cas le débit variera régulièrement suivant la répartition des produits de viscosités différentes et pour cela, pendant le choix des pompes on doit tenir compte de la possibilité de pomper chaque produit avec un rendement maximal, ensuite on fait le calcul économique

IV.6.2. Débit moyen de pompage.

Connaissant les quantités annuelles des produits pompés A, B, C (q_A, q_B, q_C) on détermine le débit moyen journalier.

$$q_{moy}^{j} = \frac{1}{350} (q_A + q_B + q_C)$$
 (IV.6.2)

Le calcul hydraulique dans le pompage multiproduits est le même que celui ordinaire (perte de charge, nombre de SP etc...) Ce qui diffère c'est le choix des pompes qui seront appelées à travailler avec le produit le plus visqueux.

Sur un graphique on trace les caractéristiques de la SP et de la conduite pour chaque produit à part (Figure IV.9). Les points d'intersection de ces courbes nous donnent les débits réels de chaque produit dans la conduite $(Q_A, Q_B, Q_C \text{ en } m^3/h)$

IV.6.3. Nombre de jours de pompage (figure IV.11)

$$N_A = \frac{q_A}{24Q_A}$$
 $N_B = \frac{q_B}{24Q_B}$ $N_i = \frac{q_i}{24Q_i}$ (IV.6.3.a)

La condition suivante doit être respectée :

$$\sum_{i=1}^{m} N_i \le K.365$$
 (IV. 6. 3. b)

K: coefficient d'utilisation de la conduite

Nombre de produits différents pompés successivement par une conduite peut atteindre 30 produits Dans la plupart des cas on pompe 3 à 5 produits Si on pompe successivement différents produits dans une même conduite dans ce cas le nombre de zones de formation du mélange (nombre de produits dans une même séquence) se calcule par la formule

$$n = 2 (m - 1)$$
 (IV.6.3.c)

IV.6.4 Nombre optimal de cycle de pompage.

$$C_{opt} = \frac{\sum_{i=1}^{m} Q_i (T - N_i)}{\left(\frac{2}{3}\right) \sum_{i=1}^{m} Q_i}$$
 (IV. 6. 4. d)

Q_i: Volume du produit i pompé par an ;

T : nombre de jours de fonctionnement de la conduite

N_i: nombre de jours de pompage du produit i

IV.6.5 Durée de pompage d'un cycle.

$$T_{c} = \frac{T}{C_{opt}}$$
 (IV. 6. 5)

IV.6.6. Durée de pompage d'un produit i au cours d'un cycle.

$$\tau_i = \frac{N_i}{C_{ont}} \tag{IV. 6. 6}$$

IV.6.7. Capacité nécessaire du parc de stockage au T.D

$$V_{TD} = \sum_{i=1}^{m} q_i^{TD} (T_c - \tau_i) = \sum_{i=1}^{m} V_i^{TD}$$
 (IV. 6.7)

IV.6.8. Capacité nécessaire du parc de stockage au T.A

$$V_{TA} = \sum_{i=1}^{m} q_i^{TA} (T_c - \tau_i) = \sum_{i=1}^{m} V_i^{TA}$$
 (IV. 6.8)

IV.6.9. Capacité nécessaire du parc de stockage au point de livraison

$$V_{livr} = \sum_{i=1}^{p} \sum_{j=1}^{m} q_{j,i}^{p} (T_c - \tau_i)$$
 (IV. 6. 9)

IV.6.10. Capacité nécessaire du parc de stockage au point de réception

$$V_{rec} = \sum_{i=1}^{r} \sum_{i=1}^{m} q_{j,i}^{r} (T_{c} - \tau_{i})$$
 (IV. 6. 10)

IV.6.11. Volume total de tous les parcs de stockage constituant la conduite

$$V_{tot} = V_{TD} + V_{TA} + V_{rec} + V_{line}$$
 (IV. 6. 11)

Pour les calculs approximatifs on utilise la formule simplifiée

En général le volume total des réservoirs au T.D est approximativement égal à 2-3 fois le débit moyen journalier de la conduite

Pour la détermination du volume du contaminât par formule (IV. 4. b) les valeurs de D_{TA} et D_{TB} doivent être calculées à l'aide des formules de D_{T} données auparavant pour chaque produit séparément

La valeur de Z. (argument) dans les formules (IV. 4. b) et (IV. 4. 1.3), pour des limites données de variation de concentrations, doit être prise comme positive. Pour des valeurs données de C_{B1} et C_{B2} on les prend directement du tableau (2)

IV.7. Réception du contaminât au Terminal Arrivée

IV.7.1. La détection des interfaces

Le repérage d'une contamination se fait en amont du point d'aiguillage, grâce à des détecteurs en ligne de densité relative, qui permettent de prévoir l'arrivée de l'interface annoncée par calcul (temps de trajet) Une confirmation à l'aide d'un densimètre et/ou d'un colorimètre implanté à l'entrée de l'installation permet de déclencher la manouvre d'aiguillage

On peut ainsi effectuer la coupure, opérée par switch, c'est-à-dire en passant d'un circuit à un autre par enchainement des ouvertures et fermetures de vannes, en choisissant entre :

- La coupure 50/50, si l'on peut répartir le mélange entre deux produits adjacents,
- La coupure 0/100 si la coupure se fait sur un produit pur (cas des produits de la même famille). On déclasse le mélange en l'incorporant dans le produit le moins noble, qui se trouve ainsi bonifié.
- Une double coupure de façon à isoler la contamination dans des réservoirs spéciaux prévus à cet effet, pour une ré-injection ultérieure (à très faible proportion) ou un retraitement en raffinerie.

Le contaminât qui se forme dans la conduite est réceptionnées au terminal arrivé de la manière suivante (figure IV.11)

La réception du mélange se fait d'abord dans le réservoir spécial (sloop) ensuite ce mélange est distribué par quantité dans différents réservoirs contenant des produits purs.

La quantité du mélange qui peut être reçue dans un réservoir de produit pur est déterminée par la formule suivante :

$$V_{mel}^{A} = \frac{C_{B}^{A}. V^{A}}{C_{B}^{moy}}$$
 (IV. 7. 1. a)

$$V_{\text{mel}}^{\text{B}} = \frac{C_{\text{A}}^{\text{B}}.V^{\text{B}}}{C_{\text{A}}^{\text{moy}}}$$
 (IV. 7. 1. b)

 V_{mel}^{A} , V_{mel}^{B} : Volume d'injection du mélange reçu dans les réservoirs de produits A et B.

 C_A^B , C_B^A : concentration admissible des produis B et A dans les réservoirs contenant les Produits A et B

V^A, V^B volume des réservoirs A et B

 C_A^{moy} , C_B^{moy} : concentration moyenne des produits A et B dans le mélange.

Ces derniers sont déterminés par les formules

$$C_A^{moy} = \frac{\rho^{mel} - \rho_B}{\rho_A - \rho_B} \times 100\%$$
 (IV. 7. 1. c)

et

$$C_B^{moy} = \frac{\rho^{mel} - \rho_A}{\rho_B - \rho_A} \times 100\% \hspace{1cm} (IV.\,7.\,1.\,d) \label{eq:cbose}$$

$$C_B^{moy} = 100 - \ C_A^{moy}$$

 ρ^{mel} : Masse volumique du mélange

 $\rho_A; \rho_B$: Masse volumique des produits A et B

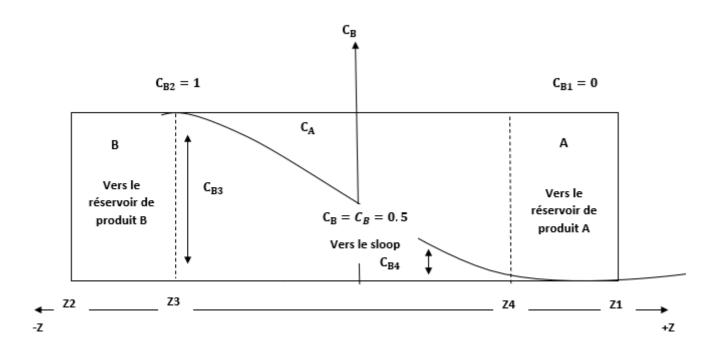
Les concentrations admissibles \mathcal{C}_A^B et \mathcal{C}_A^A sont données au tableau pour différents produits.

Produits	E.N	E.S	G.O	F.O.D	C.A
Essence normale	100%	1.0%	0.1%	0.1%	0.5%
Essence super	0.5%	100%	0.1%	0.1%	0.3%
Gas-oil	0.2%	0.2%	100%	10%	0.5%
Fuel domestique	0.2%	0.2%	%	10%	0.5%
Carburant	0.05%	0.05%	0.05%	0.05%	100%

Tableau IV.3: Concentrations admissibles

IV.8. Calcul du volume du contaminât

Détermination des concentrations de coupure (cas de 2 produits qui se suivent).


Marche à suivre:

Chapitre IV Partie théorique, calcul hydraulique d'un pompage multi produits OB1

- 1. Connaître les concentrations admissibles d'un produit dans un autre ;
- 2. Connaitre les capacités des réservoirs des 2 produits purs consécutifs
- 3. Déterminer la viscosité moyenne des 2 produits:
- 4. Pour un débit donné déterminer a valeur moyenne de la vitesse d'écoulement des produits :
- 5. Déterminer le nombre de Reynolds (moyen et pour chaque produit)
- 6. Pour un régime d'écoulement des produits déterminer le coefficient de résistance hydraulique :
- 7. Déterminer le coefficient de diffusion turbulente
- 8. Pour DT, D_{TA}, D_{TB} déterminer le paramètre de Peclet
- 9. Déterminer le volume géométrique de la conduite
- 10. Déterminer les expressions suivantes:

$$\phi(Z_3) = \frac{C_B^A. V_A. (P_e)^{0.5}}{V_{cond}} = \frac{e^{-Z_3^2}}{\sqrt{\pi}} - Z_3(1 - erf. Z_3) \tag{IV. 8. a}$$

$$\phi(Z_4) = \frac{C_A^B.\,V_B.\,(P_e)^{0.5}}{V_{cond}} = \frac{e^{-Z_4^2}}{\sqrt{\pi}} - \,\,Z_4(1-erf.\,Z_4) \eqno(IV.\,8.\,b)$$

Figure IV.10 : Réception du contaminât (a- cas où $C_{B3} < C_{B4}$)

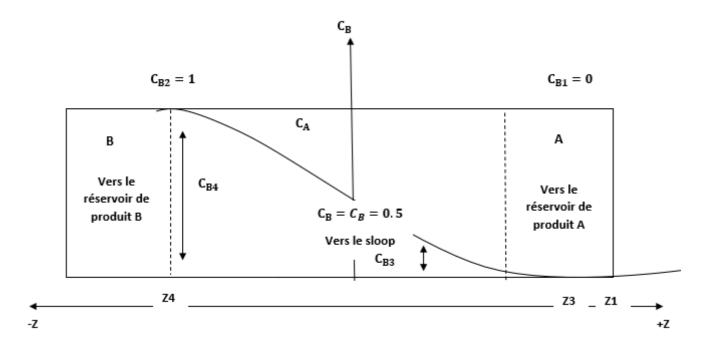


Figure IV.11 : b) cas où $C_{\rm B3} > C_{\rm B4})$

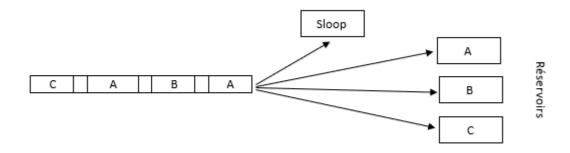


Figure IV.12 : c) Réception des cargaisons au Terminal Arrive

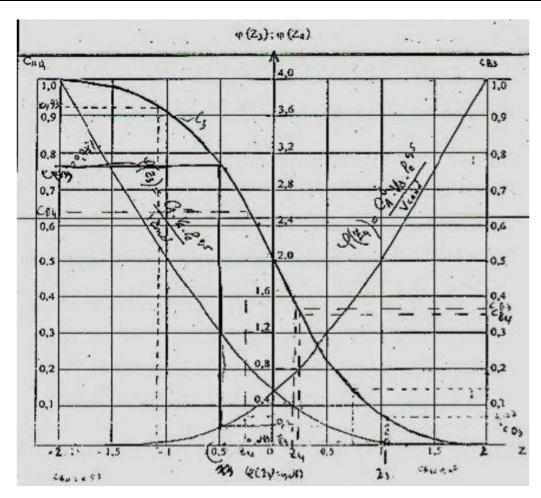


Figure IV.13 : Graphe pour la détermination des concentrations de coupure et des arguments Z_3 et Z_4

La résolution de cette équation donne les valeurs de 73 et 74. D'autre part :

 $(1-erf.Z_3))=2$ C_{B3} , on trouve alors la valeur de la concentration de coupure C_{B3} . Du même, on détermine C_{B4} en posant $C_{B4}=0.5$ $(1-erf.Z_4)$ ou bien $C_{A4}=0.5$ $(1+erf.Z_4)$.

L'utilisation du graphe (figure. IV13) facilite le calcul.

11. En fonction des rapports de viscosités on utilise les formules correspondantes pour déterminer le volume du contaminât,

Important (cas où le produit le plus lourd est le produit B derrière le produit. A)

2 cas peuvent se présenter après la détermination de C_{B3} et C_{B4}

1) Si $C_{B3} > C_{B4}$: dans ce cas tout le mélange qui se forme dans la conduite est envoyé indifféremment, dans les réservoirs A ou B (il y a compatibilité entre les produits). Le changement de réservoir doit se faire dans l'intervalle entre C_{B3} et C_{B4} (ou plus précisément entre C_{B3} et C_{B4}).

2) Si $C_{B3} < C_{B4}$: dans ce cas la partie du mélange comprise entre ces 2 valeurs doit être envoyée directement vers un réservoir spécial contaminât appeler sloop. Ce mélange est réparti, ensuite, dans les réservoirs de produit pur A et B dans les limites des concentrations admissibles

Les quantités maximales que peuvent recevoir les réservoirs est déterminée par les formules (IV. 7.1. a) et (IV. 7.1. b). Dans le cas où il n'y a plus possibilité de mélanger le contaminât avec les produits A et B, (les concentrations admissibles dépassent les valeurs les limites autorisées), on procède comme suit :

- -Soit envoyer le mélange vers la raffinerie pour le retraitement :
- -Soit retraiter sur place le contaminât (encore faut-il avoir les moyens de retraitement)

IV.9. Contrôle du pompage successif.

Le contrôle du PMP permet de connaître le déplacement du contaminât, de se préparer à la réception de celui-ci et de répartir le contaminât dars les réservoirs du Terminal Arrivée. C'est pourquoi celui-ci doit être équipé d'un dispositif de contrôle

La majorité des méthodes de contrôle du PMP sont basées sur la différence des propriétés physiques des produits finis (densité, couleur, vitesse de propagation supersonique, propriétés diélectriques Examinons 2 cas de rapport de densités

1) Si l'écart de densité des produits pompés est assez grand on utilise le contrôle de densité. La densité du mélange de 2 produits est exprimée de la manière suivante :

$$\rho_{mel} = \rho_A C_A + \rho_B C_B \tag{IV. 9. a} \label{eq:equation_problem}$$

Mais

$$C_A + C_B = 1 \rightarrow \rho_{mel} = \rho_A C_A - \rho_B (1 - C_A)$$
 (IV. 9. b)

 C_A et C_B formule (IV. 7.1. c) (IV. 7.1. d)

La densité du mélange varie en fonction de la variation des concentrations des produits purs et de densité de ces produits Connaissant ces densités et mesurant la densité du contaminât on peut calculer les concentrations de coupure

2) Si les valeurs des densités des produits sont proches l'une de l'autre, on applique un dispositif de mesure de propagation ultasonique dans les produits et le contaminât. Cette vitesse est différente pour des produits différents ce qui permet d'établir la dépendance entre les concentrations et la vitesse

IV.10. Méthode de réduction du volume du contaminât

IV.10.1. Mesures préventives.

Pour réduire les inconvénients qui découlent du PMP, certaines mesures doivent être prises avant, pendant et après le pompage.

- 1- Le volume du contaminât, comme il a été dit auparavant, constitue 0,5 à 1% du volume géométrique de la conduite. Or on peut facilement montrer qu'il diminue avec l'augmentation de Reynolds c'est à dire dans un régime turbulent avec un nombre de Reynolds le plus grand possible. (Re > 10 à 20000).
- 2- Proscrire les variations du régime de pompage ;
- 3- Le système de pompage de pompe à pompe est préféré au pompage à travers les réservoirs tampons afin d'éviter une contamination supplémentaire.
- 4- Lors de la composition des séquences de pompage des produits, faire en sorte que l'écart des densités soit minimal.
- 5- Orienter la réception de la tête" et de la "queue" du contaminât dans les réservoirs de grande capacite afin de diminuer la concentration du produit ajouté dans un réservoir.
- 6- Eviter, dans la mesure du possible, les bouts morts dans les stations de pompage et les parts de stockage. Les loopings augmentent aussi le volume du contaminât. (fig 11).
- 7- Conserver une pression positive en cours de pompage dans les points hauts de la ligne et maintenir à l'arrêt une pression relativement élevée (5 à 20 bar), en tenant compte de la chute de température du produit pompé
- 8- Préserver les caractéristiques sensibles des produits :
 - Pour les gazoles et carburéacteurs, c'est le point d'éclair (1% d'essence fait baisser le point d'éclair du gazole de 5°C) et la teneur en eau ;
 - Pour les essences, ce sont l'indice d'octane et les caractéristiques de distillation ;
 - Pour le carburéacteur, les additifs d'onctuosité tensioactifs) ajoutés dans les gazoles désulfurés (ils détruisent la coalescence dans les filtres séparateurs d'eau) et les composés soufrés générateurs de corrosion peuvent présenter des risques par migration augmentant la zone de mélange amont
- 9- Utilisation des racleurs.

Les racleurs diminuent la contamination dans les conduites : On utilise les types suivants :

9.1. Racleurs liquides. Ce sont soit

Chapitre IV Partie théorique, calcul hydraulique d'un pompage multi produits OB1

- Les produits liquides finis qui doivent avoir des propriétés physiques proches de celles des produits pompés,
- Racleurs liquides qui ne se mélangent pas avec les produits pompés, qui sont facilement pompés par les pompes et qui ne sont pas détruits lors du pompage. Pour obtenir un racleur liquide on ajoute dans les produits pompés des polymères (polyacrylamide, polyisobutylene) en quantité de 0,5% ce qui permet d'avoir un bouchon insoluble, visqueux et élastique.

9.2. Racleurs solides.

Il existe des racleurs de type et de construction différents. Le racleur doit répondre aux exigences suivantes ;

- être bon marché, simple en construction, assez léger:
- se déplacer à la vitesse moyenne de l'écoulement; c'est à dire ne doit pas dépasser ou rester en arrière de la zone de contact:

Examinons différents types de racleurs utilisés

a) racleur à disque (Figure IV.14)

Le diamètre du disque élastique est légèrement supérieur à celui de la conduite Dc. Le nombre de disques est de 2 à 5. La distance parcourue par tel type de racleurs, sans perdre d'étanchéité, est de 30 à 50 km. Ce type est utilisé dans les pipelines courts.

b) racleur à coupelles (Figure IV.15)

Le diamètre extérieur des coupelles fabriquées en polyéthylène est légèrement supérieur au diamètre intérieur de la conduite. La distance parcourue par ce type de racleur est de 500 à 700 km. On peut l'utiliser comme piston racleur pour nettoyer la surface intérieure de la conduite

Diamètre de racleurs Performances	800mm	1000 mm	1200 mm
Longueur, (mun)	1550	1840	2100
Poids. (kg)	180	345	580
Rayon minimal du passage (m)	35	50	60

Tableau IV.4: Paramètres de racleur à coupelles

c) Racleur sphérique ou boule (Figure IV.16)

Il se présente sous forme de sphère en caoutchouc gonflé par un liquide. Les boules sont expédiées au moment de changement des cargaisons. On peut utiliser les trains de sphères composés de 3 à 10 sphères : Pour avoir un bon contact de la boule et de la surface intérieure de la conduite la boule est remplie d'un liquide sous une pression nécessaire pour assurer une surface de contact égale à 10-15% du diamètre de la conduite (Figure IV.14)

L'ampoule avec une substance radioactive sert à détecter la position des boules dans le pipeline. L'inconvénient majeur des boules est l'instabilité de la vitesse de déplacement. La boule peut être en retard ou en avance de la zone de contact des produits ce qui entraîne une augmentation importante du contaminât

Figure IV.14: Racleur à disque

Figure IV.15: Racleur à coupelles

Figure IV.16 : Racleur sphérique (boule)

Chapitre V Analyse hydraulique du pompage- multi produits OB1

Introduction

Dans ce chapitre nous traiterons de l'analyse hydraulique du pompage multi produits OB1 de SP1 jusqu'au Col de Selatna constituant un point de contrôle sur le tracé. Au-delà de ce point l'écoulement se poursuivra d'une manière gravitaire jusqu'au (TMB).

➤ Formule de calcul

La Section

$$S = \frac{\pi D_{\text{int}}^2}{4} \tag{V.1}$$

• Rugosité relative

$$e_{\text{relative}} = \frac{2. e}{D_{\text{int}}}$$
 (V. 2)

• Vitesse de brut ou condensat

$$W_{\text{brut/conden}} = \frac{Q_{\text{brut/conden}}}{S}$$
 (V. 3)

• Vitesse moyenne

$$W_{\text{moy}} = \frac{Q_{\text{t}}}{S} \tag{V.4}$$

• Nombre de produit dans le cycle

$$Np_{cyc} = 2(n_p - 1)$$
 (V.5)

Débit de brut ou condensat

$$Q_{\text{brut/conden}} = \sqrt{\frac{\frac{\text{Hal} + a - \Delta Z - H_f}{1,02 * 8 * \lambda * L}}{\pi^2 g \, D_{\text{int}}^5} + b}}$$
 (V. 6)

• Nombre de jour de pompage

$$n_{j} = \frac{Q_{\text{produit}}^{\text{an}}}{Q_{\text{produit}} * 24}$$
 (V.7)

• Nombre de jour totale de pompage

$$n_{jtot} = \sum_{i=1}^{n} n_{j.produit}$$
 (V. 8)

• Nombre optimale de pompage d'un cycle

$$n_{\text{opt.cyc}} = \frac{Q_{\text{produit i}}^{\text{an}} \cdot \left(n_{j \text{ tot}} - n_{j \text{ produit i}}\right) + Q_{\text{produit.}}\left(n_{j \text{.tot}} - n_{j \text{ produit j}}\right)}{3 \cdot \left(Q_{\text{produit i}} + Q_{\text{produit j}}\right)} \quad (V.9)$$

• Durée de pompage d'un cycle

$$D_{\text{pompage cycl}} = \frac{n_{\text{j tot}}}{n_{\text{opt cycl}}}$$
 (V. 10)

• Durée de pompage d'une cargaison

$$D_{\text{pomp.carg}} = \frac{n_{\text{j brut}}.24}{n_{\text{opt cyc}}}$$
 (V. 11)

Viscosité moyenne

$$\vartheta_{\text{moy.DT}} = \frac{{}_{3 \times \vartheta_{\text{brut}} + \vartheta_{\text{condensat}}}}{{}_{4}} \tag{V.12}$$

• Viscosité de mélange

$$\vartheta_{\text{mel}} = 0.5 \times \vartheta_{\text{condensat}} + \vartheta_{\text{brut}}$$
 (V. 13)

• Coefficient diffusion turbulent (Netchvale) DT

$$D_{diffusion.Netchv} = 28.7 \times \vartheta_{moy.DT} \times 10^{-6} \times (R_{em} \times \sqrt{\lambda})^{0.755}$$
 (V. 14)

Coefficient diffusion turbulent (Taylor)DT

$$D_{\text{diffusion.Taylor}} = 1.875 \times \omega_{\text{moy}} \times D_{\text{int}} \times \sqrt{\lambda}$$
 (V. 15)

• Volume de conduite

$$V_{\text{conduit}} = S \times L \times 10^3 \tag{V.16}$$

Peclet selon Netchvale ou Taylor

$$Pe_{Netch/Tayl} = \frac{\omega_{moy} \times L \times 10^3}{C_{diffusion.Netchv}/Tayl}$$
 (V. 17)

• Volume de contaminât selon Netchvale ou Taylor

$$V_{\text{cont Netch/Tayl}} = \frac{\alpha_{\text{Tab}} \times 4 \times V_{\text{conduit}} \times Z_{\text{Tab}}}{\text{Pe}_{\text{Netch/Tayl}}^{0.5}}$$
(V. 18)

• Volume contaminât avec Z₁ et Z₂

$$V_{\text{cont Z1.Z2}} = \frac{\alpha_{\text{Tab}} \times 2 \times V_{\text{conduit}} \times (Z_1 - Z_1)}{\text{Pe}_{\text{Taylor}}}$$
(V. 19)

Volume contaminât formule empty

$$V_{\text{cont.empt}} = 1200 \times K \times V_{\text{conduit}} \times \lambda^{1.8} \times \left(\frac{D_{\text{int}}}{L \times 10^3}\right)^{0.43}$$
 (V. 20)

Longueur de contaminât selon Netchvale ou Taylor

$$L_{cont \, Netch/Tayl} = \frac{V_{cont \, Netch/Tayl}}{S}$$
 (V. 21)

Longueur de contaminât formule empty du Volume contaminât

$$L_{cont.empt \, V_{conta}} = \frac{V_{cont.empt}}{S}$$
 (V. 22)

• Longueur de contaminât selon formule empirique

$$L_{\text{cont.emp}} = 0.99 \times (L \times 10^3)^{0.482}$$
 (V. 23)

• Longueur de contaminât selon formule empirique

$$L_{cont.emp} = \frac{0.01 \times V_{conduit}}{S}$$
 (V. 24)

Volume primaire de contaminât

$$V_{primair.cont} = Q_{tot} \times T_{ferm.vanne} \times 60$$
 (V. 25)

• Pourcentage d'augmentation de Volume contaminât provoque par mélange primaire Cs%

$$Cs_{Vcont.mel\ pri} = \sqrt{(1 + (\frac{Pe_{Tayl}}{Z_{Tab}^2}).(\frac{V_{cont.pri}}{V_{cond}^2}))}$$
 (V. 26)

• Pourcentage d'augmentation de Volume contaminât formule approché

$$Cs_{Appro} = \sqrt{\left(1 + \left(23100 \times \left(\frac{V_{cont.pri}}{V_{cond}}\right)^2\right)\right)}$$
 (V. 27)

• Volume de contaminât récupérer à l'arrivée

$$V_{\text{cont.arri}} = Cs_{V_{\text{cont.mel pri}}} \times V_{\text{cont.Z}_1Z_2}$$
 (V. 28)

• Volume de contaminât récupérer a l'arrivée formule approche Cs

$$V_{\text{cont.arri.Csappro}} = Cs_{\text{Appro}} \times V_{\text{cont.Z}_1Z_2}$$
 (V. 29)

• Longueur du contaminât a l'arrivée

$$L_{cont.arri} = \frac{V_{cont.arri}}{S}$$
 (V. 30)

• Longueur du conta a l'arrivée Cs approche

$$L_{cont.arri.Csappro} = \frac{V_{cont.Csappro}}{S}$$
 (V. 31)

• Volume total de contaminât sur un cycle

$$V_{\text{cont.tot.cycl}} = 2 \times V_{\text{cont.Csappro}}$$
 (V. 32)

• Volume total de contaminât sur l'année

$$V_{cont.tot.annee} = V_{cont.tot.cycl} \times n_{opt.cycl}$$
 (V. 33)

• Capacité réel exploité brut / condensat

$$C_{\text{explo.brut/condensat}} = 0.95 \times C_{\text{rés}} \times n_{\text{rés.brut/conden}}$$
 (V. 34)

• Capacité nécessaire au terminal Départ

$$C_{TD} = (Q_{brut} \times D_{pomp \ carg.brut}) + (Q_{conden} \times D_{pomp \ carg.conden})$$
 (V. 35)

• Capacité de brut / condensat

$$C_{\text{brut/conden}} = Q_{\text{brut/conden}} \times D_{\text{pomp carg.brut/conden}}$$
 (V. 36)

D_{pomp carg.brut/conden}: Durée de pompage de cargaison pour chaque produit

V.1. Données des tronçons entre les stations de pompage :

Le tableau suivant représente les données de base pour déterminer les différents paramètres nécessaires dans notre calcul :

Paramètre	Symboles et	Tronçon entre SP
	Unités	SP3-SLATNA
Debit du brut	Q _{brut} (m ³ /an)	5022217
Debit du condencat	Q _{cond} (m ³ /an)	5400000
Densité de brut	d _{brut}	0.82
Densité de condensat	$d_{condensat}$	0.703
Viscosité du brut	$\vartheta_{\mathrm{Brut}}(\mathrm{Cst})$	3
Viscosité du condensat	$\theta_{\rm cond}({\rm Cst})$	0.75
Longueur de pipeline	L(Km)	669.268
Longueur (SP1- SLATNA)	L(Km)	533
Diamètre extérieur	D _{ext} (pouce)	24
Epaisseur moyen	$\delta(mm)$	5.92
Rugosité	e (mm)	0.045
Différences d'altitudes	ΔZ(m)	883
La charge final	H _{final} (m)	124.3131

Tableau V.1: Données du calcul

V.2- Calcul des débits et vitesses :

Le tableau suivant présente les résultats de calcul des débits et vitesses de pompage multiproduits d'OB1, en suivant les différentes équations citées précédent :

			Tronçon entre
Paramètre	C114		SP
	Symboles et Unités	Formule	SP1-SLATNA
Diamètre	D _{int} (mm)	(II.1.1.2)	507.76
intérieur	Dint(mm)	(11.11.2)	597.76
Section	S(m ²)	(V.1)	0.280636129
Rugosité	E (mm)	(V.2)	
relative	c (mm)	(V.2)	0.000150562
Débit de brut	Q _{brut} (m ³ /s)	/	0.166078604
Débit de	Q_{cond} (m ³ /s)	/	
condensat	Qcond(III /8)	/	0,197678009
Vitesse de	ω _{Brut} (m/s)	(V.3)	
brut	ω _{Brut} (m/s)	(v .5)	0,591793383
Vitesse de	ω_{cond} (m/s)	(V.3)	
condensat	wcond (III/S)	(*.5)	0,704392587
Débit totale	$Q_{\text{Tot}}(m^3/s)$	/	0,363756614
Vitesse	$\omega_{moy}(m/s)$	(V.4)	1,296185971
moyen totale	moy ()	, , , , , , , , , , , , , , , , , , ,	1,2301033/1

Tableau V.2: Calcul des débits et vitesses

V.3 Calcul hydraulique du pipeline multi produit OB1

Le tableau suivant présente les résultats de calcul hydraulique de l'OB1 (brut, condensat), le calcul doit être réalisé avec la viscosité du produit le plus lourds au condition hiver en considérant la charge totale de l'ensemble des stations au terminal départ.

			Tronçon entre
Paramètre	Paramètre Symbol Unité	Formule	SP
			SP1-SLATNA
Reynolds	Re	(II.3.2)	258269,3753
Reynolds critique 1	RecrI	(II.3.3.b)	1389446,812
Coefficient de pertes de charges	λ(m)	Formule de Blasius	0,014035188
La Charge totale	H _T (m)	(II.3.4.3)	1093,08619
La charge de refoulement exigé par les stations de pompages	Href exigée(m)	(II.3.5)	2100,39929

Tableau V.3: Calcul hydraulique du pipeline multi produit pour le choix de pompe

Caractéristique des stations H=f(Q)	Valeurs
a	4 240
b	0,00017968

Tableau V.4 : Coefficients du modèle mathématique de la caractéristique sommaire de l'ensemble des stations de pompage de l'OB1

V.3.1 Interprétation

D'après les résultats le régime est turbulent hydrauliquement lisse

V.4 Calcul des débits réels pour chaque produit en considérant la charge nominale des stations

V.4.1 Brut

			Tronçon entre SP
Paramètre	Symbol Unité	Formule	SP1-SLATNA
Nombre de produit		/	2
transporté	n_{tr}		
Nombre de produit		(V.5)	2
dans le cycle	$n_{tr.cy}$	(*.5)	2
coefficient de pertes		Formule de Blasius	0.04024522
de charges	$\lambda(m)$	Torride de Blasias	0,01024623
Débit de brut	$Q_{brut}(m^3/h)$	(V.6)	1884,257882
Reynolds	Re	(II.3.2)	371620,6627
Reynolds critique 1	RecrI	(II.3.3.b)	1389446,812
Coefficient de pertes		Formule de Blasius	
de charges	$\lambda(m)$	1 officie de Diasius	0,012814791
Débit de brut	Q _{brut} (m ³ /h)	(V.6)	1884,293492

Tableau V.5: Calcul du débit réel de brut

V.4.2 Condensat

			Tronçon entre SP
Paramètre	Symbol Unité	Formule	SP1-SLATNA
Nombre de produit transporté	n _{tr}	/	2
Nombre de produit dans le cycle	n _{tr.cy}	(V.5)	2
Coefficient de pertes de charges	λ(m)	Formule de Blasius	0,01024623
Débit de condensat	$Q_{cond}(m^3/h)$	(V.6)	2183,972798
Reynolds	Re	(II.3.2)	1722926,413
Reynolds critique 1	RecrI	(II.3.3.b)	1389446,812
Coefficient de pertes de charges	λ(m)	Formule de Blasius	0,008733127
Débit de condensat	$Q_{cond}(m^3/h)$	(V.6)	2184,042876

Tableau V.6 : Calcul de débit réel de condensat

V.4.2.1 Interprétation

Comme la viscosité de brut et condensat sont pratiquement identiques alors les débits réels par conséquent sont assez proches mais on remarque quand même un débit de condensat plus élevé ce qui s'explique par une perte de charge moins important vue que la viscosité de condensat qui est plus faible

 D'après le calcul des charges des stations et des pertes de charge dans la conduite en fonction du débit mentionnées dans le tableau suivant on trace ensuite la caractéristique sommaire des stations et les caractéristiques de la conduite pour le brut et le condensat entre SP1 et le col de Selatna

Q m3/h	Hp (m)	Hc BRUT	Hc CONDENSAT
0	4240	124,3131	124,3131
600	4099,96	394,291917	309,7369365
800	3991,04	604,275441	453,9554761
1400	3477,56	1594,19777	1133,842877
1800	2979,64	2554,12245	1793,127629
2200	2357,24	3754,0283	2617,233569

Tableau V.7: caractéristiques sommaire des stations et conduite

D'après le tableau on trace les courbes caractéristiques et on déduit les points de fonctionnement et les débits réels pour le brut et le condensat

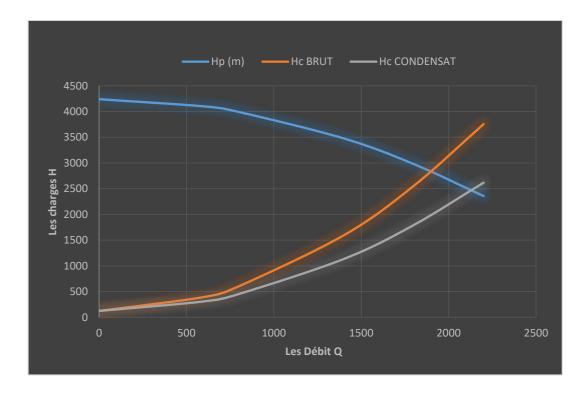


Figure V.1: les courbes caractéristiques de la conduite et de l'ensemble des stations

			OB1
Paramètre	Symbol Unité	Formule	SP1-TMB
Nombre de			
jour de		(V.7)	444.0542770
pompage de	N _{brut} (jour)	(• . /)	111,0543779
brut			
Nombre de			
jour de		(V.7)	444.0427665
pompage de	N _{cond} (jour)	(• • • • • • • • • • • • • • • • • • •	114,0427665
condensat	ricond Vour)		
La sommes de			
jour de	VM (iour)	(V.8)	225,0971444
pompage	$\sum N_i$ (jour)		

Tableau V.8: Nombre de jour de pompage de chaque produit

V.5. Interprétation

Le nombre de jour de pompage est petit ce qui entraine un coefficient d'utilisation faible d'où la nécessité de diminuer le débit pour se rapprocher du débit moyen transportant les capacités annuelles, de cette manière on pourra augmenter le nombre de jour de pompage pour ce rapprocher des 350 jours recommandé et par le même occasion augmenté le coefficient d'utilisation. Il sera nécessaire pour cela de baisser la caractéristique sommaire des stations.

V.5.1 Régulation des stations de pompage et baisse du coefficient a de la caractéristique sommaire

Caractéristique pompe H=f(Q)	Valeur
a	2455
b	0,00017968

Tableau V.9 : Coefficients du modèle mathématique de la caractéristique sommaire des SP

V.5.2 Calcul des nouveaux débits réels pour chaque produit V.5.2.1 Brut

			Tronçon entre SP
Paramètre	Symbol Unité	Formule	SP1-SLATNA
Nombre de produit		/	2
transporté	n_{tr}	,	_
Nombre de produit		(V.5)	2
dans le cycle	$n_{tr.cy}$	(1.5)	_
coefficient de pertes		Formule de Blasius	0.01024622
de charges	λ(m)		0,01024623
Débit de brut	$Q_{brut}(m^3/h)$	(V.6)	1260,944121
Reynolds	Re	(II.3.2)	248688,3003
Reynolds critique 1	RecrI	(II.3.3.b)	1389446,812
Coefficient de pertes		Formule de Blasius	0,01416846
de charges	$\lambda(m)$		0,01410040
Débit de brut	$Q_{brut}(m^3/h)$	(V.6)	1210,686934

Tableau V.10: Calcul du nouveau débit réel de brut

V.5.2.2 Condensat

			OB1	
Paramètre	Symbol Unité	Formule	SP1-SLATNA	
Nombre de produit		/	2	
transporté	n_{tr}	,	2	
Nombre de produit		(V.5)	2	
dans le cycle	n _{tr.cy}	(1.5)	2	
Coefficient de		Formule de Blasius	0.0400.4500	
pertes de charges	$\lambda(m)$	1 office de Blasius	0,01024623	
Débit de condensat	$Q_{cond}(m^3/h)$	(V.6)	1461,513143	
Reynolds	Re	(II.3.2)	1152981,21	
Reynolds critique 1	RecrI	(II.3.3.b)	1389446,812	
Coefficient de		Formule de Blasius	0.000055027	
pertes de charges	$\lambda(m)$	1 official de Diasius	0,009655637	
Débit de condensat	$Q_{cond}(m^3/h)$	(V.6)	1407,934558	

Tableau V.11: Calcul du nouveau débit réel de condensat

V.5.2 Interprétation

Les débits obtenus avec le nouveau coefficient a =2455 m est inférieur

Q m3/h	Hp (m)	Hc BRUT	Hc CONDENSAT
0	2455	124,3131	124,3131
600	2242,6	429,034317	334,6251039
800	2077,4	666,039709	498,2011069
1200	1605,4	1343,19797	965,5611155
1400	1298,6	1783,35084	1269,345121
1800	543,4	2866,80406	2017,121135

Tableau V.12: caractéristiques sommaire des stations et conduite

D'après le tableau on trace les courbes caractéristiques et on déduit les points de fonctionnement et les débits réels pour le brut et le condensat

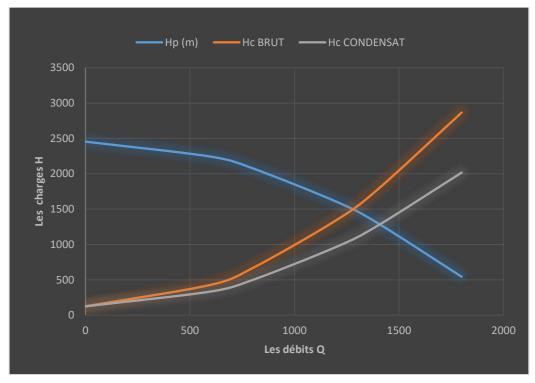


Figure V.2: les courbes caractéristiques de la conduite et des pompes

V.5.3 Nouveaux nombres de jours de pompage pour chaque produit

			OB1
Paramètre	Symbol Unité	Formule	SP1-TMB
Nombre de			
jour de		(V.7)	.==
pompage de	N _{brut} (jour)	(• . /)	172,8432312
brut			
Nombre de			
jour de		(V.7)	
pompage de	N (iour)	(v . /)	176,907577
condensat	N _{cond} (jour)		
La sommes de			
jour de		(V.8)	349,7508085
pompage	$\sum N_i$ (jour)		
Nombre			
optimale de	C _{opt} (cycle)	(V.9)	58,2329567
cycle	C _{opt} (cycle)		
Durée de			
pompage d'un	D _c (Cycle)	(V.10)	5,927979804
cycle	D _c (Cycle)		
Nombre de		/	1
cargaison	N _{ca} (cycle)	/	1
Durée de			
pompage	D (b)	(V.11)	70,30911098
cargaison brut	D _{ca} (h)		
Durée de			
pompage		(V.11)	_, _, _,
cargaison	$T_{ca}(h)$	(((, 11)	71,96240433
condensat			

Tableau V.13: Nouveaux nombres de jours de pompage de chaque produit

V.6 Calcul du volume de contaminât

Pour réaliser ce calcul il est nécessaire de disposer des données suivantes :

CA	0.99
Z Tabulee	1.645
Alpha Tabulee	1.23
K Tabulee	1.645
CA	0.99
Z1	1.645
CA	0.01
Z2	-1.645

Tableau V.14: Données du calcul

D >4			OB1
Paramètre	Symbole Unité	Formule	SP1-TMB
Vitesse moyen	$\omega_{moy}(m/s)$	(V.4)	1,295975077
Viscosité moyen	$\vartheta_{moy}(\mathrm{Cst})$	(V.12)	2,4375
Viscosité de mélange	$\vartheta_{m\'el}(\mathrm{Cst})$	(V.13)	1,623912136
Reynolds moyen	R _{emoy}	(IV.4.1.2.e)	477046,7841
Reynolds critique	Recr	(II.3.3.b)	1389446,812
Coefficient de pertes de charges moyenne	$\lambda_{m}(m)$	Formule de Blasius	0,012039161
Coefficient diffusion turbulent (Netchvale)DT	$D_{TN}(m^2/S)$	(V.14)	0,255602521
Coefficient diffusion turbulent (Taylor)	D _{TT} (m ² /S)	(V.15)	0,15172594

Tableau V.15: Résultats de calcul des divers paramètres menant au calcul du volume de contaminât

V.6.1 cas des limites symétriques

Paramètre	Symbol	Formule	Tronçon entre SP
	Unité		SP1-SLATNA
Volume de conduite	V _{CON} (m ³)	(V.16)	187820,781
Peclet selon Netchvale	P _{eN}	(V.17)	3393372,824
Peclet selon Taylor	P _{eT}	(V.17)	5716587,744
Volume contaminât Netchvale	V _{CON.N} (m ³)	(V.18)	825,1993145
Volume contaminât Taylor avec Z	V _{CON.T} (m ³)	(V.18)	635,7790459
Volume contaminât avec Z1 et Z2	V _{CON.Z} (m ³)	(V.19)	635,7790459
Volume contaminât formule empti	V _{CON} (m ³)	(V.20)	325,8836165

Tableau V.16: Calcul du volume du contaminât cas des limites symétrique

V.7 Calcul de la longueur du contaminât

			Tronçon
Paramètre	Symbole Unité	Formule	SP1-TMB
Longueur de contaminât Netchvale	L _{Con.N} (m)	(V.21)	2940,460005
Longueur de contaminât Taylor	L _{Con.T} (m)	(V.21)	2265,492499
Longueur de contaminât formule empir du Volume contaminât	L _{Con} (m)	(V.22)	1161,231867
Longueur de contaminât la formule empir	L _{Con} (m)	(V.23)	636,1718143
Longueur de contaminât la formule empir 1% Volume conduit	L _{Con} (m)	(V.24)	6692,68

Tableau V.17 : Calcul longueur de contaminât

V.8 Volume du contaminât en considérant le mélange primaire

Paramètre			OB1
Tarametre	Symbol Unité Formule		SP1-TMB
Temps de fermeture des vannes	T(min)	/	4
Volume primaire de contaminât V0	$V_{P.Con}(m^3)$	(V.25)	87,3015873
Pourcentage d'augmentation de Volume contaminât provoque par mélange primaire Cs%	Cs%	(V.26)	1,000163363
Formule approche Cs%	Cs%	(V.27)	1,002492287
Volume de contaminât récupérer a L'arrivée	V _{CON.réc} (m ³)	(V.28)	635,8829089
Volume de contaminât récupérer a l'arrivée formule approche Cs	V _{CON.réc} (m ³)	(V.29)	637,3635901
Longueur du contaminât a l'arrivée	L _{Con.arr} (m)	(V.30)	2265,862597
Longueur du contaminat l'arrivée Cs approche	L _{Con.arr} (m)	(V.31)	2271,138757
Volume total de contaminât sur un cycle	V _{CON.T} (m ³)	(V.32)	1274,72718
Volume total de contaminât sur l'année	V _{CON.T} (m ³)	(V.33)	75208,90363

Tableau V.18: Volume de contaminât en considérant le mélange primaire

V.9 Calcul de la capacité de stockage

Paramétre	Symbole Unité	Formule	Brut	Condensat
Nombre de réservoir	N _{rés}	/	10	4
Capacité de réservoir	$V_{r\acute{e}s}(m^3)$	/	35000	35000
Capacité réel exploité	$V_{exp}(m^3)$	(V.34)	332500	133000

Tableau V.19 : Calcul de la capacité de stockage

Paramètre			OB1
Faramette	Symbole Unité	Formule	SP1-TMB
Capacité nécessaire au terminal Départ	$V_{TD}(m^3)$	(V.35)	93059,9308
capacité de BRUT	V _{brut} (m ³)	(V.36)	43025,09647
capacité de Condensat	$V_{cond}(m^3)$	(V.36)	50034,83433

Tableau V.20: les Capacités au terminal Départ

Chapitre VI

Optimisation du nombre de cycle de pompage brut-Condensat sur le pipeline OB1 en tenant des capacités de stockage de Beni Mansour

Optimisation du nombre de cycle de pompage brut-Condensat sur le pipeline OB1 en tenant des capacités de stockage de Beni-Mansour alimentant la raffinerie d'Alger

Il s'agit dans ce travail de développer un modèle d'optimisation permettant d'optimiser le nombre de cycle de pompage de manière à réduire le volume de contaminât tout en tenant compte de la contrainte sur l'alimentation de la raffinerie d'Alger sans interruption. Il est évident que la réduction du volume de contaminât par une minimisation du nombre de cycles de pompages permettra de minimiser les pertes de condensats plus couteux que le pétrole sur le marché. Cependant, la réduction du nombre de cycle passe une augmentation de la colonne de condensat. Cette augmentation impactera automatiquement les capacités de stockage de brut alimentant la raffinerie d'Alger pour assurer une alimentation sans arrêt de l'exploitation. Nous remarquons que dans ce problème, la minimisation de volume de contaminât et donc des pertes de condensat nécessite une augmentation de la colonne de condensat mais cette augmentation passe par des capacités de stockage supplémentaires de brut à Beni-Mansour pour éviter une rupture d'alimentation entrainant des couts d'investissements supplémentaires d'où la nécessité d'optimiser le nombre de cycle de pompage.

Un deuxième modèle d'optimisation sera également développé permettant de déterminer les paramètres d'exploitation optimaux à installer de manière à minimiser la puissance au cours du transport.

VI.1. Contact brut condensat

VI.1.1 Détermination des arguments Z :

Dans notre cas d'étude, pour le contaminât entre le brut et le condensat, il est impératif de l'envoyer dans le réservoir contenant le brut et ceci par soucis de préserver la qualité de la cargaison du condensat (en effet le condensât est plus cher que le brut). Dans ce cas Z sera pris égale à 1,64 et puisqu'il y a 2 interfaces alors la formule du volume du contaminât prend la forme :

$$V_{mel}=4V_{cond}$$
. Z. $Pe^{-0.5}\approx 6$, $58\times V_{cond}\times Pe^{-0.5}$ (VI.1.1.a)
Avec
$$P_{e}=\frac{w_{moy}\times L}{D_{T}}$$

Le volume annuel de contaminât est égal :

$$V_{mel}^{an} = V_{mel} \times m \qquad \qquad (VI.\,1.\,1.\,b\;)$$

Chapitre VI

Optimisation du nombre de cycle de pompage brut-Condensat sur le pipeline OB1 en tenant des capacités de stockage de Beni Mansour

Avec:

 \mathbf{V}_{mel} : volume du contaminât pour un cycle;

m: nombre de cycle annuel

VI.2. Détermination du nombre optimal de cycles de pompage

A) Dans le cas général le nombre de cycle de pompage peut être exprimé par l'expression :

$$n = K \frac{V_{cond}^{an}}{V_{cond}}$$
 (VI. 2. a)

K : coefficient tenant compte de l'état réel de la ligne et des réservoirs ;

Van cond : quantité annuelle du condensat qui transite dans la ligne OBI ;

 V_{cond} : volume de stockage pour le condensât disponible au T.A. Cette capacité de stockage comprend la capacité disponible plus, éventuellement, une capacité à construire au T.A

B) Dans le cas particulier imposé par les contraintes d'alimentation de la raffinerie d'Alger on peut écrire :

$$\mathbf{m} = \frac{\mathbf{V_{cond}^{an}}}{\mathbf{V_{cc}}} \tag{VI. 2. b}$$

Où:

 V_{cc} - volume de la colonne de condensât

VI.3 Optimisation du nombre de cycle de pompage

Le stockage intermédiaire c'est le stockage destiné à assurer l'alimentation sans interruption de la raffinerie d'Alger à partir des réservoirs de la station de Beni Mansour lors du passage du bouchon de condensat. Considérant la relation logique entre le temps de passage de la colonne de condensât T_p , et le temps de vidange des réservoirs de SBM T_v . On peut écrire donc:

$$T_p \leq T_v$$
 ou bien $T_p = \xi$. T_v

 ξ : coefficient de sécurité $\approx 0*91$

Exprimons ces paramètres en fonction des débits et volume des colonnes de condensat et ceux de vidanges des réservoirs à SBM respectivement.

$$T_{P} = \frac{V_{cc}}{Q_{mov}}$$
 (VI. 3. a)

Où:

Qmoy: débit moyen de la ligne

Pour un débit d'alimentation de Ia raffinerie Q_{raf} , en égalisant on trouve le volume maximal du bouchon de condensat :

$$V_{cc} = T_p \times Q_{moy} = \xi. V_{SBM}. \frac{Q_{moy}}{Q_{RAF}}$$
 (VI. 3. b)

Avec:

V_{SBM}: capacité de stockage à SBM

On peut dans ce cas écrire pour m, en remplaçant V_{cc} par l'expression ci dessus $\mathbf{m} = \frac{V_{cond}^{an} \cdot Q_{raf}}{\xi \cdot V_{spm} \cdot Q_{mov}}$ (VI. 3. c)

Voyons maintenant les capacités de stockage à SBM. Dans le cas général on peut écrire :

$$V_{SBM} = V_{disp} + V_{const} \Rightarrow V_{const} = V_{SBM} - V_{disp}$$
 (VI. 3. d)

 V_{disp} : Volume des réservoirs disponible à station de Beni Mansour ;

V_{const} : capacité à acquérir dans la même station.

Les coûts annuels de construction d'un m^3 d'un réservoir $\mathcal{C}^{an}_{r\acute{e}s}$ peuvent s'écrits sous la forme :

$$C_{r\acute{e}s}^{an} = \frac{C_{res}}{T}.V_{const} = \frac{C_{res}}{T}(V_{SBM} - V_{disp}) \tag{IV. 3. e}$$

T: période d'amortissement (an);

 $C_{rés}$: coûts de construction d'un m³ d'un réservoir;

Réécrivons l'expression des coûts (formule 1) en faisant introduire les coûts supplémentaires de construction.

$$Z = (C_{cond} - C_{brut})m.V_{mel} + C_{rés}^{an}$$
 (IV. 3. f)

Ecrivons maintenant la fonction à optimiser

$$Z = m. (C_{cond} - C_{brut})V_{mel} + \frac{C_{res}}{T}(V_{SBM} - V_{disp}) \Rightarrow min \qquad (IV. 3. g)$$

Ou bien en remplaçant V_{SBM} par sa valeur :

$$V_{SBM} = \frac{V_{cond}^{an} \cdot Q_{raf}}{\xi \cdot m \cdot Q_{mov}}$$
 (IV. 3. h)

$$Z = m. \left(C_{cond} - C_{brut} \right) V_{mel} + \frac{C_{res}}{T} \left(\frac{v_{cond}^{an} \cdot Q_{raf}}{\xi.m.Q_{mov}} - V_{disp} \right) \quad \Rightarrow \quad min \qquad (IV. \ 3. \ i)$$

La valeur optimale du nombre de cycle de pompage s'obtient en annulant la dérivée par rapport à m

$$\frac{dZ}{dm} = 0 \Rightarrow (C_{cond} - C_{brut}) \cdot V_{mel} - \frac{1}{m^2} \frac{C_{res}}{T} \left(\frac{V_{cond}^{an} \cdot Q_{raf}}{\xi \cdot Q_{mov}} \right)$$
(IV. 3. j)

D'où:

$$m_{opt} = \left[\frac{C_{res}}{T(C_{cond} - C_{brut})V_{mel}} \cdot \frac{V_{cond}^{an} \cdot Q_{raf}}{\xi \cdot Q_{mov}}\right]^{0.5} \tag{IV. 3. k}$$

VI.4 Optimisation des puissances installées.

VI.4.1 Cas de l'oléoduc OB1 (brut ou condensat).

La puissance développée par une station de pompage peut s'exprimer par la relation suivante :

$$N_{i} = \frac{\left(P_{ref} - P_{aspi}\right). Q}{n_{i}}$$
 (IV. 4. 1. a)

Ou bien:

$$N_{i} = \frac{(\rho g H_{sti}). Q}{n_{i}}$$
 (IV. 4. 1. b)

Q : débit volumique de la ligne (brut ou condensat : constant).

ρ : densité du produit considéré (constante).

H_{sti}: charge d'une station de pompage.

 η_i : rendement de la station i

Dans le cas général pour un oléoduc composé de n stations le fonctionnel (fonction à optimiser) peut s'exprimer comme suit :

$$\emptyset = \sum_{i=1}^{n} N_i T \Rightarrow \min$$
 (IV. 4. 1. c)

T: durée planifiée (en générale on prend T = 1 année).

VI.4.2 Cas d'un oléoduc (brut et condensat).

a) Cas de passage du brut

La puissance développée par une station de pompage i avec k pompes assemblées en série peut s'exprimer par la relation suivante :

$$N_{i}^{brut} = \frac{\sum_{j=1}^{k} \left[H_{refj} - H_{aspj}\right] \rho_{brut}. \, g. \, Q_{moy}}{\eta_{i}} \tag{IV. 4. 2. a. a}$$

Où:

 $H_{refj} - H_{aspj} = H_{pj}$: charger d'une pompe

$$N_{tot}^{brut} = \frac{\sum Hp_{j} \cdot \rho_{brut} \cdot g \cdot Q_{moy}}{\eta_{i}} \tag{IV. 4. 2. a. b}$$

On pose: la charge d'une station

$$Hst_i = \sum_{j=1}^k Hp \qquad (IV. 4. 2. a. b)$$

On obtient:

$$N_{I}^{brut} = \frac{\rho_{brut}.\,g.\,Hst_{i}.\,Q_{moy}}{\eta_{i}} \tag{IV.\,4.\,2.\,a.\,c} \label{eq:interpolation}$$

 Q_{mov} : Débit volumique moyen horaire.

ρ_{brut} : Densité du brut.

Pour un pipeline composé de n stations de pompage la formule générale de la puissance consommée lors du passage du brut s'écrit :

$$N_{tot}^{brut} = \sum_{i=1}^{n} \frac{\rho_{brut}.\,g.\left(H_{refi} - H_{aspi}\right).\,Q_{moy}}{\eta_{i}} = \sum_{i=1}^{n} \frac{\left(P_{refi}^{brut} - P_{aspi}^{brut}\right).\,Q_{moy}}{\eta_{i}} \qquad (IV.\,4.\,2.\,a.\,d)$$

Cette formule représente la fonction à optimiser dans le cas de transit du brut :

$$N_{tot}^{brut} = \sum_{i=1}^{n} \frac{\left(P_{refi}^{brut} - P_{aspi}^{brut}\right) \cdot Q_{moy}}{\eta_i}$$
 (IV. 4. 2. a. e)

Les contraintes sont représentées plus loin

Analysons la formule (IV. 4.2. a. d):

1) Le débit volumique :

$$Q_{moy} = \frac{V_{brut} + V_{cond}}{8640}$$
 (IV. 4. 2. a. f)

Où

8640 h : représentent le nombre d'heures de fonctionnement annuel du pipeline OB1

2) La charge d'une station, lors du passage du brut, peut être exprimée comme suit :

$$H_{st} = H_{refi} - H_{aspi} \approx \frac{0.084 \lambda_i^{brut}. Q_i^2. L_i}{D_i^5} + \Delta Z_i \qquad (IV. 4. 2. a. g)$$

Où:

 λ_i^{brut} : coefficient de perte de charge pour le débit de transit du brut dans le tronçon

 D_i et L : respectivement diamètre intérieur moyen dans le tronçon / et longueur de la conduite OBI:

 $\Delta \mathbf{Z_i} = \mathbf{Z_{i+1}} - \Delta \mathbf{Z_i}$: Dénivelé du tronçon

La puissance annuelle développée par une station lors du passage du brut

$$N_{an \, i}^{brut} = N_{i}^{brut} \cdot T_{brut}$$
 (IV. 4. 2. a. h)

Telle que:

$$T_{brut} = 8640 - T_{cond} \qquad (en heure) \tag{IV. 4. 2. a. i}$$

et

$$T_{brut} = \frac{V_{brut}^{an}}{Q_{mov}}$$
 (IV. 4. 2. a. J)

Où:

T_{brut} : durée de pompage du brut durant l'année ;

Van : demande annuelle du brut.

Pour un pipeline composé de n stations de pompage la formule générale de la puissance consommée lors du passage du brut s'écrit :

$$\begin{split} N_{tot}^{brut} &= \sum_{i=1}^{n} N_{an\;i}^{brut} = T_{brut}. \sum_{i=1}^{n} N_{i}^{brut} = T_{brut}. \sum_{i=1}^{n} \frac{\rho_{brut}.\,g_{HSt_{i}}.\,Q_{moy}}{\eta_{i}} \\ &= T_{brut} \sum_{i=1}^{n} \frac{\rho_{brut}.\,g_{\cdot}\,Q_{moy}(\frac{0.\,084\lambda_{i}^{brut}.\,Q_{i}^{2}.\,L_{i}}{D_{i}^{5}} + \Delta Z_{i})}{\eta_{i}} \\ &= 0,084\rho_{brut}.\,g_{\cdot}\,Q_{moy}.\,T_{brut} \sum_{i=1}^{n} \frac{1}{\eta_{i}} \bigg[\frac{\lambda_{i}^{brut}.\,Q_{moy}^{2}.\,L_{i}}{D_{i}^{5}} + \Delta Z_{i} \bigg] \end{split}$$

C'est-à-dire:

La puissance de pompage nécessaire au transport de la colonne du brut durant une année s'exprime par

$$N_{tot}^{brut} = 0.\,084 \rho_{brut}.\,g.\,Q_{moy}.\,T_{brut} \sum_{i=1}^{n} \frac{1}{\eta_{i}} \bigg(\frac{\lambda_{i}^{brut} \cdot Q_{moy}^{2}.\,L_{i}}{D_{i}^{5}} + \Delta Z_{i} \bigg) \quad (IV.\,4.\,2.\,a.\,k)$$

b) Cas de passage du condensat

De même la puissance de pompage nécessaire au transport de la colonne du condensat durant une année s'exprime par

$$\begin{split} N_{tot}^{cond} &= 0.\,084 \rho_{cond}.\,g.\,Q_{moy}.\,T_{cond} \sum_{i=1}^{n} \frac{1}{\eta_{i}} \bigg(\frac{\lambda_{i}^{cond} \cdot Q_{moy}^{2}.\,L_{i}}{D_{i}^{5}} \\ &+ \Delta Z_{i} \bigg) \end{split} \tag{IV.\,4.\,2.\,b.\,a} \label{eq:N_cond}$$

Avec:

$$T_{cond} = \frac{V_{cond}^{an}}{Q_{moy}}$$
 (IV. 4. 2. b. b)

 V_{cond}^{an} : demande annuelle du condensât

 λ_i^{cond} : coefficient de pertes de charge lors du passage de la colonne de condensat dans le tronçon

ρcond : densités du condensat

Q_{mov} : débit moyen de la ligne en m³/h ;

T_{cond} : Temps de pompage du condensat durant une année ;

 η_i : rendement global de la station i;

La formule de la fonction à optimiser dans le cas de transit du condensat :

$$N_{tot}^{cond} \ = Q_{moy}. \ T_{cond} \ \textstyle \sum_{i=1}^{n} \frac{1}{\eta_{i}} (\frac{P_{refi}^{cond} - P_{aspi}^{cond}}{\eta_{i}}) \ \Rightarrow min \ \ (IV. \ 4. \ 2. \ b. \ c)$$

La puissance totale consommée durant une année est égale à :

$$N_{tot} = N_{tot}^{brut} + N_{tot}^{cond}$$
 (IV. 4. 2. b. d)

Les coûts d'énergie s'expriment alors sous la forme :

$$C_{\text{énergie}} = C^{\text{unitaire}} * N_{\text{tot}}$$
 (IV. 4. 2. b. e)

Avec:

Cunitaire : coût du kilowatt/heure d'énergie

VI.5 Les contraintes du modèle d'optimisation de la puissance de la ligne

Les contraintes doivent tenir compte des paramètres d'exploitations suivants :

- 1. des pertes de charges;
- 2. de la pression maximale : $P_{refi} \leq P_{refi}$ max :
- 3. des risques de cavitation : $P_{aspi} > P_{min}$:
- 4. des contraintes logiques : $P_{refi} P_{aspi} \ge 0$

VI.5.1 Cas de transit du brut

Exemple pour un oléoduc composé de trois stations de pompage les contraintes s'écrivent comme suit :

a) Pertes de charge

$\begin{bmatrix} P_{ref1}^{brut} & - P_{asp\ 1bis}^{brut} = \rho^{brut}. \, g.\, \Delta h_1 + \rho.\, g.\, \Delta Z_1 \\ \\ P_{ref1}^{brut} & - P_{asp\ 2}^{brut} = \rho^{brut}. \, g.\, \Delta h_2 + \rho.\, g.\, \Delta Z_2 \\ \\ P_{ref2}^{brut} & - P_{asp\ 3}^{brut} = \rho^{brut}. \, g.\, \Delta h_3 + \rho.\, g.\, \Delta Z_3 \\ \\ P_{ref3}^{brut} & - P_{fin}^{brut} = \rho^{brut}. \, g.\, \Delta h_4 + \rho.\, g.\, \Delta Z_4 \\ \end{bmatrix}$

b) Pression maximale

c) cavitation Protection contre la cavitation

$$\begin{array}{|c|c|}\hline & P_{asp\,1}^{brut} & \geq & P_{min\,1} \\ \\ & P_{asp\,1bis}^{brut} & \geq & P_{min\,1bis} \\ \\ & P_{asp\,2}^{brut} & \geq & P_{min\,2} \\ \\ & P_{asp\,3}^{brut} & \geq & P_{min\,3} \\ \\ \end{array}$$

d) Logiques (VI. 5. 1. a)

$$\begin{array}{c|cccc} P_{ref1}^{brut} & - & P_{asp\ 1}^{brut} & \geq 0 \\ \\ P_{ref1}^{brut} & - & P_{asp\ 1bis}^{brut} & \geq 0 \\ \\ P_{ref2}^{brut} & - & P_{asp\ 2}^{brut} & \geq 0 \\ \\ P_{ref3}^{brut} & - & P_{fin}^{brut} & \geq 0 \end{array}$$

Avec :

$$\Delta hi \; \cong \; 0,084 \, \frac{\lambda_i Q_{moy}^2 L_i}{D_i^5} \eqno(VI.\, 5.\, 1.\, b)$$

et

$$\Delta \mathbf{Z_i} = \mathbf{Z_{i+1}} - \mathbf{Z_i} \qquad (VI. 5. 1. c)$$

VI.5.2 Cas de transit du condensat

Les contraintes sont analogues il faut remplacer tous les termes contenants "brut" par "condensat". Le fonctionnel étant linéaire nous sommes en présence d'un problème de programmation linéaire (PPL)

VI.6 Application par solveur Excel

La résolution d'un programme linéaire consiste à déterminer les valeurs qui permettent d'optimiser la fonction objective.


La méthode de résolution la plus appropriée est l'algorithme de simplexe, qui permet de détecter la solution optimale (si elle existe) quel que soit le nombre de variables et de contraintes, cette méthode exige des calculs longs et fastidieux ; C'est pourquoi ceux-ci sont confiés à l'outil informatique en utilisant le solveur Excel.

VI.6.1. Optimisation par Solveur Excel

Le Solver d'Excel peut être très utile pour résoudre pratiquement tout problème mathématique. Il pourra notamment donner une solution approchée en court-circuitant agréablement le recours à toute théorie mathématique nécessaire à la résolution rigoureuse habituelle.

Il peut donc donner une idée préalable du résultat théorique, sinon de le vérifier a posteriori. Un modèle d'optimisation se compose de trois éléments : une cellule cible, des cellules variables et des contraintes.

La figure suivante présente la boîte de dialogue Paramètres du solveur, laquelle nous permet d'entrer les valeurs de la cellule cible, des cellules variables et des contraintes qui s'appliquent au modèle d'optimisation.

Figures VI.1 : la boîte de dialogue Paramètres du solveur

VI.6.2. Cellule cible

La cellule cible représente l'objectif ou le résultat à atteindre. Nous voulons minimiser ou maximiser la cellule cible.

Modèle	Maximiser ou minimiser
NOMBRE DE CYCLE DE POMPAGE	Minimiser
PUISSANCES INSTALLÉES	Minimiser

Tableau VI.1: les modèles d'optimisation

VI.6.3. Cellules variables

Les cellules variables désignent les cellules de la feuille de calcul qu'il est possible de modifier ou d'adapter pour optimiser la cellule cible.

Modèle	Cellules variables
NOMBRE DE CYCLE DE POMPAGE $Z = m. (C_{cond} - C_{brut}). V_{mel} + \frac{C_{res}}{T} \left(\frac{V_{cond}^{an} \cdot Q_{raf}}{\xi. m. Q_{moy}} - V_{disp} \right)$ $m_{opt} = \left[\frac{C_{res}}{T(C_{cond} - C_{brut})V_{mel}} \cdot \frac{V_{cond}^{an} \cdot Q_{raf}}{\xi. Q_{moy}} \right]^{0.5}$	Nombre de cycle
$PUISSANCES INSTALLÉES$ $N_{tot}^{brut} = T_{brut}. Q_{moy}. \sum_{i=1}^{n} \frac{P_{refi}^{brut} - P_{aspi}^{brut}}{\eta_{i}}$	Les pressions d'aspiration et de refoulement stations

Tableau VI.2: les variables du modèle d'optimisation

VI.6.4. Contraintes

Les contraintes sont des limites imposées aux cellules variables. Dans la plupart des modèles du Solveur, il existe une contrainte implicite stipulant que toutes les cellules variables doivent être non négatives. Les contraintes liées à la non-négativité seront traitées en détail dans les chapitres suivants. Gardez en mémoire qu'un modèle du Solveur ne doit pas nécessairement inclure des contraintes.

Modèle	Contraintes
NOMBRE DE CYCLE DE POMPAGE	Tp \leq Tv ou bien Tp -temps de passage de la colonne de condensat Tv -temps de vidange des réservoirs de SBM ξ -coefficient de sécurité ≈ 0.91
PUISSANCES INSTALLÉES	Perte de charge $P_{\mathrm{refi}}^{\mathrm{brut}} - P_{\mathrm{asp i+1}}^{\mathrm{brut}} = \rho^{\mathrm{brut}}.\mathrm{g.}\Delta h_{\mathrm{i-i+1}} + \rho.\mathrm{g.}\Delta Z_{i-i+1}$ la pression maximale: $P_{refi} \leq P_{\mathrm{refi}} \mathrm{max};$ les risques de cavitation: $\mathrm{Paspi} > \mathrm{Pmin} \;;$ les contraintes logiques: $P_{refi} - P_{aspi} \geq 0$

Tableau VI.3: les contraintes du modèle d'optimisation

VI.7. Application

VI.7.1. Détermination du volume du contaminât

En tenant compte des données suivantes :

a) Pétrole Brut: mélange Sahara

- masse volumique (Densité à 15°C) : 0,7902 -0,8082

- T.V.R : 738 g/cm² maxi.

- B.S.W : 0,5% Volumique maxi.

- Viscosité (à 25°C) : 2,27-3,14 centistokes.

- salinité : 0,0080% Poids maxi.

Chapitre VI

Optimisation du nombre de cycle de pompage brut-Condensat sur le pipeline OB1 en tenant des capacités de stockage de Beni Mansour

- Teneur en Soufre : 0,20 % Poids maxi.

b) Condensât

- Masse volumique (Densité à15°c) : 0,7022-0,7201

-T.V.R : $850 \text{ g/cm}^2 \text{ maxi}$.

-B.S.W : Traces.

- Viscosité (à 25°C) : 0.61-0,67 centistock.

- Salinité : Nulle.

- Teneur en Soufre : 0,005% Poids maxi.

• **V**_{cond}: volume de stockage pour le condensat disponible au T.A

04 Bacs 50000 m^3 +06 Bacs de 35000 m^2 = 324000 m^3 Avec l'éventuelle extension de 02 Bacs de 50000 m^2 alors ;

$$V_{cond} = 405000 \text{ m}^3$$

ullet V_{cond}^{an} : quantité annuelle du condensat qui transite dans la ligne OBI en TM;

2005 5 401 966

2006 5 698 507

2007 5 977 783

Quantité $y = 5692752 \text{ TM} = 8017960 \text{ m}^3$

• V_{disp} de stockage à SBM = 24060 m³

 $V_{SBM} = 24060 \text{ m}^3 + V_{const}$ (variable à définir)

• C_{rés} (Le coût de construction d'un m³ d'un réservoir)

L'estimation de la réalisation d'un bac à toit flottant de $50000 \text{ m}^3 = 350.10^6 \text{ DA}$

Donc : $C_{rés} = 100 \text{ } \text{/m}^3$

T : période d'amortissement

T=10 ans

Le débit moyen de calcul est égal à 1900 m³/h (brut+ condensat) ce qui correspond à une vitesse moyenne de 2 m/s

Le volume de l'OB1 = 180087 m^3

La viscosité moyenne :

$$\vartheta_{moy} = \frac{3 \times 0.62 + 2.27}{4} = 1.025 \times 10^{-6}$$
 m²/s

$$\lambda = \frac{0.3164}{R_e^{0.25}} = \frac{0.3164}{\left[\frac{4Q}{\pi D\theta}\right]^{0.25}} = 0.0113$$

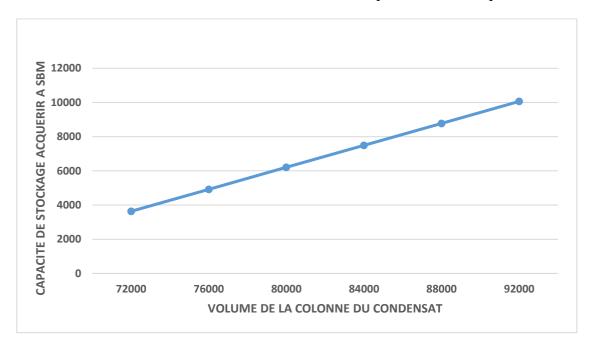
$$D_T = 1.785 \times \omega_{mov} \times D_{int} \times \sqrt{\lambda} = 0.226 \ \mathrm{m}^3/\mathrm{s}$$

$$P_{ei} = \frac{\omega_{moy} \times L}{D_{Ti}} = 0.588 \times 10^7$$

Le volume du contaminât est égale à

$$V_{mel} = 4 \times V_{con} \times Z \times P_e^{-0.5} \approx 8 \times V_{con} \times P_e^{-0.5} = 488.26 \text{ m}^3$$

VI .7. 2. Détermination du nombre de cycle optimal et la capacité de stockage à acquérir à Beni Mansour


En minimisant la formule suivante :

$$Z = m. \left(C_{cond} - C_{brut} \right) . \ V_{mel} \ + \ \frac{C_{res}}{T} \left(\frac{V_{cond}^{an} \cdot Q_{raf}}{\xi. \ m. \ Q_{moy}} - \ V_{disp} \right) \Rightarrow min$$

C'est possible de déterminer de volume à acquérir à SBM en fonction du volume de la colonne du condensât et du nombre de cycle optimal

Volume de la colonne	Volume à acquérir à	
du condensât en m³	SBM en m³	
72000	3635,7335	
76000	4921,0526	
80000	6206,3718	
84000	7491,6904	
88000	8777,0089	
92000	10062, 327	

Tableau VI.4: Résultats de calcul obtenus par le modèle d'optimisation

Figures VI.2 : Représentation graphique de capacité de stockage acquérir a SBM en fonction de l'augmentation du volume de la colonne du condensat

Le tableau suivant nous montre le volume maximal de la colonne de condensât pour acquérir un troisième bac identique aux deux bacs existants au niveau de SBM ;

Paramètres	Valeur
$C_{cond} - C_{brut}$ Différentielle des prix entre brut et condensat en \$	8
Q _{moy} Débit moyen de la ligne en m³/h	1900
Q_{raf} Débit vers la raffinerie en m³/h	580
V _{cond} Volume de stockage pour le condensat disponible au T.A en m ³	405000
V ^{an} _{cond} Quantité annuelle du condensat qui transite dans la ligne OBI en TM en m ³	8017960
V _{disp SBM} Volume des réservoirs disponible à la station de Beni Mansour en m ³	19500
V _{const} Capacité de stockage à acquérir à Beni Mansour en m ³	10062,327448
V _{cc} Volume de la colonne de condensat en m ³	92000
C _{rés} Coûts de construction d'un m³ d'un réservoir en \$	100
T Période d'amortissement année	10
W_{moy} Vitesse moyenne en m/s	2
D _{int} Diamètre intérieur en m	0,5969
λ Coefficient de pertes de charge	0,0097
L Longueur du pipe (L-668 Km)	668000
X Coefficient de sécurité	0,95

Tableau VI.5: Résultats de calcul

A) - Pour V_{cond}^{an} = 9000000 m³

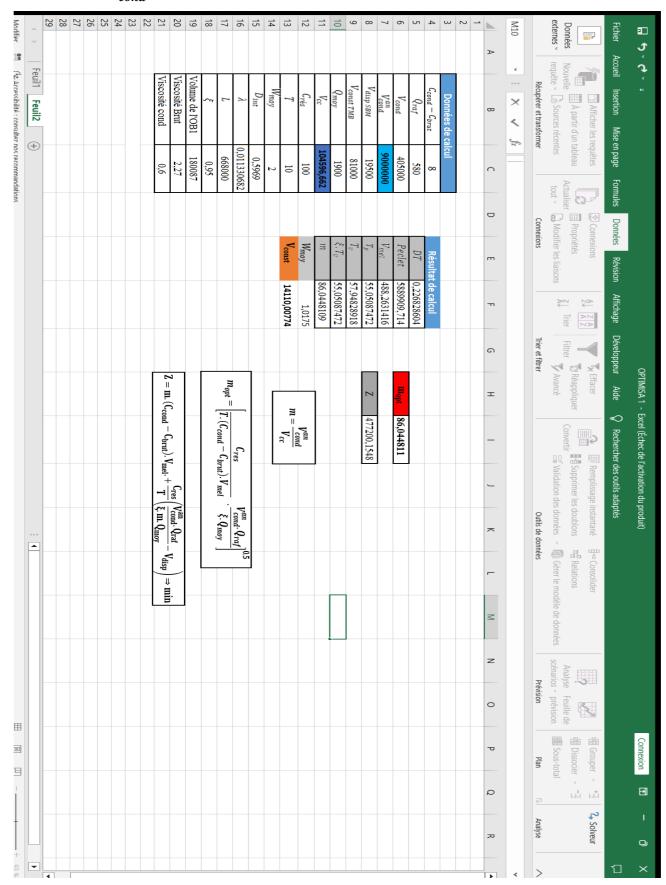


Figure VI.3 : Données et résultat des calculs

B) - Pour V_{cond}^{an} = 6000000 m³

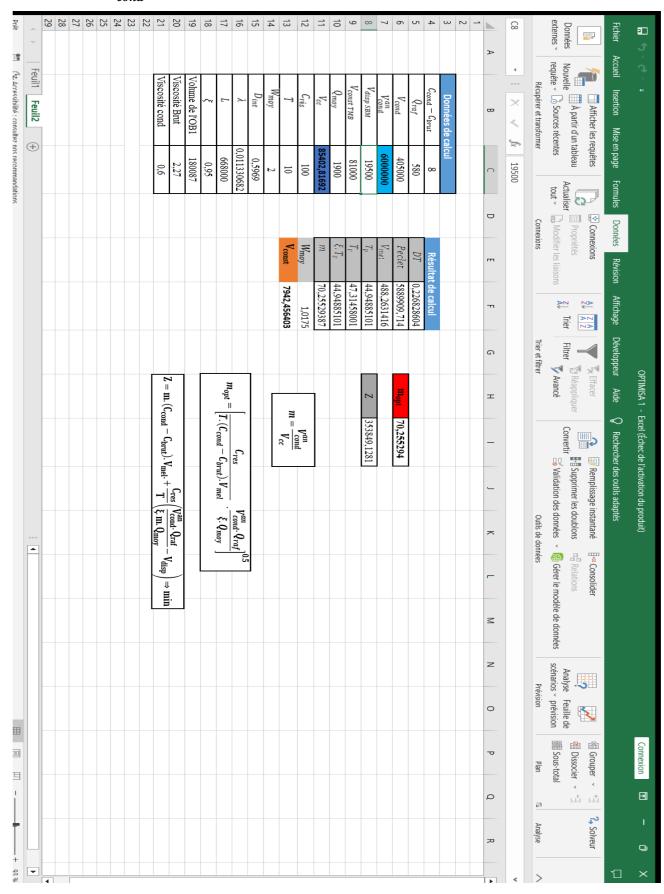
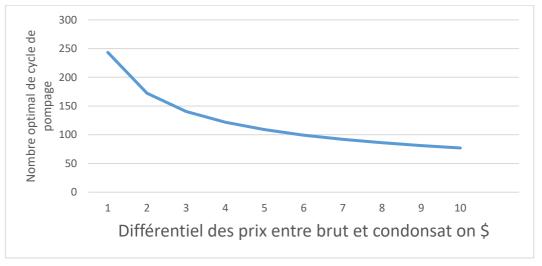


Figure VI.4 : Données et résultat des calcul


Interprétation des résultats

On remarque que plus le V_{cond}^{an} est important plus le nombre de cycle de pompage augment.

VI .7.3. Nombre optimal de cycle de pompage en fonction du différentiel des prix entre brut et condensat et la demande de la raffinerie d'Alger

$C_{coud} - C_{brut}$ Différentiel des prix en \$	Mopt Nombre optimal de cycle de pompage
1	243,37
2	172,09
3	140,51
4	121,69
5	88,86
6	85,356
7	82,986
8	77,045
9	69,124
10	62,8382452

Tableau VI.6: Résultats de calcul

Figures VI.5 : Représentation graphique du nombre optimal de cycle de pompage en fonction du différentiel des prix entre brut et condensat

Interprétation des résultats

On remarque que plus le différentiel de cout est important plus le nombre de cycle de pompage diminue afin de réduire les pertes de condensat

• Cas de changement du différentielle des prix entre brut et condensat en $(C_{cond} - C_{brut})$ A) - Pour $(C_{cond} - C_{brut}) = 5$

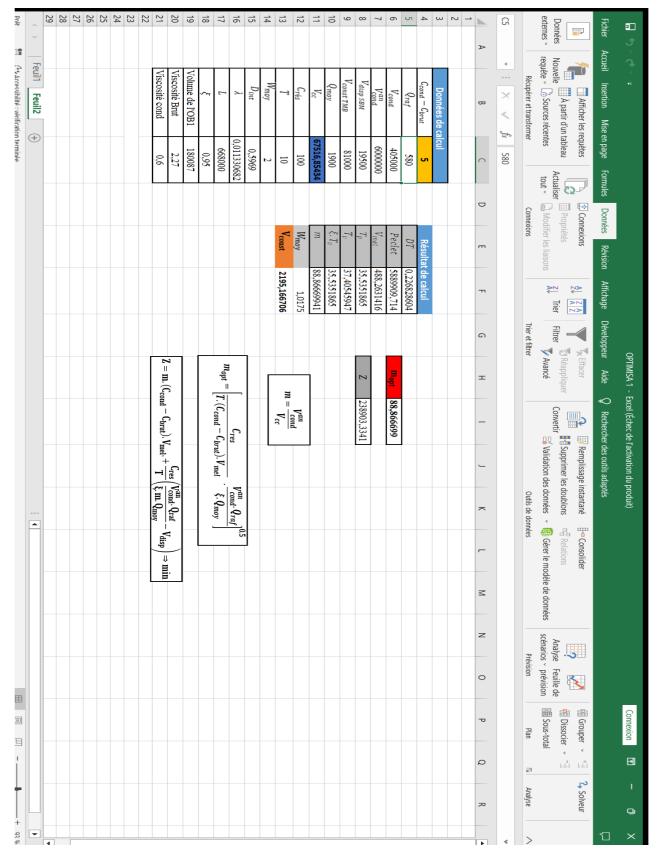


Figure VI.6 : Données et résultat des calculs

B) - Pour $(C_{cond} - C_{brut}) = 10$ \$

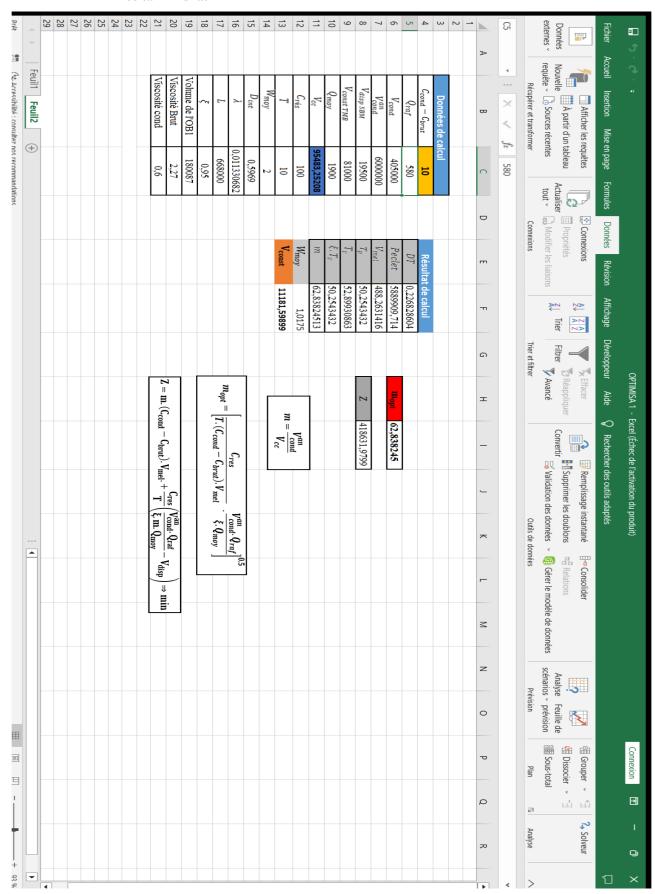


Figure VI.7 : Données et résultat des calcul

• Cas d'augmentation 30% de Qraf

A) - Pour $Qraf = 754 \text{ m}^3/\text{h}$

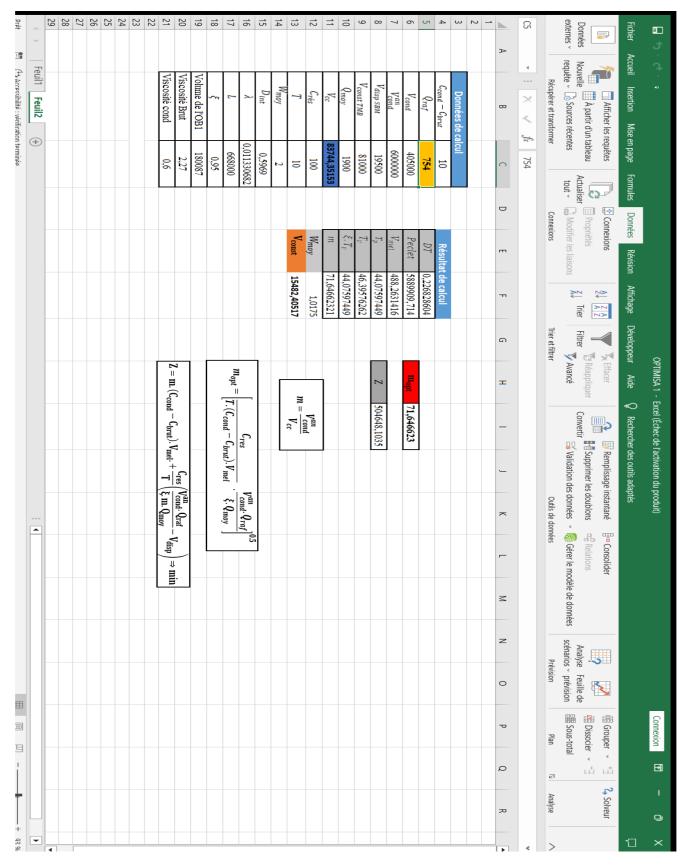


Figure VI.8: Données et résultats des calcul

- Cas d'augmentation 50% de Qraf
 - B) Pour $\mathbf{Qraf} = 870 \, \mathbf{m}^3 / \mathbf{h}$

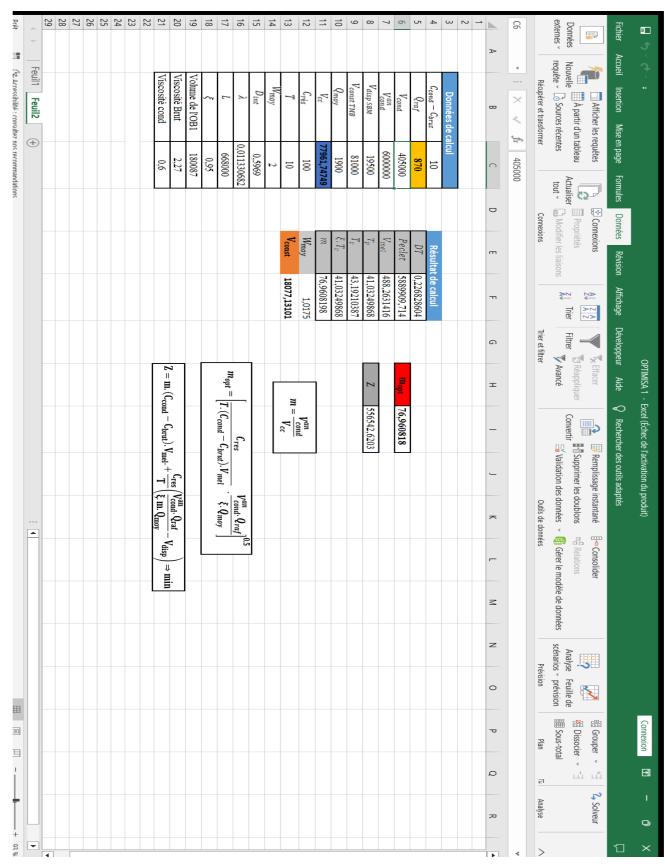


Figure VI.9: Données et résultats des calcul

Interprétation des résultats

On constate que plus le débit de la raffinerie augmente plus le nombre de cycle de pompage augmente et la capacité de stockage supplémentaire augmente aussi de manière à ce que le temps de passage de la colonne de condensat reste inférieur au temps de vidange des bacs pour garder une alimentation sans interruption.

VI .7.4. Détermination de la puissance lors du passage du brut

Debit _{moy} (m ³ /h)	1900
LAMDA (m)	0,01295
D _i (m)	0,59
Volume (m ³)	6350000
P _{final} (bars)	1

Tableau VI.7: Données de calcul

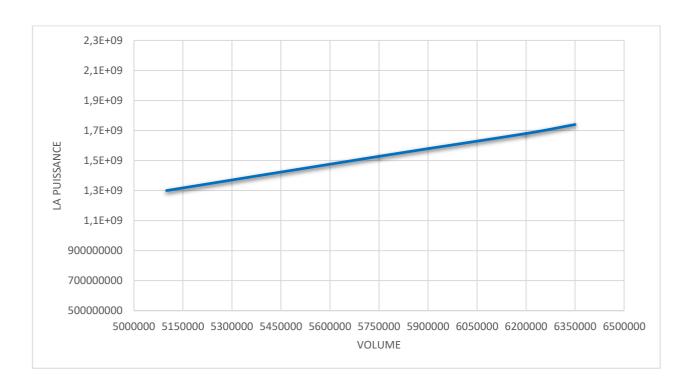
Paramètre	L _i (Km)	ΔZ (m)	η _i
SP1-SP1BIS	189	-67	0,83951
SP1BIS-SP2	161	134	0,81966
SP2-SP3	143	248	0,8147
SP3-SLATNA	47	567	0,77804

Tableau VI.8: Données de calcul

Paramètre	P _{ref} (bars)	P _{asp} (bars)
SP1-SP1BIS	70	1,5
SP1BIS-SP2	68	10,9525317
SP2-SP3	74	2,32992398
SP3-SLATNA	62,6346511	5,29640086

Tableau VI.9 : Les variables de calcul

Les stations	Les stations Formules T _{brut} (h)		N _i (watt)
SP1-SP1BIS	(IV.4.2.a.j), (IV.4.1.a)	3342,10526	815952163
SP1BIS-SP2	(IV.4.2.a.j), (IV.4.1.a)	3342,10526	695989414
SP2-SP3	(IV.4.2.a.j), (IV.4.1.a)	3342,10526	879711256
SP3-SLATNA	(IV.4.2.a.j), (IV.4.1.a)	3342,10526	736957614


Tableau VI.10: Résultats de calcul

Paramètre	PMS (bars)	P _{asp} MIN (bars)	P _{ref} - P _{asp} (bars)	P _{ref} – P _{asp} F. Perte charge (bars)	Contrainte perte charge (bars)
SP1-SP1BIS	70	1,5	68,5	59,0474673	1E-06
SP1BIS-SP2	68	10,95253171	57,0474683	65,670075	1E-06
SP2-SP3	74	2,329923979	71,670076	68,7035981	1E-06
SP3-SLATNA	62,6346511	5,296400863	57,3382502	61,6346501	1E-06

Tableau VI.11: résultats de calcul

$$N_{tot}^{brut} = T_{brut}Q_{moy}\sum_{i=1}^{\eta}rac{(P_{refi}^{brut}-P_{aspi+1}^{brut})}{\eta_i}$$
 \Rightarrow min

N ^{brut} tot	1986667634 watt
--------------------------	-----------------

Figures VI.10: Représentation graphique de la variation de la puissance lors du passage du brut

VI .7.5. Détermination de la variation de la puissance lors du passage du condensat

Debit _{moy} (m ³ /h)	1900
LAMDA (m)	0,00873
D _i (m)	0,59
Volume (m ³)	8017960
P _{final} (bars)	1

Tableau VI.12: Données de calcul

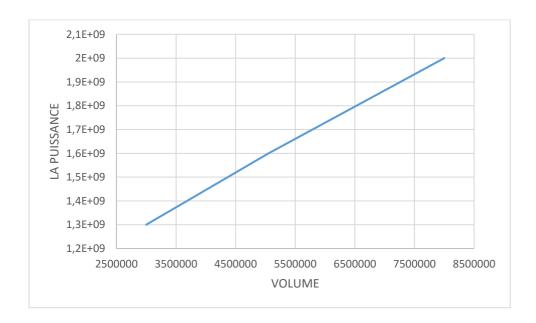
Paramètre	L _i (Km)	ΔZ (m)	ηί
SP1-SP1BIS	189	-67	0,83951
SP1BIS-SP2	161	134	0,81966
SP2-SP3	143	248	0,8147
SP3-SLATNA	47	567	0,77804

Tableau VI.13: Données de calcul

Paramètre	P _{ref} (bars)	P _{asp} (bars)
SP1-SP1BIS	70	1,5
SP1BIS-SP2	68	36,5907386
SP2-SP3	74	26,044315
SP3-SLATNA	50,5332927	27,6248009

Tableau VI.14 : Les variables de calcul

Les stations	Formules	T _{condensat} (h)	N _i (watt)
SP1-SP1BIS	(IV.4.2.b.b), (IV.4.1.a)	4219,97895	815952163
SP1BIS-SP2	(IV.4.2.b.b), (IV.4.1.a)	4219,97895	38319866
SP2-SP3	(IV.4.2.b.b), (IV.4.1.a)	4219,97895	588629987
SP3-SLATNA	(IV.4.2.b.b), (IV.4.1.a)	4219,97895	294438484


Tableau VI.15: Résultats de calcul

Paramètre	PMS (bars)	P _{asp} MIN (bars)	P _{ref} - P _{asp} (bars)	P _{ref} – P _{asp} F. Perte charge (bars)	Contrainte perte charge (bars)
SP1-SP1BIS	70	1,5	68,5	33,4092624	1E-06
SP1BIS-SP2	68	36,59073862	31,4092614	41,955686	1E-06
SP2-SP3	74	26,04431497	47,955685	46,3752001	1E-06
SP3-SLATNA	50,5332927	27,62480091	22,9084918	49,5332937	1E-06

Tableau VI.16: Contraintes de calcul

$$N_{tot}^{brut} = T_{condensat}Q_{moy}\sum_{i=1}^{\eta} \frac{(P_{refi}^{brut} - P_{aspi}^{brut})}{\eta_i} \Rightarrow$$

$N_{tot}^{condensat}$	1669515101	watt
-----------------------	------------	------

Figures VI.11 : Représentation graphique de la variation de la puissance lors du passage du Condensat

Interprétation des résultats

- On constate que la puissance lors du passage du Brut est supérieure à la puissance lors du passage du Condensat.
- La puissance lors du passage du Brut ou bien Condensat est augment avec l'augmentation de volume transporter grâce a l'augmentation de temp de passage de chaque produit.

Conclusion générale

Conclusion générale

Le pompage multiproduits est une technique largement utilisée dans le monde. Elle s'est imposée en raison des avantages économiques importants qu'elle peut procurer. Ceci en relation avec un taux d'utilisation plus élevé des capacités potentielles du pipeline. Cette technique est appliquée sur l'OB1 24" HEH Béjaia, pour le transport du pétrole brut et du condensat et pourrait s'élargir à d'autres ligne du réseau.

L'exploitation optimale de cette méthode passe par l'analyse approfondie de certains paramètres, principalement :

- Le choix des régimes de pompage.
- L'évaluation du volume de contaminât.
- La détermination des séquences optimales des batching
- La technologie de réception des cargaisons au terminal.
- La détermination des capacités de stockage nécessaires.
- L'influence des différents facteurs sur l'importance de la contamination (contamination primaire au terminal départ. Influence des bouts morts, influence des loopings....)

C'est pourquoi, un intérêt particulier doit être accordé à l'étude de la technique du batching.

Ce modeste travail présente une méthodologie d'optimisation en vue de déterminer :

- La planification optimale du régime de pompage lors du passage du brut et du condensât.
- La capacité de stockage optimale à installer à S.B.M, pour faire face à l'évolution des exportations prévues dans le futur.
- Minimisation du volume de contaminat reçu chaque année au niveau de T.M.B.

Pour minimiser les pertes, il faut minimiser le nombre de cycles de pompage, soit allonger au maximum la durée du cycle en augmentant la longueur du bouchon (batch) de condensat

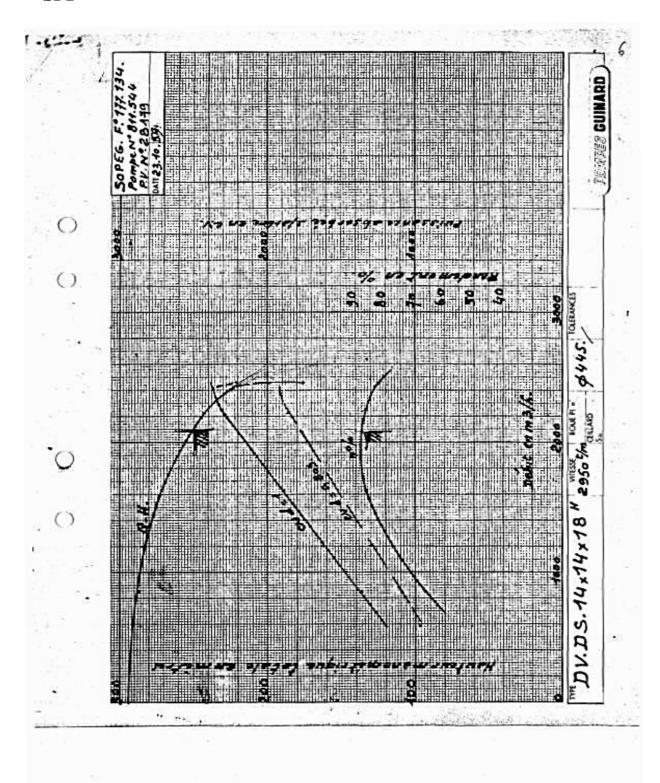
Malheureusement, pour diminuer le nombre de cycle il faut disposer de capacité de stockage Importante ce qui est rarement le cas.

Conclusion générale

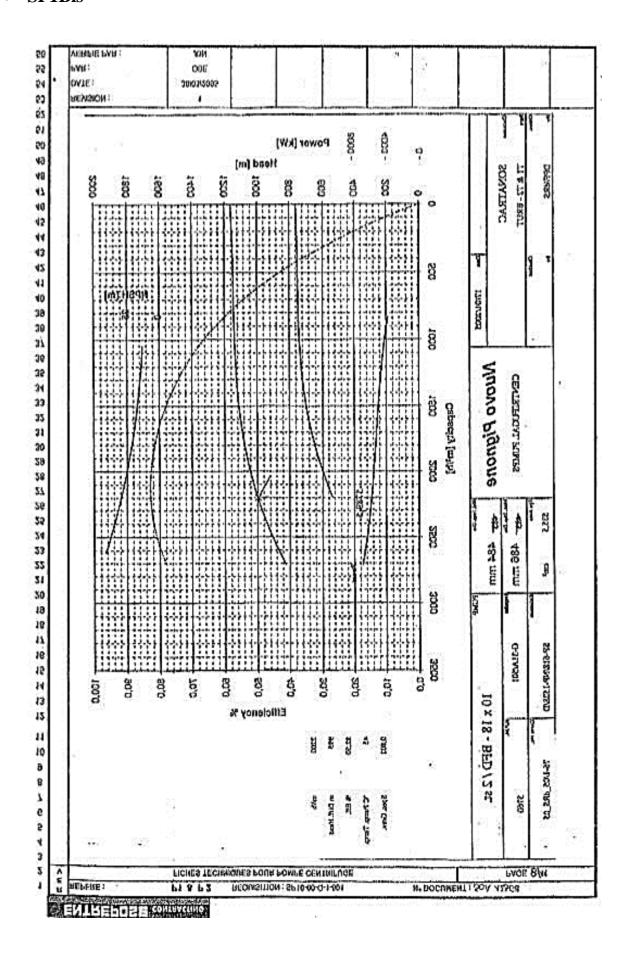
Accroître la capacité de stockage par la construction de nouveaux réservoirs est également très cher. La solution optimale sera donc un compromis entre les deux possibilités

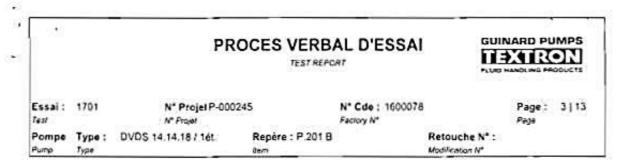
Donc avec l'augmentation de la production de condensât dans les champs, l'augmentation de la capacité de transport de l'OB1 s'impose, d'où l'importance vitale et stratégique d'acquérir une capacité de stockage à S.B.M.

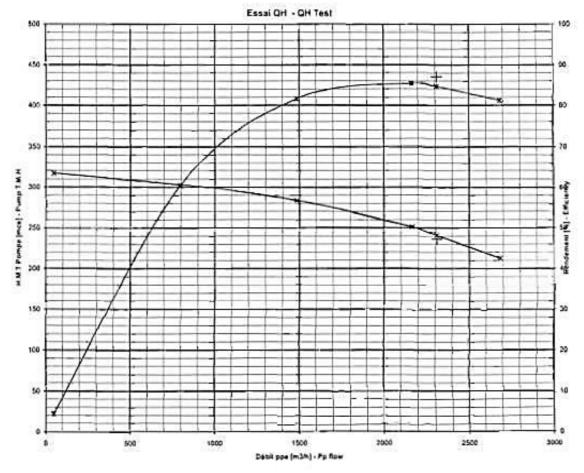
Cette solution est envisageable dans le cas ou la fluctuation du prix du pétrole est minimale.

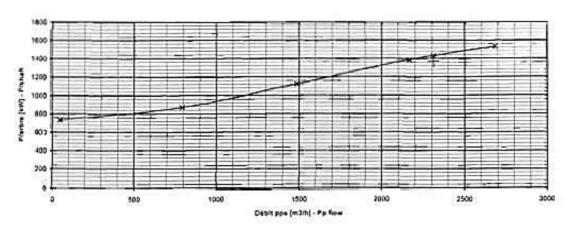

Références Bibliographiques

- Document de groupe SONATRACH DRG Béjaia (chapitre I)
- Mémoire de Master option : Transport et distribution des hydrocarbures thème : Optimisation de la périodicité de nettoyage de l'oléoduc OB1 (chapitre I, II, III)
- Mémoire de Master option : valorisation des ressources minérales thème : Analyse et caractérisation de pétrole brut
- Cours pompage multiproduits rédigé par BENMOUNAH Amar maitre de conférences, université de Boumerdes, faculté des hydrocarbures et de la chimie, département transport et équipement des hydrocarbures 2003 (chapitre IV)
- Mémoire de Master option : Economie et commercialisation des hydrocarbures thème : Modalisation et optimisation de la ligne de transport brut / condensat par BATCH cas OB1
- Mémoire de post graduation spécialisé option : Techniques de simulation et optimisation des réseaux de Transport des hydrocarbures par pipelines thème : Opportunité d'augmentation des capacités de stockage de l'OB1 en cas d'augmentation des capacités de transit brut – condensat (chapitre VI)


Annexes

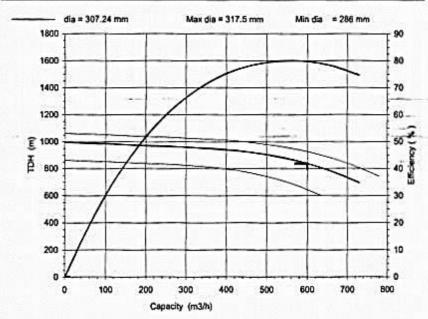

Les figures représentent les courbes caractéristiques des pompes principales des stations de pompages de la ligne d'OB1 :

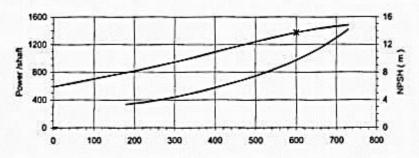

• SP1



SP1Bis

Curve nº P301-a


ema


11-24-05

DVMX 6x8x11 E-5 St

Impeter DS: M100273-2425677 Eye 125 x 2 / 142 cm2 base 456797 Volute F100439/115322 dearance API 616639 / 3

France: Annecy David Stown Guinard Pumps S.A.S. 39, Avenue du Pont de Tainet 8P 435 - 74020 Annecy cedex. Tel :-33 (f) 4 50 05 56 00 Fax :-33 (f) 4 50 05 58 00 Fax :-33 (f) 4 50 05 56 00 Fax :-33 (f) 4 50 05 00 Fax :-33 (f) 4 50 00 Fax :-33 (f) 4 50 00 Fax :-33 (f) 4 50 05 00 Fax :-33 (f) 4 50